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Schottky Type Groups and Kleinian Groups
Acting on S’ with the Limit Set a
Wild Cantor Set
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Abstract. We construct geometrically finite free Kleinian groups acting on S° whose
limit sets are wild Cantor sets.

Introduction

In [5], M Freedman and R. Scora have constructed exotic examples of
co—compact topological group actions on the 3-dimensional sphere S3
with wild Cantor sets as their limit sets.

Their groups have interesting features: each element of a group is
individually conjugate to a conformal (hyperbolic) transformation of S3,
but the whole group is not topologically conjugate to a conformal group;
so the wildness of the limit set arises from the interplay of the generators
and not from the dynamics of any element alone.

They conjectured in [6] that if a group acts conformally on S° with
limit set homeomorphic to a Cantor set and with compact quotient of
the domain of discontinuity, then that Cantor set is tame.

The purpose of this paper is to exhibit explicit examples of con-
formal groups - Kleinian groups - acting on S3, whose limit sets are
wild Cantor sets. As opposed to the Freedman-Scora examples, the
groups we constructed have non-compact quotients, they contain lots of
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parabolic elements. We will call those groups Fake Schottky type groups
(or FST-groups).

We will present three different constructions of FST-groups. It is
interesting to note that we obtain in this way examples of non-equivalent
wild Cantor sets in S3.

In the first example, we use Klein’s Combination Theorem to build
FST-groups from Schottky type groups. The key point in this part is in
constructing the Schottky type group (acting on S3) with non-standard
isometric fundamental domain.

It should be noted here that the first attempt to construct FST-
groups was made by M. Bestvina and D. Cooper [1], but unfortunately
their paper contains a gap (see comments below). Nevertheless their idea
is beautiful and fruitful. Our second example is in fact a realization of
their idea.

The third construction is a generalization of the first one. Using this
construction, we obtain the following result. For any positive integer N
there are at least N free FST-groups acting on S° with the same rank
k(N) which uniformize N non-homeomorphic manifolds. Moreover, the
limit sets of these groups are non-equivalent wild Cantor sets.

The organization of the paper runs as follows. In section 1, we review
Kleinian groups and discuss some examples including M. Bestvina and
D. Cooper’s one. The first and the second constructions are given in
sections 2 and 3 respectively. Section 4 contains the topological part of
the proofs. In section 5, we present the third construction. In section 6,
we prove that the extensions of the FST-groups we constructed to the
action on 4-dimensional sphere are Schottky type groups.

1. Preliminaries

1.1 We denote the Euclidean n-space by E™. We will write a point = €
E™ as z.= (®1; v Zy)w'The unit spheredn BRigiS = {xe B || =1},
the open unit ballis B = {x € E™ : |z| < 1}, and the upper half space is
H" = {z = (z1,...,%n) € E™ : £, > 0}. The one point compactification
of E™ is denoted by E™ or S™. The natural inclusion of E"! into E"
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is given by E"1 = {x = (z1,...,2,) € E" : ,, = 0} and extends to the
one point compactifications, so that we have E"~! = 9H"™ U {c0}.

1.1.1 The differential metric on H™ is given by

_dm%+-~+dm%
= 5 ;

n

ds?

T
With this metric H™ is a model of hyperbolic space.
1.1.2 Let M(n) be the group of all orientation-preserving Mébius trans-

formations of E", that is, each element of M (n) is a composition of a
finite (even) number of inversions in spheres in E™. This group is iso-
morphic to the connected component of the unity of the Lorentz group
SO(n +1,1). In dimension n = 2 there is also a canonical identification
of M(2) with PSL(2,C).
1.1.3 Tt is well known that there is a natural embedding of M (n) into
M(n + 1), that is, for each g € M(n) there is a g* € M(n + 1) such that
9°lgn = g and g*(H"1) = g1,

We remark also that M(n) is both the full group of orientation—
preserving isometries of H "‘+1 and also the full group of orientation—
preserving conformal mappings of E™.

1.2 Classification of the elements of M (n)

1.2.1 Every element g € M (n) has at least one fixed point in the closure
of H"*1. If g has a fixed point in H"*! then it is elliptic; if g is not
elliptic, and has exactly one fixed point on 9H™ !, then it is parabolic;
otherwise, it is lozodromic. A loxodromic transformation which is con-
Jjugate to a dilation x — Az, 0o — 00, A > 0 \ # 1, is called hyperbolic.

1.2.2 In dimension n = 2 we may identify M (2) with PSL(2,C).

Proposition 1.1. Let g € PSL(2,C), and let Tr2(g) denote the square of
the trace of a matriz in SL(2,C) representing g. Then:

1. Trz(g) is real with 0 < Tr?(g) < 4 if and only if g is elliptic;

2. Tr2(g) = 4 if and only if g is either parabolic or the identity;

3. Tr2(g) is real with Tr2(g) > 4 if and only if g is hyperbolic;

4. Trz(g) is not in the interval [0, 00) if and only if g is loxodromic, but
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not hyperbolic.

1.3 Isometric spheres
For a transformation g € M(n) with g(co) # oo, the isometric sphere
( isometric circle in dimension 2) I(g) of g is defined by I(g) = {xe E"™:

| Dagll =1}

Proposition 1.2. A transformation g € M(n) such that g(oo) # oo can
be written in the form g = O o q o p, where p is the inversion in I(g);
q is the reflection in the bisector of the centers of I(g) and gL f
I(g) # I(g™Y), or the reflection in an arbitrary hyperplane in E™ passing
through the center of I(g) if I(g) = I(g™Y; and O is a rotation around
the center of I(g™1).

In particular, for dimension 2 we have:

Proposition 1.3. The transformation g € M(2) with g(co) # oo has the
following form

r2ei(0+2))

9g(z)=f— ——,

AR 4

where oo € C is the center of I(g), r is its radius, [ is the center of
I(g™Y), X is the angle which the bisector of o and 3 (if distinct) makes
with the imaginary axis (or the angle of a line passing through o if
a =), and 0 is the angle of rotation around (.

1.4 Kleinian groups

Let T be a subgroup of M(n). We say that the action of I' at a point

x € E™ is discontinuous if

1. The stabilizer I'y = {g € ' : gz = x} is finite;

2. There is a neighborhood U of z such that g(U) N U = & for all
ger\r,

The set of points at which the action of T is discontinuous is called
the reqular set, and is denoted by R(I"). Its complement L(T") = EPVR()
is called the limit set of T. A group T is called Kleinian if R(T') # @.
An elementary group is a Kleinian group whose limit set has a finite
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number of points.

1.5 Fundamental domains

A fundamental domain D for the Kleinian group I is an open subset of
R(T") such that:

1. g(D)ND =@, for all g € T'\ {id};

2. For every x € R(T') there is a g € T, with g(x) € D (D is the closure

of D).

A fundamental domain D for T is said to be isometric if D bounded
by isometric spheres (isometric circles in dimension 2) of generators of
T.

A Kleinian group T is geometrically finite if it has a finite sided

fundamental hyperbolic polyhedron for its action on hyperbolic space
oL,

1.6 Klein’s combination theorem

Let I'; and T's be Kleinian groups. Suppose that there are fundamental
domains D; of T; (i = 1,2), such that DjUDy = E™ and D = D1N Dy #
@. Then I = (I'1,T9) is a Kleinian group, and D is a fundamental
domain for ' and I' = I'; * I'g (the free product of T'y and T'g).

1.7 Poincaré’s polyhedron theorem

This section is devoted to the exposition of a fundamental theorem of
Poincaré. It will be given in the form we need for our purpose. A general
treatment can be found in [9].

Let {(T3,T]) : 1 < i < m} be a family of closed metric balls in
E™. Assume that any pair of them either intersect in a point or are
disjoint. A point of intersection of two balls will be called a point of
contact. Let C be the set of all points of contact of those balls. Let
S; = 0T; \ {points of contact} and S} = T} \ {points of contact}. Then
either S; = OT;, (S] = 0T}), or S;, (respectively S!) is a punctured
(n—1)-sphere. Let S = {S;, S;}. The complement of the union of all T3,
T; we denote by P. An element of S will be called a side of P.

