

Deformations of Branched Lefschetz Pencils

Omegar Calvo-Andrade

Abstract. Let M be a projective manifold of dimension ≥ 3 and $H^1(M,\mathbb{C})=0$. We will show that a deformation of a codimension one singular foliation $\mathcal F$ arising from the fibers of a generic meromorphic map of the form $f^p/g^q, p,q>0$ has a meromorphic first integral of the same type.

0. Introduction

Recently, Gómez-Mont and Lins [GM-L] have shown the following result, which is an extension to codimension one holomorphic foliations with singularities of the Thurston-Reeb stability theorem:

Theorem. [GM-L] Let M be a projective manifold:

- (1) If $H^1(M,\mathbb{C}) = 0$ and $\dim_{\mathbb{C}} M \geq 3$, then Lefschetz Pencils are \mathcal{C}^0 -structurally stable foliations.
- (2) If $\pi_1(M) = 0$ and $\dim_{\mathbb{C}} M \geq 4$, then Branched Lefschetz Pencils are \mathcal{C}^0 -structurally stable foliations.

The aim of this work, is to improve the second part of this theorem. Let L_1 and L_2 be positive holomorphic line bundles on M with holomorphic sections f_1, f_2 . Assume that $L_1^{\otimes p} = L_2^{\otimes q}$, where p and q are relatively prime positive integers. The fibers of the meromorphic map $\phi = f_1^p/f_2^q$ define a codimension one holomorphic foliation with singularities represented by the twisted one-form

$$\omega = pf_2df_1 - qf_1df_2 \in Fol(M, L_1 \otimes L_2).$$

Received 25 June 1993. In revised form 10 August 1994. 1991 Mathematics Subject Classification. 58A17. Supported by Conacyt: 3398 E9307.

In what follows, we shall say that ϕ is a meromorphic first integral of the foliation represented by the section ω .

By a generic meromorphic map $\phi = f_1^p/f_2^q$ we mean the following:

- (1) The sets $\{f_1 = 0\}_{i=1,2}$ are smooth irreducible and meet transversely on a codimension two submanifold K.
- (2) The subvarieties defined by $\lambda f_1^p \mu f_2^q = 0$ with $(\lambda: \mu) \in \mathbb{P}^1$ are smooth on M K except for a finite set of values $\{(\lambda_i: \mu_i)\}_{\{i=1,\dots,k\}}$, where the corresponding subvariety has only one non-degenerate critical point.

A meromorphic map satisfying conditions (1) and (2) is called a Lefschetz Pencil if p = q = 1 and a Branched Lefschetz Pencil otherwise. Our main results are the following:

Theorem A. Let M be a projective manifold whose complex dimension is at least 3 and with $H^1(M,\mathbb{C})=0$. Let $\omega=pf_2df_1-qf_1df_2$ with $p\neq q$ where f_i are holomorphic sections of the positive line bundles L_i and $L_1^p=L_2^q$. If $\{f_i=0\}_{i=1,2}$ are smooth irreducible and meet transversally, then any deformation ω' of the foliation represented by ω has a meromorphic first integral $\phi'=f_1'^p/f_2'^q$ where $f_i'\in H^0(M,\mathcal{O}(L_i))$.

As consequence of this result, the Gómez-Mont Lins theorem may be stated as follows:

Theorem B. Let M be a projective manifold whose complex dimension is at least 3 and with $H^1(M,\mathbb{C}) = 0$. Let \mathcal{F} be a codimension one holomorphic foliation with singularities arising from the fibers of a Lefschetz or a Branched Lefschetz Pencil. Then \mathcal{F} is a \mathcal{C}^0 -structurally stable foliation.

Finally, we relate our results with universal families of foliations:

Theorem C. Let M be a projective manifold whose complex dimension is at least 3 and with $H^1(M,\mathbb{C}) = 0$. Let $\mathcal{B}(c)$ be an irreducible component of Fol(M,c) that contains a foliation which has a generic meromorphic first integral. Then there exists a Zariski dense open subset of $\mathcal{B}(c)$ parameterizing the \mathcal{C}^0 -structurally stable foliations; all of them are topologically equivalent, and have a generic rational first integral.

In [M], Muciño analyses the tangent space of the space of foliations on a Lefschetz pencil. From these infinitesimal methods, he gives an

independent proof of part (1) of the Gómez-Mont-Lins theorem.

1. Codimension one foliations

A codimension one holomorphic foliation with singularities on a complex manifold M may be given by a family of 1-forms ω_{α} defined on an open cover $\{U_{\alpha}\}$ of M, satisfying the Frobenius integrability condition $\omega_{\alpha} \wedge d\omega_{\alpha} = 0$, and the cocycle condition $\omega_{\alpha} = \lambda_{\alpha\beta}\omega_{\beta}$ in $U_{\alpha} \cap U_{\beta}$, where $\lambda_{\alpha\beta}$ are non-vanishing holomorphic functions. If L denotes the holomorphic line bundle on M obtained with the cocycles $\{\lambda_{\alpha\beta}\}$, then the 1-forms glue to give a holomorphic section of the bundle $T^*M \otimes L$.

