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Centralizers and Entropy
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Abstract. We prove that for a large class of bidimensional real analytic diffeomor-
phisms the centralizer is trivial: they only commute with their own integer powers. In
particular this property holds for an open and dense subset of those having positive
topological entropy.

1. Introduction
Given a compact, connected and boundaryless two-dimensional Rieman-
nian manifold, M, we consider the space of real analytic diffeomorphisms
on M, Diff” (M), endowed with the usual ¢*-topology, k € NU {oc} or
k = w, (for the definition of the ¢"-topology and related properties we
refer the reader to [BT] or [R]).

The centralizer of f € Diff*(M), denoted by Z%(f), is the subset of
real analytic diffeomorphisms that commute with f, that is

Z"(f) ={g € Diffi*(M); fog=go f}.

We say that the centralizer is trivial if it reduces to the own integer
powers of f.

Palis and Yoccoz ([PY]) proved that, in the space of diffeomorphisms
that satisfy Axiom A and the Transversality Condition, to have trivial
centralizer is a generic property, that is for a ¢>-open and dense subset
the centralizer is trivial. Later the author ([R]), conjugating Palis and
Yoccoz work with Broer and Tangerman technics ([BT]) that allow to
get real analytic perturbations (in the ¢“-~topology) from the usual ¢*
ones, transpose their result to the real analytic context maintaining the
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dynamical conditions.

In this paper we show that the same result is true (without dy-
namical assumptions) for a large class of bidimensional real analytic
diffeomorphisms.

In order to state our results let us define

Uo = {/ € Diff*(M): hugy(f) > 0}
Uy = Inta ({f € Diff"(M): hiop(f) = 0})

where Int.1 (A) denotes the cl-interior of A and hop(f) is the topological
entropy of f. Note that Uy is c'-open (Katok, [K]) and U = Ug U U1 is
c*-open (for all k) and c!'-dense in Diff*(M).

Here we prove:

Theorem 1. There exists U’, a ¢*-open and cl-dense subset of U, whose
elements have trivial centralizer.

To obtain this result we first observe that, by Katok’s caracterization
of positive topological entropy of ¢t two-dimensional diffeomorphisms
([K]), if f € Up then there exist transversal homoclinic points associated
to a saddle, and that if f € Uy, as a consequence of a recent result of
Aratijo and Mané ([AM]), then it can be ¢! approximated by a diffeo-
morphism exhibiting a sink and a source whose basins have non-empty
intersection. Then we prove that
(i) if f €e UgnU’ and h € Z¥(f) then ho filws(Pf)Uwu(pf) = Id, for

some i € Z, where Py is a saddle point belonging to a hyperbolic

horseshoe,
(ii) if fe Uy NU’" and h € Z¥(f) then ho ff"WS(P_f}uWu(Qf) = Id, for
some i € Z, where Ps(Qy) is a sink (source) and

W*(Py) NW(Qy) # @,

(iii) if f and h satisfy (i) or (i) then ho f* =1d.

We point out that analiticity is only required in order to obtain (iii).

Actually the set U’ we get in Theorem 1 is cf-open and dense in
Uy (k € NU {00} or k = w). Moreover it remains open to prove (or
disprove) that U is ¢* dense in Diff*(M), for k different from one.
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Finally we consider the Conservative Hénon family,
fiR? = R, fo(w,y) = (p—2° —y,2),p R,

and, as a consequence of (i) and of the geometry of this one-parameter
family, prove

Theorem 2. Z"¥(f,) is trivial for all p > —1.

2. Proof of Theorem 1 in Uy

Let us fix f in Up and V a ¢* neighbourhood of f, k € NU{oco} or k = w.
First we observe that, as f has positive topological entropy, there is a
hyperbolic periodic point, say Py, such that W*(Ps) and W*(Py) have
a point of transversal intersection, Q.

Let V4 C V be a ¢* neighbourhood of f such that for all g € Vj
the analytic continuations of Py and @y are well defined, P, and @,
respectively; let V3 be a ¢* open and dense subset of V; such that all the
periodic points of g € V5 with period less or equal to r (the period of
P,) are hyperbolic and if P; and P, are periodic with the same period
s < r then P, belongs to the g-orbit of P; or Dg°(P;) and Dg®(P) are
not conjugated in the space of linear isomorphisms.

The proof of the Theorem in Uy follows from forthcomig Proposition.

Proposition 1. There exists a c® open and dense subset of Vo, W, such
that if g € W and h € Z*(g) then, for somei € Z, g' o h(z) = x for all
x € W3 (Py) UW™(F,).

In fact if g € W and h € Z%(g) then h o ¢'|ys(py)uwu(p,) = Id for
some i € Z, and, using, A\-lemma and the analicity of h, we conclude
that for any transversal section L of W*(P,), hog'|r = Id, which clearly
implies that the centralizer of g is trivial.

Proof of Proposition 1. Since the arguments presented here are similar
to those introduced in [PY] and used in [R] and [R1], the details are
omited.

