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A Poincaré-Bendixson Theorem for
Analytic Families of Vector Fields

D. Panazzolo and R. Roussarie

Abstract. We provide a characterization of the limit periodic sets for analytic
families of vector fields under the hypothesis that the first jet is non-vanishing at any
singular point. Also, applying the family desingularization method, we reduce the
complexity of some of these sets.

1. Introduction

Let S be an open subset of S? such that S (i.e. the closure of S) is a
surface with possible corners. Here, when we write that X, is an analytic
family in S, it will mean that X is a family of vector fields defined in
some open neighborhood of S in S2 and analytic on it. Also, we suppose
that X, depends analytically on the parameter A\ € P, where P is an
analytic manifold of finite dimension A.

Particularly interesting examples are generic local families, where S
is taken to be a neighborhood of the origin in R? and P, a neighborhood
of the origin in RA. Also, in relation to the 16t* Hilbert’s problem, for
every natural number n we consider the analytic family X7, defined for
S=8%2and P= S”2+3”+1, which is obtained by compactification of the
family of all the polynomial vector fields in R? of degree less than or
equal to n. Note that this family is non-generic.

If K C S is some compact subset invariant by the flow of X X
for some A\g € P, we will denote by (X, K) the germ of X, along
K x{X\p} C SxP. We will also say that (X, K) is an analytic unfolding
of K.
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One of the most interesting questions about analytic families concern
the configuration (i.e. the number and spatial disposition) of the limit
cycles when the parameter varies. To study this, we have to look pri-
marily to the degenerate dynamical structures inside the family, where
possibly new limit cycles are originated when the parameter is slightly
varied. There is a close analogy between this question and the anal-
ysis of the possible w-limit sets for a single vector field, made in the
Poincaré-Bendixson Theorem. First, we have to define an analogue to
the notion of w-set, in the context of analytic families:

Definition 1. A compact subset Q C S, is a limit periodic set (simply a
Lp.s.) of the family Xy at g if it is invariant by X, and there exists
a sequence {\r} — Ao, each X, having a limit cycle v, C S, such that
{7} — Q by the usual Hausdorff metric on compact sets.

If an Lp.s. Q contains only isolated singular points of X Aoy it 18
known that Q is a singular point, a periodic orbit or a graphic (ie. a
finite union of singular points pi,ps,... ,pme1 = p1 (not necessarily
distinct) and regular orbits s1, s9,. .. , s, connecting them). The proof
of this fact, which uses the same idea as the proof of the Poincaré-
Bendixson Theorem (see [EL.Mor - R]) will be recalled in section 3 of
this work.

Of course, the cases above are the only possible L.p.s. inside generic
families. But we may also be interested by non generic families, which
exhibit, for example, non-isolated singularities for some values of the
parameter. For instance, this is the case for the family X% defined
above.

Also, any singular perturbation equation can be transformed in an
analytic family eventually having non isolated singular points. In fact,
if the problem has the form |

jj —=
X, = { _ f(z,y,¢)
ey =g9(,y,¢)
then, after a rescaling of time 7 = et we obtain the new family

% T =ef(z,y,¢€)
g — .
{ y =g(z,y,¢).
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in which the vector field X has a whole analytic set of singularities at
{g9(z,y,0) = 0}.

Another situation in which we eventually have to deal with non
isolated singularities is when we perform a family rescaling, in the sense
of [T], [B] (or the more general blow-up operation for families, in the
sense of [D-R]) in some generic family. In these cases, we obtain new
families which may degenerate on the exceptional divisor.

To proceed our study, we will impose a restrictive condition on the
analytic vector fields to be studied. Given an analytic vector field X
defined in S, we establish the following hypothesis:

Hypothesis (H). For any * € S such that X(x) = 0 we have that
1 X (z) # 0.

We will say that an analytic family obeys hypothesis (H) when it is
verified for every value of the parameter.

As we will see in section 2, when a analytic vector field X satisfies
(H) we can decompose the singularity set Z(X) in three disjoint finite
subsets:

e The set of isolated singularities: which can be either hyperbolic,
semi-hyperbolic, degenerate focus, centers or nilpotent singularities
(these last ones occur when j 1X (z0) is linearly conjugated to ya% ).

e Hyperbolic-nilpotent set: which is constituted of a finite number
of connected 1-dimensional manifolds, each one of which contains a
finite number isolated nilpotent singularities, whose complement are
open arcs of semi-hyperbolic singularities.

e Nilpotent set: which is constituted of a finite number connected
of 1-dimensional manifolds, each of which is composed entirely of

nilpotent singularities.

Definition 2. In the following, we will say shortly that a 1-manifold of
singularities is an H.N-curve or an N-curve accordingly to the fact that
it belongs to the second or to the third set above, respectively.

