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Abstract. Let M be a compact Riemannian manifold with no conjugate points
such that its geodesic flow is expansive. Then we show that the universal Riemannian
covering of M is a hyperbolic geodesic space according to the definition of M. Gromov.
This allows us to extend a series of relevant geometric and topological properties of
negatively curved manifolds to M and in particular, geometric group theory applies
to the fundamental group of M.

0. Introduction

The divergence of geodesics in the universal covering of a Riemannian
manifold with no conjugate points is one of the indicators of the presence
of hyperbolic geometric and topological fenomena in the manifold. The
classical theory of manifolds with no conjugate points provides a lot of
information concerning the behavior of geodesics once we impose some
restrictions in the metric. The case of strictly negatively curved mani-
folds, in which every pair of different geodesics diverges at a exponential
rate, contrasts with the zero curvature case in which there exist a lot of
‘parallel’ geodesics. Busemann [3] shows that a torus without conjugate
points has the following property: given any homotopy class there exists
a foliation of the torus by closed geodesics belonging to that homotopy
class and all having the same period. In this example the topological
nature of the manifold determines the lack of expansivity of the geodesic
flow, and no convexity assumptions are needed to deduce this fact. Re-
call that the geodesic flow @y T1M — T1 M is the one parameter family
of diffeomorphisms acting on the unit tangent bundle 77 M of a com-
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plete, C™ Riemannian manifold M as follows: ¢;(p,v) = (y(t),7' (1))
where (t) is the geodesic of M such that v(0) = p, 7/(0) = v. One
defines the expansivity as follows:

Definition. Let ¢;: N — N be a continuous flow acting on a metric
space N. The flow 9 is said to be expansive of constant ¢ > 0 if for
every + € N we have the following property: given y € N if there
exists a non-decreasing surjective map h: R — R such that h(0) = 0 and
d(We(@), V() () < € then there exists (e, y) € R such that 1,bt(c‘y)(:z:) =
Y.

In other words, two different orbits eventually become separated by
a distance of at least e. It is clearly one of the properties of geodesic
flows of compact manifolds with negative curvature. In this work we
are interested in obtaining geometric information of the manifold from
dynamical data of the geodesic flow. Busemann’s result suggests that if
the geodesic flow of a manifold is expansive then the manifold should be
‘closer’ to a negatively curved manifold than to a torus. In fact, we are
able to show that the expansivity condition implies that the universal
covering of the manifold ‘looks’ like the hyperbolic space. Let us define
the so-called Axiom of Visibility:

Definition. A complete, simply connected Riemannian manifold N with
no conjugate points (i.e., the exponential map is non-singular) satis-
fies the Aziom of Visibility if for each p € N, a > 0 there exists
R = R(p.a) > 0 such that if a geodesic segment 7:[a,b] — N satis-
fies infye o) d(p,~v(t)) > R we have that the angle at p formed by the
geodesic segments joining p to y(a) and p to y(b) is less than c.

Such manifolds are called wvisibility manifolds. If the number R does
not depend on p then is said to be a uniform visibility manifold. It
is clear that flat manifolds are not visibility manifolds. On the other
hand, negatively curved manifolds are visibiliby manifolds and more
generally, if a compact manifold with no conjugate points is such that
its universal covering is a visibility manifold then every metric with no
conjugate points in the same manifold satisfies the same property [5]. In
particular every metric with no conjugate points of a compact surface
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of genus greater than one induces a visibility structure for its universal
covering. The theory of visibility manifolds is well developed in many
aspects, specially those concerning automorphic function theory [2], [5].
There exists also very interesting geometric characterizations of these
manifolds in terms of the asymptotic behavior of geodesics [5]. In the
non-positive curvature case they have a lot of rigidity and the topological
dynamics of the geodesic flow is — modulo the existence of flat strips -
very similar to hyperbolic dynamics [2]. The purpose of this work is to
show that: ‘

Theorem A. Let (M, g) be a compact Riemannian manifold with no con-
jugate points. If the geodesic flow of M is expansive then M isa visibility
manifold.

Note that if the eurvature of M in Theorem A is non-positive the
theorem holds since, on one hand, it is clear that if the geodesic flow is
expansive there cannot exists flat strips in the universal covering of M
and on the other hand Eberlein shows that [5]:

Proposition. A simply connected complete Riemannian manifold with
non-positive curvature is a visibility manifold if and only if there is no
complete isometric embedding of a flat half plane into the manifold.

In general, manifolds with no conjugate points have neither convex-
ity of the metric, nor relations between the angles of geodesic triangles
as one has in the non-positive curvature case. These last two prop-
erties of non-positive curvature metrics are crucial to the proof of the
above proposition. Nevertheless, we can show that the expansivity of
the geodesic flow implies that the universal covering of M endowed with
the induced metric is a quasi-convex metric space.

Definition. A complete metric space (X, d) is K,C-quasi-convez for two
given positive constants K and C if every two geodesic segments [a, b],
[e,d] in X satisfy the following property:

d([a, b], [¢,d]) < K sup{d(a,c),d(b,d)} + C
where d([a, b], [c,d]) is the Hausdorff distance between [a, b] and |e, d].
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The metric d is also called quasi-convex. This is shown in section 1.
Then we prove the main result of the paper:

Theorem B. Let M be a compact manifold with no conjugate poits and
suppose that the universal covering M is a quasi-convexr metric space.
Then M is not a visibility manifold if and only if for every L € N there
exist £ > 0 and a pair of geodesics vy, 3: (—o0, 00) — M such that
i) d(v(t),B() < E,VteR
ii) infier{d(y(t),B)} > L, Vt€R
where d(y(t), 3) is the distance from ~(t) to the geodesic 3.

So theorem A is straightforward from theorem B and the following
result of [11]:

Let M be a compact manifold with no conjugate points such that
its geodesic flow is expansive. Then if v, (:(—00,00) — M have the
property that

d(y(t),B(t)) < D, Vte R

then there exists tg € R such that v(t) = B(t + tp), Vt € R.

Note that theorem B implies that the theorem of Eberlein mentioned
above is true for the universal covering of a compact manifold with no
focal points. This is a consequence of the fact that in the absence of focal
points bi-asymptotic geodesics at Hausdorff distance more than A > 0
bound a flat strip of width more than A as well as in non-positively
curved spaces [10]. The fact that the visibility axiom implies the non-
existence of pairs of geodesics satisfying the statement of theorem B is
not hard to deduce from the definition of the visibility property. The
proof of the reciprocal assertion is essencially the content of this paper.
The main point of the proof is that the lack of visibility implies the
existence of geodesic triangles in M of arbitrarilly large size satisfying
certain remarkable properties of triangles of R". Roughly speaking, we
can find large geodesic triangles ‘bounding regions or arbitrarilly large
area’ and whose perimeters increase in a certain controlled way. This
statement, that will be made more precise in section 2, can be viewed
as a reffinement of the non-existence of an isoperimetric inequality for
triangles. The proof of Theorem B will be performed in the first three
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sections. Finally, in section 5 we show that visibility manifolds are hy-
perbolic geodesic spaces according to the definition of M. Gromov [8].
So the results of the geometric theory of groups — developed recently by
many authors and specially by Gromov [9] (see also [3], [8]) — can be
extended as well to manifolds with expansive geodesic flows. In particu-
lar, the divergence of geodesics in the universal covering is exponential,
and every two non-commuting elements of the fundamental group, up
to a finite power, generate a free group.

I am specially grateful to F. Hirszebruch to whom I due some of the
ideas of the proof of Theorem 1.1.

1. Expansivity and quasi-convexity

We begin by fixing some notations. From now on, M will be a com-
pact, boundaryless C*° Riemannian manifold, M will be its universal
Riemannian covering and 7 (M) its fundamental group. If p, ¢ € M
we shall denote by [p, q] the geodesic segment joining p to ¢. Given a
point z € M the angle at z subtended by two geodesic segments |z, p]
and [z, ¢] will be denoted by £.(p,q).

