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Simultaneous Uniformization for the
Leaves of Projective Foliations by Curves

Alcides Lins Neto

Abstract. In this paper we prove that, given a holomorphic foliation by curves on
CP", of degree > 2, whose singularities have nondegenerate linear part, then there
exists a hermitian metric ¢ on CP™ — § (§ = singular set) which is complete and
induces strictly negative Gaussian curvature on the leaves of the foliation (Theorem
B). This implies, in particular, that all leaves of the foliation are uniformized by the
unit disc and that the set of uniformizations of the leaves is paracompact (Theorem
A). We obtain also some consequences concerning the non existence of vanishing cycles
in the sense of Novikov, the equivalence of the existence of a parabolic element in the
group of deck transformations of the leaf and of a separatrix in the leaf, etc...

1. Introduction
Let F be a singular foliation by curves on M, a compact connected
complex manifold of dimension n > 2. We denote by S(F) the singular
set of F. Concerning the analytic structure of the leaves of F (outside
S(F)), several questions arise naturally:
I - When all leaves of F are covered by the unit disk, D?

If this is the case we will use the following notation:

U(F) = {a:D — M — S(F)|a is an uniformization of some leaf of F}

II - Suppose that all leaves of F are covered by the unit disk. What is
the nature of U(F), if we consider it as a subset of O(D, M) = {f:D —
M| f is holomorphic} with the topology of uniform convergence in the
compact parts of D? More precisely, what is 2/ (F), the closure of U(F)?
III - In the same hypothesis of II, how is the Poincaré metric of the
leaves of F, if we consider it in M — S(F)? Is it continuous? How does
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it behaves in a neighborhood of S(F)? Is there a C"(r > 0) hermitian
metric u in M — S(F) such that p induces the Poincaré metric in the
leaves of F?

IV - In the same hypothesis of II, given a leaf L, how is G(L), the Fuch-
sian group of deck transformations associated to a universal covering of
L? How does G(L) varies with L? What can be said about the topology
of the leaves of F?

V - If F is as in I, how are the neighbours foliations? Are their leaves
uniformized by the unit disc? If yes, how the uniformizations vary with
the foliation?

In this paper we intend to answer some of these questions when
M = CP", n > 2, and F is a foliation of degree > 2, such that its
singularities have Milnor’s number 1 (that is nondegenerate linear part).
The main technique will be the construction of a C? hermitian metric g
on CP™ — S(F) which induces negative Gaussian curvature on the leaves
of F. Before state the precise results we have, let us fix some notations.

Let g be a hermitian metric on M — S(F) of class C", 7 > 2. Define
Kg:M — S(F) — R by (K, € C™2).

K,4(p) = Gaussian curvature of L, at p, where L is the leaf of F
through p.

If K4(p) < —a, a > 0, for all p € M — S(F), then all leaves of 7
are uniformized by the unit disc ID. In this case we can consider the set
U(F) as defined in I. Our first result is of a general nature and will be
used in the case of CP".

Theorem A. Let M, F and S(F) be as above. Suppose that there exists

a hermitian metric ¢ on M — S(F) such that:

a) g is complete (that is, the distance induced by g on M — S(F) is
complete) and C", r > 2,

b) Ky(p) < —a®,a>0, YpeM—S(F).

c) All connected components of S(F) have a neighbourhood hyperbolic,
in the sense of [K].
Then U(F) is relatively compact in the topology of uniform con-

vergence in the compact parts of D. Moreover, its closure U(F) C
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U(F) U OD, S(F)), where O(D, S(F)) = {:D — M|a is holomorphic
and a(D) C S(F)}. In particular, if (0tm)m>1 95 a sequence in U(F),
then (a.,) has a convergent subsequence, which converges to c:ID — M,
where either a € U(F) or a € O(D, S(F)).

Since a point p € M has a hyperbolic neighbourhood (for instance a
polydisc), we get the following:

Corollary 1. Let M, F and S(F) be as above. Suppose that there
erists a hermitian metric g on M — S(F) which satisfies hypothesis
a) and b) of Theorem A, and ¢’) S(F) is finite. Then all conclu-
sions of Theorem A are true. Moreover U(F) = U(F) U S, where
S ={a:D — S(F)|a is constant}.

Concerning the Poincaré metric on the leaves of F, we have the
following;:

Corollary 2. Let M, F and S(F) be as before, and suppose that there
ezists a hermitian metric g which satisfies a) and b) of Theorem A. Then
there exists a (unique) continuous function h: M — S(F) — (0,+00) such
that the continuous hermitian metric u = h - g is complete and induces
the Poincaré metric on the leaves of F. Moreover, if g satisfies also

d) K, > —-b%b>0

then u is equivalent to g.

Definition. We say that a foliation by curves F has a vanishing cycle

outside S(F) (in the sense of Novikov [N]), if F has a leaf L with the

following properties:

i) L contains a closed curve 7, which is not homotopic to a constant in
L. '

ii) The holonomy of v (in some transversal section ¥ through p € ¥ N
v), h: (Z,p) — (Z,p) has an infinite number of distinct fixed points
(Pn)n>1 where nli_'n;‘J Pn = p, so that for n > ng, we can lift v to a
closed curve 7,, contained in L,,, the leaf of F through p,, where
Pn € Yn and 7y, — < uniformly.

iii) (Yn)n>ng, has a subsequence (’Ynk)kgl, such that Yy, is homotopic to
a constant in the leaf Lmk.

An interesting consequence of Theorem A is the following:
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Corollary 3. Let M, F and S(F) be as before and suppose that there
exists a hermitian metric like in Theorem A. Then F has no vanishing
cycles outside S(F).