Suppose that for each i there is a g; € M(n) such that g(S;) = S/,
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g7 1(S) = S; and g;(P)NP = @. Let F = {g5,07"} = {f1,---> fom}-
An element of F is called a side pairing transformation. A side pairing
transformation, say f;, sends a point of contact e € T; to a point of
contact ¢’ € T/. We say that e and e’ are related. This relation gives an
equivalence relation in C, partitioning C' into equivalence classes, called
cycles of points of contact.

Each cycle ¢ can be cyclically ordered as ¢ = {e1,...,ex_1,€x = €p},
in such a way that for each i, 1 < ¢ < k, there is a f; € F such that
filej1) ='e;. Let fe= fro-+-0 f1. The element f,. is called the cyclic
transformation related to the cycle c. Clearly f.(eq) = eg, that is, eq is
a fixed point of f,.

Theorem 1.1. Let P be a spherical polyhedron constructed above. Let
F ={gi,g,:1<i<m} be a set of side pairing transformations related
to P. Suppose that for each cycle of points of contact ¢ we have that
ge 18 parabolic. Then T’ generated by F is a Kleinian subgroup of M (n),
and P is a fundamental domain for T.

This theorem is a particular case of general Poincaré’s Polyhedron
Theorem proved by Maskit in [9].

We will also need the following corollary of the proof of Poincaré’s
Polyhedron Theorem.

Theorem 1.2. Let T' be a Kleinian group as above. Then each parabolic
element from T is conjugated in T to the element of the form g¥, where
ge 18 a cyclic transformation and k € 7Z.

1.8 Schottky type groups

1.8.1 We say that a Kleinian group I' C M (n) is an ST-group of type
(r,8) (Schottky Type group) if T has generators gy, ..., g, h1,...,hs and
a fundamental domain D bounded Jordan surfaces (or curves in dimen-
sion 2) 51,57 ...,8:, 5, 11,17, . ..,Ts,T,, and they satisfy the following
conditions:

1. The surfaces (or curves) are disjoint, except that 7 and T} have a

common point x;;

2. 9i(5) = 5, hi(T5) = Tj;
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3. hj is parabolic with fixed point z;.

The elements g;, h; are called standard generators of T, and D is
called a standard fundamental domain for T.

If s = 0 then T is called a Schottky group.

Sy
Sy
9y
— >
D
Ty o

hy

Figure 1

One can see that every ST-group of type (r,s) is constructed from r
cyclic loxodromic groups and s cyclic parabolic groups by Klein’s Com-

bination Theorem.

1.8.2 It is easy to verify that an ST-group I' has the following properties:

1. T has a free product decomposition I' = F % --- % F. « Hy * ---*x Hy,
where F; is cyclic loxodromic and Hj is cyclic parabolic;

2. The limit set L(T') is totally disconnected;

3. In dimension 2 the regular set R(T) is connected, and in dimension
n > 2 R(T) is simply connected.

1.9 Wild Cantor sets in £” and Fake Schottky type groups

1.9.1 Cantor sets imbedded in E™ are of two types. A Cantor set
K C E" is called tame if there is a homeomorphism h: E" — E™ such
that h(K) lies on a smoothly embedded arc. Otherwise, K is called wild.
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Two Cantor sets K1, Ko C E™ are equivalent is there is a homeo-
morphism h: E® — E™ such that h(K7) = Ka. It is well known that
any two Cantor sets in E? are equivalent, and any two tame Cantor sets
in E" are equivalent.

1.9.2 It is not difficult to show that the limit set of an ST-group is
either finite or a tame Cantor set, and up to topological conjugation
two ST-groups of the same type are equivalent.

1.10 In [4], Freedman has considered a topological generalization of
the ST-groups. He defines a group I' of homeomorphisms of E” to be
admissible if:
1. The limit set L(T") is a Cantor set;
2. T acts discontinuously on R(T);
3. The quotient R(T')/T is compact.
I is called weakly admissible if the condition (3) above is dropped.
Schottky groups provide examples of admissible actions, and Schot-
tky type groups provide examples of weakly admissible actions.

1.11 We say that a Kleinian group I' C M (n) is an FST-group of type

(r,s) (Fake Schottky Type group) if:

1. T has a free product decomposition I' = F} * - -- % Fy. x Hy x - -+ * H,
where F; is cyclic loxodromic and Hj is cyclic parabolic;

2. The limit set L(T') is a Cantor set;

3. T'is not an ST-group.

Remark 1. We will show that in dimension 3, conditions (1), (2), (3)

above imply that L(T') is wild. The same is true in dimension greater

than 4, but we do not know about it in dimension 4.

Remark 2. It is well-known (see, for instance, Chuckrow [3]) that when

n=2 conditions 1 and 2 imply that I" is an ST-group. Thus, there are

no FST-groups in dimension 2.

1.12 Examples related to Poincaré’s Polyhedron Theorem

In this section we present two examples which show that one should
be careful in applying spherical polyhedra to construct fundamental
domains for Kleinian groups. We also recall Bestvina—Cooper’s example.
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1.12.1 Consider the domain D C E3 bounded by the spheres 77, T
Ty, Ty, where T1, T] are spheres centered at the origin and with radii
1 and 3 respectively, and T5, T3 are spheres of radii 1 and centered at
a = (0,—2,0) and b = (0,2,0) respectively. (See figure 2.)

A T3
D
T, T,
1)
b1 D2 DP3 Py -

T

Ty

Ly

Figure 2

1.12.2 Example 1

Let g1(z) = 3z, go = j o1, where ¢ is the inversion in 75, and j is
the reflection in the (z7,x3)-plane. We see that there are four points
of contact p1, p2, p3, pa. Let S = T1 \ {p2,p3}, S = 11 \ {p1,p4a},
Sy = To\{p1,p2}, and Sh = T5\{p3,ps}. Then we have that g(S1) = 57,
g2(S2) = S5. In addition, g(D)ND=w2,i=1,2.

Let T' = (g1,92). In order to prove that D is a fundamental do-
main for T, we need to verify whether all the cyclic transformations are
parabolic.

It is easy to verify that we have only one cycle of points of contact
¢ = {p2, p1 = 1(p2), P4 = g2 0 91(p2), P3 = g7 © g2 © g1(p2)}. The
cyclic element corresponding to this cycle of points of contact is g. =
g7t ogrlogaogr

Observe that I' leaves invariant the (z1,z9)-plane which we identify
with the complex plane C, and put z = z1 + ix2. Then the action
of the elements g1, g2 on this C-plane is given by gi(z) = 3z, and
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92(2) = (22 + 3)/(z + 2) (see proposition 1.3).

We obtain that the action of g. on the C-plane is given by g.(z) =
(—5z —4)/(4z+3). It is obvious that g. is parabolic if and only if the re-
striction of g. to the C-plane is parabolic if we consider it as an element
of PSL(2,C). Since Tr2%(g.) = 4, we obtain that g, is parabolic. There-
fore, by Poincaré’s Polyhedron Theorem, D is a fundamental domain
for T.

Notice that the restriction of I to the C-plane is a Fuchsian group of
the first kind. In particular, the limit set L(T") is the real axis completed
by oo.

1.12.3 Example 2

Let now g1(x) = 3z, g2 = p o yo1, where 1 is the inversion in T, 7 is
the reflection in the (z1,z3)-plane, and p is the rotation of m around
the line L = {zg = 2, 1 = 0}. We have again that g;(S;) = S}, and
gi(D)ND =@, i=1,2. The cycle of points of contact is

_ 3 Y.
¢ ={p2,p1 = §2(p2), 3 = 37 G2(p2), p1 = G5 97 L32(p2)}-

The cyclic element is §. = §; s Jo b g1 4 Ja.