Definition 1.1. Given a complete, simply connected Riemmanian man-
ifold N with no conjugate points, and a unit geodesic y(t) C N (i.e.,
parametrized by arclength), a unit geodesic 3(t) is called an asymptote
of 4 or asymptotic to -y if there exists C' > 0 such that

d(B(t),y(t) < C

for every t > 0. The geodesics v, § are said to be asymptotic. The man-
ifold N satisfies the Aziom of Asymptoticity if for every unit geodesic
v(t) with 4(0) = p, ¥'(0) = v it holds the following property:

Let ¢ € N, let ¢, — g be a sequence of points in IV, let (pn,vn) €
Ty, N be a sequence of unit vectors such that (pn,vn) — (p,v) and let
~n(t) be the unit geodesic of N such that 4, (0) = pn, 7,,(0) = vn. Then,
for every sequence of numbers t, — 400 the sequence 3, of geodesics
joining ¢, with v, (t,) converges to an asymptote 3 of ~.

If B(t) is asymptotic to (t) and B(—t) = [B(t) is asymptotic to
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v(—t) = 7(t) then v, 3 are called bi-asymptotic. Simply connected man-
ifolds without focal points, and in particular those having non-positive
curvature, satisfy the Axiom of Asymptoticity. More generally we can
show (see [11], proof of Prop. 1.1, for instance):

Lemma1.1. If N is a complete, simply connected, quasi-convexr manifold
with no conjugate points then it satisfies the Aziom of Asymptoticity.

Definition 1.2. Let N be a complete simply connected manifold with
no conjugate points. We say that N satisfies the uniqueness condition
if the only bi-asymptote of each geodesic v C N is v itself.

Examples of such manifolds are the universal coverings of compact
manifolds of negative curvature. In [11] it is proved that:

Theorem 1.1. Let M be a compact manifold with no conjugate points.
The geodesic flow is expansive if and only if M satisfies the uniqueness
condition.

We shall write down the proof of this theorem for the sake of com-
pleteness. To begin with, we show

Lemma 1.2. Let @i T'M — T1 M be erpansive. Then for every n > 0
there exists 6 = 6(n) > 0 with lim,_.4. 6(n) = 0 such that for every pair
of geodesics v, B in M satisfying

d(v(1), B(t)) <
d(7(s), B(s)) <

for some t < s then we have that

d(y(r), B(r)) < 6

I|=3|=

for every r € [t, s].

Proof. Suppose that the statement does not hold. Then we get se-
quences ng — 400 of integers, ti, sk, ax of real numbers with ¢ < ap <
Sky Vi, Ok of geodesics in M and a number a > 0 such that:

i) d(yk(t), Br(tr)) <

if) d((sk); Br(s)) < 7
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iil) d(vk(ak), Br(ar)) = a

for every k € N. Let € > 0 be the expansivity constant of ;. It is easy
to see that there exists p > 0, C' > 0 such that in every open ball B,(0)
of radius p in T3 M we have that for every w = (p1,v1), 7 = (p2,v2)
belonging to B,(0) the following holds:

d(w,7) < Csup{d(p1,p2); | Poypy (1) — 02|, || Pog.py, (v2) — 01|} (¥)

where d is the distance function associated to the canonical metric of

Ty M, and P, is the parallel transport along the shortest geodesic of M
between g and z. We can suppose without loss of generality that p <e.
Since the geodesic segment between two points in M is unique and it
depends continuously on its endpoints we can deduce from (i), (ii) and
(iii) above that for every D > 1 there is a sequence of geodesics 7 in
M and numbers by € (tx, si) satisfying

i) dly(ti), me(te)) < 7
if) d(vk(sk): (k) < 7
i) d(yk(r), mk(bk)) = inf (a, ) = suppe (s, s,) (VR () k() -

Clearly, |tx — sg| — +o00, |tx — bg| — 400, and |sg — bg| — +00. Let
My C M be a fundamental domain of M and let gi € m1(M) be such
that gr(vk(bx)) € My, Vk. There exists convergent subsequences of pairs
of points (gx(vk(br)), dgr(Vi(bk)) and (gr(nk(bk)), dg(m (b)) to points
(p,v) and (q,w) respectively. Now it is straightforward to check that
the geodesics v, (t), 75(0) = p and 7, (t), 7,(0) = ¢ verify the following
properties:

i) d(7,(0),7w(0)) = inf (a, §) >0
i) d(yw(®),v(t) < £, Vt €R.
Then it is clear from (*) that if D is big enough we shall get that

a(‘:"'ﬁf(pa U)'.l LPt(Qv LU)) <e¢

Yt € R which contradicts the expansivity of the geodesic flow. O

Proof of Theorem 1.1. It is clear that if M satisfies the uniqueness con-
dition then the geodesic flow of M must be expansive for some constant
€ > 0. So it remains to show the reciprocal statement. Suppose that
the geodesic flow of M is expansive and let € > 0 be the expansivity
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:onstant. Let v(t) be a geodesic of M and suppose that ((t) is another
reodesic in M such that

d(v(8),8(t) < C

or every ¢ € R. For every t > 0 let 4(s): [0,1] — M,0_4(s):[0,1] — M
»e the geodesic segments defined by
0¢(0) = (1), 0¢(1) = B(t)
o-+(0) = v(—t), 04(1) = B(—1).
From the hypotheses we have that the length of bOJ}El o¢(s) and o_4(s)
s less than C for every t > 0. Let ~;s(p):[0,1] — M be the geodesic
segment joining o:(s) with o_¢(s). From lemma 1.1 we get that there

xists 6 > 0 such that if d(7:,5(0),72,0(0)) < 6 and d(7t,s(1),V2,a(1)) < 6
hen

d(ﬁ}'t.s (P) y Tt,a (,0)) <e€

or every p € [0,1]. Since the length of the segments o¢(s) is uniformly
»ounded above by C there exists m € N such that for every n € N there
we points s, 0 =0, 851,502+ »Sn;m = 1 in [0, 1] such that

d(on(Sn,1); On(Sni+1)) <6

d(a—n(sn,l)s U—n(sn,é+1)) <é

or every 1 < i < m — 1. This means that

d(q’n’sﬂ.,‘i (p}’ ’Y‘n‘!sn,{_'_]_ (p)) S €

or every p € [0,1], and in particular, every geodesic ’yn,sn,i(p) intersects
;he ball of radius C + me with center at the point y(0). Letting n go to
nfinity we subsequences of the sequences 7, Sni converging to geodesics
Ve, kb =0,1,2,... ,m satisfying

d(Vk(t), Te41(t)) < €

or every t € R which implies that v, = yx+1, Vk from the expansivity of
;he geodesic flow. But since vg = v and v, = 3, modulo reparametriza-
;ion, we get that v = (3. This finishes the proof of the theorem. O
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Corollary 1.1. Let M be a compact manifold with no conjugate points.
If M satisfies the uniqueness condition then it is a quasi-conver metric
space.