Given g € V5 there is a ¢* neighbourhood of g, V;; C V&, such that
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(i) for all gy € V; there are ¢* linearizations of

) T
QIIWS(PQ,{) and Qﬂwu(pg{)a

say (p;l and (g, respectively,
(ii) the maps w":(Vg,ck) — (C=, 1), 47(g) = gys O = 8 Or u, are

continuous.

Now, given g1 € V, and h € Z%(g1) we have that h(P,,) belongs
to the gj-orbit of Py ; thus there exists j € Z such that #' = h o.g{
fixes Py, . Define hg, = (gogl)_l oh'o ¥g,» 0 =soru As hgl are ¢
and commute with Ag, (A7, = {Lpgl)_l © g © g, ) they are linear maps.
Writing A7 (z) = A7, - = and hg, (x) = pf, - © we define

o . - log ||

Guih = o= , 0 =§0r U
91

log

It is not difficult to prove that g n =g p € Q, see for instance
[R1].

Therefore if g; € V, then its centralizer can be identified with a
subgroup of Zy x Zs x Q,

h E Zw(g]_) L) R(h) = (es,hugu,hi agl ,h)!

T
where 6, = l—i;—“, o = s or u. Observe that

h

and that R(h) = R(g1) implies that h' = ho g] " is the identity on
W2(P,,) UW™(F,,) (the converse is trivial). An element (6,6, E) is
called a root of order q of g1 if (p,q) = 1, (6, 6,, g) # R(g1) and there
~ is some h € Z"(g1) such that R(h) = (6,,6,, g). It is easy to see that if
(63,05, g) is a root of g; then there are 6, 0, € Zy such that (6,6, %)
is a root of g;.

Now we fix (0,0, é) and assume that it is a root of some gy €
Vy. There exists a transversal homoclinic point associated to Py, say
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Yyo (Yoo = h(Qgp)), Where h € Z¥(gg) and R(h) = (05, O, %) such that

1
(‘P;o)_l(Ygo) =05 ’\;o‘q(ipgo)_l@gu), o =5 or u. *

Also, as (0, 0y, %) is different from R(gp), it follows that Y, does
not belong to the gg-orbit of Q4. Now gg can approximated (in the
c* topology) by g1 € Diff(M) such that condition (*) is not satisfied.
Finally continuity of 17, Qg,, Yy, imply that there is a neighbourhood
of g1, say Wy, where (*) is not satisfied, that is (s, 6y, %) is not a root
for all g1 in Wj.

Remark that there exists 4 > 0 such that there are no roots of order
q1 in Wy if

|&—E‘<6.
a 4q

Thus there exists gg € N such that if g € W, and if h € Z*(g) then h is
a root of order less or equal to gq.

Therefore we just have to repeat the above argument a finite number
of times in order to obtain a cf-open and dense subset of W, whose
elements have trivial centralizer, thus ending the proof. O

3. Proof of Theorem 1 in U;
In order to get some dynamical properties for f € U; let us refer the
following result of Aradjo and Mané.

Theorem ([AM]). If f is a ¢? bidimensional diffeomorphism such that
all periodic points are hyperbolic then one of the following situations

occurs:
(i) there are a finite number of hyperbolic attractors, say Ay, ... ,Ax and
a finite number of contracting irrational rotations, say Agy1,... ,An,

such that Ul_; W*(A;) has full Lebesgue measure;
(i) f can be ¢! approzimated by a diffeomorphism ezhibiting a (dissipa-

tive) homoclinic tangency.

From this Theorem it is not difficult to prove that the set Uy, con-
sisting of those diffeomorphisms that have a sink P and a source @ with
W3(P)NW*(Q) # @, is ¢'-open and dense in U;. Therefore we just have
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to prove that given any cl-neighbourhood Vo of fo € Uy there exists a
c*-open set U C Vj such that if f € U and h € Z%(f) then, for some
s € Z, ho flys( Py) = Id, where Py denotes the analytic continuation
of P fo-

Let us fix fo € Uy and Vp an arbitrary neighbourhood of fy; we
denote by ky, respectively k,, the period of Py,, respectively Q fo» and
define kg = m.m.c.{kp, kq}. If V is small then we can choose V7, c'-open
and dense in V), such that all g € Vj satisfy
(i) all the periodic points with period less or equal to kg are hyperbolic;
(ii) the eigenvalues of Dgff and Dggq have multiplicity one and are non-

resonant, where P and @ are the analitic continuations of Py, and

@y, respectively;

(iii) if z, y € Per(g) have period t, less or equal to ko, then y € Oy(z) or

Dgt and Dgr;ff are not conjugated in the space of linear isomorphisms;

(iv) W5(P)NWY%Q) # 2.

Now we fix any g in Vj; there is a ¢>-open neighbourhood V5 of g
such that
(v) forall f € V5 there are ¢ linearizations of fkplw_g(P) and f’“‘i‘|wu(Q),

say ¢} and ¢} respectively; moreover the maps

Y7: (Vg,¢%) — (C%,¢*),9°(f) = ¢},0 =s or u,

are continuous.