Let T' = (§1,92). Then T leaves invariant the (z1,x9)-plane, which
we again identify with the C-plane.

The action of the elements g; on this plane are given by: g1(z) = 3z,
and g2(z) = (224 5)/(z + 2). The action of g. is given by

_ (11/3)z+(20/3)
1o =A== i

9e(2)

with Tr2(g,) = 100/9 # 4. We see that Jc is loxodromic, and therefore
the conditions of Poincaré’s Polyhedron Theorem are not satisfied.

It follows from Maskit’s result [10] that D is not a fundamental
domain for T.

It is interesting to note that the limit set L(T') is a Cantor set lying on
the x9-axis completed by co and I' does not contain parabolic elements.
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This also follows from Maskit [10]. In fact, T is a Schottky group.

1.13 Bestvina-Coopers’ example
In this section we outline Bestvina — Cooper’s example [1].
Let K be the graph consisting of two disjoint simple closed curves
K and K> joined by an arc L, and embedded in E3 asin Figure 3. The
arc L will be called a bridge of K.
Kl

Figure 3

Consider a collection S = {17,T5, ...} of closed round balls placed
along K so that adjacent balls touch in one point (see Figure 4.)

Bol. Soc. Bras. Mat., Vol. 26, N. 1, 1995
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Let ¢: S — S be a fixed point-free involution such that:
o o(T1) =T13;
e along each circular part K1, Ko of K there are at least two balls 7",
" T" such that ¢(T") and ¢(T") lie along L.

For each T € S, choose a Mébius transformation hp: E3 — E3 so

that:
o hp(T) = E3\ int(¢(T));
e hr maps the points of contact of T" to the points of contact of ¢(T);
® h¢(T) = h}l.
Let G be the group generated by {hr : T € S}.
Then in [1] it has been concluded without proof that:
1. G is a free group of finite rank;
2. G acts freely and discontinuously in the complement of its limit set

L(G);

3. D =83\ (Upes T) is a fundamental domain for G;
AOL(G) = (Wio By, whete g8, and 804 =l)pes hr(Sn).

But we have seen in section 1.12 that conclusions (3) and (4) are
not true in general. Examples 1 and 2 show that it depends on the
particular choice of a set {hy : T € S} of side pairing transformations.

Observe that if T is the collection of the closed balls corresponding to
the spheres in section 1.12.1 then in the first example L(T') = (oo Th,
while in the second one L(T) is a proper subset of (o T}, where the
sets I;, are constructed by the same way as the sets S,, above.

Let us remark that (3) implies (4), so in order to construct a correct
example, we need to find a set of side pairing transformations satisfying
the conditions of Poincaré’s Polyhedron theorem.

We will give a realization of Bestvina-Cooper’s idea in section 3.

2. The first example

2.1 ST - groups with non - standard fundamental domain

2.1.1 In this section we construct an example of an ST—group acting on
the plane with non-standard isometric fundamental domain.
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We start with the description of the isometric circles of the genera-
tors. In what follows we identify the plane E? with the complex plane
C and write z = x1 + ix9.

The following table gives the centers of the isometric circles S; and
S;. All the circles S; and S} have radius 1.

TR0l . g
1 —3 3
2 —5 -1
3 5 1
4 -7 7
) -9 9
6 —9+2¢ [9+21
s —9+41 |9+ 41
8 —9+67 |9+61
9 —T7+61 |7T+61
10 |—=5+6% |5+ 67
11 |—-3+6¢ |3+61
12 | =3+4+41 |3+ 42
13 | —3+4+21 [3+2¢

Table 1: The centers of the isometric circles.

We define the Mdbius transformations g; as g; = p; o ¢;, where g; is
the inversion in S;, and p; is the reflection in the bisector of the centers
of §; and S;. Then g; is hyperbolic, and S; and S} are the isometric
circles of g; and g; i respectively.

Figure 5 shows all the isometric circles and the transformations g;.

.

OO000O0000 | -

Figure 5: Fundamental domain of I'.
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Applying proposition 1.3 in section 1, we obtain that the matrices
of the transformations are:

i (-1 -6 e el
i 48 9 80 _{(942% _ #

9+ 61 116
1 9 — 61

P
©
e
N
~.

Ne}

=)
(=N
S~
~.
\_/
Q
3
Il
AN

1 5 — 61

3+4i 2
3—Gz wrr )

3—4
i B TRAN
913 = AT T R

..,g13) be the group generated by g1,...,g13.
Let D be the complement of all closed discs bounded by the circles

S; and S;. Notice that D has three connected components Dy, Da, D3
(see Figure 6.)

5+ 67 60 )

and

Lét T= {guy.

Figure 6.
Our purpose now is to prove that D is a fundamental domain for T.
First we observe that g;(S;) = S; and g;(D) N D = @. Besides, g;

Bol. Soc. Bras. Mat., Vol. 26, N. 1, 1995

SCHOTTKY TYPE GROUPS AND KLEINIAN GROUPS ACTING ON 53 15

sends points of contact to points of contact. So the only hypothesis of

Poincaré’s Polyhedron Theorem we need to verify is that each cyclic
transformation is parabolic.

Let us list all the cycles of points of contact. One easily sees that
there are 12 cycles of points of contact as follows:

(1) The cycle {—6;6;0} with the cyclic transformation

i 17 —I08
h1=92193g4= ( >

3 19
(2) The cycle {—4;4;2; —2} with the cyclic transformation

e T | —17 —64
hQZQQ g] 9391:< 4 15)

(3) The cycles consisting of two points with the cyclic transforma-
tions hg = 91_3191, and h; = gi_lgi+1 for 4 <4 < 12.
We have two types (modulo changing coordinates)

(a) Type 1: S; is centered at —a and S! at a, and S; 1 at —a — 2
and S; | at a+2; a > 0.
Then

a+2 (a+2)?2%-1
1 a+2 ’

and

1 1+ B0 =8 g1)2
hi = g; gi+1=< 9 _2_22 >

(b) Type 2: S; is centered at —a+1i, S} at a+1, and S; ;1 at —a —i
and S; | at a —i.

Then

_fa+i a? _f(a—i a®
gi = 1 Gt 9i+1 = 1 a+i)’
and

21 —1'=2as
We see that all the cyclic transformations h are parabolic. There-

fore, we can conclude from Poincaré’s Polyhedron Theorem that D is a

5 —1 4 2az =20
hi=g; giy1= ( ; >

Bol. Soc. Bras. Mat., Vol. 26, N. 1, 1995
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fundamental polyhedron for I', and T' is Kleinian . It is clear that T is
free on these generators, i.e., I' = (g1) * --- * (913). In particular, the
minimal number of generators is 13.

We now show that T' constructed above is an ST-group.

Lemma 2.1. The regular set R(T') of T is connected.

Proof: Consider the path a:[0,1] — D connecting the points p,q €
0D3 as shown in Figure 6.

Let (3:[0,1] — C be the path § = g2_1 o . Then it is clear that
B(t) € R(T) for all t € [0,1], and [(0) = p’ € D1 and (1) = ¢’ € dDs3.
It follows that for any pair of points x € Dy and y € D3 there is a path
in R(T") connecting x and y. The same argument shows that for any pair
of points 2’ € D9 and y’ € D3 there is a path in R(T") connecting =’ and
y'. Observing that

R = U g(D \ {points of contact}),
gel

we conclude that R(T") is connected. O

Theorem 2.1. T is an ST-group of type (1, 12).

Proof: Observe that the natural extension of I to the action in H3, as
follows from the construction, is a geometrically finite discrete subgroup
of the isometry group of H3. Applying the lemma above and Theorem
6.2 in [8], we conclude that I' has no totally degenerate groups as sub-
groups. Since R(T) is connected, it is clear that I has no quasi-Fuchsian
subgroups of the first kind. Then it follows from Proposition 5.8 in [8]
that T' is constructed by Klein’s Combination Theorem from a finite
number of elementary groups. Since I' does not contain free abelian
subgroups of rank 2, we obtain that I' is an ST-group in the sense of
our definition.