Proof. The geodesic flow of M is expansive with constant € > 0. Let
m € N be sufficiently large and let 6 = §(m) the number defined in
lemma 1.2. Let [a,b], [c, d] be two geodesic segments in M. Assume that
sup{d(a,c),d(b,d)} = d(a,c) and subdivide [a,c| in segments [z;, T;{1],
i=0,1,2,...4n — 1, where zg = a,2n, = ¢,n = [[d(a, c)/%]] + 1 — where
[[2]] is the integer part of z € R —and d(z;, zi+1) = d(zi-1,2:), Vi < n—1.
Obviously d(z;_1,x;) < %, Vi. Take a partition of [b,d] by segments
[zi, 2zi41], 4 = 0,1,...n — 1 such that 29 = b, 2z, = d and d(zi, zi41) =
d(b,d)/n. Then we have that d(zi,zi4+1) < d(a,c)/n < d(zi, i4+1) < é,
Vi. Consider the geodesic segments [z;, %], ¢ = 0,1,...,n — 1 which
according to lemma 1.2 satisfy

d([ﬁ?;‘, zi]ﬂ [w‘H-Iaz?H—l]) = 0

for every 0 < i < n — 1 which implies

1
d([a,b), [c,d]) < né = ([[d(a, c)/ ] +1)é < (md(a,¢) + 1)6
< mésup{d(a,c),d(b,d)} + 6.
So taking K = mé and C = § we get corollary 1.1. O

2. On non-hyperbolic triangles

The purpose of this section is to show that the lack of visibility deter-
mines some flat-like behavior in the geodesic triangles of the universal
covering. Remark that the hypotheses of the main theorem do not grant
the existence of any relationships between the angles in a geodesic trian-
gle of the type occurring in the non-positive curvature case. The main
result of this section is the following:

Theorem 2.1. Let M be a compact manifold with no conjugate points
such that M is a quasi-convex metric space. If M is not a visibility
manifold then the following is true:

There ezist constants B > 0, D > 0 such that for a given m € N
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there are sequences a,, by, c,, d, of points in M such that
i) d(an,bn) — +00,d(bp.dn) — +00,d(cp,dn) — +00,d(Gn,cn) = m
and infg 10 11{d([an, bn](t), [cn, dn](s))} > m, Vn > ng, where
[@n, bn): [0, 1] — Mlep, dy): [0,1] — M are parametrizations of the seg-
ment [ay, by] and [c,,dy).
ii) d(bn,d,) < Bd(an,b,) and d(cp,dn) < Bd(ay, by)
iii) d([an, cnl, [bn,dn])= inft,se[(},l] {d( [an, en](t), [bn, dnl(5))} = Dd(an, by).
Let us comment briefly the statement of theorem 2.1. For every
m € N there exists a sequence of geodesic quadrilaterals having sides
of increasing lengths. The lengths of the sides depend at most linearly
on the length of one of them, on which we could think as the base of
the quadrilateral. This condition ressembles the law of cosines of tri-
angles in R". Moreover, condition (i) says that the distances between
points in [an,b,] and points in [c,,d,] is greater than m, and condi-
tion (iii) tells us that the distances between the points of [ay, ¢,] and
[bn, dy] is proportional to the distance between a, and b,. This means
that the ‘area’ bounded by the quadrilateral O(ay,, by, ¢,, dy,) with sides
[@n, bn), [bn, dyn], [dn, cnl, [Cn, an] goes to +oo if n — +o0 in a controlled
way.
We shall show some lemmas before proving the theorem. First recall
the following basic results concerning triangles in manifolds with no
conjugate points [5]:

Lemma 2.1. Giwen a > 0 and m € N there ezists R > 0 such that if
d(an,bn) > R, d(an,cp) > R and £4([a,b), [a, c]) > « then we have

s'itnszd([G, bl(t), [a, cl(s)) = m

where t and s are the arclength parameters of [a,b] and [a, c] with [a, b](0)
= [a,¢](0) = a.
We shall need also the following definitions.

Definition 2.1. Let m > 0. A sequence of geodesic triangles A(ay, by, ¢,)
is m-fat with respect to [an, by] if there exists t,(n) € [0, Z[ay, by]] such
that: '

i) lan,bn] —tm(n) — +oo if n — 400
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ii) d([an,bnl(t), [an,cn]) = m, Vi = tm(n).

Definition 2.2. Let D > 0. Consider a geodesic triangle A(ay,ag,as).
We say that [a;,a;],i # j is D-bounded with respect to [ak,am] if
ffa;, a;] < Delag, am). B

Let us begin with the proof of the theorem. If M is not a visibilif_zr
manifold then there exist a > 0 and sequences py,, ¢n, T of points in M
such that
a) d(Pn, [gn,Tal) = +00 if n — 400
b) Lpp([Pnsqnl, [Pn;Tn]) 2 @ >0

In other words, there are geodesic segments which are far from p,
and subtend at this point an angle greather than some strictly positive
constant. From lemma 2.1 it is clear that d(gn, ) — +oc with n — +oc.
We can assume without loss of generality that a < 3.

Claim. We can assume that either

Lgn ([n; Pnl; [an; Tnl) =

VR

and then d(pn, [gn, ™)) = d(pn, n) or
Krn([rm Pn]v [Q‘na Tn]) >

and d(pn, [gn,Tn]) = d(Pn, Tn)- . .
This is because either there exists z, € (gn,rn) — the interior of

[qn,Tn] — such that

| A

d(pns [qnsTn]) = d(Pn, 2n)

and then from the first variation formula we get that
i3 ' T
ézn([pm zn}, [gns zn]) = Es ém([zmpn]s [2ns Tn]) = Ea

(and either £y, ([Pn,gnl; [Pns 2n]) 2 % or &py, ([Pns Tnl, [P Zn]) 2 %)3 or
the minimum distance from pj, to [gn, 7] is one of the endpoints of this
geodesic segment, g, for instance. In this case, again from the first
variation formula we deduce that

| H

£gn([gn, Pnl; [gn,Tn]) 2

—

So let us start with sequences pn, gn,rn € M such that
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a) d(pn, [gn,7n]) = d(Pn,qn) 2 1

b) 1pn([pn:~[]'n]: [pna'-'"n]) 200

for some constant o > 0, for every n € N. Let h, € [p,, ] be defined by
d(pn, hn) = d(pn,qn). Observe that lemma 2.1 implies that d(hy,qn) —
400 if n — +00.

Lemma 2.2. For the sequence of triangles A(pp, qn,Tn) we have the fol-
lowing possibilities:

1. Either there exist M > 0, P > 0 and a subsequence ny — +0o such
that for every k € N there exists xy € [hnk,rnk] satisfying
i) d(z, hnk) < Pd(hnstRk)
i) d(zy, [Tnkaq%]) <M

In this case there exists B > 0 such that for every L > 0 we get
k(L) > 0 such that the sequence A(pnk,an,xk) 1s L-fat with respect to
[pnk, an], Yk > k(L), and [an,:z:k] is B-bounded by [pnk,an].

2. Or, for every M € N there exists n(M) € N such that for every
n > n(M) the sequence of triangles A(Tp, hn,qn) is M-fat with respect
to [rn, hn] and [hn, qn] 18 Hl_—f-bounded by [Tn, hn)-

Proof. Parametrize [rp,hy]: [0, £[rn, hn]] — M by arclength, with
[Pn, hn](0) = 7 and decompose

kn
s Bl = U [[7m, Bl (85), [, Ben) (5:42)]
=0
in k, intervals of length < {[hy,, g4, i.e., tg =0, tx, = £[hn,qn] and
1) d’([h’ﬂ' rﬂ-](tj}l [hn! Tnl(tj—}—l)) : f[hn‘r qn]r V‘} =0,1,... s Kn—2
i) d([hn, Tnl(tk,_y)» [hns Tol(tkn)) < £lhn; gn]

FOI' m E N dEﬁne t'ﬂ(m) = Sllp{t E [O) ’€[Tﬂ3 hﬂ.]]} d([’*”na hn] (3)$ [T”ﬂ.'s Qn] S
Km+C, Vs < t}, where K > 0 is the quasi-convexity constant. Remark
that

d([rm h’ﬂ](t)e [Tnv Qn]) >m

Yt > t,(m), for otherwise, if there exists s > t,(m) with
d([hn, ™) (®), [gn,Tn]) < M
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we would get by the quasi-convexity
d([rn, hal(®), [rn, ) < Km +C
for every t < s contradicting the choice of tn(m). Let
tn(m) € [[(hn, Tnl(tin), [hns Tn] (bin+1)] = [inflhn, @nl; (in + 1)€lhn, @]l

Then either

a) There exist a constant £/ > 0 and a subsequence n; — +00 such that
knj iyl inj < E

b) For every E € N there exists n(E) € N such that k, — in 2 E,
V¥n > n(E). In particular,

Uinsital Ulhn, gn) el
U, Tn] — ta(m) = (kn — (in + 1))€lhn,ga] — E—1

Case (b) is just statement (2) of lemma 2.1, i.e., the sequence of
triangles A(Tp, hn, gn) is m-fat and [hn, gn] i EITI — bounded with respect
t0 [Tny hn), ¥ > n(m). If (a) holds we deduce

Claim. Given L > 0 there exist j(L) > 0 and B > 0 such that the
sequence of triangles A(pﬂj,qnj, an) =; [rnj, hnj](tinj)) is L-fat with re-
spect to [pnj,qnj] for every j > j(L) and [qnj,cnj] is B-bounded by

[pnj=9nj]= Vn 2 0.