1.1 Definition

A codimension one holomorphic foliation \mathcal{F} with singularities in the complex manifold M, is an equivalence class of sections $\omega \in H^0(M, \Omega^1(L))$ where L is a holomorphic line bundle, such that ω does not vanish identically on any connected component of M and satisfies the integrability condition $\omega \wedge d\omega = 0$. The singular set of the foliation \mathcal{F} is the set of points $S(\mathcal{F}) = \{p \in M | \omega(p) = 0\}$. The leaves of the foliation are the leaves of the non-singular foliation in $M - S(\mathcal{F})$.

When a leaf \mathcal{L} of \mathcal{F} is such that its closure $\overline{\mathcal{L}}$ is a closed analytic subspace of M of codimension 1, we will also call $\overline{\mathcal{L}}$ a leaf of \mathcal{F} .

We will use the following notions:

A holomorphic family $\{\mathcal{F}_t\}_{t\in T}$ of codimension one holomorphic foliations with singularities parameterized by a complex analytic space T consists of the following:

- (1) A holomorphic family of complex manifolds $\{M_t\}$, given as a smooth map $\pi: \mathcal{M} \to T$ between complex spaces with $\pi^{-1}(t) = M_t$.
- (2) A holomorphic foliation with singularities $\tilde{\mathcal{F}}$ on \mathcal{M} such that its leaves are contained in the t-fibers and the restriction $\tilde{\mathcal{F}}|_{M_t} = \mathcal{F}_t$ is a codimension one holomorphic foliation with singularities on M_t .

A foliation \mathcal{F}_1 is a deformation of the foliation \mathcal{F}_2 if there exists a family of foliations $\{\mathcal{F}_t\}_{t\in T}$ such that $\mathcal{F}_1 = \mathcal{F}_t$ and $\mathcal{F}_2 = \mathcal{F}_s$, where t, $s \in T$.

Given a family of foliations $\{\mathcal{F}_t\}$, the *perturbed holonomy* of a leaf \mathcal{L} of the foliation \mathcal{F}_0 is the holonomy of \mathcal{L} as a leaf of the foliation $\tilde{\mathcal{F}}$. It is clear that the perturbed holonomy has the form:

$$H_{\alpha}(t,z) = (h_{\alpha}(t,z),t),$$

where h_{α} is a holomorphic function such that $h_{\alpha}(0, z)$ is the holonomy map associated to $\alpha \in \pi_1(\mathcal{L})$ as a leaf of the foliation \mathcal{F}_0 .

We will assume that M is compact and has complex dimension ≥ 3 . In this case, the set Fol(M,c) of those foliations defined by an equivalence class of sections $w \in H^0(M,\Omega^1(L))$ where L is a line bundle with Chern class c(L) = c, is an algebraic variety [GM-M] p. 133.

1.2 Definition

Consider $\omega \in H^0(M, \Omega^1(L))$. A section $\varphi \in H^0(M, \mathcal{O}(L))$ is say to be an *integrating factor* of ω if the meromorphic one form

$$\Omega := \frac{\omega}{\varphi}$$

is closed.

The following result shows, that if a section $\omega \in H^0(M, \Omega^1(L))$ has an integrating factor, then it is integrable.

1.3 Theorem. Let M be a projective manifold with $H^1(M,\mathbb{C}) = 0$, and let $\varphi = \varphi_1^{r_1} \cdots \varphi_k^{r_k} \in H^0(M,\mathcal{O}(L))$, $r_i \in \mathbb{N}$ be an integrating factor of the foliation represented by ω . Then:

$$\Omega = \frac{\omega}{\varphi} = \sum_{i=1}^{k} \lambda_i \frac{d\varphi_i}{\varphi_i} + d(\Psi)$$

where Ψ is a meromorphic function with poles at the divisor

$$\sum_{i=1}^{k} l_i \{ \varphi_i = 0 \} l_i \le r_i - 1, \lambda_i \in \mathbb{C}.$$

Proof. We follow [C-M] p. 38.

Consider the meromorphic 1-form

$$\Omega_1 = \Omega - \sum_{i=1}^k \lambda_i \frac{d\varphi_i}{\varphi_i}$$
 where $\lambda_i = \frac{1}{2\pi i} \int_{\gamma_i} \Omega$,

the loop $\gamma_i \in \pi_i(M - \{\varphi_i = 0\})$ denotes the generator of the kernel of the map $i_* = \pi_1(M - \{\varphi_i = 0\}) \to \pi_1(M)$, where $i: M - \{\varphi_i = 0\} \hookrightarrow M$ is the inclusion map.

