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Asymptotic Stability at Infinity
of Planar Vector Fields

Carlos Gutierrez and Marco—-Antonio Teixeira

Abstract. Let p > 0 and X be a C! vector field on the plane such that: (i) for all
q € R% Det(DX(q)) > 0; and (ii) for all p € R?, with [lp|| > p, Trace(D(X(p)) < 0.
If X has a singularity and fRQ Trace(DX)dx A dy is less than 0 ( resp. greater or

equal than 0), then the point at infinity of the Riemann sphere R%U {o0} is a repellor
(resp. an attractor) of X.

I. Introduction

This paper extends the results obtained by the first author in [Gu2].
Concerning Global Asymptotic Stability, there is a rich literature on the
subject; see for instance, [Aiz], [GLS], [Gul], [MY], [Ole]. We suggest
the reader to see [Gu2] and [MO] for further references and connections
with other problems.

Let us proceed to state the main result of this paper. For definitions
and basic results used here, we suggest the reader the book of W. de
Melo and J. Palis [MP].

Let X:R? — R2 be a C! vector field. We say that “co” is an
attractor of X, if there is an R > 0 such that for any p € R2 , with
Ip| > R we have that w(p) (the w-limit set of p) is empty. We say that
“00” s a repellor of X, if it is an attractor of —X.

In this paper we prove:

Theorem A. Let p > 0 and X:R? — R2 be a C1 vector field satisfying
the following conditions:
(i) X has at least one singularity, say S;
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(ii) Det(DX(p)) > 0, for every p € R?;
(ili) For all p € R?, with ||p|| > p, Trace(D(X (p)) < 0.
If

/2 Trace(DX) dx A dy
R

is less than 0 (resp. greater of equal than 0), then “co” is a repellor (resp.
an attractor) of X. In particular if X has no closed trajectories, then
either the stable manifold, W*(S), of S is equal to R? or the unstable
manifold, W¥(S), of S is equal to RZ.

Concerning examples of vector fields satisfying the conditions of The-
orem A, there are linear vector fields such that W#*(0) = R2. In section
IV, we show an example of a vector field for which W(0) = R2.

N. V. Chau studied in [Cha] the same problem as this work for
polynomial vector fields, in which case Jg2 Trace(DX)dx A dy = —o0
and therefore “c0” is always a repellor. See also [Kra].

This work was developed while the first author was visiting the
Mathematics Department of the University of Campinas—Brazil and
he wishes to express his thanks for the great hospitality. Also, he ac-
knowledges that this work was partially supported by FAPESP (Proc.
93/3056-1).

We wish to express our thanks to the referee whose comments were
very helpful to us and have been incorporated into this work.

II. Preliminaries
The proof of the following proposition is done in Lemmas 2.2-2.9 below.

Proposition 2.1. Let X = (f, g): R2 — R2, be a C! wvector field satisfying

the following conditions:

(1) There exist 6 > 0 and an open disc V bounded by a closed trajectory
of X such that, for allp € R2\'V, || X (p)|| > 6;

(i) There exists p > 0 such that, for all p € R2, with Bl = o,
Trace(DX (p)) < 0.

Then “co” is either an attractor or a repellor of X.
Let X* = (—g,f):R?> — R2 be the vector field orthogonal to X.
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Observe that ||X|| = ||X*||, and (X, X*) = 0 on R2. Denote by (p, t)
and v*(p,t) the flows induced by X and X*, respectively. If p € R? and

q =(p,to) (resp ¢ = 7" (p,10)), for some ¢ € R, then (pg) (resp. (pq)*)
will denote the arc of trajectory of X (resp. of X*) joining the points p

and ¢. For any arc of trajectory (pq)* of X*, let
Lo =| [ 1IXds
(pg)*

where ds denotes the arc length element. It follows from Green’s formula
that

)

Lemma2.2. Let A be a compact region the boundary of which is made up
of two arcs of trajectory (p1q1)*, (p2g2)* of X* and two arcs of trajectory
of X. If the flow induced by X goes into A by (p1q1)* and exits A by

(p2q2)*, then
L(p2.@2) = Lip1,01) = [ Trace(DX)dz A dy.

This lemma implies that:

Corollary 2.3. Let A C R?\ V be as in Lemma 2.2. Let

A(p1,q1) = sup{|| X (p)[|:p € (p101)"}
and l(p;, q;) be the arc length of (p;q;)*. Then

A(p1,q1)

"
l(p2,q2) < 5 +l(p1,q1)T,

where T = p?(sup{Trace(DX (p)): p € R?}).
The proof of next lemma can be found in [Ole].

Lemma 2.4. The set Ao, = {p € R%:w(p) = @} is open.

In the following, given a trajectory 7 of X, the a-limit set of v will
be denoted by a(y).