Let us first, for simplicity, denote r; = ’rnj,hj = hﬂj,cj = Cnj- To
show the claim let g; € [r;, g;] be such that d([r;, hj](t,;j),@j) < Km. By
the quasi-convexity we get

d(las 7, laj, [rj> hil(t:,))) < KPm
4
d(ps, gz, Irs hil(t:)]) > d(ps, [rs, ail) — K>m
> (1 6)d(pj, [r5,45])
for a certain § > 0 small and j suitably big. We have also that

£2)

éqj({Pstj]s gj, [r5; hil(tij 0 2 % e
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where v; — 0, which follows from (*) and lemma 2.1. On the other hand
d(gy, [rj; hyl(t:;)) < d(gj, ps) + d(pj; [, hjl(E:;))

< d(pj,q;) + El(hy, ;)

< d(pj, q5) + 2Ed(pj, q5)

< (1+2E)d(pj, ;)
which shows that [g;,c; = [r;, hj}(tz-j )] is (1 4 2E) — bounded by [p;, g;].
Finally, since

Lpn([Pry @nl, [Pny [Tn, ha] (8in)]) = @

we can apply lemma 2.1 in this case, from which we deduce that for
every L > 0 there exist R(L) > 0, j(L) > 0 such that if j > j(L) we
must have that d([p;, ¢;](t), [pj, ¢;]) = L, Vt > R(L), where [pj, ¢;](t) is an
arclength parametrization of [p;, ¢;] with [p;, ¢;](0) = p;. And since R(L)
does not depend on j we have that £[p;,q;] — R(L) — 400 if j — +00
which completes the proof of the fact that the sequence A(p;,q;,¢;) is
L-fat for every L > 0 and j big enough. I
Proof of Theorem 2.1. Assume that M is not a visibility manifold. We
are going to exibit a sequence of quadrilaterals O(ay,, by, ¢n, dy) satisfying
the conditions in the statement of the theorem. Consider the sequence
of triangles A(pn.gn,Tn) defined above. Let h, € [p,,Ts] be as before

the point such that d(h,,pn) = d(pn,qn). According to lemma 2.2 we
have two feasible behaviors for subsequences of A(pn, gn,7n).

Case 1. There exist M > 0, P > 0 and a subsequence n; — +oo such
that for every k € N there exists z, € [hn, , s, ] satisfying
1) d@g, hoy) < Pd(hog, Guy)
11) d(xy, [Tnk-s@nk]) <M
Consider the triangles A(pn, ; gn, , Tx). From lemma 2.2 we also know
that for every L > 0 there exists R(L) > 0, k(L) > 0 such that Yk > k(L)
we have
1) d([Pngr Gng](8), Do 28]) > L+ 1, Ve > R(L)
ii) E[Qﬂ,k‘xk] < Dfipnk:'?nk]
Let :

s0 = inf{s € €[pn, , Gn; ], d([Pn, , Gn, )(5); [Pny» Tx]) > L}
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Let Py, = [Pny,» @ny.)(30) and let Ty € [pn,,xx] be such that d(p“k Ty) =
L. We claim that the sequence of quadrilaterals O(ay = pnk,b
Gy s Ck = Tk, dr = x) with sides

@nksf{’nk]a [Q'nkaxk]s [k, Tk), [Ekapnk]
satisfies the statement of theorem 2.1. Indeed, from (i) above we have
that f[pnk,ﬁnk] < R(L) which implies that
U[pny» Pn)] _ RO
Upny, Gny] — T
and ¢[p, ,an] — 400 when k — +oc, by the choice of the sequence

PnsQnsTn- Let 0n, € [T“k’an] such that d(zy, n,, ) < M. By the quasi-
convexity we get that

— 0

a([zka‘anl‘ [qﬂks anl) S Kﬂ"{ + C
4
d(p'ﬂ.ka [Ik! an]} 2 d(pnk: [Q”ﬂ.stnk]) - KM — c
> d(p'nk: an} —KM-C (*)
> (1- 5)d(pnk:an)
N (1 - 6)€[Pnke q'nk]
where § is as close to zero as we wish and k > k(§) big enough. Since
a(pﬂkv @nks ?k]) < R(L) +M
we obtain
lnf {d [pn xk] an.,l'k S))} > d pnA [Q”nk1 x»‘\.]) p‘rlk [pnksxk!
t,se[0,1] ke’
Z (1 7= 6)d@nksq1;k) - R(L) i
s i S)d(lonk:gnk)
> (1= 8)d(Pr, - dny,)
for & close to zero and k > k(8) suitably large. This, together with the
assumptions on the sequence pp, gn, Tn clearly imply statements (i) and

(iii) of Theorem 2.1. To show statement (ii) of theorem 2.1 we must
show that the lengths of the sides of the quadrilateral O(p,, o s Ths k)
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are D-bounded by the length of [ﬁnk,an] for some constant D. By
lemma 2.2 we already had that

Clan,,, zx] < DEpn,, gn; ]
< D(Pr,  d] + UPry P))
E@nk:pnk]
flﬁnk ) anl)

< DUlp, G (1 + ﬂ)—)

Em‘nk ] q'nk]
< 2DU[Py, ; Gy

g Df[ﬁnkﬂ an] (1 +

if k is large enough. On the other hand, since E[ﬁnk,xk] = M and
UPn, > Gny,] — +00 with k we clearly have for k large that

g[ﬁnk ? xk] < f@nk» an]
Finally, we can estimate the length of [T, ] as follows:

E[Eka mk] < M + d@nk's Qﬂk) F d(quksxk)

for k big. This concludes the proof of the claim.
So it remains to analize.

Case 2. Here we have from lemma 2.2 that for every m € N there
exists n,, € N such that for every n > n,, the sequence of triangles
A(Tn, hn, @n) is m-fat with respect to [ry, hy] and [hy, gn] is m—l_l—-bounded
by [rn, hn). From lemma 2.2 we can take £(nm) € [Pnm, Anpl Y(m) €
[Tnm s Gnm] Such that
1) d(y(nm); [Tams Ium)) = d@(m), y(nm)) = m
2) d([Trms Paml(®); [Prms Gum]) = m, VE € [0, £Tnm , Al

with [Tnm,, Anml () € [Y(Mm), Pag)-
3) Ul Gum] = +00 a0d LRy, Grm] < 7002 (Mn) s Py

We claim that the sequence of quadrilaterals O(am, = ©(Nm), bm =
Romy €m = Y(Mm), @m = Gnm) With sides [Z(nm), bnmls [Anm: Gnmls
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[@nm s Y(Mm))s [Y(1m), Z(ny)] satisfies Theorem 2.1. First notice that since
d(, [Trms Gnm]) = ™ = £ (nm), y(nm)]
for every x € [z(nym), hn,,) We have that