Integrating by paths the meromorphic 1-form Ω_1 , gives a representation

$$H_1(M, \mathbb{Z}) \to \mathbb{C}$$

 $[\gamma] \mapsto \int_{\gamma} \Omega_1.$

Now, since $H^1(M;\mathbb{C})=0$, this representation defines a holomorphic map

$$H: M - \{\varphi = 0\} \to \mathbb{C}.$$

We claim that this map extends meromorphically to M with a pole of order smaller or equal to $r_i - 1$ along the divisor $\{\varphi_i = 0\}$.

To prove this assertion, take a coordinate system (z; w) on a neighborhood of a smooth point $x \in \{\varphi_i = 0\}$, such that $\{z = 0\} = \{\varphi_i = 0\}$ and span the function H as a Laurent series in the variable z.

$$H(z;w) = \sum_{n=-\infty}^{\infty} a_n(w) \cdot z^n,$$

then we have:

$$dH(z; w) = \sum_{n = -\infty}^{\infty} z^{n} \cdot da_{n}(w) + (n - 1)z^{n-1} \cdot a_{n}(w)dz$$
$$z^{r_{i}}dH(z; w) = \sum_{n = -\infty}^{\infty} z^{n+r_{i}} \cdot da_{n}(w) + (n - 1)z^{r_{i}+n-1} \cdot a_{n}(w)dz.$$

Since $z^{r_i} \cdot dH$ is holomorphic, we have that $a_n(w)$ vanishes identically whenever $n \leq -(r_i - 1)$. \square

Remark. With the notation above, by the residue theorem we have that

$$\sum_{i=1}^{k} \lambda_i \cdot c_1[\{\varphi_i = 0\}] = 0 \in H^2(M; \mathbb{C}),$$

where $c_1[\{\varphi_i = 0\}]$ denotes the Chern class of the line bundle associated to the divisor $\{\varphi_i = 0\}$.

1.4 Corollary. Let M be a projective manifold with $H^1(M; \mathbb{C}) = 0$, and let \mathcal{F} be a foliation represented by a section $\omega \in H^0(M; \Omega^1(L))$ and having an integrating factor φ . Then \mathcal{F} has at least a compact leaf.

Proof. Let $\varphi = \varphi_1^{r_1} \cdots \varphi_k^{r_k}$ be an integrating factor, then the theorem above shows that the hypersurfaces defined by the equations $\{\varphi_i = 0\}$ are invariant by the foliation, and hence, they are compact leaves of the foliation represented by the section ω . \square

As a final comment, when a foliation has two linearly independent integrating factors φ_1 and φ_2 , it is not difficult to show that the foliation has the meromorphic first integral given by

$$\frac{\varphi_1}{\varphi_2}: M \to \mathbb{P}^1.$$

2. Kupka type singularities

This section is dedicated to describe the singular set of foliations with a generic meromorphic first integral.

2.1 Definition

Let \mathcal{F} be a codimension-one holomorphic foliation with singularities represented by $\omega \in H^0(M,\Omega^1(L))$. The Kupka singular set denoted by $K(\mathcal{F}) \subset S(\mathcal{F})$ is defined by:

$$K(\mathcal{F}) = \{ p \in M | \omega(p) = 0 \quad d\omega(p) \neq 0 \}.$$

The local structure of the Kupka singular set is described by the following result. The proof may be found in [Me].

- **2.2 Theorem.** Let ω and $K(\mathcal{F})$ as above, then:
- (1) $K(\mathcal{F})$ is a codimension two locally closed submanifold of M.
- (2) For every connected component $K \subset K(\mathcal{F})$ there exist a holomorphic 1-form

$$\eta = A(x, y)dx + B(x, y)dy$$

defined in a neighborhood V of $0 \in \mathbb{C}^2$ vanishing only at 0, an open covering $\{U_{\alpha}\}$ of a neighborhood of K in M and a family of submersions $\varphi_{\alpha}: U_{\alpha} \to \mathbb{C}^2$ such that $\varphi_{\alpha}^{-1}(0) = K \cap U_{\alpha}$ and $\omega_{\alpha} = \varphi_{\alpha}^* \eta$ defines

 \mathcal{F} in U_{α} .

(3) $K(\mathcal{F})$ is persistent under variations of \mathcal{F} ; namely, for $p \in K(\mathcal{F})$ with defining 1-form $\varphi^*\eta$ as above, and for any foliation \mathcal{F}^* sufficiently close to \mathcal{F} , there is a holomorphic 1-form η' defined on a neighborhood of $0 \in \mathbb{C}^2$ and a submersion φ' close to φ such that \mathcal{F}' is defined by $(\varphi')^*\eta'$ on a neighborhood of p.