We also note that every maximal parabolic subgroup of I has rank
1, and that there are exactly 12 distinct conjugacy classes of such sub-
groups. Therefore, I' is an ST-group of type (1, 12). O

Corollary 2.1. The limit set L(T') of T is a Cantor set.
The proof is contained in, e.g., [3].
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Corollary 2.2. For the group T' constructed above, S(T) = R(T)/T is
a Riemannian surface of signature (1, 24), that is, S(T') is compact
Riemannian surface of genus 1 with 24 punctures.

2.2 Let T' be the group constructed in section 2.1. Consider the natural
extension I'* of T to E3. Let P be the spherical polyhedron in E3 formed
by the spheres spanning the circles S; and S;. We will keep the same
letters S; and S; for denoting the sides of P. Using again Poincaré’s
Polyhedron Theorem, we obtain that P is a fundamental polyhedron for
I'*. It is not difficult to show that I'* is an ST-group acting on E3, and
P is its non-standard isometric fundamental domain, but we will only
need the fact that the limit set of T is a Cantor set.

2.2.1 Let K be the graph in the zy-plane, depicted in Figure 7. K has
the centers of the spheres S; and S; as its vertices; the edges of K are
the straight segments connecting centers of adjacent spheres.

We will call the graph K a spine of the group I'*.

@ Q @ S

D q
D ¢
(J =y

Figure 7: Spine of I'.

2.3 Constructing FST-groups acting on £3.
In this section we construct the first example of a Kleinian group acting
on E3 with the limit set a wild Cantor set.

2.3.1 Let T'* be the group built in section 2.2; P its fundamental poly-
hedron; and K its spine.

2.3.2 Take a Mobius transformation h € M(3). Let T} = hoI*o h1L.
Then h(P) is a fundamental polyhedron for I';.

One easily sees that one can find Mobius transformations h1, ho, hs,
hy from M(3) such that the groups I'; = h;oT* o hi“l, 1=1,2,3,4 satisfy
the following;:
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1). The polyhedra P; = h;(P), i = 1,2, 3, 4, satisfy the conditions of
Klein’s Combination Theorem, that is, the complement of P; in E3 is
contained in Pj, i # j;

2). The spines Kj of the groups I'; form the link as shown in Figure 8.

L
3

Figure 8: Link of spines.

Let H = (I'1,I'9,I'3,T4) be the group generated by I';, Then it
follows from Klein’s Combination Theorem that H is a Kleinian group;
F = PiNPyNP3N Py is a fundamental domain for H; H = I'y #Tg '3 xTy.
(See Figure 9.)

AT LT VT T O A
N AN NN

S D e

0,
8
o
0,

D

D

&
Q)
D
O,

BN (NN NN
SN N INCIRIN N S

RN RN E N TN TN NN
SRS Sy e N N N

D
Sy

Figure 9: Fundamental domain for H.
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Remark. One sees that the group H is of type (4, 48).

2.3.3 In section 4 we will prove that the limit set of the group H is a
wild Cantor set, that is, H is a Fake Schottky type group.

3. The second example

Our second example of an FST-group acting on E3 is closely related
to the example of Bestvina and Cooper [1]. In fact, this is its correct
version. The construction we offer is quite complicated and much harder
than the first one. The main difficulties are in finding a suitable linear
construction of the spine and a set of side pairing transformations in
order to satisfy Poincaré’s Polyhedron Theorem. It is reasonable to be-
lieve that this is not an ideal construction, and that different approaches
could work better. On the other hand, many approaches that at first
glance appear to be easy, do not work, and we believe that, in any case,

the construction must be far from trivial.
(64

Figure 10: Spine of G.

3.1 We start with the description of the spine. Here we adopt the
coordinates (z, v, z) for E3.
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Let K be the graph embedded in E? as shown in Figure 10. As in

section 2.2.1, we call this graph the spine of the group.

The coordinates of its vertices P =0 02, D~

given in Table 2 below. The length of each edge of K equals 2.

~|

1 i e B || B Y |2 ||map

1 o | LB =tk 0 by

2 5 0 |0 1 0 |0 by

3 -3 034 10 3 0 |0 b3

i fhosepilginmo [0 fstlo Bw |0 cy

I [ P $n: 2 10 a1

6 | =3 | 4 |0 3 |4 |o as

PO AR RAGNRIGl Y9G f LR 8 as

got{hi 1B . ofogoayiy gdighadi v as

Gl Bl B0 | O0idhsrdonk 1040 as
i SRR REE R B R L
10 -5 10 |0 SACIE0 0 ag
14 -7 10 |0 e a0 0 c1
12 15 | 0 lo [lz2alo | o cs
13 B T % A I e T NPT
14 A U 1 1 90 el ag
15 15 6 0 21 6 0 asg
16 15 i@ 21 8 0 a7
17 15 10 |0 21 10 0 c2
1 B A i b A 7
19 | =5 |—4 |0 |13 | 0 |—4 | M,
20 -3 |—4 |0 11 2 |4 c10
1 el W) Z x Y 2; map
e M o e
22 -3 4 | —4 1% 4 |—4 cs
23 —1 4 | —4 9 4 | —4 Dy
24 . 4 | —4 B 4 | —4 Do
25 3 4 |—4 7 4 | —4 Ds
96 || =R R0y e b cs
27 —5 10 —4 13 10 —4 m9
98 || =3 e s e co
29 -3 |12 |—4 HBISE S 2 — mi
30 -3 |14 |—4 11 |14 | —4 cg
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1 2.0 gy N lidat a0
T N O e g dq
32 1 14 |4 —1 14 | —4 do
33 G il obie Al s Yaduofited ds
34 7 0 |—4 —1 0 |—4 Az
35 710 | &4 -1 |10 |—4 ais
36 —T 0 |—2 —1 0 |—2 A
g7 15 |0 |=2 ||-1 |0 |=2 || 415
38 T T i | LIRS S e
39 7 0 |—8 —1 0 |—8 c19
40 9 |0 |—8 |[-1 |0 |-8 || Dg4

1 T | i 2 z; y; | z || map

41 0 =8 ~=1 [0 [=8 Dy
42 3]0 |-8 ||[-1 |0 |—8 Dg

43 =P 1y -2 -1 |10 |—2 ai
44 15 |10 |—2 |[—-1 |10 |-—2 a9
45 7 |10 |—6 ||—1 |10 |—6 a4
46 7 (10 -8 ||—-1 |10 |-8 c11
47 9 |10 |—8 ||—1 |10 |8 dy
48 e i, 10l =@ piltre=l Sel @0 =8 ds
49 13, b 1051528, Tl Bl i 10, 4 | =8 dg

Table 2: The centers of the isometric spheres S; and SZ' , and the corresponding
side pairing transformations.

It is easy to see that K is a linearization of the graph in Bestvina-
Cooper’s example. For instance, the bridge of K is the segment [p3, p3].
3.2 Consider a family of 2-spheres T' = {S;, S} : 1 < i < 49}, all of radius
one, centered at the points p;, p; respectively. One sees that adjacent
spheres touch.

Let P be the complement in E3 of the union of all the closed balls
bounded by the spheres S;, S;.

Next we will define the side pairing transformations for P.

For each pair (S,S’) from T define the Mobius transformation
hg: E3 — E3 as follows

hs = Jso Ig,

where Ig is the inversion in S, and Jg is the reflection in the bisector of
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the centers of S and S’. Then hg is hyperbolic, and S and S’ are the
isometric spheres of hg and hgl, respectively. One can easily verify that
for each S from T hg maps the points of contact of S to those of S’. Table
2 provides also the notations of all the side pairing transformations. For
instance, by corresponds to the pair (S1,57). We denote the set of these
side pairing transformations for P as W.