N s Gum) 2 Uz (M), y(m)]

so from (3) above we get

x(nm), y(nm)] < lz(nm), Py,
This implies that
d(y(nm), Qnm) < g[y(nm)a x(nm)] T E[x{nm): hnm] + f[hnm’ Qnm]

Cx(nm), hng] + €2(m), ham]

m—1

<
—m—=1

< (2 + 14, B

which clearly implies theorem 2.1 (ii). On the other hand

d’(m(nm)a [h'ﬂm’ Q'an 2 g[x{?‘lm), hnm] - f[h’?lmv qwm]

lg[x(nm);hnm]

> la(rim), ha) ~ ——

1
m—1
|
d([z(nm), Y(m)], [Ragn s Gnm]) 2 d(z(nm); [hms nm]) — A(@ (M), Y(nm))
L), ) = (@ (), Y ()

m —

>(1- Y[z (Nm), Png,]

2 (1=

>(1- )l[z(nm); A )

m—1
where we recall that d([z(nm), Y("m))s [Rnms Gnrm)) is the infimum of the
distances between the points of [Z(nm),y(m)] and [Any,, @npy]. From
this we deduce theorem 2.1 (i) and (iii) and we finish the proof of the
theorem. O

3. Preparation lemmas
As in the previous section, if S, T" are subsets of M then d(5,T) will be
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the Hausdorff distance between them.

Lemma 3.1. Let M be a compact manifold with no conjugate points such
that M is a K, C-quasi-convex manifold. Suppose we have constants dy,
dy > 0 and a sequence of geodesics segments [Tn,Ynl, [2n, Pn] such that
1) d(zn,2n) < d1,d(Yn,pn) < di, V0

ii) There erists oy € [Tn,Yn] such that

inf{d(an, Tn), d(Qn,yn)} — +00, if n — +o00,

and
d(an, [2n,Pn]) 2 d2

for every n € N. Then there exists a pair of geodesics vy, T in M
such that d(y,7) < Kdy + C and d(v(0),7) > da.

Proof. Condition (ii) in the statement of the lemma clearly implies
that limp_. + o £[2n; Yn] = +00, and then by condition (i) we get limp 400
Uz, Pr) = +00, limp— 400 £[n, Zn] = 400, liMp_ 400 £[an, Pn] = +00. Fix
a fundamental domain My of M in M and let ¢, be a sequence of
covering maps such that 1, (ay) € Mp, ¥n. Also, by the quasi-convexity
of the metric we have that

d([Zn; Ynl; (20, Pn]) < Kd1 +C
for every n. Consider the geodesic segments ¥, [Zn, Yn] = [Un(Zn), Yn(yn))
and ¥n[2n, Pn] = [¥n(2n): Yn(pn)]- Let [Ty, yn](t) be an arclength parame-
trization of [z, yn] such that [, y,)(0) = a, and [zn, Yn)(—L[Zn, on]) =

Tn. Since the maps v, are isometries we have
a) d([Yn(@n)s Yn(Yn)ls [w’n(zn)swn(pﬂ)l) < Kdy +C,Vn
b) Yn(an) = ¥n([Tn, yn)(0)) € My, Vn and
inf{d(wn(an)a Yn(Zn)), d(WPn(an); ¥n(Yn)), d(Un(an), Yn(pn)),
d(Yn(an), wn(pn))} — +00
d(VYn(an), [Yn(zn), Ynlpn)l) 2 dy.

So by taking convergent subsequences [Un(Tn),¥n(yYn)] — 7,
[Wn(2n), ¥n(pn)] — -7 we get two geodesics < (—o0,+00) — M,
T:(—00,+00) — M satisfying d(vy,7) < Kdy + C and d(¥(0),7) 2 do
thus proving lemma 3.1. [
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Let us recall the conclusions of theorem 2.1. Let M be a quasi-convex
manifold without conjugate points. If M is not a visibility manifold then
there exist constants B > 0, D > 0 such that for a given m € N there
are sequences n, by, ¢y, dy of points in M such that

i) d(an,bn) — +00,d(bp,dn) — +00,d(cp,dy) — +00,d(an,cn) = m
and
inf {d([an,bn](t), [cn:dn])} = m, Vn = ny,
tel0,1]

where [ap, bnj: [0,1] — Misa parametrization of the segment [ay, by].
ii) d(bn,dn) < Bd(an,by) and d(cp,d,) < Bd(an, by)

i) inf, ye 0, 11{d(an, €a)(t). (bn. dn)(5))} > Del(an, by).

In other words, for every fixed m € N we obtain a sequence of quadri-
laterals O(an, bn, Cn, dn) having sides [an, by], [bn, dn, [dn, ¢n], [cn, an] such
that the lengths of all sides go to +oco with n in a controlled way,
their ‘widths’ are comparable to f[an,b,] and their ‘hights’ with re-
spect to [an,bn] are m. Let us say that x,y € [p,q] satisfy © < y if
d(p,x) < d(p,y). Define the points yni € [cn,ds] by

Yni = sup{:r: & [Cm dn]\d(t; [am bn)) < mi, Vi<zte [Cﬂs dn]}

Notice that by the construction of the point ¢, we deduce that
Ynl = Cny, Yn € N. We shall state some properties of the points y,;
in the following lemma.

Lemma 3.2.
0) (Wi, [an, bn)) = m’
i) d(Ynis Yni+1) = m'(m —1)
iii) For every € [Yni, Yni+1] we have
1.
d(z, [an, ba]) = —E(m* =)
iv) Let i(n) be the number of points yn; in the segment [cy,dy]. Then
there exists a constant L > 0 independent of n such that
i(n) < Llog({[an, by))

Proof. Assertion (i) follows easily from the very definition of the yp;’s.
To show assertion (ii) notice that d(yni+1, [@n,bn]) = mit1 so the length
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of every path from y,,;+1 to [ay, b,] must be greater or equal than mitl,
Let ¢ni € [an,by] be such that d(yni, gni) = m*. This last remark implies
that the path formed by [¥ni, Ynit1] U [Unis @ns) has length > mit1. But
this means that

AWniy Ynit1) = M = dWniy i) > M —m? = mi(m — 1)

which proves (ii). For the proof of (iii) we use the K, C-quasi-convexity.
Indeed, if > yn; let z € [an,b,] be defined by d(z, z) = d(z, [an, by)).
Then we have that

m* = d(Yni, [an, bn)) < d(Yni, z) < Kd(z,2) +C

and this is just assertion (iii). To show (iv) let i(n) be the number
of points yYni’s in [ay,, by). By the quasi-convexity and Theorem 2.1 we
deduce that

M ™ = d(Ypi(n)» [ans bn) < Kd(bn,dn) + C < KBl(an, by) +C

where B is the constant defined in Theorem 2.1. So we get

i(n) <
logm

(log K + log B + log £(an, bn))
and since m is fixed and £(a,,b,) goes to +oo assertion (iv) follows. O
Recall as before that the points ¢,; € [an,bs] are defined by
A(Yni, [@nybn]) = @(Yni,gni).- The points gn; may not be uniquely de-
fined, nevertheless our reasoning is independent of this fact. From now
on we just associate to each ¢ one and only one ¢,;. Remark that once
gni and g¢y; are interior points of [ay,bs] then g,; = gn; if and only if
i = j. This is because in this case both points are perpendicular to
[an, bn).

Lemma 3.3. Let m > 2C, and suppose that there ezists a subsequence
ng — +00 such that for every s there is a 1 < i5 < i(ns) satisfying

Tim d(yisr [anssbnsl) =0

s—=+oo  d(Giss Gig+1)

Then there exists a pair v, B of geodesics in M such that
d(y,B) < Km? +C
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and d(~(0),8) > f&.