Remark. The germ at $0 \in \mathbb{C}^2$ of η is well defined up to biholomorphism and multiplication by non-vanishing holomorphic functions. We will call it the *transversal type* of \mathcal{F} at K. Let X be the dual vector field of η , since $d\omega \neq 0$, we have that $\operatorname{Div} X(0) \neq 0$, thus the linear part D = DX(0) is well defined up to linear conjugation and multiplication by scalars. We will say that D is the *linear type* of K. Since $trD \neq 0$, it has at least one non-zero eigenvalue. Normalizing, we may assume that the eigenvalues are 1 and μ . We will distinguish three possible types of Kupka type singularities:

- (a) Degenerate: If $\mu = 0$.
- (b) Semisimple: If $\mu \neq 0$ and D is semisimple.
- (c) Non-semisimple, $\mu = 1$ and D is not semisimple.

The topological properties of the embedding $K(\mathcal{F}) \hookrightarrow M$, which can be measure in terms of the normal bundle ν_K of $K \subset M$, and the transversal type, are strongly related. [GM-L] p. 320-324.

2.3 Theorem. Let K be a compact connected component of $K(\mathcal{F})$ such that the first Chern class of the normal bundle of K in M is non-zero, then the linear transversal type is non-degenerate, semisimple with eigenvalues $\mu \in \mathbb{Q}$ and 1. Furthermore, if $0 < \mu$, then the transversal type is linearizable, and for any deformation $\{\mathcal{F}_t\}$ of $\mathcal{F} = \mathcal{F}_0$, the transversal type is constant through the deformation.

Let f_1 and f_2 be holomorphic sections of the positive line bundles L_1 and L_2 respectively. Assume that the line bundles satisfy the relation $L_1^{\otimes p} = L_2^{\otimes q}$ for some p,q relatively prime positive integers. Also suppose that the hypersurfaces $\{f_1 = 0\}$ and $\{f_2 = 0\}$ are smooth, and meet transversely. The integrable holomorphic section of the bundle $T^*M \otimes$

 $L_1 \otimes L_2$ given by

$$\omega = pf_2df_1 - qf_1df_2,$$

has the meromorphic first integral $\phi = f_1^p/f_2^q$. Any point $x \in \{f_1 = 0\} \cap \{f_2 = 0\}$ belongs to the Kupka set

$$\omega(x) = 0$$
 and $d\omega(x) = -(p+q)(df_1 \wedge df_2)(x) \neq 0$.

In this case, $K(\omega) = \{f_1 = 0\} \cap \{f_2 = 0\}$, and the normal bundle is $\nu_K = (L_1 \otimes L_2)|_K$, thus it has non-vanishing first Chern class. Then, by Theorem 2.3, the transversal type is linearizable, and actually, it is given by the 1-form $\eta = pxdy - qydx$, moreover, it remains constant under deformations.

3. Proof of theorem A

In this section, we shall prove our main result:

Theorem A. Let M be a projective manifold whose complex dimension is at least 3 and with $H^1(M,\mathbb{C}) = 0$. Let $\omega = pf_2df_1 - qf_1df_2$ with $p \neq q$ where f_i are holomorphic sections of the positive line bundles L_i and $L_1^p = L_2^q$. If $\{f_i = 0\}_{i=1,2}$ are smooth irreducible and meet transversally, then any deformation ω' of the foliation represented by ω has a meromorphic first integral $\phi' = f_1'^p/f_2'^q$ where $f_i' \in H^0(M, \mathcal{O}(L_i))$.

Let $w = pf_2df_1 - qf_1df_2$ be as in theorem A. Observe that $f_1 \cdot f_2$ is an integrating factor for ω . Conversely, if q/p, $p/q \notin \mathbb{N}$ and ω' is an integrable section close to ω , we will show that the leaves $\{f_i = 0\}_{i=1,2}$ have non-trivial holonomy and are stable under deformations, namely, there are sections $f'_i \in H^0(M, \mathcal{O}(L_i))i = 1, 2$ such that $\{f'_i = 0\}_{i=1,2}$ are compact leaves of the foliation ω' . We will show that $f'_1 \cdot f'_2$ is an integrating factor for ω' and the conclusion will follow from Theorem 1.3.

The following theorem may be found in [C].

3.1 Theorem. Let M be a smooth projective manifold of complex dimension ≥ 3 . If $\omega = pf_2df_1 - qf_1df_2 \in Fol(M, L_1 \otimes L_2)$ is a section as in theorem A, then at least one of the leaves $\{f_i = 0\}$ is stable under deformations.

Proof. Let ω_t be a family of foliations such that $\omega_0 = \omega$. The idea is to find a fixed point of the perturbed holonomy. In order to do this, we will find a central element which has non-trivial linear holonomy.

Let V be a smooth algebraic manifold of complex dimension ≥ 2 , and let $W \subset V$ be a smooth, positive divisor on V. Recall that, if $i: V - W \hookrightarrow V$ denotes the inclusion map, then the generator γ_W of the kernel of $i_*: \pi_1(V - W) \to \pi_1(V)$ is central in $\pi_1(V - W)$ (see [N] p. 315-316).