Example. Let F be a foliation by curves in CP(n) whose singularities
have Milnor’s number 1. In this case F has a finite number of singu-
larities, say pi,...,pn. For each j let B; be a small ball around p;, in
such a way that B; N B; = ¢ if i # j. Set

N
M =CP(n) - | B;
i=1

and G = F|M. If F has a singularity, say p1, in the Siegel domain, then
G has a vanishing cycle outside S(G), because there is some leaf L of F
which is tangent to B; at some point ¢; € LN 0By, in such a way that
L is locally outside B; (see Figure 1). In this case it is not possible to
find a metric g in M which satisfies a) and b) of Theorem A, although
it is possible to find one which satisfies b).

=

9 B,

Figure 1
The main result of this paper is the following:

Theorem B. Let F be a foliation on CP™, n > 2, such that:

a) deg(F) = 2.

b) All singularities of F are isolated and have Milnor’s number 1.
Then there ezists a C2 hermitian metric g on CP™ — S(F) which

is complete and such that K4(p) < —a, a >0, V p € CP" — 5(F). In

particular all leaves of F are uniformized by D and u(F) = u(F)U S,
where S = {a: D — S(F)|a is constant}.
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It is convenient to observe here that a holomorphic foliation F on
CP™, n > 2, with isolated singularities can be defined in an affine co-
ordinate system C® C CP"™ by a polynomial differential equation of the
form:

g Pla).  2=Ersvatady P=P;aea5Es) (%)

where C* N S(F) = {P = 0} and the leaves of F|C™" are the complex so-
lutions of (). If the affine coordinate system is such that the hyperplane
at infinity is not-invariant for F, then P can be written as

P(z) =po+ -+ pr(2) + gr(2) - 2

where p;:C* — C" is homogeneous of degree j and gi: C" - Cis
homogeneous of degree k and g # 0. The degree of F is by definition
k. If the hyperplane at infinity is invariant then P has the same form,
but in this case gr = 0, px # 0 and pi can not be written as gx_1(2) - 2,
where g;_1 is homogeneous of degree k—1. Conversely, if ' is a foliation
on C, given by a differential equation as in (%), then it can be extended
to a unique foliation F on CP(n).

An interesting consequence of Theorem B, which is a foliated version
of Picard’s small Theorem, is the following:

Corollary 4. Consider a differential equation in C" like in (x) and let F
be the foliation on CP™ whose leaves extend the solutions of (). Suppose
that F has degree > 2 and that all singularities of F have Milnor’s
number 1. Then the unique solutions z(T') of (*) which can be extended
to all C are the constant solutions z = zg € S(F)NC".

The corollary is true because all non singular leaves of F are covered
by the unit disc.

Next we will state a result which can be considered as a foliated
version of big Picard’s Theorem. Let F be a foliation on CP™ with
degree > 2 and whose singularities have Milnor’s number 1.

Corollary 5. Let h:D* — CP™ be a holomorphic map (D* = D — {0}),
such that h(D*) C L, where L is some leaf of . Then h extends to a
holomorphic map h:D — CP™ in such a way that either h(0) € L or

h(0) € S(F).
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Let us state an interesting consequence of Corollary 5. Let F be as
in Corollary 5 and L be a leaf of 7. We will say that L contains a local
separatriz of F if there exists p € S(F) and an irreducible (germ) of
analytic curve T, eventually singular at p, with the following properties:
a) I =T — {p} is a smooth curve.

b) T C L.

In this case, it is known that T' admits a Puiseaux’s parametrization
in a neighbourhood of p, that is, there exists a neighbourhood V of p
and a holomorphic map 6:ID — V such that:

c) 6(D)=TNV and §(D*) =I'NV.
d) & = §|D*: D* — V is an embedding.

Now, consider 6: D* — L and the induced map in the homotopy
b.:m(D*) — m(L). Let v € (L) be the image of a generator of
m(D*) ~ Z, by 8,. Let a:D — L be an uniformization of L, G(L) C
PSL(2,R), be the group of deck transformations associated to « and
d: 71 (L) — G(L) be an isomorphism (associated to ). We will see in §3
that d(v) is parabolic. We have the following result:

Corollary 6. Let F be as in Corollary 5, L be a leaf of F, a:ID — L,
G(L) and d:71(L) — G(L) be as above. Then G(L) contains a parabolic
element h if, and only if, L contains a local separatriz I’ of F. Moreover,
if this is the case, then d~1(h) = ~*, for some k € Z — {0}, where =y is
obtained by using a Puiseauz’s parametrization of T as indicated before.

Let us state now a result related to question V.

We will see in the proof of Theorem B that the metric g can be
constructed in such a way that it is also C2 with respect to F. Let N s
be the set of foliations on CP™, n > 2, with degree k > 2 and whose
singularities are isolated and have Milnor’s number 1. Observe that N}
is an open and dense subset of the set of all foliations of degree k in
CP™ (in fact it is a Zariski’s open set). Let

Uy = {(F,a)|F € N and @ € U(F) or cu: D — S(F) is constant}.
We have the following consequence:

Theorem C. U’ is locally compact. In particular, if (am)p>1 1S a se-
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quence, such that for all m > 1, ay, is an uniformization of some leaf
of Fm € N, where Fp, — Fo € N¥, then (am)m>1 has a subsequence
which converges to o, where either ag € U(Fp) or ag(D) is a constant
in S(Fo).

This result can be considered as a kind of “continuous dependence
of the solution with parameters and initial conditions”.

Remarks.