Proof. If there exists an infinite subsequence s, — +oco such that
isp = 1, Vp € N then we can apply lemma 3.1 to the sequence of pairs
[an, @n2] = [gn1, an2l; [ens Yn2] = [Yn1> Un2] with dy = Km+C and dp = m.
Indeed, in this case we would have that d(an,cn) = m, d(yn2,qn2) = m,
d([an, gn2); [Cn, Yn2)) = m by Theorem 2.1, and by the hypotheses of the
lemma we would also get that £[an, gn2] — +090, £[cn, Yn2] — +00. So let
us assume that ig > 2 for s > s sufficiently big. For a given i < i(n) let
Pj € [Wni+1, Gni+1) be defined by p1 = ypit1 and d(p;, pj+1) = m?, where
1<5< mi~1. Let Z; € [Ynis @ni) be defined by z1 = yni, d(zj, Tj41) = m.
So the number of points z;’s is %ﬁ;—qﬂﬁ = %1 = m*~! which is the same
number of p;’s. By the quasi-convexity we have that

d([z;, 5], (2541, Pj41]) < Em? +C

for every j. Let 21 € [Yni, Ynis+1] = [#1,P1] be the point whose distance
t0 Yni+1 18 5A(Yni, Yni+1), and define 241 € [zj+1,Pj+1] by

d(zj, 2j+1) = d(2j, [Bj+1, Pj+1))-

mi—1_1

In that way we get apathT'= U [2j, zj+1] from 21 € [Yni, Ynit1] tO
=1
Z i1 € [an, bn]. It is clear that

or) < (M1 = 1)(Km? + C) < (Uyni, gni] — M) (Km + —E)

since £[Yni, gni) = M'.

Claim. The distance from every point z € T to either [yni,qni] or
[Yni+1, Gni+1) goes to infinity with s if i = ,.
In fact, from the last inequality we obtain that

UT) ¥ (f[ym,Qni] -m
s, Gni+1] ~ \ £lni, Gni+1]

)(Km+C')

for m > 1, so if i = i, the left side of the inequality goes to zero if s goes
to +oo by the hypotheses of the lemma. So for every = € [Yni,qni] We
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get that
d(z,T) > d(Yni, 21) — €(T) — LYni; Gnil

1
> ig[ym:: ym‘+1] = f(]:’) = g[ynh Qn'i,]

1
> —(llgni, Gri+1] — UYnir @nil — LYnit1, Trita]) — UT) — L{Yni; Gni)

2
4
d(z,T) > l (1 Y 2€[ym'+1r9ni+1]) L~
lanis qni+1] — 2 CGnis Gni+1]
(D) Llynisdnd

qnis Gni+1]  €lqnis Gni+]
where, by the hypotheses, if i = i, all the terms in the right hand side of
the inequality which are divided by #[gni, ¢ni+1] g0 to zero if s — +o0.
Therefore, given 6 > 0 there exists sg such that Vs > sg we have

1
d(P? [yﬂ‘is 7 Qm's]) 2 :?:(E[qnig! Qm',g-l-l] g 6) *

Analogously we deduce that there exists s; such that Vs > s1 we get

1
AT, i1 G s1l) = E(E[Qnissqms-i-l] —0)

These last two relations imply the claim.
To conclude the proof of the lemma, remark that from lemma 3.2
(iii) we must have
mis—1-1 1 )
e(r) — Z E[ZJSZJ+1] 2 d(zl? {aﬂs!b'ﬂ.s]) 2 E(mts == C)
j=1

since 21 € [Ynig, Ynis+1]- Thus, there exists jo = jo(s) < ms—! such that

1 { ms—C m [ 1—C/m's m

lzi, 2 > —— = ———— ] > —

(7> Zig+1] 2 72 (m“s“l - 1) K (1 - l/m‘S_l) TeK
since m > 2C and i; > 1. Joining the claim and the last inequality we
conclude that the sequence of pairs of geodesic segments [mjo(ﬂ)’ pjo(ﬂ)]’

[y (n)+15 Pjy (n)+1] satisfies the hypotheses of lemma 3.1 with d} = K m2+
C and dy = 57 from which follows lemma 3.3. O
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Corollary 3.1. Let m > 2C. Assume that there ezist « > 0 and a
sequence nj — +0oo such that for every j € N there exists 0 < 15 < n;
satisfying

. g[aﬂj !yﬂ -1 l "
1) W >a,Vje N

e{yn .3 g ] flbn‘,dn‘]

ii) Fither lim;_ 4. W =0 or limj.te W =

Then there exists a pair of geodesics y: (—00, 00) — J‘T/E’, B: (—o0,00)—
M such that d(v, 8) < Km? + C and d(v(0), 8) > 7.

Proof. We shall check that the hypotheses of Corollary 3.1 imply the
assumptions of either lemma 3.1 or lemma 3.3. Again, if there exist
L > 0 and a subsequence j, — +oo such that i;, < L, Vp € N we can
apply lemma 3.1 to the sequence of pairs [anjp,qnij]a [anp,yn i 1] with
dy = Km¥ + C and dy = m. So suppose that i; goes to infinity with j.
Observe first that from lemma 3.2 (iv) we have that

%(m*’(“) — C) < Ubp, dn] < mitH1

1 C bl _

K ™ -mi(n) o m*(“) =

We also have that '
[Yni, qni _ ﬁz -
g['yns: gns] ms
and
Umistnd M mi(n)
Obn,dn]  €bn,dn]  £lbn,dn]

Snfuwra(%,_Cmamg

< Am-Gim)=9)

i—i(n)

for every i < i(n), where A > 1 is some constant depending on m, C
and K. So we get that

i(n) i(n)
Llyni, Gnil —i(n)—i) « L i -1 _ m
; Uby, d] SA;T”‘ sfl—ml ~*E=1
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and similarly
&

Z ;[ynir Qni] < ims_{ = __Wi_
= Uynss ans] m— 1
for every s < i(n). To simplify the notation let us define y,,(j(n)+1) = dn
and gy (i(n)+1) = bn. So in the remaining of this proof we consider

1<i; <nj+1.
Claim. Given p € N there exist j(p) € N and 1 < v <) such that

£Gnup, qn(up+1)] >
e[yﬂ.!}ps q'rwp] =%

Indeed, otherwise there would exist constants £ > 0 and jp > 0 such
that for every j > jp
g[y'nj‘ii anz]
for every 1 < i < i;. Notice that in general we have that
i-1
d(an, gni) < Z £gns, Qn(.s-i-l)]

s=1
because the points g,; may not be well-ordered in [an, by], i.e., it may
exists i such that gn; > gni4+1. Nevertheless this implies that
ij-1 ij-1
d(andQHjéj) < Zl E[Qﬂjiaqnj(i-Fl)] < E z; g{yﬂji?qnjil
1= =

m
S E Am ia 1g[ynj’ijsqnj€j]
4
f[anj: qnjé'j] E A m f[yﬂjijSQ?ljij]

E[anjsynjijl m—1 g[anj;ynjij]

m E[yﬂj'&} ) QTIjij] E[anj, bﬂ ]

z l 'e[a'ﬂj 1 ynjzj]

<
EAm—l lan. bn:] flan.;bx.
g 37"

Sam—1 fanbn]
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if j — 400, where in the last two steps we used the hypotheses in the
statement. But this leads to a contradiction since

d(anj:ynjaj) S d(anjﬂ Q'njzj) =+ d(yngJaQRJzJ)

4
f[anstnjij] f Elynjz‘stnjz’j] 5 1
E[anj ) yﬂjij] it e[aﬂj ) ynjij] T2
for j big enough since
e[ynJ?.J H Qﬂjsjl - ‘e[yﬂ‘?'lj ) QngJ] f[anj 3 bﬂjl _]; 'E[ynjzj ;) Qﬂjijl
E[anj ) yﬂjtj] E[aﬂj} an] Jg[ﬂ:ﬂ‘}I ] ynjt‘?] e E{anj 3 bnj.]