Since $K \subset \{f_i = 0\}$ i = 1, 2 is a positive divisor, the loop $\gamma^i := \gamma^i_K \in \pi_1(\{f_i = 0\} - K) \ i = 1, 2$ is central, so, we must consider two cases: a) If $p/q \notin \mathbb{N}$ and $q/p \notin \mathbb{N}$, then both leaves $\{f_i = 0\}_{i=1,2}$ are stable.

The perturbed holonomy of the element $\gamma_K^i \in \pi_1(\{f_i = 0\} - K)$, has the form:

$$\begin{split} H_{\gamma_{K}^{1}}(y,t) &= (h_{\gamma_{K}^{1}}(y,t),t) & \frac{\partial h_{\gamma_{K}^{1}}}{\partial y} \; (0,0) = \exp\left(2\pi i \frac{q}{p}\right) \neq 1 \\ H_{\gamma_{K}^{2}}(y,t) &= (h_{\gamma_{K}^{2}}(y,t),t) & \frac{\partial h_{\gamma_{K}^{2}}}{\partial y} \; (0,0) = \exp\left(2\pi i \frac{p}{q}\right) \neq 1. \end{split}$$

By the implicit function theorem, there are germs of analytic functions $t\mapsto p^i_t$ i=1,2 such that

$$h_{\gamma_K^i}(p_t^i,t)=p_t^i\ i=1,2.$$

Now, because $\gamma_K^i \in \pi_1(\{f_i = 0\} - K)$ is central, the unique fixed point (p_t^i, t) , is fixed for any other element

$$\beta \in \pi_1(\{f_i = 0\} - K),$$

that is, $h_{\beta}(p_t^i, t) = p_t^i$, hence, it is fixed by the perturbed holonomy of the leaf $\{f_i = 0\}$.

By theorem 2.3, the transversal type of the Kupka set, remains constant through the deformation, and it is given by $\eta = pxdy - qydx$ [GM-L], thus, the leaves \mathcal{L}_t^i through the points (p_t^i, t) contain the smooth separatrices of the Kupka set, and $\overline{\mathcal{L}_t^i}$ is a compact leaf of the foliation ω_t .

b) If 1 = p < q, then the above argument, may be applied only to the leaf $\{f_2 = 0\}$. \square

Remark. Observe that the fundamental class of the compact leaf $\{f_{it} =$ 0) remains constant through the deformation.

We will use the following facts on holomorphic line bundles over Kähler manifolds:

It is well known, [G-H] p. 313, that a holomorphic line bundle L has Chern class zero, if there exists an open covering of M such that the transition functions are constants, and such line bundle is trivial, when it has a non-zero holomorphic section.

On the other hand, if $H^1(M,\mathbb{C}) = 0$, the Hodge decomposition theorem, [G-H] p. 116, implies that any holomorphic line bundle L over M is classified by its Chern class, hence, under this hypothesis, a holomorphic line bundle L is holomorphically trivial if and only if $c_1(L) = 0 \in H^2(M; \mathbb{Z}).$

3.2 Lemma. Let $L_i i = 1, 2$ be positive holomorphic line bundles, and let $\{f_i\}$ and ω be as in theorem (3.1). If $H^1(M,\mathbb{C})=0$, then any deformation of the foliation ω has an integrating factor.

Proof. Let ω_t be an analytic family of foliations with $\omega_0 = (pf_2df_1 - pf_2df_1)$ $qf_1df_2) \in Fol(M, L_1 \otimes L_2).$

We will consider two cases:

(1) If $p/q \notin \{1, 2, 3, \dots, 1/2, 1/3, \dots\}$.

In this case, the leaves $\{f_1 = 0\}$ and $\{f_2 = 0\}$ are stable, thus there exists an analytic family of sections $f_{it} \in H^0(M, \mathcal{O}(L_i))i = 1, 2$ such that $\{f_{it}=0\}_{i=1,2}$ are compact leaves of the foliation represented by ω_t .

We claim that the product $f_{1t} \cdot f_{2t} \in H^0(M, \mathcal{O}(L_1 \otimes L_2))$ is an integrating factor of the section ω_t . In order to show this, it is only necessary to prove that the meromorphic 1-form

$$\Omega_t = \frac{\omega_t}{f_{1t} \cdot f_{2t}}$$

is closed on a nonempty open subset of M.