1 - In [C,G], Candel and Gémez-Mont prove a result similar to the
conclusion of Theorem B, for n = 2. They assume that all singularities
of F are hyperbolic and that F has no algebraic leaf, so that our result
is a little bit more general. Nevertheless, the technique that they use to
prove that all leaves of F are uniformized by D is different and could
be interesting in itself. They prove that, under their hypothesis, F has
no transverse invariant measure and from this they conclude that the
leaves of F can not be covered by C. Also, their proof of the fact that
a convergent sequence of uniformization which does not converge to an
uniformization, converges to a constant in S(F) is different. They prove
first in the “local case”, and in their proof they use that the foliation is
equivalent to a linear vector field in a neighbourhood of each singularity.
We would like to observe here that our technique works well in this case
too. More specifically we will consider the following situation: let X
be a holomorphic vector field defined in a bounded polydisc P ¢ C"
which has a unique singularity at 0 € P. Let F be the singular foliation
whose leaves are the non constant solutions of 2 = X (z). Since P is a
hyperbolic manifold (cf. ch. IV of [K]), it follows that all leaves of F
are uniformized by the unit disc. Let U(F) be as before.

Proposition 7. In the above situation, suppose that DX (0) is non sin-
gular and that | X (2)| > ¢ >0 ifz € P and |z| > r, for some r > 0 such
that B.(0) C P. Then there exists a hermitian metric g on P — {0} such
that:

a) g is complete.

b) Ky(p) £ —a,a>0; VpeP—{0}).

In particular, let (om)m>1 be a sequence in U(F) such that there
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exists nll_{'nw am(0) = q, ¢ € P. Then, if ¢ = 0, oy, — 0 uniformly in
the compact parts of D, and if q # 0 then (au,) has a subsequence which
converges to some o € U(F), which uniformizes Lq.

A natural problem is the following:

Problem. To find the “more general” singularity of a holomorphic germ
of vector field for which the conclusions of Proposition 7 are true.

2 - We would like to observe here that Corollaries 5 and 6 could be stated
in the more general setting of Theorem A. However we have preferred
to state them in the case of M = CP™" because this is the unique case
in which we have a concrete metric g like in Theorem A.

3 - We think that our construction can be extended to singular foliations
defined in more general projective manifolds. For instance in the case
of a foliation on M C CP™, whose singularities have Milnor’s number 1
and which is the restriction of some foliation on CP". However in this
case there are some difficulties, according to the nature of the extended
foliation.

4 - The metric g of Theorem B was inspired in a metric constructed in
§3 of [CLS].

2. Proofs of Theorem A and of Corollaries 2 and 3

2.1 Proof of Theorem A
Let M,F,S(F) and g be as in the hypothesis of Theorem A. Suppose
that

Kq4(p) < —a® VpeM—S(F),
where a2 > 0. Ahlfor’s lemma (cf. ch. I of [K]) implies that for any
a € U(F) we have:

d(a(z2), a(z1)) < dr(a(z2), a(z1)) < édP(z%zI)a (1)

where d is the distance on M — S(F) induced by g, di the distance
induced by g on the leaf L uniformized by a and dp is the Poincaré
distance on . In particular U(F) is equicontinuous.

Let (yn)m>1 be a sequence in U(F). By taking a subsequence, if
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necessary, we can suppose that (am,(0))m,>1 converges, say
?I}Enm an(0)=p e M.

Suppose first that p € S(F). We will prove that in this case (a,,) has a
subsequence which converges to a: D — M, where (D) C S(F).

Let C be the connected component of S(F) which contains p and let
V be a hyperbolic neighbourhood of C. Fix pg € M — S(F) and let

" B, ={qe M — S(F)|d(g,po) <}

Since g is complete we have:
i) B, is compact for any 0 < r < +00.
i) U Br=M —S(F).

r>0

For r > 0, let W, be the connected component of M — B, which
contains p. It follows from (i) and (ii) that:
iii) N Wr=C and W, C W, if ' > r.

r>0
iv) If r is big enough then W, C V.

Now, fix 0 < p < 1 and rg such that W, C V if r > rg. Let
¢(p) = a1-dp(0, p). Fix also mg > 1 such that a,,(0) € W, for m > my,
where 1’ = 7 + ¢(p). Inequality (1) implies that if z € D, = {z||z| < p},
then

d(am(z),po) 2 d(am(0), po) — d(am(z), am(0))
> —atdp(z,0) > 7 —c(p) = 7.

Therefore a;,(D,) C M — B,. From connectedness, it follows that
om(D,) € W, for m > mg. Now, since Wy, is compact and V is
hyperbolic, the sequence, (am|ﬁp)m2m0 is normal, and so it has a sub-
sequence “Eich converges uniformly, say am, |D, — a, as k — oo, where
ap: D, — W, . From the above argument, it is clear that
a,(Dy) C (| Wr=C.
270

We have proved that for any 0 < p < 1, the sequence (u;|Dp)m>1 has a
subsequence (amp(k)|ﬁp)k21 which converges uniformly to a,: D, — C.
By using this and the diagonal Cantor’s method, it is not difficult to see
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that (aum)m>1 has a subsequence (amk)kzl, which converges to a:ID — C
in the compact parts of ID.