If v C R? \ V is a closed orbit of X, denote by D(v) the compact
disc in R? such that 0D(v) = . Notice that, as X has no singularities
in R2 \ V, the disc D(v) contains V. Moreover, given two discs D(v1)
and (D73), one of them contains the other. Let D be the union of such

discs.
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Lemma 2.5. The set D is nonempty and compact. Moreover, D =T is
a periodic orbit of X.

Proof. First, we claim that D # R? (and so 9D # @). Otherwise, there
would be a sequence of closed orbits 7, converging to “co”. So that for
n large enough v, would be in the region where Trace(DX) < 0. If we
took two successive orbits, say v,,n,11, the Green formula applied to
the annulus between them, would give a contradiction.

Now suppose, by contradiction, that the frontier 8D of D is not a
closed trajectory of X. As X|g2\1 has no singularities (hypothesis (i)),
it follows from the Poincaré Bendixson Theorem that if p € 9D then,
w(p) is either (1) a closed trajectory, or (2) the empty set, or else (3)
made up of regular trajectories v such that w(y) U a(7y) is the empty
set. However, (2) and (3) are excluded by Lemma 2.4 (because 8D
is accumulated by periodic orbits). As (D) is invariant, it must be
that w(p) = 9(D) is a closed trajectory. This contradiction finishes the
proof. [

Denote by
Wi =Wi(T) = {p € R\ D:w(p) =T}

and by
Wi = Wi(T) = {p € R*\ D:a(p) = T}.

We claim that, between W} and W1, one is an empty set and the other
is a nonempty open set whose boundary contains T'. In fact, as R2 \'D
contains no closed orbit, the return map along I on a small half segment
pointing outside D has no fixed point outside I'. This implies that T is
locally attracting or repelling. The set W§ UT (resp. Wi UT) is a
one-sided stable (resp. unstable) manifold of T.

Lemma 2.6. If W(T) is nonempty, then W$(T) = R2\D. In particular,
“00” is a repellor of X.

Proof. Assume, by contradiction, that there is a point p € R2 L% 2
belonging to the frontier of W$(I') UT. By the Poincaré-Bendixson

Theorem and the fact that R2 \ D contains neither a singular point
(hypothesis (1)) nor a closed orbit, w(p) is either (1) the empty set or

Bol. Soc. Bras. Mat., Vol. 26, N. 1, 1995

ASYMPTOTIC STABILITY AT INFINITY OF PLANAR VECTOR FIELDS 61

(2) made up of regular trajectories v such that w(vy)Ua(y) is the empty
set. However, (1) is excluded by Lemma 2.4 (because W3 (') and A, are
open sets); (2) is also excluded by Lemma 2.4 (because A, is an open
set and so w(p) cannot contain points belonging to A.,). This proves
the lemma. [

Given p € R2, on each trajectory y(p,t) and v*(p,t) of the vector
fields X and X*, respectively, we consider the order induced by the time
t. Take a 27-periodic, regular global parameterization s — I'(s) of I.
Denote by v; = 7:(t), with ¢t > 0, the positive half-trajectory of X*
starting at I'(s) (with I'(s) excluded). Let T* be the union of all half-
trajectories v; and T** be the set whose elements are the trajectories

Vs
Lemma 2.7. Suppose that W{'(T') is nonempty. Given q € WET) and
v* € T**, there exists tg > 0 such that v(q,tg) meets v*.

Proof. Suppose, by contradiction that there exist g € Wi (T) and Tayy S
T™ such that, for every ¢t > 0 (belonging to its domain of definition).
v(q,t) does not meet Vg

Consider only the case in which X* points outside D. We know,
due to the local properties of X around the closed trajectory T', that
we may find ¢ > to > 0 such that: (1) the points p; = y(g, —t1) and
p2 = 7(gq,—t2) belong to Ys,> and (2) the compact arc of trajectory
(gp1) (contained in 7y(q)) meets 75, exactly at {p1,p2}. It is clear that
the compact arc of trajectory (p1,p2) (contained in vy(q)) meets every
element «; of T**. Let M be the set made up of the s € (s, sg+27] such
that, for all r € (0, 5], there exists ¢ = ¢(r) > 0 satisfying (pe, t)Ny} # @.
Certainly, M is non empty and connected. Let s’ = Sup M and let {s,}
be an increasing sequence in M N (sq, sg + 27) converging to s’. Denote
by P, the intersection point between Vs, and the compact arc (p1, p2).
Let Qn be the first intersection point of the positive half-trajectory
{7(p2,t) : t > 0} with 47 . Compare now the arc lengths I(p1, p2)
(of the sub arc (p1,p2)* of 7;0) and [(P,Qr) (of the sub arc (P, Q,)*
of v;.). By Corollary 2.3, there exists a constant K > 0 such that,
for every n, I(Pn,qn) < K. It follows that the orbit v cuts the half-

Bol. Soc. Bras. Mat., Vol. 26, N. 1, 1995



62 CARLOS GUTIERREZ AND MARCO-ANTONIO TEIXEIRA

trajectory {y(p2,t) : t > 0} at some Q' = lim Q,,. But then s’ € M and
so s = so + 2. However, this is impossible because {v(¢,t) : t > 0}
(and therefore {7(pa,t)t > 0}) is assumed to be disjoint of Viy = Voo t2r
This contradiction proves the lemma. 0

Lemma 2.8. If Wi = WD) is not empty, W{{(T') = T*.