By Theorem 2.3, the transversal type of the Kupka set is constant through the deformation, thus, on a neighborhood of any point of the Kupka set, there exists a never vanishing holomorphic function $\rho_{ot} \in$

 $\mathcal{O}^*(U_\alpha)$, such that the meromorphic 1-form Ω_t has the local expression:

$$\rho_{\alpha t} \cdot \Omega_t |_{U_{\alpha}} = p \frac{dx_{\alpha t}}{x_{\alpha t}} - \frac{dy_{\alpha t}}{y_{\alpha t}} = \eta_{\alpha t},$$

and this equality holds, because $\{x_{\alpha t} = 0\} = \{f_{1t} = 0\} \cap U_{\alpha}$ and $\{y_{\alpha t}=0\}=\{f_{2t}=0\}\cap U_{\alpha}$, and both forms have the same pole (with multiplicity). Now, in [C-L] it is shown that, when $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the meromorphic 1-forms $\eta_{\alpha t}$ glue to a meromorphic 1-form η_t defined on the open set $U = \bigcup U_{\alpha}$, and this implies that the family of functions $\rho_{\alpha t}$ define a never vanishing holomorphic function on $\rho_t \in \mathcal{O}(U)$.

On the other hand, the Kupka set K_t , of the foliation represented by the section ω_t , is the transversal intersection of the positive divisors

$$K_t = \{f_{1t} = 0\} \cap \{f_{2t} = 0\},\$$

this implies, as was pointed in [C-L], that the function ρ_t may be extended to all M, hence it is a constant, and then, the meromorphic 1form Ω_t is closed on the neighborhood of the Kupka set $K_1 \subset U = \bigcup U_{\alpha}$, this implies that the meromorphic form Ω_t is closed, hence, $f_{1t} \cdot f_{2t}$ is an integrating factor for the foliation ω_t .

(2) Assume that p = 1 < q. In this case, $\{f_2 = 0\}$ is a priori the unique stable compact leaf, thus there exists an analytic family $f_{2t} \in H^0(M, \mathcal{O}(L_2))$ such that $\{f_{2t} = 0\}$ is a leaf of the foliation represented by ω_t .

We claim that f_{2t}^{q+1} is an integrating factor for ω_t , as in the above case, we will show that

$$\Omega_t = \frac{\omega_t}{f_{2t}^{q+1}}$$

is a meromorphic 1-form and it is closed on an open subset of M.

Now, in [C-S], it is shown that there exists a rank two holomorphic vector bundle E, with a holomorphic section σ , vanishing precisely on the Kupka set, and $\wedge^2 E = L$.

The main point that we will use here, is that K is the transversal intersection of two positive divisors. This holds if and only if, the vector bundle E splits in a direct sum of positive line bundles.

The total Chern class of the bundle E, is computed in $[\mathbf{C}\text{-}\mathbf{S}]$, and it is given by the formulae:

$$c(E) = 1 + c_1(L) + [K],$$

where [K] denotes the fundamental class of K in M.

Now, in our case, we have that $K_t \subset \{f_{2t} = 0\}$, and $\{f_{2t} = 0\}$ is a positive divisor, this implies that there exists the following exact sequence of holomorphic vector bundles:

$$0 \to L_2 \to E \to L_1 \to 0$$

$$L_2 = [\{f_{2t} = 0\}] L_1 = E/L_2$$

such exact sequences are classified by the cohomology group

$$H^1(M, \mathcal{O}(L_2 \otimes L_1^{-1})).$$

Now, we have the following relations on the Chern classes:

$$c_1(L) = c_1(L_2) + c_1(L_1) = (q+1) \cdot c_1(L_2) \Rightarrow c_1(L_1) = q \cdot c_1(L_2),$$

hence the holomorphic line bundle $L_2 \otimes L_1^{-1}$ has negative Chern class, and by Kodaira vanishing theorem, we have that

$$H^1(M, \mathcal{O}(L_2 \otimes L_1^{-1})) = 0,$$

hence, the vector bundle E splits in a direct sum of positive line bundles, and K_t is a complete intersection of positive divisors.

As in the first case, on a neighborhood of any point of the Kupka set K_t of ω_t we have

$$\rho_{\alpha t} \cdot \Omega_t |_{U_{\alpha}} = \frac{\omega_t}{f_{2,t}^{q+1}} |_{U_{\alpha}} = \frac{1}{y_{\alpha t}^{q+1}} \left(y_{\alpha t} dx_{\alpha t} - q x_{\alpha t} dy_{\alpha t} \right) = d \left(\frac{x_{\alpha t}}{y_{\alpha t}^q} \right),$$

but in this case, we have that

$$\frac{1}{y_{\alpha t}^{q+1}} \left(y_{\alpha t} dx_{\alpha t} - q x_{\alpha t} dy_{\alpha t} \right) = c_{\alpha \beta} \frac{1}{y_{\beta t}^{q+1}} \left(y_{\beta t} dx_{\beta t} - q x_{\beta t} dy_{\beta t} \right) \quad c_{\alpha \beta} \in \mathbb{C}^*,$$

hence, the functions $\rho_{\alpha t}$ defines a holomorphic section on a neighborhood of K_t of a line bundle with Chern class zero, which is the trivial line bundle, by the assumption on $H^1(M,\mathbb{C}) = 0$.