3.3 Let G be the group generated by these side pairing transformations.

We next prove that the group G is Kleinian, and that P is a funda-
mental domain for G.

To this end, we will list all the cycles of points of contact and verify
that each cyclic transformation is parabolic.

First of all, we observe that each cycle of points of contact ¢ =

{eg,...,er_1} lies in the same plane L. as the centers of the isometric
spheres of the transformations gi,..., gk, where h, = gy o --- 0 gy is
the cyclic transformation related to the cycle c¢. Since g1,..., gy are
hyperbolic, the plane L. is invariant under g1, ..., g.

Note that any Mobius transformation from M (3) is parabolic if and
only if its restriction to any invariant plane is parabolic as an element
of M(2). Thus, we can use convenient coordinates in each such plane to
verify whether the cyclic transformations are parabolic or not.

3.3.1 The cycles with cyclic transformations hj = b3 b2 bsb; and hg =
61 bobg have the same structure as the analogues cycles in the first
example, where it was verified that h; and hg are parabolic; see (1) and
(2) in section 2.1.1.

3.3.2 Let us now consider the two point cycles. The cyclic transfor-
mations in this case are of the form h = g1g5 1, where g; and g9 are
transformations from W.

Let L be a plane invariant under g; and go passing through the
centers of the isometric spheres of g1 and go. We identify L with the
complex plane C and call the intersection LNP a slice of P corresponding
to L. All the slices we need are shown in Figures 11 — 15. The arrows
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show the side pairing transformations.

BN ag ¥ i Y
(0005 GO0 QO+5¢€0)
(el (e
D 20) Q-£0)
ot o) Camait)
PRAIE (1o
oK)

Lo T N Y S
bs
Cq
Figure 11: Slice by the plane z = 0.

|d1 ds ds
OO0 Z SOQQ
B 580 o

65625000

Figure 12: Slice by the plane z = —4.
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C11

dy

bt e
00000000

C12

| 2 B
------------------- ceccccco

'
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'
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Figure 13: Slice by the plane z = —8.
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Figure 14: Slice by the plane y = 0.
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Ci11

"l |
; G A
O -

dy

a14

ay

Rohamalilin v i 2, PG
B0 OO0

Figure 15: Slice by the plane y = 10.

Now we are going to write down the matrices of the restrictions of
the elements g1, g2, and h to the corresponding invariant plane L.

We have the following cases to consider.

For the first case, we have:

i S S; map
1 —a a g1
—a—2 |a+2 g9

The first case: Here a > 0.
Hence

h gl vigh i otediga ol g 9)2
ekl @ gt TN a2 )

=] Top 20 2fa 4 1)2
}l et 571,572 - (: 22 _E’E} i i;ll :) Y

and

which is parabolic.
Below we list the pairs of the transformations (g1, g2) and the planes
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L invariant under g1 and go corresponding to this case (see slices).
L.={z =0){lagrc1) (@5,a6).
L ={z = —4};(my, c5), (d1, cg), (cg, m2), (M2, c7),
(c10, M), (D1, c3).
L ={z = —8};(dy, c11), (Dy, c12).

For the second case, we have:

i S; S; map
1 —a+1 [a+i g1
2 = av el gkt g2

The second case: Here a > 0.

_(B¥s a® _fam—i——g?
g1 1o oo oot BT N o

d g agRy
h=919 :< 2i —1—2ai>’

Hence

and

which is parabolic.
This corresponds to the following pairs (g, ¢2) and the invariant
planes L:

L ={z = 0}; (a1,b3), (a2, a1), (a3, a2), (a4, a3), (a5, as),
(c2,ar), (a7, ag), (as, ag), (ag, a10), (a10, c3).

L ={z = —4};(mq, c9), (c6,m1), (M1, c10), (cs, M1).

L ={y = 10}; (c11, a14), (a14, a13), (a12, ¢2), (a11, c1).

L ={y = 0}; (c12, A14), (A14, A13), (A12, ¢3), (A11, ca).

3.3.3 Consider now the four point cycles. We apply the same procedure
as in section 3.3.2. The cyclic transformations in this case have the form

h = 937192_19491, where:

4 S; S; map
: a+1i | b+ g1
2 c+it |d+1 g2
3 a—1 le—1 g3
4 b—i |d—1 g4

Bol. Soc. Bras. Mat., Vol. 26, N. 1, 1995

SCHOTTKY TYPE GROUPS AND KLEINIAN GROUPS ACTING ON S3 27

Here a,b,c,d € R.
The matrices of g; are:

1 —a — 1 1 G L

glz<b+i —ab——(a+b)z’>7 92:<d+i —cd—(c+d)i)7

c—1 —ac+(a+co) _(d—i =bd+ (b+d)
R —a+1i | o s et ~b+i '

Hence
P | _ ([ 1+4as —4a?i
which is parabolic.
This corresponds to the following 4—tuples (g1, 92,93, 94) and the

invariant planes L:
L = {y = 0}; (c7, A13, A11, A12).
L = {y = 10}; (c5, @13, @11, 212).-

3.3.4 Finally, we have the five point cycles. In this case the cyclic trans-
formations are of the form h = gy 1 939293 i g1, where we have the follow-

ing:
i S; |S; ||map
1 ) ) g1
orvel g TR 92
Foitll sl 73 g3
with

5 24 s 402 3172
g1 = 1 5 i 92 = 18 )2 g3 = 1 1)/
Thus, we obtain that '

—-19 —80
e ( 5.2 )
which is parabolic.

This corresponds to the following 3—tuples (g1, g2, g3) and the invari-
ant planes L:

L= {Z o _—4}; (dladQ’d?))a (DlaD27D3)‘
L= {Z = _8}, (d47d57d6)7 (D47D57D6)‘
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3.4 It is seen that we have listed all the cycles of points of contact.
We have also verified that all the cyclic transformations are parabolic.
Therefore, it follows from Poincaré’s Polyhedron Theorem that the
group G is Kleinian, and P is its fundamental domain. In the next
section we will prove the limit set of the group G is a wild Cantor set,
that is, G is an FST—group.

Remark. It follows from Theorem 1.2 that the group G is of type (9,40).

4. The groups H and G are Fake Schottky Type groups
In this section we show that both Kleinian groups H and G constructed
in sections 2 and 3 have wild Cantor set limit sets.

4.1 We recall that a Kleinian group I' C M (n) is said to be geometrically
finite if it has a hyperbolic fundamental domain in H"*! with a finite
number of sides.

4.2 Let I' and I be Kleinian groups. We say that an isomorphism
¢:T' — I is type preserving if it carries parabolic elements of I' bijec-
tively onto parabolic elements of I".

We will need the following theorem.

Theorem 4.1. (Tukia [11]) Let I' and T’ be geometrically finite Kleinian
groups. Let ¢:T' — T be a type preserving isomorphism. Then there is
a homeomorphism fg: L(T') — L(I") of the limit sets inducing ¢.

Corollary 4.1. Let T' be a geometrically finite Kleinian group. Assume
that there is a type preserving isomorphism ¢:T' — T', where I' is a
non-elementary ST-group. Then the limit set L(T) of the group T is a
Cantor set.

4.3 Proposition 4.1. The limit set of the group H constructed in section
2 s a Cantor set.

Proof: Let I' be the Kleinian group constructed in section 2.1.1. Con-
sider the groups I'y = flI‘fl‘l, Iy = ngfgl, I's = f31‘f3_1, Iy = f41“f4_1,
where f; € PSL(2,C). One easily sees that we can choose the elements
fi in such a way that the fundamental domains F; = f;(D) of the groups
T; are located as in Figure 16.
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Retafels
bbbt ootk

Figure 16

Then applying Klein’s Combination Theorem, we obtain that ' =
(T1,T9,T'3,T4) generated by I; is a Kleinian group. Its fundamental

domain
F-NE
i=1

is the complement of all the closed discs bounded by the circles shown
in Figure 16.