Suppose now that o,,(0) — p € M — S(F). Fix 0 < p < 1 and
consider the sequence (ay|Dp)m>1. Let

ro = sup{d(am(0), po)|m > 1} < +o0
and ¢(p) = a~1dp(0, p). It follows from (1) that for all m > 1:
d(am(2),po) < d(am(z), am(0)) + d(am(0), po) < c(p) + 1o =1,

so that a,,(D,) C By for all m > 1. Inequality (1) implies also
that (amlﬁp)mzl is equicontinuous. Since B,s is compact, it follow
that (am|D,)m>1 has a subsequence which converges uniformly to some
a,: D, — Bp. This fact and diagonal Cantor’s method imply once
again that (am)m>1 has a subsequence which converges to some a: D —
M — S(F) in the compact parts of D. Let us prove that o € U(F). From
now on we suppose that (ay,),,>1 converges to a:ID — M — S§(F) in the
compact parts of I and 7%1_1}100 am(0) = p = a(0).
Define A: M — S(F) — (0, +00) by

A9) = 94(7'(0)) (2)

where v:D — L, is an uniformization of Ly, the leaf of F through g,
such that ~(0) = q.
It is well known that

A(g) = sup{gq(6'(0))|6: D — L, and §(0) = ¢}

and that if g4(8'(0)) = A(q), where 3:ID — L, is such that 3(0) = g, then
3 is an uniformization of Ly (cf. [V]). It is known also that A is lower
semicontinuous (cf. [C] and [V]). Let v:ID — L,, be an uniformization
such that y(0) = p and a,, — « as above, where a(0) = p. Since
am:D — Ly, pm = am(0), it is not difficult to see that a:D — L,
Therefore

gp(@/(0)) < A(p) = gp(7'(0)).

On the other hand, since A in lower semicontinuous we must have

A A(pm) = Hm gp, (07,(0) = gp(a/(0) = Alp),
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so that, gp(a’(0)) = A(p), which implies that a € U(F). This proves
Theorem A. O

2.2 Proof of Corollary 2
Observe first that the last argument in the proof of Theorem A, proves
that A is continuous and does not depend on the hypothesis (c¢) of Theo-
rem A. On the other hand, a direct computation shows that, if & € U(F),
a(0) = p, then

Ma(2)) = (1= [21*)2 g0z (@ (2)) (3)

Relation (3) can be proved by taking
w+z
ﬁ(w) =« ( ) ’

14+ Zw

where 3(0) = a(z) and
B(0) = (1 - |2[)a/(2).

It implies that u = 4\~! . g induces the Poincaré metric on L,. From
Ahlfor’s lemma, it follows that

4idz|2
(1—|2%2

IA

G @ @)Ndel” = a’(9) <

4
Hence A(p) = gq(0)(/'(0)) < 2 %0 that 0 < A < 4a~2. This implies that

p=4ax"1.g>d?g.

Since g is complete, p is also complete.
Now, suppose that K, > —b2, b > 0. Since g is complete, if a is as
before, a Theorem of Bland and Kalka (cf. [B-K]) implies that

2
1 4|dz|
B =
D2 B P
and 50 A(p) = gu(0)(@'(0)) = 4/b2, and we get that,
a’g < p < bg.
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This implies that pu and g are equivalent, which proves Corollary 2. O

2.3 Proof of Corollary 3

Let M, F, and S(F) be as in the hypothesis of Corollary 3. Let L be a
leaf of F, p € L and ¥ be an embedded transversal section to F such that
p € ¥ and ¥ is biholomorphic to a polydisc in C"1. We can take ¥ small
in such a way that there exists a holomorphic vector field X defined in
some neighbourhood U of £, without singularities and which represents
F/U. For each g € U there exists a unique uniformization ag: D — Lg,
the leaf of F through ¢, such that a(0) = g and o} (0) = B(q)- X (¢q) where
B(q) > 0. It follows from Theorem A that 3:U — Ry is continuous. In
fact, since 8 > 0, we get

Blg) = [%O) _ A9)
94(X(9)) 94(X(9))

where A is as in (2).

Now, consider the function A:U x D — M — S(F), defined by
A(g,2) = ag(z). Let us prove that A is continuous. Let ((gm,2m))m>1
be a sequence in U x D such that rr!gnw(qm, zm) = (dos 20) € U x D and
QUm = Qg - Observe first that o, — o4, in the compact parts of . In
fact, if (aun; k=1 is any convergent subsequence of (m)m>1, Am; — (o,
then am, (0) = gm; — o = @o(0) ¢ S(F), so that Theorem A implies
that a, € U(F). Since,

U, (0) = Blgmy,) - X (amy,) — B(do) - X(go) = (0)

we get that a, = oy,. Therefore apy, — ay,. Now, since z, = lim zp, €
M—00
D, we have ap,(2m) — Qgo(20), and so n}im A(Gms z2m) = Ao, %0). We
—+ 00
need the following:

Lemma 1. (Liftinglemma.) Let V = A(U xD), I =[0,1] and 1 C X be a
connected open set in ¥ with p € 1. Let F: X1 x I — V be a continuous
map such that:

a) F(¢,00=q Vge€ZX.

b) For any fized q € £1 we have F(q x I) C Ly, the leaf of F through q.

Bol. Soc. Bras. Mat., Vol. 25, N. 2, 1994

PROJECTIVE FOLIATIONS BY CURVES 193

Then there exists a unique F:$1 x [ — U x D such that Ao F=F
and F(q,0) = (¢,0) € £1 x D, for all g € ¥;.

Proof. Observe that A(g,0) = ¢ and A(g, 2) = ag(2), where a, is an
uniformization of L,. Moreover Fy(t) = F(q,t) is a path in L, with
F,(0) = ¢q. It follows from the lifting theorem for covering maps that
there exists a unique path f’q:I — D such that FQ(O) = 0. If we set
F(q,t) = Fy(t), then clearly Ao F' = F. The continuity of F follows
from the continuity of A, as the reader can check. O

Now, let v:I — L, be a closed path with 7(0) = p. By taking a
C* fibration transversal to F in a neibhbourhood of «(I), such that £
contains a fiber, we can lift v to the leaves neighbours to Ly, in such a
way that we obtain a continuous map F:X; x I — V satisfying (a), (b)
of Lemma 1 and
c) F(p,t)=7(t),t € L.
d) F(q,t) belongs to the fiber through ~(%).

