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On Anosov Energy Levels of
Hamiltonians on Twisted Cotangent Bundles

Gabriel P. Paternain

Abstract. Let T M denote the cotangent bundle of a manifold M endowed with a
twisted symplectic structure [1]. We consider the Hamiltonian flow generated (with
respect to that symplectic structure) by a convex Hamiltonian H:T*M — R, and we
consider a compact regular energy level of H, on which this flow admits a continuous
invariant Lagrangian subbundle E. When dim M > 3, it is known [9] that such energy
level projects onto the whole manifold M, and that E is transversal to the vertical
subbundle. Here we study the case dim M = 2, proving that the projection property
still holds, while the transversality property may fail. However, we prove that in the
case when E is the stable or unstable subbundle of an Anosov flow, both properties
hold.

1. Results

Let M™ be a connected manifold without boundary, 7*M its cotangent
bundle, m:T*M — M the canonical projection and, if § € T*M, let
V(0) C TyT*M be the vertical fibre at 6, defined as usual as the kernel
of

dmg: Ty M — Tﬂ(e)M.

Denote by wg the canonical symplectic form of T*M. If Q is a closed
2-form on M then, w = wy + 7*Q defines a new symplectic form on
T M and the symplectic manifold (7* M, w) is called a twisted cotangent
bundle [1]. The vertical subspaces V(f) are Lagrangian subspaces with
respect to w for every 6 € T* M.
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Let H be a Hamiltonian on T* M, let JV H be its symplectic gradient
respect to w and let ¢, denote its associated Hamiltonian flow; ¢; leaves
all the level sets X, = H~1(¢) invariant.

Recall that a Hamiltonian H:T*M — R is said to be convez if for
each ¢ € M the function H(q, -) regarded as a function on the linear
space Ty M has positive definite Hessian.

Let ¥, be a compact regular energy level. We say that ¢¢|y, admits
a continuous invariant Lagrangian subbundle if there exists a continuous
subbundle E of T(T*M)|s, such that for all § € £, the fibre E(0) is a

Lagrangian subspace of TpT*M and
E(¢:(0)) = doe(E(0))

for all t € R. It is well known that if the flow ¢;|x, is Anosov then, both
the stable and unstable subbundles are continuous invariant Lagrangian
subbundles.

Motivated by the results in [6, 8], we proved in [9] the following
theorem:

Theorem 1.1. Let ¥, be a compact reqular energy level and suppose that
il admits a continuous invariant Lagrangian subbundle E. If H is

convez and w1 is exact then,

(a) E@)NV(O) =1{6}, VYVOeX,.
(b) m(2s) = M. In particular M is compact.

For n > 3, the form w™ ! is always exact since H?=2(T*M,R) = 0;
however if n = 2 this is no longer the case unless (2 is exact (note that
wp is always exact). Thus a natural question arises: is Theorem 1.1 still
true if n = 2 and € is non-exact?

The theorems below describe the situation for n = 2. In what fol-
lows, we will assume without loss of generality that M 2 is compact and
orientable, otherwise any closed 2-form on M is exact [5, Proposition
IX, Section 5.13].

Theorem A. Let n = 2 and let £, be a compact regular energy level and
suppose that ¢¢|y,, admits a continuous invariant Lagrangian subbundle
E. If H is convex then, 7(2,) = M
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We now exhibit an example (compare with [7]) for which part (a) in
Theorem 1.1 is false for n = 2 and ) non-exact.

Example 1.2. Let M = T2 and let H:T*T? — R be

1
H(q,p) = 5} +13)
where
- x2 _ 2 2
(a,p) = (q1,92,p1,p2) € T"T" =T* x R

Let Q@ = dg; Adgs.
If we identify i"‘(q‘p}f{"il“2 with R4, it is easy to check that

JV H(q1,92,p1,p2) = (P1,P2, —P2,D1)-

Integrating JVH, it follows that all the orbits of ¢; are closed with
period 2.
Consider the vector fields on T*T2 defined by

Xﬂ.,b(ql: q2!p13p2) = (a: b, 0, 0), ab 74 0.

One easily checks that

E.p(q1,92,P1,p2) = RIVH(q1,92,p1,p2) ® RXq (91,92, P1,P2)

is a C>~-Lagrangian subbundle invariant under ¢; on any positive energy
level.

Next note that for example E o intersects the vertical at any point
of the form (g1, g2, %1,0) on the level set H(g,p) = 1/2. This set is the
union of two copies of 7% and the Maslov index of every orbit of ¢; is 2.
This clearly shows that part (a) in Theorem 1.1 is false for n = 2 and Q
non-exact.

However, if we assume the stronger hypothesis that ¢;|y, is Anosov
we show:

Theorem B. Let n = 2 and let £, be a compact regular energy level and
suppose that ¢i|x,, is Anosov. Then if H is convex,

E@)NV(6) = {0}, Ve,
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where E denotes the stable or the unstable subbundle of ¢;.

2. Proofs

Proof of Theorem A. Suppose that 7(2,) # M. Then we showed in
19, Proof of Theorem 1.2] that there exists some # € X, for which
E@)NV(0) # {0} and therefore, that there exists a closed connected
codimension one stratified submanifold S C ¥, that is transversal to the
flow ¢¢. Moreover, the low dimensional stratas of S have codimension >
3 and therefore S represents a cycle in homology, transversally oriented
by the flow ¢;. Since w restricted to the codimension one strata of S is
a volume form and wy is exact we have:

0%/w=/w0+/ﬂ'*ﬂ=jﬂ'*ﬂ.
S S S S

Next note that [¢7*Q only depends on the cohomology class of Q.
Since 7(X,) # M, there exists an open set U in M, not intersecting
7(Ss). Let Q, be a 2-form cohomologous to Q and with support con-
tained in U. Then obviously (ﬁlgo)*ﬁ = 0 and thus

U#/?T*Q=/?r*§=0.
g )

This contradiction completes the proof of Theorem A. O

Proof of Theorem B. From Theorem A we know that ¥, is 3-manifold
foliated by circles and by a result of E. Ghys [4], ¢; is topologically
conjugate to the geodesic flow of a metric on M of constant negative
curvature. It follows then, that the closure of the set of primitive closed
orbits of ¢; in Hy(X,,R) is the closure of a convex open set containing
the origin in its interior, since the same property holds for the geodesic
flow of a compact negatively curved manifold. Thus if

a: Hi(Zo,R) — R

is any non-trivial cohomology class, there exists a closed orbit vy of ¢;
so that a(y) < 0.

Suppose now that for some 6 € 2,, E(0) N V() # {0}, where E
stands for the stable or the unstable subbundle of ¢;. Then (cf. [9,
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Proposition 3.3]) the Maslov class y € H(S,,R) associated with E is
non-trivial. On the other the convexity of H implies that if ~ is any
closed orbit of ¢, then u(y) > 0 [2, 3]. This contradiction completes
the proof of Theorem B. O
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