The same argument as in section 2.2 show that I' is an ST-group.
Therefore, in particular, the limit set L(T') of T is a Cantor set.

We know that I' = (g1, ...,913) (see section 2.1). Take the following
generators of the group I':

A s Y
falgf5 L. - falgs) f3 b
f3lgfst - falqs) f3 s
Falgfit - falgs) f N

Let us denote them as a;; = fi(gj)fi_l.

Now let us consider the natural extension of T to the action on E3
and keep old notations for the group and its generators.

Recall that the group H constructed in section 2.3 looks like H =
(T'1,T2,T3,Ty), where T; = b;T*h; L i =1,2,3,4..
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Take the following generators of the group H:

hi(gDhi’, -, ha(gis)hi s = ] gy
halahgh. halola s - :CQQ.’Q.Q: -
ha(gDh3", . ha(gia)hs | (3 ol
ha(gD)h7", - ha(gis)hy : :
where g7, i =1,2,...,13 are the generators of I'* (see section 2.3). d L i 6c,
We let denote these generators as b;; = hi(g;)h; L w C/“ d y 1 D.’s .
It is easy to see that the cycles of points of contact and the cyclic ‘ (7 &
transformations of the groups H and T have the same structure. By [ - ) —J
applying Th 1.2, we obtai i | a0 ¥ {7 SRler
pplying Theorem 1.2, we obtain that the assignment } * OO ...
| a3 . ‘ Als
@ : ajj > by, ‘!‘ @ xxx o
| A 4 4
i =1,2,3,4, j = 1,2,...,13, defines a type preserving isomorphism a% “’Ta‘* ) [ 3 : &
¢:T — H. Then Corollary 4.1 implies that the limit set L(H) of ‘y : )OOC : v
the group H is a Cantor set. “‘ ..‘
4.3.1 Proposition 4.2. The limit set of the group G constructed in L’g l Ly CQ—JAQJ : o
section 3 is a Cantor set. _Zfi _/\(i{
Proof: Let us consider the group G’ acting on the plane generated by the rb— W
hyperbolic transformations shown in Figure 17. This figure also shows ® dy D’z
the isometric circles of all these generators. As usual, each generator h’ L 2 D, O)
of G’ is the composition J o I, where [ is the inversion in the isometric @ 7 ' -()
circle of b’ and J is the reflection in the bisector of the centers of the () ()
isometric circles of A’ and (h')~! “ _,. : _‘J
By the same arguments as in section 2, we conclude that the comple- ) () ,_J
ment of all the closed discs bounded by the circles shown in this figure is il ] ()<
a fundamental domain for G’, and that G’ is an ST-group. Also, one can , e ¥ W e
verify that G’ is a free group of the same rank as G, and that the cycles l il ‘.“‘.“‘
of points of contact and the cyclic transformations of the groups G and — a'7| ag| ab|al I 03&*

G’ have the same structure. Now we can finish the proof following the

same lines as in the proof of proposition 4.1. Figure 17: Fundamental domain and generators of (.
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4.4 In this section we show that the limit sets of the groups H and G
are wild Cantor sets.
First of all, we recall the following well-known fact.

Proposition 4.3. If L C E3 is a tame Cantor set, then E3 \ L is simply
connected.

Thus, if we establish that the regular sets R(H) and R(G) are not
simply connected, we will obtain the result we need.

4.4.1 We start with the group H.

Proposition 4.4. Let S be a side of F, where F is the fundamental
domain for H constructed in section 2.3.2. Then the inclusion S C F (F
is the closure of F' in R(H)) induces a monomorphism m1(S) — 71 (F).
Proof: Consider the graph Ky formed by the spines K; of the groups
[; (see section 2.3.2 and Figure 8), and let us compute the fundamental
group of E3 \ Kg. To this end, consider a projection K w of Ky into
the plane L which is in general position with respect to K. To K o we
associate arrows whose directions are shown in Figure 18.

We designate them with letters a;, b;, ¢;, d;i, B;, i = 1,2, 3, 4.

Then, by applying a standard procedure for writing down a presen-
tation of the fundamental group of a graph (see, for instance, Bing [2]),
we obtain that the group 7T1(E3 \ Kg) has the following presentation.

Generatons: ag by, ‘@rdy. 8, 4 =1,2,3,4.

Relations:

(a) at branching points:

51a3afl, ﬁ4a4a51,
515351_1, 5254551,
Bacaci’,  Bacacy?,
Badsdy?, PBadsdyl.
(b) at crossing points:
a1a4a1_1a51, a3a4a1'1ail,
bbby 1, L bskaby b

-1 -1 il
C1C4C] "C5~,  €3CACT Cf s
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Now we are going to show that all the elements a;, b;, ¢;, d;, 3; are

non-trivial.

a1 B by
as b3
ba
az
as ba
ﬁ4 S TP, ﬂ2
d4 Cq
dy o
d3 Cc3
d1 C1
B3
Figure 18.

To prove this, let us consider the group A having the following pre-

sentation:

= 1‘1.’[)4331_11351 = :v3w4$'1'1x;

- |
{$17372,$379U47y YTIT T = YTy = }
A= 1 ¥
=1
We may simplify this presentation.

i 1..-1

From the relations zir4x] $§1 = T3T4T] T; = 1, we get xz9 =
Jic . _ 1
x1m4xfl and z3 = x4m1$41. Then the relations ymgazll = Yr4Ty =1

are equivalent to y = [r1,x4]. That is, the group A is free on the
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generators 1 and 4. Observe that xo, x3 and y are nontrivial elements
of A.
Consider the map of 7 (E3 \ K) onto the group A given for all i by :

Qj, biy Ci, dl = T, B’L =Y.

One sees that this map defines a homomorphism. We have that all
the elements a;, b;, ¢;, d;, 3; are mapped to nontrivial elements of A
and, therefore, are non-trivial.

Remark: It is clear that 8; = 33 = 33 = f34, see Figure 18. Therefore,
the group 771(E3 \ Kp) has generators ay, a4, by, ba, c1, c4, dy, dy4, and
relations [ay, a4] = [b1, by] = [c1, c4] = [d1, dy).

Consider now the boundary of F. We see that each component of
OF is either a 2-punctured or a 3-punctured sphere. Also, note that
each non-trivial simple loop on dF is homotopic to a small linking circle
around the edge of Ky, and, hence, its homotopy class is an element

Logid gy
0,6, d;

from the set {a }. It proves that for each component S C 9F

the inclusion homomorphism 7y (S) — 71 (F) is injective.

Proposition 4.8. The reqular set R(H) of the group H is not simply
connected.

Proof: We know that R(H) = Uyer 7(F). The pair (y(F),y(0F)) is
homeomorphic to (F,dF'). Therefore, for each component Sy C v(OF),
m1(Sy) — w1 (y(F)) is a monomorphism. Thus, R(H) is the union of
manifolds with incompressible boundary glued along their boundaries.
Using Van Kampen’s Theorem and an easy induction, we obtain that
71 (R(H)) is a non-trivial group; moreover 7 (R(H)) is infinitely gener-
ated.

Summarizing, we have the following theorem.

Theorem 4.2. The limit set of the group H is a wild Cantor set.

4.4.2 In this section we consider the group G.

Theorem 4.3. The limit set of the group G is a wild Cantor set.

Proof: First of all, we note that the fundamental group of E3 Y # i
isomorphic to the group A in Proposition 4.4, where K is the spine of the
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group G, see section 3.1. In particular, a small linking circle around the
bridge of K represents the commutator 3 = [b, ¢|. Therefore, following
the lines in section 4.4.1, we obtain the proof of the theorem.

4.5 In this section we present another proof of the fact that the limit
sets of the groups H and G are wild Cantor sets. Besides, this result
will be used in section 5.

4.5.1 We start with recalling the following.

Theorem 4.4. "Let L be a tame Cantor set in E3. Then E3\ L is not
aspheric in dimension 2, that is, mo(E3 \ L) #0.
Proof: This property actually is always true of a Cantor set L in E3
with simply connected complement. One then can apply the Hurewicz
Isomorphism Theorem and the Sphere Theorem.