In this case f(q) = F(gq,1) € ¥ is the holonomy transformation of
L, associated to [y] € m1(Ly). Let F be as in the lifting lemma. If
[v] # 0 in 71 (L) then F'p: I — D is not a closed path in D. Since F is
continuous there exists a neighbourhood ¥ of p in ¥1 such that f:‘q is
also not closed, ¢ € £5. This implies that if ¢ € X3 is such that f(q) = g,
so that the path Fy: I — L, is closed, then it can not be homotopic to
a constant in L, because 4; = ag;:D — Lg is a universal covering.
Therefore F cannot have a vanishing cycle outside S(F). O

3. Proofs of Theorems B, C and of Proposition 7

3.1 Proof of Theorem B
Let F be a foliation by curves in CP", n > 2, such that S(F) is finite
and the singularities of F in S(F) have Milnor’s number 1. In an affine
coordinate system C* C CP™, the leaves of F are the solutions of a
differential equation

dz

E=22P(Z)’ z2=(21,+ s%n) (1)
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vhere S(F) NC"® = P~1(0) and P = (Py,...,P,) where the Py, are
solynomials. We choose the affine coordinate system C™ in such a way
:hat S(F) C C™. In this case, the fact that deg(F) = k > 2 means that
P; = pj + zj - h where p; is a polynomial of degree < k and h is an
romogeneous polynomial of degree k. The fact that S(F) C C" implies
shat h # 0. The fact that all singular points of F have Milnor’s number
L is equivalent to the following:

#S(F)=N=1+k+ - +k" (2)

o
if p € S(F) then A = DP(p) is non singular. (3)

Let S(F) = {p1,...,p~} and A; = DP(p;),j = 1,...,N. Set
Z;(z) = z — pj, so that (1) can be written as
iz,

= =Z;=4A;-Z; +Qi(Z;), j=1,...,N (1j)

where lim gfz(li) = 0. The hermitian metric g will be of the form

Z—

g=®0---PNH (4)
where
37 |d3j|2 + ¥ |zidz; — zjdzdz
",L =
L 2 2
(Z |P;|" + X | Rij )
j=1 1<
Rij = ziPj — 2 Pi = zipj — 2pi
7 (63
- 12 (e 3

wo(z) = (1+j=zl|zjl ) = N1l

and

(:OJ(Z) = ()O(IZJ('Z)F)'J |Zj(z)|2 = Z |Ze . pj6|2v P = (pjlr v spjn)r

e=1

Bol. Soc. Bras. Mat., Vol. 25, N. 2, 1994

PROJECTIVE FOLIATIONS BY CURVES 195

where ¢: (0, +00) — (0, 40c) is defined by

(JF,’:nt)_2 for 0 <t < tg, where tg = e~ (1+2/a) < 1,
2% q2e2to
(o + 2)2t2

(5)

p(t) =4 a(t+b)* for t > tg, where a =
and b= §e~(1+2/a),

We observe that ¢ was obtained by solving in ¢, a and b the system

(1) = pa(t), P1(t) = ¥a(t), ¥1 () = (1),

where ¢1(t) = (Int)~2 and @3(t) = a(t + b)®. This implies that ¢ is C?,
Observe that the denominator of u vanishes exactly on S(F) and ¢ > 0,
o > 0, so that, g defines a hermitian metric on C" — S(F). We have to
check the following facts:

I - g extends to CP™ — S(F). Let us call g again the extension.

II - g is complete.

III - Ky < —A, where A > 0.

Proof of I. Let us consider a change of affine coordinates in CP", for
instance, w; = 1/21, w; = z;/z1, 2 < j < n. From (5), it is easy to
check that there exists r > 0 such that if |z| > r then

1+ 3 e

(i w2 %)_ i=1
%0 wlawlﬁ'"!wl |w1|2a y
and
(1 wsy Wrn,
(pJ wlﬁwlﬂ-"awl =

T 2 D
a(|1 — pjrwn|” + Zglwe—f?jewll + blwy|%)
e=

3
|wy |

Moreover, in the new coordinate system,

L 2 2
Z |dwj.| + Z |'wz-dwj = wjdwi[
j=1 i<j 2k-2

K= ) X |wy|
|l

<]

o~ 2
> |Pj| +
i=1
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where P = (Py,...,P,) is such that the leaves of F in C* = CP" —
{zl =0} are the solutions of the differential equation %2 = P(w) and
Ru 2= wﬁPj wJP We leave this computation for the reader (see also
[C-L-8]). Since o = (k—1)/(IN+1), g can be written in a neighbourhood
of {wy = 0} in this new coordinates system as

Z |dw:,.| + Z: |widw; — wjdw¢:|2

g = eoWw)@1(w). .. on(w) = (6)
IPI + 5 Ryl

1<j

where

T
= 2 2 % h
@j(w) = a(|1 — pjrwi|” + Y lwe — pjewn|” + blwy| ), j=1,... ,N.
=2
This proves that g extends to all CP™ — S(F) as a C? hermitian
metric.

Proof of IL It is sufficient to analyze g in a neighbourhood of a p; €
S(F). Without lost of generality we will suppose p; = p1 = 0 (that is
j = 1). In this case, we have for |z|2 < tg = e-(1+2/2) that oy(2) =
(£n|z|2)‘2. We have also ¢g(0) > 0, ¢;(0) > 0 for j > 2, so that there
exists r < \/Tg and ¢ > 1 such that

V< po(2)p2(2)...on(2) S cif 2] < .