By the same argument as above, this section may be extended to M, thus it defines a non-zero holomorphic function, and the meromorphic

1-form $\omega_t/f_{2,t}^{q+1}$ is closed, this implies that $f_{2,t}^{q+1}$ is an integrating factor as claimed. \square

Now, we are in a position to complete the proof of Theorem A:

Proof of theorem A. We are going to consider two cases:

(1) $\omega = pf_2df_1 - qf_1df_2 \ 1 < q < q$:

By Lemma 3.2, $f_{1t} \cdot f_{2t}$ is an integrating factor for ω_t , and by Theorem 1.3, we have shown that:

$$\frac{\omega_t}{f_{1t}f_{2t}} = p\frac{df_{1t}}{f_{1t}} - q\frac{df_{2t}}{f_{2t}}.$$

This implies that

$$\omega_t = p f_{2t} df_{1t} - q f_{1t} df_{2t},$$

and ω_t has the meromorphic first integral $\phi_t = f_{1t}^p / f_{2t}^q$.

(2) $\omega = f_2 df_1 - q f_1 df_2$:

By Lemma 3.2, f_{2t}^{q+1} is an integrating factor for ω_t , and again by theorem 1.3, we have:

$$\frac{\omega_t}{f_{2t}^{q+1}} = \lambda \frac{df_{2t}}{f_{2t}} + d\left(\frac{f_{1t}}{f_{2t}^q}\right)$$

where

$$f_{1t} \in H^0(M, \mathcal{O}(L_2^q)) = H^0(M, \mathcal{O}(L_1)).$$

Since the divisor $\{f_2 = 0\}$ is positive, we have that $\lambda = 0$, thus we get:

$$\omega_t = f_{2t}^{q+1} d\left(\frac{f_{1t}}{f_{2t}^q}\right) = f_{2t} df_{1t} - q f_{1t} df_{2t}.$$

This finish the proof. \Box

Remarks.

(1) Cerveau and Lins have shown in [C-L], that a codimension one foliation whose singular set has a compact connected component of the Kupka set, which is a complete intersection (i.e. the transversal intersection of two positive divisors), has a meromorphic first integral.

The stability of the leaves of with non-trivial holonomy, implies that after a deformation, the Kupka set is a complete intersection.

- (2) If we begin with a unbranched rational function (that is, $L_1 = L_2$) and we consider deformations keeping one leaf stable, then it is possible to find an integrating factor.
- (3) If $H^1(M, \mathbb{C}) \neq 0$, then theorem A is not true as the following example shows:

Let θ_t be an analytic curve of closed holomorphic 1-forms with $\theta_0 = 0$. Consider the family of foliations

$$\omega_t = f_{1t} f_{2t} \left(p \frac{df_{1t}}{f_{1t}} - q \frac{df_{2t}}{f_{2t}} + \theta_t \right),$$

Where $f_{it} \in H^0(M, \mathcal{O}(L_i))$ i = 1, 2. The foliation represented by the section $\omega_t t \neq 0$ has only two compact leaves.

(4) Assume that $H^1(M, \mathbb{C}) \neq 0$ and $\omega = f_2 df_1 - qf_1 df_2$ where q > 1 and the foliation ω satisfying the hypotheses of theorem 3.1.

Let as above, θ_t an analytic curve of closed holomorphic 1-forms, and consider the following family of foliations:

$$\omega_t := f_2^{q+1} \left(d \left(\frac{f_1}{f_2^q} \right) + \theta_t \right).$$

In this case, the foliation ω_t has only one compact leaf, given by $\{f_2 = 0\}$.

4. Universal families

In this section, we will describe irreducible components of the universal families of foliations of codimension 1.

Let M be a projective manifold with $H^1(M, \mathbb{C}) = 0$, we have seen that every holomorphic line bundle on M is determined by its Chern class $c_1(L) \in H^2(M, \mathbb{Z})$. It may be shown that $\bigcup_c Fol(M, c)$ parameterizes the universal family of foliations of codimension 1 in M [GM].

4.1 Definition

The fibers $\{\varphi^{-1}(c)\}$ of a rational map $\varphi: M \to \mathbb{P}^1$ defined on a connected projective manifold M form a *Branched Lefschetz Pencil* if there are global sections f_i of positive line bundles L_i , i = 1, 2 with $L_1^p = L_2^q$, p, q > 0 such that:

- (1) The subvarieties $\{f_i = 0\}_{i=1,2}$ are smooth and meets transversely in a smooth manifold K called the *center of the Pencil*.
- (2) The subvarieties defined by $\lambda f_1^p + \mu f_2^q = 0$ with $\lambda \mu \neq 0$ are smooth on M K except for a finite set of points $\{(\lambda_i : \mu_i)\}_{i=1,\dots,k}$ where it has just a Morse type singularity over the critical value in M K.