which goes to zero if j goes to infinity by hypotheses. This finishes the
proof of the claim.
To conclude the proof of corollary 3.1 just notice that the claim
implies that
£Ynvp» Gnup) 1

B |

f[qﬂupaq'n.(up+1)1 I p

A

as p increases. But this allows us to apply lemma 3.3 to the subsequence

Np = Mj(p), withl <i=p, <1 ) as the appropriate i < i(ny) satisfying

i(p
the hypotheses of lemma 3.3. O

4. The proof of the main theorem

Actually, the preparation lemmas of the last section provide a proof of
a particular case of Theorem B. Indeed, the statement of corollary 3.1
says that if £[b,, d,,] is very small compared with £[an, b,] then Theorem
B holds. So let us assume throughout this section that there exists § > 0
such that

for every n € N. Let K > 0, C > 0 be as before the quasi-convexity
constants of themetric in M and fix m > 2C. Let D > 0 be the constant
defined in Theorem 2.1, i.e.,

d( [am Cn]= [bﬂ.} dﬂ]) > Dé’{an, bﬂ]
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for every n, where recall that d(S, T') is the infimum of the distances from
points in S to points in T. Define z, € [cn, dn] by d(2n, ¢n) = 3D¢an, b).
Let i(z,) be defined by

Zn € [yni(zn)ﬂyn(é(zn)—i-l)]
where y,,; comes from the last section, i.e., yn; € [cn, dy] is the supremum
of the points t € [y, dy] such that d(z, [an, by]) < m?, Yz € [cpn, t].
Lemma 4.1. Suppose that there exists a subsequence ng — +00 such that
js = i(ns) — i(2zns) — +00 if 8 = +00. Then Theorem B holds.

Proof. In this case we have

AYng (i(zng)+1) 7 [Onsr Ons)) = AUy (i(ang ) +1)2 Tns(i(ong ) +1)) = ittt

= m?;(ﬂ,s)—js-i-l

mi(ns) 1 f[ynsi(ns)‘!qngi(ﬂs)]

i mis-1
Kby, dns) + C
= -
== mJS_l
KBllang,bns) + C
= -
= sz—l
where B is the constant defined in Theorem 2.1. This implies that
CYns(i(2ng)+1)? Ins(i(zng)+1)]
. ' =5 ;
s €[, ] ®
On the other hand
ﬂyns(i(z )+]):an3] 1
Tta > g ng1 3 f T8 1 5
g[ansibns] i t?[ai'?v.snbﬂs]( [z y CQS] [a ' ]) (11)

1 D
e O T —m)> —
> g enes el =) =

for s suitably big. Therefore, the number a = -?— and the subsequences

ng, iy = i(2ns) satisfy the hypotheses of corollary 3.1, from which we
conclude that Theorem B holds in this case. [

End of proof of Theorem B. According to lemma 4.1 we can assume
that there exists w > 0 such that

Jn =1(n) —t(2n) S w
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for every n € N. Let p; € [bn,dn],  =0,1,... ,7, be defined by pg = dy,
Prp = by and
d(pj, pj+1) =m
for every j < 1, — 1 and d(pp,—1,Prn) = (€bn, dn)/m) — [[£[bn, dn]/m]],
where [[a]] is the integer part of a € R. Clearly r, is either [[£[b,, dy]/m]]
or [[£[b,, dyn]/m]]+1 and the number of intervals [p;, pj+1] is 7,. Consider
the geodesic segments [a,, p;| for n fixed and j = 0,1,...m,. By the K,
C quasi-convexity we have that d([an,prl; [an:pj+1]) < Km + C, Vj.
Now for a given N € N let
m
Aj(N) = {z € [an, pi)\d(2; [an, pj+1]) > 7}

Then two possibilities may occur:

1. There exists Ny > 0 and a subsequence n, — 400 such that
there is some 0 < j,. < j(n,) satisfying the following property: there
exists a point z € A;.(Np) such that lim,_ 4. d(z,an,) = +oo and
limp— 400 d(x,pj,.) = 4.
In this case we can apply lemma 3.1 to the sequence of pairs [an,, pj,],
m

[@ny, Pjp+1], With constants dy = Km + C and dy = Ng SO Theorem B
holds.

2. There is no such Ny. Or in other words, for every N € N there exist
H = H(N) and ny > 0 such that for every n > ny we have that every
point € A;(N) is at distance at most H from either a, or p; for every
0 < 7 < r(n). Under this condition the following holds:

Claim. There exists N depending on m, D such that for every N > N
there exists n(/N) such that for every n > n(lNV) there is a continuous
path I from 2, to [a,, b,] whose length satisfies
() - L
Llbp,dn) — N
where L > 0 is some constant depending on m, B and 3. Here B > 0 is
the constant defined in Theorem 2.1.
For the proof of this statement consider the sequence of points
z; € lan,p;] defined by zg = z,, T;41 a point in [a,,p;+1] such that
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d(z;j, [an, pj+1]) = d(@;5, Tj41)- Since every point of Ag(/N) is at distance
at most H from either a, or pg = dn and £[an,bs] — +00 with n, we
have that d(zn, [an,p1]) = d(z0,21) < §- In this way we construct a
path

bn
= U [.’L‘j,i!!j+1]
j=0
beginning at g = 2, such that £[z;,z;41] < §, V0 < J < by, where
b, < r(n). We affirm that b, = r(n). To see this remark that

bn b
ary=ep [fv“j:&?j+1]) = lzj,zj41) S ba 5 ST(N)

=0 =0

ZI3
2|3

On the other hand, since
r(n) < [[€[bn, dn)/m]] +1 < £[bn, dn]/m + 1 < Blan, bnl/m +1

this implies that

or) < %(Bf[an, bl /m + 1)
U

{(T) m m
ek et Py - sl
fo bl = N° =40y

for n sufficiently large. But this implies that
.d(l-‘} [an: cn.]) Z d(cm Zn) ¥ d(an: cn.) = E(I‘)

D m
> —3—8[%, bn] —m— 2B-ﬁ€[an, bn)

D 2Bm m ®)
> L[an, bn] (E TR bn])
> %e[ambnl

for N > %% and n suitably large. Also we have

d(T, [bn, dn)) > d([an, Cnl, [bn,s dn]) — d(T; [@n, Cn])
2 De[%; bﬂ] e d(rv [a'n} cn])
where d(T', [an, ¢s)) is, as usual, the Hausdorff distance between the sets.
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And since
d(T, [@n, n]) < d(a@n,cn) +d(cn; 2n) + £(T)

D m
< T bn 2B— n:bn
<m+ 5 Llan, bn) + Nf[a ]

]

< —Lan, bn)(1 + 6(n, N))

e

< f[am bn]

£
for N > %iﬂ and n large we deduce that

(T, [bn, dn]) > (D B %) lan, bn) > %’[ambnl %)

for n large enough. Thus, from (*) and (**) we can conclude that the
endpoint of T, Tp,+1 € [@n,Pb,+1] does not belong to Ap,+1(N) for
N > %”3 and n sufficiently large, s0 d(Zp,+1 [@nsPbp+1]) < ¥ - This
shows that we can construct a continuous path I' from 2, € [cn, dp] tO
some point in [an, by] such that T' N [an, p;] never belongs to A;(N). We
already knew that £(T) < 2—%&{.’ [@n, bp] so we have

(T)  _ lan,bn] £T) 1 (@E)
l[bn,dn]  £lbn, dp] £lan, bn) B N
where 3 > 0 comes from the assumption in the beginning of the section.
Taking N = 12Bm/D and L = 2Bm/[3 we finish the proof of the claim.
To conclude the proof of Theorem B we shall show that case (2)
leads to a contradiction. For, on one hand we have that

G L
milen) — A(Yni(zn) [an, bnl) < Kd(zn, [an, ba]) + C §_KI—V—€{bn, d,) +C
where in the last inequality we used the previous claim. So we get

mienl KL
Ubnydn] — N

+ An

where A, — 0 if n — +o0 from the assumptions on (b, dy,]. And on the
other hand we have

, s e i(n)
i(em) _ ()i _ T lbny ( Ly ) U[bn, dn]

min m mW¥

mw-l—l
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where w > j,, Vn according to the hypotheses of case (2). So

milen)

—>m
Ulbn, dn] ~

T |

which contradicts the conclusion of the claim above.