On the other hand, since A1 = DP(0) is non singular, by taking a
smaller r if necessary, there exists m > 1 such that if |z| < r, then

m 121 < 3 1Pi2) 2 + 3 |Ri(2))® < mlzf.
i=1 1<j

Moreover, it is not difficult to see that if v:(o,8) — B(0,r) =

{z:|z| < r}, is a C! curve, then there exists another constant D > 1
such that

L 2
R OESACIEDS
=1 i

1<j

2
W) —uEnin)| < DY@
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This implies that if £ = emD, then

gt OF ey <m —DOF
&P enh@)?)2 =~ T @) P enh)?y?

2
Therefore g is equivalent to the hermitian metric —g—g—|§ nl2/2)2 in
Z

B(0,r) — {0}. Since this last metric is complete in B(0,1), g is also
complete.

Proof of III. Let us compute K,. Fix p € C" — S(F), where C" is the
first affine coordinate system considered. Let z: D, = {T||T| < ¢} be
the solution of (1) such that z(0) = p. It is easy to see that

2*(9) = 9o(2(T)) . .. on (2(T))|dT|? = (T |dT|?
This implies that

2 0 L
»(0) 9TOT
iih AL 2

¥(0) Z aToT

Kqy(p) = — (%(T))|r=0

[en(p;(2(T))]lr=0
If we set K (p) = ﬂ;aag—;?[fn(@j(z('r))]y‘:g, we get

N
Ky()=-2) lpo®)...0i®)...on((p)] " K;(p)
3=0

N %
== 5 (H ws(p)) K;(p).

=0 \i#j
We will prove the following facts:
III.1 - Kg(p) > 0 for all p € C" — S(F).
IIL.2 - K;(p) > 0 for all p € C" — S(F).
IIL.3 - liminf K(p) 2 a; >0, j=1,...,N.
I11.4 - plgmeKi(p) =0, ifd L}
IIL.5 - K:(;?) > 0 if p € CP™ — C™, the hyperplane at infinity.
It is not difficult to see that these five assertions imply that K, < —A
for some A > 0.
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III.1 - A direct computation shows that

a(ilP |+2|&;(z|)
Ko(z) = —I= <!
(1+|2[%)2+e

This implies III.1 and that lim Ky(p) = 0.
P—pj
II1.2 - For |z — pjlz > tp we have
tn(p;(2)) = tna + adn(b+ |z — p;|*).
Since b > 0, ¢n(b+ |z — pj|2) is pluri subharmonic, and so Kj;(z) >0
for |z —pj|2 > tp. On the other hand, for |z —1.':i;’.-|2 < tp, we have
tn(p;(2)) = tnl(én]z — p;|*) 2.
Hence
2
0 [en|2(T) — pj|’]
"3 tnfo(1) —
2
121" en) 2"

K2

where ¢ = P(z), Zj = z — p; and (u,v) = Enj UgTy.
=1

2 .
O i) = —2-2- [ﬁ]

8T oT oT |ZJ,r.[2;gm|zjf|2

K =2 2 i i -4 iz

= —=2|Z;|7"(n|Z;|") |27 + 2{|1Z;] " (en| Z;]") "+

-4 st ;
+12;17% (en) 2, 2}|<z,zv>|2

Dividing the above expression by pi(z) = £n|Z | , we get:

Ll Z; 2, Z:)|?

Kj(z) = 2% |I 13212512 — (5, 23)] 1+2'(J |{f' -
J J

Now, a direct computation shows that

21257 = (5, Z) = 3 (26 — Di) om — (2m — Pjm) el = |HI?

f<m
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i 2
Since |Z;|” < tg < 1, we get

||J|\
|+2

Kiz)=2—75—
i Vs |Z;|

II1.3 - Observe first that
2 = Zj:P(pj+Zj) =Aj-Zj+Qj(Zj)

where the order of Q; at Z; = 0 is > 2. Since we are fixing j, we
will omit from now on the index j. Let A-Z = (By - Z,... ,B, - 2),
Z =(Z1,... ,Zy) and set

|€n|Z ¥
Vik

,14-2 z)?
1z|*

K(z) =2 |H|

where 5
i’fﬂ = 3 |ZtBm - Z — ZnBy - Z).
£<m
It is not difficult to see that

Kj(z) = K(2) + R(2)
where,
R(2)| < e1|21[en| 2| + c21 2] = Jim R(2) =
so that,

lizl'f_i_}JI;f K;(z) = lizrp_‘iinx;f K(z).

On the other hand, since |.Z|2 < tg, we get
il 9
- (Ientol|H|” + (A - 2, 2)[")
K(z) =2 1 =Fk1(Z2) 20 (7)
1Z]

Now, if s > 0 we have kj(sZ) = k1(Z), so that it is suﬁicien; to prove
that k1(Z) # 0 for Z # 0. But k1(Z) = 0 implies that |§\ — 0 and
(A-Z,Z) =0. Now,

I
iH‘ =0= A-Z = \Z = Z is an eigenvector of A = X #0,
because A is non singular. In this case (4-Z,7Z) = /\|Z|2 =0=> Z =10
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Therefore lim infzdpj K(z) > 0, which proves IIL.3.
We leave the proof of I11.4 for the reader. For the proof of IIL.5, just
use (6) and III.1. This proves Theorem B. O