Theorem 4.5. (J.H.C. Whitehead [12]) Let P = PLUPy, Pj9 = P; NPy,
where P, Py and Py are connected polyhedra, and suppose that
L mo(F) =0, %="1,2;
2. any loop in Pyo which is homotopic to a point in Py or in P is
homotopic to a point in P .
Then mo(P) = 0.

4.5.2 Theorem 4.6. The regular sets R(H) and R(G) of the groups H
and G are aspheric in dimension 2.

Proof: The proof follows immediately by induction from the results in
sections 4.4.1, 4.4.2 and Theorem 4.5. For instance, for the group H,
we have that R(H) = b em Y(F), and we have already proved that F
is incompressible in F'; besides, F' is aspheric because of the Sphere

Theorem.

4.6 In this section we compare the fundamental and the 1-homology
groups of the manifold M(H) = R(H)/H and the manifold M(I') =
R(T)/T, where T is the ST—group constructed in Proposition 4.1. Also,
we compare the manifolds M(G) and M(G’), where G and G’ are the
groups from Proposition 4.2.

We start with the groups H and T'. Recall that T is an ST-group,
while H is an FST-group. It has been already verified that H and T
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have the same type. It follows from results in sections 2.2 and 4.2.3 that
the group T is of type (4,48).

4.6.1 Since R(T") is simply connected, the fundamental group 7 (M (I"))
is isomorphic to I'. It implies that 7y (M (T)) is a free group of rank 52,
and Hq(M(T),Z) is a free abelian group of rank 52.

4.6.2 Now let us consider the manifold M (H).

M(H) is a 3-manifold that can be obtained from the closure of the
fundamental domain F' by gluing the equivalent points on the bound-
ary OF of F. We have already proved that for each component S C
OF the homomorphism 71(S) — 71 (F) is a monomorphism, therefore,
m (M (H)) is an HNN—-extension of the fundamental group of F.

Recall that 71 (F") has the following presentation.

Generators: a;, b;, ¢;, d;, B;,1=1,2,3,4.

Relations:

() Prasei’, Brasas’, Brbsbi, Bababs’, Bacaci ™, Bacacs
B3dzdi ", Badady .

(b) a1a4a1_1a2_1,a3a4a1_1a4_1, b1b4b1_1b2”1, bgb4b1_1b4_1,
616401_102_1, 030401_104_1, d1d4d1_1d2_1, d3d4d1_1d4"1,

Letiiass s hi(g;-‘)hi_l (1 = 1,2,3,4, 1 < j < 13) be the generators
of H as in section 4.2.3. Let 7;; be a path in F' connecting equivalent
points on the sides S;; and S;; which are equivalent under a;;. Consider
the natural projection F 2 M (H). Then the image p(v;;) is a loop in
M(H).

We denote p(v1;) as Aj, p(y2;) as Bj, p(v3;) as Cj, p(v4;) as Dj.
We also denote p(a;), p(b:), p(ci), p(ds) and p(B:) as a, b, G, di, B
respectively.

Then we have the following presentation of w1 (M (H)).

Generators: a;, b;, ¢, di, B;, i =1,2,3,4; s, B O, O e g S

The relations are divided into two groups:

(1) Old relations which come from 71 (F'):

(a) Bldsdfl,34614@2_1,515351_1,325452_1,535351_1,3254551,
33&381‘1,[?4&4&2‘1.
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(b) ajasaq tag ', asasartagt, bibaby oyt bababy thy
e{EiT) T6; T edede; rop L aiayar i a, N dhddy YA
(2) New relations which come from the identifications of the sides of
F:

® ay = AsBATY, do T AsBATY, B = A1BATY, ag = Arde AT, Gy =
A1dgATY, Gy = Apdo ALY (k= 4,5,6), ag = Apdg AL (7 < k < 13);

° b = 3253_2_1, a1 = B3BB;', B = B1BB{ !, by = ByayBy!, b3 =
BiazByt, by = Brai By (4 < k <9), b3 = BragB; ! (10 < k < 13);

° = CoBC5, by ki C3BC;Y, B = C1BCT, &2 = CiboC Y, 3y =
C1bsC Y, e = CkbaCit (k = 4,5,6), &4 = Crpbs Ot (7 < k < 13);

e dy = DyBDy ", & = D3BDg ", B = D1BD[ ", dy = D1y DY, d3 =
DiesDy Y, dy = Drey DI (4 <k <9),d3 = DyesDit (10 < k < 13);
Here 8 = 1 = B2 = B3 = B4
To find a presentation of the group Hi(M (H),Z), we recall that this

group is the abelianization of 71 (M (H)). Therefore, from the relations

above together with all the commutator relations needed we can deduce
the following relations:

L=
that implies that Hy(M(H),Z) is free abelian of rank 52 generated by
the letters A;, B;, C; and D;.

4.6.3 For the manifold M (G), we have the following presentation of the
fundamental group.

8; = G = & - i, 2,3,4;

As in the previous example, we first compute the fundamental group
m1(P) of the fundamental domain P of the group G. It has the following
presentation.

Generators: a, b, ¢, d, e, f, g, h, 1, j.

Relations: achb™! = aed~! =1; feb~le1 =1; geh~le—! =
=ged el =1;eci el =icjle L =ich el =1.

It is an easy exercise to verify that this presentation can be reduced
to one with the generators ¢ and e and with no relations.

To find a presentation of 71 (M (G)), we follow the same procedure as

before. We will denote the image of the loops generating 71 (F') under

Bol. Soc. Bras. Mat., Vol. 26, N. 1, 1995



DO KILAKDU BIANUUNI, NIKULAY GUSEVSKIL AND HELEN KLIMENKO

the natural projection map F' — M (G) by the same letters. We denote
by 7; a path in F' connecting equivalent points of the isometric spheres
S; and Sj, 1 < i < 49. Table 3 gives the loops on Sy, S). and the
corresponding side pairing transformations.

k Sk |map || S

1 b bl a

2 d bo a

3 a b3 a

3 b bs d

3 c b3 e

4 b cy d

5} c ai e

6 c ao e

i ¢ as e

8 G a4 é

9 '8 as e

10 c ag e
k Sy |map || S} k S |map || S}
11 G c1 e 21 c c9 c
12 ¢ &) J 22 6 mi e
13 c ar J 23 G Cc c
14 € as J 24 é dq c
15 & ag ) 25 ¢ do c
16 c alo ) 26 c ds &
17 c c3 9 27 d | Ais 7
18 e a3 4 28 b cr c
19 c Cr c 29 b Mo c
20 ¢ mo c 30 b c10 c
k Sy |map || S k Sk |map || S
31 b My c 41 g Dy 1
32 b cs & 42 h Dy h
33 b Dy ¢ 43 h Dg i
34 f Ds c 44 b | Ap d
35 1 Do i 45 c | Ao J
36 8 B ] 46 || g | Aa || J
37 e dy ] 47 € all e
38 e ds ] 48 c a2 J
39 e dg 9 49 e ai4 4

40 g c12 (!

Table 3: Loops on Si and Sl; and the corresponding side pairing transformations.
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We denote also by 7; the loop in M (G) which is the image under the
natural projection F' — M (G) of the path ~; in F. So 71 (M(G)) has
the following presentation.

Generators: a, b, ¢, d, e, f, g, h, i, j, and 7 (1 < k < 49). (See Table
3 relating the loops 7% to the elements of G and the loops a, ..., j.)

The relations are:

(1) OId relations coming from the fundamental group of the funda-
mental domain:

acb™! = ged! = 1

fcb‘lc_1 =1
geh“le_1 = ged‘le_1 = ]
ecj_]‘c‘1 = icj_lc_1 =ich el =1.