Note that branched Lefschetz pencils are dense in the set of meromorphic maps satisfying only condition (1), thus as a consequence of theorem A we have:

Theorem B. Let M be a projective manifold whose complex dimension is at least 3 and with $H^1(M,\mathbb{C}) = 0$. Let \mathcal{F} be a codimension one holomorphic foliation with singularities arising from the fibers of a Lefschetz or a Branched Lefschetz Pencil. Then \mathcal{F} is a \mathcal{C}^0 -structurally stable foliation.

Proof. We have two cases:

- (1) If the meromorphic first integral is a Lefschetz Pencil, it is just part (a) of the Gómez-Mont Lins theorem [GM-L].
- (2) If the meromorphic first integral is a branched Lefschetz Pencil, by Theorem A, we have that any deformation of a branched Lefschetz pencil has a meromorphic first integral, this implies in particular, that the Kupka set is locally structurally stable, and we can repeat the proof of part (2) of the Gómez-Mont Lins theorem given in [GM-L]. □

Theorem C. Let M be a projective manifold of complex dimension at least 3 and with $H^1(M,\mathbb{C}) = 0$. Let $\mathcal{B}(c)$ be an irreducible component of Fol(M,c) that contains a branched Lefschetz Pencil; then there exists a Zariski dense open subset of $\mathcal{B}(c)$ parameterizing \mathcal{C}^0 -structurally stable foliations, all of them topologically equivalent and branched Lefschetz pencils.

Proof. Let L_i be positive line bundless with chern classes $c(L_i) = c_i$ such that $L_1 \otimes L_2 = L$ where $c(L) = c = c_1 + c_2$.

Consider the map

$$\Phi: \mathbb{P}^{n_1} \times \mathbb{P}^{n_2} \to Fol(M, c_1 + c_2)$$
$$([f_1], [f_2]) \mapsto pf_1 df_2 - qf_2 df_1$$

where $n_i = \dim_{\mathbb{C}} H^0(M, \mathcal{O}(L_i)) - 1, \ i = 1, 2.$

This is a well defined algebraic map. Let \mathcal{W} be the Zariski closure of the image of Φ . We claim that $\mathcal W$ is an irreducible component of Fol(M, c), where $c = c_1 + c_2$. We know that any deformation of a branched Lefschetz pencil is again a branched pencil and then, it is in the image of Φ . This show that \mathcal{W} and Fol(M,c) coincide in a neighborhood of a foliation \mathcal{F}_0 . Since \mathcal{W} is irreducible, then it is an irreducible component of Fol(M,c). Hence $W = \mathcal{B}(c)$. This proves the theorem. \square

Acknowledgements

The author wishes to thank M. Soares, A. Lins, P. Sad, and J. Muciño, for many stimulating conversations. Part of this work were done when the author was a guest at IMPA, he would like to thank this institution for their support and hospitality.

References

- [C] O. Calvo, Deformations of holomorphic foliations. Differential Topology, Foliations, and Group Actions, vol. 161, CONM, pp. 21-28.
- [C-M] D. Cerveau, J. F. Mattei, Formes intégrables holomorphes singulieres. 97 (1982), Astérisque.
- [C-S] O. Calvo, M. Soares, Chern Numbers of a Kupka Component. Ann. Inst. Fourier, 44 (1994), 1219-1236.
- [C-L] D. Cerveau, A. Lins, Codimension one Foliations in $\mathbb{C}P^n$ $n \geq 3$, with Kupka components. Astérisque 222 (1994), 93-133.
- [G-H] Ph. Griffiths, J. Harris, Principles of Algebraic Geometry. Wiley Intersc., 1978.
- [GM] X. Gómez-Mont, Universal families of foliations by curves. 150-151 (1987), Astérisque, 109-129.
- [GM-L] X. Gómez-Mont, A. Lins, Structural Stability of foliations with a meromorphic first integral jour Topology. 30 (1991), 315-334.
- [GM-M] X. Gómez-Mont, J. Muciño, Persistent cycles for foliations having a meromorphic first integral. Holomorphic Dynamics (Gómez-Mont, Seade, Verjovsky, eds.), vol. 1345, LNM, 1987, pp. 129-162.
- [Me] A. Medeiros, Structural stability of integrable differential forms. Geometry and Topology (M. do Carmo, J. Palis, eds.), vol. 597, LNM, 1977, pp. 395-428.
- [M] J. Muciño, Deformations of holomorphic foliations having a meromorphic first integral. J. Für Reine und Angewante Math (to appear).

[N] M. V. Nori, Zariski's conjecture and related topics. Ann. Scient. Ec. Normal Sup. 16 (1983), 305-344.

Omegar Calvo-Andrade CIMAT Ap. Postal 402, Guanajuato, Gto. 36000 Mexico

calvo@buzon.main.conacyt.mx