From now on we assume that f € V5. We also suppose that the
eigenvalues of D ff,p and of D fgq are real; the proof we sketch in this
situation also works, with slight modifications, in the other cases (see,
for instance, [R1]).

If h € Z*(f) the condition (iii) implies that there are i, j € Z such
that ho fi((P) = P and ho fi(Q) = Q. Let us define b’ = ho P
h" = ho fI, and

h1=(p}) L oh op}, A1 = () o frooys,
hg = ()~ o h" o Y, Ag = (9} o fFoo Y.
As hjo A; = A; o h; and h; is smooth it is easy to conclude that h;

is linear, i € {1,2} (see, for instance, [Ko]).
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Let us consider the case ¢ = j, that is A’ = h” or, more generally,
consider

Z§(f) = {h € Z"(f); exists i € Zst. ho f'(P) = P and ho f(Q) = Q}.

It is not difficult to reduce the general situation to this case.
As before we define

log |pi| , _ log|ui] Ai Ai
o = y 0= ——, 0= —, and 0= =,
Codog|AlT T log NN YT A Y

i € {1,2} where A;(\}) are the eigenvalues of Aj(Ag) and p;(u}) are the
eigenvalues of hj(h9).

One can prove that there exists V3, ¢®-open in V3, such that if g € V3
and h € Z¥(g) then oy = ap = @] = ay.
Now if g € V3 and h € Z}(g) then h' = ho g’ is identified with
(01,02,07,0%,0) € (Z3)* xR,

and

! +k k +k
(e o s(af - 05 - || wy, of - 65 - Ao Fwg)
! !
= (o} ™ 0F - N R, o™ 0 - N o),

for all z € W#(P) N W*(Q), where

(w1, w2) = (93) 7 (2), (Wi, wh) = (PP~ (),
1 ' ,U,"
oi= — and o;= —
|l 7

Considering h o f*%0 instead of h (for a convenient $) we can assume
that « €]0, 1]; as before if h € Z¥(g) is such that

,i € {1,2}.

(01,02,01,09,a) # (01,02,01,05,1)
then h is called a root of order . Now we can argue exactly as in Section
2:
e V(01,092,01,05,a) = {f € V3:equation (x) is not satisfied} is a ¢>-
open and dense subset of Vj;
o V)NV (3) = (No;,01V (01,02,07, 95, 1) N (No;,0V (01, 02, 01,05, 3))
is ¢*-open and dense in Vi;
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e there is ¢y € N and Vj, ¢™-open and dense in V(1) N V(%), such
that if g € V and h € Z¥(g) is a root of order a then a = E € Q,
(p,q) =1, and gg > ¢q > 2.

Therefore if g € V4 then g can only have a finite number of roots and
this number is uniformly bounded in Vj. This implies that there exists
U, c¢™-open and dense in Vj, such that Z¥(g) is trivial for all g € U,
thus ending the proof. O

4. Proof of Theorem 2
Let us now consider the one-parameter family

foR2 5 R2, fo(z,y) = (p— 2% — y,2)

and prove that if p > —1 then Z%¥(f,) is trivial.

To get this let us first state some properties of this family. If p < —1
then f, has no fixed points; for p = —1 there exists one fixed point with
eigenvalue 1. For p > —1 there are two fixed points P, and @,, both
in the diagonal, P, is hyperbolic and D f,(P,) has two real and positive
eigenvalues, @, is an elliptic point for p €] — 1,3, and if p > 3 then @,
is hyperbolic and D f,(Q,) has two real and negative eigenvalues.

As Ro f, = fp_l o R, R(z,y) = (y,z), it follows that R(W*(P,)) =
W*(P,); also as the region U, respectively Uy, is f,-invariant, respec-
tively f, Linvariant, (see the figure below), just two separatrixes can
produce homoclinic points. Simetry along the diagonal and A-lemma
imply that there exists a primary (transversal) homoclinic point in the
diagonal, say Yg; from this fact and the analicity of W*(F,) and of
W*(P,) on compact parts it is not difficult to prove that

¥ M) VB = (%8, 10 %)

where «, is the stable arc joining P, and Y, and 3, is the unstable arc
joining P, and Y,. Now if h € Z"¥(f,) then

h(P,) = Py, A(W?(P,)) = W°(P,),0 = s or u,

and Dh(P,) has two real and positive eigenvalues (which implies that h
preserves orientation.
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Assume that A is not an integer power of f,; from section two we have
that af = off € Q — Z. Moreover, as #{f;l(ap) NpA3,} = 3, one has that
aj = 5, s odd. Considering hoff, instead of h, for a convenient [, we can
assume that o} = % This means that if Z*(f,) is not trivial then there
exists h € Z¥(f,) such that h% = f,, h(X,) = Y, and h(Y},) = f,(X,).
Therefore we have that hA(Dy) C Do, which is impossible since h must
preserve orientation, has we have seen before. Thus Z"(f,) must be
trivial. O
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