5. The geometry of the fundamental group

In this section we discuss some geometrical features concerning the fun-
damental group of a compact manifold with no conjugate points whose
geodesic flow is expansive. Our purpose is to show that there exists a
strong ressemblance between the fundamental group of such a manifold
and the fundamental group of compact manifolds with negative curva-
ture. The references we shall follow for the preliminaries of geometric
group theory are [3], [8], [9].

Definition 5.1. Given a metric space (X, d) and two points p, ¢ € X,
a geodesic segment joining p to q is an isometry g:[0,d(p, qg)] — X such
that g(0) = p, g(d(p.q)) = g

(X.d) is said to be a geodesic space if for every pair of points in X
there exists a geodesic segment joining them.

A geodesic triangle with vertices x, y, z is a union of three geodesic
segments joining respectively x to y, y to z and z to z.

A complete Riemannian manifold is an example of a geodesic space.
Another family of examples of such spaces is provided by the so-called
Cayley graphs of finitely generated groups. Given a finitely generated
group I' and a finite, symmetric set S of generators (i.e., if o € T then
o1 € T) let I,(r) be the length of 7 € T' with respect to S, i.e., the
smallest number of elements of S giving 7 as a product of generators.
We can endow T with a metric ds defined by dy(7,0) = ls(t7 o).

Definition 5.2. The Cayley graph of T', G(T', S) is a 1-dimensional simpli-
cal complex such that the endpoints of each interval in the complex are
elements of I and such that every edge of the complex having endpoints
v, [3 satisfies ds(v, B) = 1.

We can endow G(T',.S) with a metric which gives to each edge the

Bol. Soc. Bras. Mat., Vol. 25, N. 2, 1994

EXPANSIVE DYNAMICS AND HYPERBOLIC GEOMETRY 169

standard metric of the interval [0,1]. Every curve can be decomposed
into a disjoint union of segments, each one contained in some edge and
then the length of this curve is the sum of the lengths of these segments.
With this metric the Cayley graph is a geodesic space and there is a
natural embedding of (', ds) into G(I', §) which is an isometry.

Definition 5.3. A geodesic space (X, d) is said to be 6-thin for 6 > 0
if every geodesic triangle enjoys the following property: the distance of
every point of one given side of the triangle is at distance at most 6 from
the union of the other two sides.

The hyperbolic space is an example of a é-thin space. In general,
Riemannian universal coverings of compact manifolds whose geodesic
flows are Anosov flows are o-thin spaces.

Definition 5.4. A finitely generated group T is said to be hyperbolic if
there exist a finite set S of symmetric generators and a constant ég > 0
such that G(I', S) is ég-thin.

Although the number &y may depend on the choice of S the hy-
perbolicity of I' does not depend on the given set of generators in the
following sense.

Definition 5.5. Two geodesic spaces (X, d), (X', d') are said to be quasi-
isometric if there exist maps f: X — X', ¢: X’ — X and constants
v > 0, C > 0 such that

i) d(f(@), fy) < M(z,y)+C, Yo,y € X

ii) d(g(z'),g(y")) < Ad'(z',y)+ C, Vo', € X'
iii) d(g(f(z)),z) <C,Vz e X
iv) d(f(g(z"),2') < C,Vz' € X'

Lemma 5.1. Let (X,d), (X',d') be quasi-isometric spaces. Then (X,d)
is §-thin if and only if (X', d') is ¢'-thin for a certain &' > 0.

Lemma 5.2. Let T' be a finitely generated group and let S, S' be two
finite sets of generators. Then G(I',S) and G(I',S") are quasi-isometric.

So the hyperbolicity of a group is well defined up to quasi-isometries.
The fundamental groups of compact manifolds with negative curvature
are well known examples of hyperbolic groups. In general, we have the

Bol. Soc. Bras. Mat., Vol. 25, N. 2, 1994



170 RAFAEL O. RUGGIERO

following relation between the geometry of a manifold M and m(M).

Lemma 5.3. Let M be a compact, Riemannian manifold. Then
G(m1(M),S) and M are quasi-isometric for every finite symmetric set
S of generators.

Now we show that the collection of hyperbolic geodesic spaces in-
cludes the Visibility manifolds.

Proposition 5.1. Let N be a simply connected Riemannian manifold with
no conjugate points. Then N is a uniform Visibility manifold if and only
if N is 6-thin for some 6 > 0.
Proof. Suppose that N is a uniform Visibility manifold and suppose by
contradiction that N is not é-thin for any 6 > 0. Given two points z,
y € N let [z,y] be the geodesic segment joining z and y. Then there
exist sequences Tp, Yn, Zn, tn Of points in N such that
i) tn € [Tn;Yn]
ii) d(tn, [Uns 2n] U [2n, Zn]) 2 0

This means that d(tn, [Un, 2n]) — +00 and d(tn[zn, Tn]) — +oo if
n — +o00. Consider the geodesic triangles

Tﬂ_ == [t’ﬂ! xn] U [‘Tﬂ, Zﬂ_l U [Zn, tn]
T,; = [tn, Yn] U [Un, Zn] U [2n, tn]

From the Axiom of Visibility we get that
1) ét‘-n([tm Zn], [tm-’fnl) —0
ii) Lin([tn,2n); [tn, Yn]) — 0
where £, ([p, b], [p, d]) is the angle at p formed by [p, b) and [p, d]. This
implies that

= étn([tﬂ-ﬂ mﬂ]a [t?h yn]) S ‘-{tn([t’na xﬂla [tni zﬂ])+étn([tna yn]s [tn; zn]) — 0

which shows that N must be a hyperbolic geodesic space.
Now suppose that N is §-thin for some § > 0. Consider a sequence
of geodesic triangles

Ty = (B4, yn] U [Un, 2n] U [Zna mn]

such that d(zp,[yn,2n]) = n. Parametrizing the segment [yn,2n] as
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e [05kn] — M with ¥(0) = y, we get a point e, = Y(t) € [Yn,2n] de-
fined by

t= sup{s € [01 lﬂ]a d(’]f(S), ['7;71! yﬂ]) S 5} .

By the §-thin condition in N this implies that there exist points
&n € [yn, 2n] arbitrarily near to e, such that d(€,, [zn,2n]) < 6. Let us
suppose that d(en,€,) < 6. Let dy, € [T, yn) be such that d(en,d,) < 6
and let g, € [z, 2,] be such that d(€,,¢,) < é. Then we get

d(dn, Gn) < d(dn, €n) + d(en, €n) + d(En, gn) < 36.
So the geodesic triangle
Sn == [:C‘I’Ls dn] U [dm Qn] U [fIn, 37111

has two sides of length > n — 26, and one side of bounded length < 36.
Since N has no conjugate points we get from lemma 2.2 that the angle
formed by the big sides of S, at the point x, goes to zero if n goes to
+0o which proves that N satisfies the Axiom of Visibility. O

Corollary 5.1. Let M be a compact Riemannian manifold with no con-
Jugate points. If M is a Visibility manifold, then m(M) is a hyperbolic
group.
Proof. The proof is a straightforward consequence of Proposition 5.1
and lemmas 5.1 and 5.3. O

As a consequence of the results of this section and Theorem B we get
that if M is a compact Riemannian manifold with no conjugate points,
the expansivity of the geodesic flow implies that the fundamental group
of the manifold is hyperbolic.
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