3.2 Proof of Theorem C

Let Fyp € Ni! and s — F; be a parametrization of a neighbourhood
N of Fy in Nj. Let {p1,...,pn} = S(Fo). Since Fy has Milnor’s
number 1 and all pji, it is well known that we can choose the domain
of the parametrization, say B, in such a way that there are holomor-
phic functions py,...,pn: B — CP" such that p;(0) = p; and S(F;) =
{p1(8),... ,pn(s)}. Fix also an affine coordinate system C" C P", such
that S(Fp) € C*. If we take B small enough, we can suppose that
S(Fs) C C™ for all s € B. In this case we can define for each s € B a
hermitian metric ¢° as in (4) by,

g° = popl .. . oNp° (47)

where ¢y is as before, ¢3(z) = o(|z — pj(s)|2) and

i 2 n 2
Z |d2j| =+ %: |Zjd¢j = Zjd2j|
i<j

s _ a=1
2)

p = -
(£
j=1

where F,|C" is given by the differential equation 2z = P%(z), P® =
(P},...,P3) and R}; = z;P§ — z;Pf. Observe that (s,p) — g5 is C2.
Let S € B x CP™ be defined by
S ={(s.p(s)ls € B,j=1,... ,n}.

Then U = B x CP™ — S is open and we can define K:U — R by
K(s,p) = Ky4s(p). Clearly K is continuous.
Now, if U}} is defined as in §1 and C' C B is a compact set let

C'={(Fs,0) elU|s € C}.

PjS

2
+ 3 |Rg,
i<j

It is enough to prove that C' is compact.
It follows from the proof of Theorem B that

sup{ K (s,p)|(s,p) e U,s € C} = —a, a > 0.
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Let F be the foliation on B x CP", whose singular set is S and whose
leaf through (s,p) € U is Lj, the leaf of F; through p. Consider the
metric g on U defined by g, = 9° + |ds|2. It is easy to see that
Ky(s,p) = K(s,).

Let ((Fn,@n))n>1 be a sequence in C’, where F;, = F,,,. Since C is
compact we can suppose that 7, — F for some s € C. We can suppose
also that the a,,’s are not constants. From the proof of Theorem A,
it follows that (an)n>1 has a convergent subsequence, so that we will
suppose that a, — « in the compact parts of D, where either « is the
uniformization of some leaf of F, or a(D) C S. Now, since the leaves
of F are contained in the fibers of m1: B x CP™ — B, it is easy to see
that in the second case a(D) C SN wl"l(s) = S(Fs). Hence a(D) is a
constant in S(Fg). This proves Theorem C. O

3.3 Proof of Proposition 7
Let P and X = (X1,...,X,) be as in the statement of the proposition.
Since P is bounded we can assume that

1
PCBypp={2€C"|z| < 5}.
Consider the hermitian metric g1 in P — {0}, defined by:

3 [dal?
i=1

(8)

g1 = T
(en]2[*)2 _z:lm-(z)ﬁ
-

If we compute K, by the method of the proof of II1.2 in §3.1, we get

2 2
_Jx@, 2P | anla
4 4
4 4

Since |z| < 1/2 on P, we have fnlz12 < —¥¢n4 < —1. Therefore

Ky (2) = 1X@) 212 - (X (2), 2)[).

2 4.‘_",*1|z|2
axe,a° 4 1 | xR - e,

|K91 (z)l =

) |2 9)

L 4X()
|2|?

> 0.
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Since DX (0) is non singular, by an argument similar to the proof of
II1.3 of §3.1, we get from (9) that:

H?Li(r)lf Kg,(2) = —a1, a1 >0. (10)

Moreover, since |X(z)] > ¢ > 0 for |z| > r,z € P, we get from
(9) that |Ky, (2)| > 16¢® for z € P with |z| > r. This implies that
K4, < —ap in P — {0}, for some ag > 0.

Now, let P = D, x --- x D,,,, where

D, ={ze€C||z| <}
and g9 be the hermitian metric on P defined by

n 2 12
2L Z ‘;‘*’;id?’ﬂz :
=1 (rj — |21%)

The metric go has the following properties:
1 - g9 is complete (on P).
2 - There exists ag > 0 such that for any holomorphic embedding v: D —
P, then g9 induces Gaussian curvature < —ag on (D) (cf. ch. III of
K]).

It follows from Proposition 3.1 of Chapter I of [K] that g induces
Gaussian curvature K; < —a on the leaves of F, where

= W S
a —02 +a3 i

Finally, since g9 is complete on P, by the same computations already
done in the proof of II of §3.1 it follows that g is complete on P — {0}.

The proof of the remaining part of the proposition is analogous to
the proof of Theorem A, so we leave it for the reader. O

4. Proof of Corollaries 5 and 6

4.1 Proof of Corollary 5
Let F be a foliation on CP™ like in Theorem B, and h:D* — L be a
holomorphic map, where L is some leaf of 7. Fix an uniformization
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a:D — L. Let v be a generator of m1(D*) and consider h,(y) € m1(L).
We have two possibilities:

a) hu(y) =1in m(L).

b) hu(7) #1 in mi(L).

Let us suppose that h.(y) = 1. In this case, it follows from the
theory of covering spaces that h can be lifted to h:D* — D, where A is
holomorphic and a o A = h. Therefore big Picard’s Theorem (cf. ch.
V of [K]) implies that & extends to a holomorphic map, which we call
again h, h:ID — D. From this we can conclude that h extends to a
holomorphic map (h again), h:D — D, where h(0) = a(h(0)) € L.

Let us suppose now that A.(vy) # 1. We will prove that there exists

lin% h(z) = p, where p € S(F). Consider the set K = [\ h(D}), where

O<r<l

D; ={ze€D|0 < |z|] <r}.