Proof. If follows from Lemma 2.7 that, for each pair (p,v*) in W{(T') x

T, there exists an infinite sequence of real numbers (in the domain of

definition of y(p,-)) 0 < t; <ty < --- < t, < --- such that:

(a) the sequence p; = y(p,t;) belongs to v* and, on this oriented half-
trajectory, we have that p;y <po <--- <p, <---;

(b) if t; <t < t;41 then v(p,t) € v* and the compact arc of trajectory
(pipi+1) of v(p) meets all half-trajectories belonging to T**.

(c) If A; denotes the open annulus bounded by T and the arcs of trajec-
tory (pipi+1) and (p;p;+1)*, then the increasing union U;A; is pre-
cisely W7
This implies that W{* C T*. Now we claim that W}* = T*. In fact,

suppose by contradiction, that there exists g € T\ W71 belonging to the

frontier of W}*. First observe that by the Poincaré-Bendixson Theorem

(using a similar argument to that of the proof of Lemma 2.5) w(q) is

empty. Let v* € T™* be the half-trajectory containing q. Choose a point

p € W{" and take the sequence {p;} of y(p) N~v* as in (a)—(b) above. It

follows from (a)—(c) above that lim; p; = g. Therefore (as w(q) is empty)

by using Lemma 2.4 we obtain that, for ¢ large enough, w(p;) is also

empty. This is a contradiction because ¢ € w(p;). O

Lemma 2.9. If W(T) is nonempty, then Wi (T') = R2\D. In particular,

119

00 ” is an attractor of X.

Proof. AsT* is an open subset of RQ\D, it is enough to prove that it is a
closed one. Suppose, by contradiction, that there exists p € Rz\(T*UD)
belonging to the frontier of 7% U D. Take a small neighborhood V of p
which is a flow box for both X and X*. By the assumptions, there is
a trajectory o of X*|y which is contained in 7% and is a global cross
section for X|y-. As V is the union of the trajectories of X |y meeting o,
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it follows from Lemma 2.8 that V is contained in 7. This contradiction

proves the lemma. [J

III. Proof of the main result
In this section we prove the following:

Theorem A. Let p > 0 and X = (f, g):]R2 — R2 be a C vector field
satisfying the following conditions:
(i) X has at least one singularity, say S;
(ii) Det(DX (p)) > 0, for every p € R?;
(iii) For all p € R2, with ||p|| > p, Trace(D(X (p)) < 0.
If
/R2 Trace(DX) dx A dy

is less than 0 (resp. greater of equal than 0), then “co” is a repellor
(resp. an attractor) of X. In particular if X has no closed trajectories,
then either W*(S) = R2 or W*(S) = R2.

The proof of the following result can be found in [Gu2]

Lemma 3.1. X:R2 — R2 is an injective map.

Proof of Theorem A. Suppose that X has a closed trajectory. Let V
be the open disc bounded by this trajectory. As, by the assumptions
and Lemma 3.1, X takes diffeomorphically R? onto an open subset of R?
containing 0, there exists 8 > 0 such that, for all p € R2\V, || X (p)|| > 6.
Therefore, by Proposition 2.1, “c0” is either an attractor or a repellor
of X.

Now, suppose that X has no closed trajectories. By the assumption
(ii) of this theorem and by Lemma 3.1, S is the only singularity of X
and it is either a local attractor or a local repellor.

Let us proceed by considering only the case in which S is a local
repellor. Let W*(s) denote the unstable manifold of S. Take two small
compact discs D1 and Ds such that

S € Int(D1) C D1 C Int(D9) C Doy C W¥(s)

and both 0D7,9Dy are transversal to X.
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By the assumption (ii) and Lemma 3.1, there exists §; > 0 such that,
for all p € R2\ Int(Dy), || X(p)|| > 61

It is not difficult to see that there exists a C! vector field Y: R?2 — R2
~ such that
a) Y = X in the set R?\ Int(Dy);

b) 0D; is a closed orbit of Y;
c) there exists 0 < § < & such that, for all p € Dy \ Int(D1),

Y (0[] = 6.

Under these circumstances we may apply Proposition 2.1 to obtain
that “oco0” is either an attractor or a repellor of Y and, in this way, of X
too (see (a) above).