(2) New relations coming from group identifications of the sides of
the fundamental domain:

b=mayld=marla="ya",
b=y3dvyslc=r3er5?,
c=vey L, k=5,6,78,09,10,11,47;
=itk =12,13,14,15,16, 17, 45, 48;
c=eyg k= 19,20,21,22,23, 24, 25, 26;
e =iy L,k =18,36,37, 38,39, 49;
b=yt k = 28,29,30,31, 32, 33;
g =iy Lk = 40,41;
b=mdyi L k=444
d=775%7f =v3acv35, f = ¥35 F35ts 9 = 46 5 Vig
h=v2hvg h="3i73
Observe that the letters a, b, ¢, d, e, f, g, h, i and j and the relations

(1) above can be reduced to the letters c and e and no relations, because

we can deduce the relations a = ¢~ lece ™1, b = c~lece lc, d = h = 7=
clec, f =ece L, g=-eclece™! and i =e.
To compute Hy (M (G),Z), we have to add the commutator relations

to the ones above. From these and from ¢ = 5 6’)/5_1, we get ¢ = e.
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| -1

From b = c7“ece~"c, we get b = c. From b = v a’yl_l, we get b = a.
But from a = clece !, we get a = 1. This implies that Hy(M(G),Z)
is free abelian of rank 49. It can be presented as a free abelian group

generated by the letters v, (1 < k < 49).

Remark. Let A be an ST-group of the type (r,s) acting on E3. Then
the manifold M(A) = R(A)/A is homeomorphic to the connected sum
of r Hopf manifolds $2 x S and s solid open tori F2 x SI.

We call a manifold M an ST-manifold of type (r,s) if M is homeo-
morphic to the manifold M(A) above.

Summarizing, we have the following theorem.

Theorem 4.7. The manifolds M(H) and M(G) have the same 1-hom-
ology groups as the corresponding ST-manifolds.

5. Constructing inequivalent FST-groups of the same rank

5.1 We say that the actions of two FST-groups T'y and T'y in M(n)
are equivalent (or more shortly, I'j and 'y are equivalent) if there is a
homeomorphism h: E® — E™ such that T's = hoT'; o h~L. Otherwise,
the actions of I'; and I'y are inequivalent.

It is clear that if the actions of I'; and T'y are equivalent, then the
manifolds My = R(T'1)/T1 and Ms = R(I'9) /Ty are homeomorphic.

5.2 The objective of this section is to show that there are a lot of in-
equivalent FST-groups of the same rank and type acting on E3; more
precisely, we will prove the following.

Theorem 5.1. For any integer N > 2 there exist at least N inequivalent
FST-groups acting on E3 having the same rank k = k(N) and the same
type.

5.3 Construction

Let H be the group constructed in section 2.3.2 , and F be its fundamen-
tal spherical polyhedron (see Figure 9.) Take a Mobius transformation
g € M(3) and consider the group Ty = go H o g~1. Then f=gtlF) is
a fundamental domain for I'y. Let T, be a 2-torus in E3 such that the
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boundary JFy lies in the interior of T,. (See Figure 19.)

- L

_F_j __W_

Figure 19.
Let N > 2 be given. Take Mobius transformations g;; € M(3),
i, =1,..., N, and consider the following groups I';; = gijoHogigl with
the fundamental domains F;; = g;;(F). Let Tj; be the tori associated to

the group T';; as above. Let

I = (T11,T12,...,T1N)
I'p = (I'21,T22,...,Tan)

I'v = (Tn1,TN2, .-, TNN)

be the groups generated by the groups listed in the parentheses.

It is easy to see that we can choose the transformations g;; in such
a way that the tori T;; are situated as shown in Figure 20.

Having chosen such transformations g;;, we can apply Klein’s Com-
bination Theorem to conclude that all the groups I'; are Kleinian, F; =
ﬂjjil F;; is a fundamental domain for I';, and that T'; is a free group of
rank k = N - rank(T).

By applying the same arguments as in section 4, we can conclude
that all the groups I'; are FST-groups. Moreover, one sees that they are
all of the same type.
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Let M; = R(T;)/T;. We know that the manifold M = R(H)/H
is aspheric (see section 4.5). Then it follows easily from Milnor’s De-
composition Theorem [7] that all the manifolds M; are mutually non-
homeomorphic. This proves the theorem.

(AT TR

o o o
o o °
o o o
o o o (C)
Figure 20.

Remark 1. Following the same lines as in section 4.6, we obtain that
all the manifolds M; above have isomorphic first homology groups;
Hy(M;,Z) is a free abelian group of rank k.

Remark 2. It is easy to see that the regular sets R(T;) of the groups
I'; are mutually non-homeomorphic. For instance, this follows from the
fact that they have non-isomorphic second homotopy groups considered
as mi-modules. This implies that their limit sets are non-equivalent
Cantor sets in E3.

Remark 3. We also point out topological distinctions between the limit
sets of the FST-groups constructed in sections 2 and 3 and the limit sets
of the FST-groups constructed in this section.

The FST-groups in sections 2 and 3 have the property that every
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proper sub-Cantor set of their limit set has simply connected comple-
ment. The limit sets of the FST-groups in this section do not share this
property, because these groups have proper FST-subgroups.

6. Extension
In this section we will prove that the natural extensions of the FST-
groups G and H we constructed in sections 2 and 3 to the action in E4
are ST-groups.

6.1 Lemma6.1. Let A C M(n) be an ST-group acting on E™. Then the
natural extension A* C M(n + 1) of the group A is also an ST-group.

Lemma 6.2. Let A; and Ay be ST-groups acting on E™. Assume that
there exist fundamental domains F| and Fy for A1 and As such that
FlUF, = E" and F = F1 N Fy # @. Besides, suppose that there
erists an (n—1)-dimensional locally flat topological sphere S C F which
separates the boundaries OF) and 0F of Fy and Fy, that is, OF) and
OF} lie in distinct components of E™\S. Then the group A =< Ay, Ay >
s an ST—group.

The proof of these lemmas is left to the reader.

6.2 In this section we use the notations of section 2.3.2.

Let 'y and H* denote the extensions of the groups I'; and H to the
action in E*. Let P and F* be the spherical polyhedra in £* formed by
the 3-spheres spanning the 2-spheres on the boundaries of the spherical
polyhedra P; and F respectively. Then it is clear that

F*=P{NPsNP;NP;

Let us note that F* is a fundamental domain for H*, and P} is a
fundamental domain for I'}.

Let us remark that the 1-link formed by the spines K; of the groups
Tldo= 12,84, i8 splittable in L. . In particular, there are disjoint
locally flat compact 4-balls By, By, B3, By containing OPf, OP;, OP;
and JPj respectively. Let S; = 9B;.

It follows from lemma 6.1 that the groups I} are ST-groups. Now
applying lemma 6.2 inductively and the remark above, we conclude that
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the group H* is an ST-group.

6.3 In this section we use the notations of sections 3.3 and 4.3.1.

Let G* and G™ denote the extensions of the groups G and G’ to
the action on E*. Let P* and P’* be the spherical polyhedra in E*
spanning the polyhedra of G and G’ respectively. Since the spines of
the groups G* and G’* are unknotted in E4, it follows that there exists
an orientation preserving homeomorphism h: P* — P’", where P* and
P’" are the closures of P* and P’* in R(G*) and R(G'*) respectively,
satisfying the following conditions:

1. h maps bijectively the sides of P* onto the sides of P’";

2. If the sides S and S’ of P* are paired by the side pairing trans-
formation T' € G*, T(S) = S’, then the sides h(S) and h(S’) are
paired by the side pairing transformation ¢(T') € G*, where ¢ is the
isomorphism constructed in section 4.3;

3. The following diagram is commutative

@
S — g

hl lh
o(H)
B —— s S

Now h extends equivariantly to all of E4, that is, the groups G* and
G'* are conjugated.

It follows from lemma 6.1 that the group G’* is an ST-group. Then
the above implies that G* is also an ST-group.
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