Then K is compact, connected and non empty, because

K = () M(Dj,,)-
n=1
It is enough to prove that K = {p}, p € S(F). Suppose by contradiction
that this is not true. Then, there exists g, € K — S(F). Clearly ¢, =

lim h(z,), where z, € D* and lim 2, =0. Set r, = |2,| and
n—oo n—oo

T = {2z € D*||2] = ra}.

We will show that, for large n, h(7,) is homotopic to a constant in L,
which contradicts the fact that h,(y) # 1. Let g be the hermitian metric
constructed in Theorem B, where K, < —a?, a > 0, and pup be the
Poincaré metric in D*. It follows from Ahlfor’s lemma that

h*(g) < —sur. (1)

Let ¢n be the length of 4, in the metric pup, and £, d, be the length
and the diameter of h(7,) in the metric g, respectively. Inequality (1)

implies that:

< L. (2)
a
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Since £, = 27 /|¢nry|, we have Jim £, =0, and so lim £, = 0. Therefore
hm d,, = 0, because d,, < £,,.

N ow, g, & S(F), implies that there exists a local trivialization (¢, Q)
of F, where

% € Q, ¢(Q) =B"!xD, 0e B~ !, B~-1

is a ball in C*1, ©(g,) = (0,0) and the leaves of F|Q are the disks
{z} x D, 2 € B!, On the other hand,
lim_ h(zn) = o, h(2zn) € h(7n) and lim dp:=0.

T—

Hence, there exists n, > 1 such that for n > n, we have h(y,) C Q. Since
h(yn) C L we must have h(y,) C {0} xD C L, which implies that h(vs) is
homotopic to a constant in L. This proves that h extends to a continuous
map (which we call again h), h: D — CP™, where h(0) = p € S(F). It

follows from Riemann’s extension theorem that h is holomorphic. O

4.2 Proof of Corollary 6
Let F be a foliation on CP™ like in Theorem B. Let L be a leaf of F,
a:D — L be an uniformization with a(0) = ¢ € L, and d: m1(L,q) —
G(L) be the isomorphism associated to c.

Suppose first that L contains a separatrix I, where T =T'U {p} and
T has a Puiseaux’s parametrization §:) — T, where 6(0) = p € S(F)
and §(D*) = I'. We will assume that 6(1/2) = ¢ = a(0), so that if

" 1
’T={Z€D]|Zi=§}r

we have 6,(v) € m1(L,q). Observe that Corollary 5 implies 6.(y) # 1,
because p = §(0) ¢ L. Consider L with its structure of Riemann surface,
induced by the complex structure of CP™. The idea is to prove that
there exists a Riemann surface L and a point p € L such that L — {p} is
biholomorphic to L in such a way that I is a punctured neighbourhood
of p in L. This will imply that d(é.(7y)) is parabolic (cf. [M]). In order
to prove this fact we use the blowing-up resolution of T. It is know that
T can be solved by a sequence of blowing-ups, in such a way that if
we denote the composition of all these blowing-ups by =, then m: M —
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CP(n) is a proper analytic map with the following properties (cf. [F]):
a) M is a complex manifold.
b) m~1(p) = D is a union of projective spaces cpel
c) mf|M —D: M — D — CP™ — {p} is a biholomorphism.
d) 7~ 1(T) = T U D, where T is smooth and 7(T) =T.
e) T is transverse to D and I' N D = {p}, where p belongs to a unique
projective space of the decomposition of D.
The curve T is called the strict transform of T. The Riemann surface
L is obtained from L as follows: L = (L —T)UT. It is clear from the
construction that L — {p} = L and that T = T — {p} is a punctured
neighbourhood of p in L, as claimed.
Now, suppose that G(L) contains a parabolic element f. Let

C(f) ={h e GW)|hf = fh}.

Since f is parabolic, C(f) is isomorphic to Z and f = h"™, n > 1, where
h is a generator of C(f). Consider the quotient space D/C(f), of D
by the equivalence relation which identifies points in the same orbit
of C(f). Then D/C(f) is biholomorphic to D*, and the projection of
the equivalence relation can be identified with a holomorphic covering
map B:D — D*. Now, for any w € D*, B~ (w) is a C(f)-orbit and so
a(B~Y(w)) is a point in L. In this way we obtain a holomorphic covering
map 6:D* — L, which makes the diagram below commute

If d:m(L,q) — G(L) is as before, then there exists ¢* € D* such that
6. (m1(D*, ¢*)) = d~1(C(f)), so that if y is a generator of 1 (D*, ¢*), then
0.(y) = d~1(h) # 1. It follows from Corollary 5 that 6 extends to a
holomorphic map #: D — CP™ such that 0(0) = p € S(F).

Let (z,U) be a local coordinate chart such that z(p) = 0 € C" and
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r > 0 be such that 6(D,) C U. Then, for |T| < 7, we have
O(T) = (T*uy(T), ... , T un(T))

where either u;(0) # 0, or u; = 0, 1 < j < n, and there exists jy €
{1,...,n} such that u;, = 0. After a linear change of variables in
C™ we can suppose that uy,... ,u, # 0 and that k; = ... = k, = k.
After a change of variables in a neighbourhood of 0 € D, of the form
s = T ¥u (T, we can suppose that 6| D,, = ¢ is of the form

p(s) = (s*, Fua(s),.. . , sFun(s)),

where u;(0) # 0, j > 2. This implies that if T = §(D,») and T = (D),
then ¢|D}: D} — T is a finite covering and ¢'(s) # 0 if s # 0. In fact
¢| D7, will be an embedding, because d~1(6,(7)) is a generator of C(f).
Therefore L contains a separatrix I', which proves Corollary 6. O
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