Now suppose that “co0” is a repellor and suppose, by contradiction,
that Z(R?) > 0, where

W)= /W Trace(DX) dx A dy.

Take a circle C' contained in {p € R?:||p|| > p + 1} and such that Xc
points inside to the compact disc D bounded by C. This implies, by the
Green’s formula, that Z(D) < 0. By the assumption (iii) of the theorem
Z(R? \ Int(D)) < 0. Therefore

I(R?) = (D) + Z(R? \ Int(D)) < 0

which is the required contradiction.

In a similar way it can be seen that, if “co0” is an attractor,
Z(R?) > 0. The last claim of the theorem follows from the Poincaré—
Bendixson Theorem. [J

IV. An Example

The purpose of this section is to exhibit a vector field X satisfying the
conditions of Theorem A and such that the unstable manifold W*(0),
of 0, is R2. In particular “co” is an attractor of X. The required vector
field is given by:

X(z,y) =g(r)(e"z—y,z+e"y)
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where e A
—e
L 2 2 el
r=4y/z¢+y* and g(r) = ———.
(r) rv14 e 2r
By direct computation, we may obtain the following expressions:

e —1

Det(DX) = W, (a)

€ + (r — 1)(1+ 2¢%7 — &%) b
7‘€4T(1 + e—2r)3/2 ’ ( )
This implies that Det(DX) > 0 everywhere and that Trace(DX) < 0

in the region {r > K} for some large K. Therefore, using Theorem

Trace(DX) =

b

A, we conclude that “c0” is either an attractor or a repellor of X. To

obtain a stronger conclusion, we may observe that the inner product

(z,y), X(z,y)) = g(r)rie™ (c)

is greater than 0, for all » > 0; in this way, the vector field X points
outside all discs whose boundary has the form {r = constant}. This
implies that W*(0) = R? and, in particular, that “co” is an attractor of
X. Hence, Theorem A implies that
, Trace(DX)dx A dy > 0.
R

To obtain the precise value of this integral we may use (c) above and
Green’s formula (on the disc bounded by {r = constant}) as follows:

27r
Trace(DX)dx A dy = / g(r)e~"ds = 2nrg(r)e".
0

/{\/Wgr}

As 2mrg(r)e™" goes to zero as r goes to oo, we conclude that

/2 Trace(DX) dx A dy = 0.
R

References
[Aiz] Aizerman M. A., On a problem concerning the stability in the large of dynamical
systems. Uspehi Mat. Nauk. N. S.; 4 (4), pp 187-188.

[Cha] Chau, N. V., Global structure of a polynomial autonomous system on the plane.
Preprint, Institute of Mathematics Hanoi, Vietnam.

[GLS] Gasull, A., Llibre, J., and Sotomayor J., (1989), Global asymptotic stability of
differential equations inthe plane. J. diff. Eq., 91, 2, (1991).

Bol. Soc. Bras. Mat., Vol. 26, N. 1, 1995



66 CARLOS GUTIERREZ AND MARCO-ANTONIO TEIXEIRA

[Gul] Gutierrez C., Dissipative vector fields on the plane with infinitely many at-
tracting hyperbolic singularities. (1992), Bol. Soc. Bras. Mat., 22, No. 2, pp.
179-190

[Gu2] Gutierrez C., A solution to the bidimensional Global Asymptotic Stability Con-
jecture to appear in Annales de 'LLH.P — Analyse non lineaire.

[Kra] Krasovskii, N. N, (1959), Some problems of the stability theory of motion.
In russian. Gosudartv Izdat. Fiz. Math. Lit., Moscow., English translation,
Stanford University Press, (1963).

[MY] Markus, L. and Yamabe, H., (1960), Global stability criteria for differential
systems. Osaka Math. J. 12, pp. 305-317. )

[MP] de Melo, W and Palis J., Geometric theory of dynamical systems, an introduc-
tion. Springer Verlag, New York, (1982).

[MO] Meisters, G. and Olech C., Global Stability, injectivity and the Jacobian Con-
jecture. Procc. of the First World Congress on Nonlinear Analysis held at Tampa,
Florida. August-1992. Edited by Lakshmikantham and published by Walter de
Gruyter & Co. Berlin, 1994.

[Ole] Olech, C., (1963), On the global stability of an autonomous system on the plane.
Cont. to Diff. Eq., 1, pp. 389-400.

Carlos Gutierrez

IMPA Estr. Dona Castorina 110, J. Botanico
CEP 22460-320, Rio de Janeiro, Brazil
e-mail: gutp@impa.br

Marco-Antonio Teixeira
IMECC-UNICAMP, CP 6065

CEP 13081-970, Campinas, SP, Brazil
e-mail: teixeira@ime.unicamp.br

Bol. Soc. Bras. Mat., Vol. 26, N. 1, 1995