We can now generalize the notion of graphic:

Definition 3. A degenerate graphic is an invariant set formed by a finite
union of isolated singular points, arcs of H.N -curves, and regular orbits
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connecting those elements.
The section 3 is devoted to the study of the structure of Lp.s. ap-

pearing in analytic families under the hypothesis (H). We will prove the
following;:

Theorem 1. Let Q be a limit periodic set at Ay of an analytic family X
obeying hypothesis (H). Then, if Xy, has a curve of singularities T' such
that QNT +# &, there are two possible cases:

i) If T is a N-curve then Q C T,

ii) If T is a H.N-curve, then QN T is composed of a finite number of

closed sub-arcs Q1,Q9, ... ,Qy (not necessarily disjoint). Eventually,
we can have Q; = {p}, and in this case p € T is necessarily a nilpotent
singularity.

In the second case, ) is a degenerate graphic.
Given a Lp.s. Q, we can ask how many limit cycles it origins by
bifurcation. This is precised by the following notion:

Definition 4. We will say that a limit periodic set Q has finite cyclicity if
there is a neighborhood V' of \g, and there existse > 0, n € N such that
for each X\ € V' the number of limit cycles of the field X, at a Hausdorff
distance smaller than € of Q, is less than n. The cyclicity of Q is the
infimum of such n as the diameter of V and € go to 0.

A general conjecture, stated in [R1], is

Finiteness conjecture. For any analytic family X with a compact man-
ifold as parameter space, there exists a uniform bound for the number
of limit cycles of any vector field in the family.

Applied to the family X¥, this conjecture would imply a positive
answer to the 16"* Hilbert Problem. As it was noticed in that same

article, this conjecture can be reduced by a compactness argument to
the following:

Finite cyclicity conjecture. In an analytic family Xy, any L.p.s. has finite
cyclicity.

This conjecture is intuitively easier than the preceding, because of
its local character.
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In [D-R/, it has been introduced a general desingularization method,
aiming to reduce the question of finite cyclicity of general L.p.s. to the
same question restricted to elementary l.p.s. (i.e. L.p.s. in which every
point is either a regular point of the vector field or a singularity with at
least a non-zero eigenvalue in the Jacobian). The method consists of a
sequence of desingularization operations, the most important of which
is the blowing-up along sub-manifolds of singularities.

Here, we will apply these ideas to the particular case of l.p.s. con-
tained in N-curves. In fact, given a family X, with a N-curve I' for
X, we will see that we can locally embed X in a larger family X, 4 »,
defined in a neighborhood V' C S of T, in such a way that, after only a
single blow-up along I' (in the sense of [D-R]), we obtain analytic fam-
ilies with at most H.N-curves. This is the content of the second main

result:

Theorem 2. Any analytic unfolding (Xx,T') of a N-curve can be desin-
gularized (in the sense of [D-R]) in a collection of unfoldings (X;\,f‘),
where T' is an isolated singularity, a periodic orbit, a graphic or a de-
generate graphic.

Since the finite cyclicity is preserved by the operations of desingu-
larizations, we have the following corollary

Corollary. In order to prove the finite cyclicity conjecture for analytic
families under condition (H), it suffices to prove the conjecture for fam-

lies not containing N -curves.

2. Structure of the singularity set
We will denote by Z(X) the singularity set of an analytic vector field X
defined in some open neighborhood of S. In this part, we will discuss
the structure of the set Z(X) for vector fields satisfying hypothesis (H).
Let us write the field X in the form
{ r = F(Qﬁ, y)
X=9 .
¥y =G,y)
The first fact is the following:

(1)

Proposition 2.1. Let X be as above. Then Z(X) is formed by a finite
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union of isolated singular points and connected 1-manifolds of singular-
1ties.

Proof. We have that Z(X) = {F = 0} N {G = 0}. The hypothesis (H)
says that, in a neighborhood of each point of intersection, at least one
of these two sets can be locally expressed as an analytic 1-manifold C
(for this, it suffices to use the implicit function theorem).

If the intersection is an isolated point then we are done. Otherwise,
we can see immediately that Z(X) coincides locally with C. So, at any
non-isolated singularity of S, we can express Z(X) locally as an analytic
1-manifold.

In order to show that Z(X) is formed by a finite number of connected
components we use the fact that X is analytic in S. By this, the set of
isolated singular points cannot accumulate at the boundary of S. Also,
the connected 1-manifolds of singularities are topologically isolated in
S. So, by the compactness of S, Z(X) can have only a finite number of
elements. O

Let us consider now one of the connected 1-manifolds of singularities,
which we will denote by I'. There are two possible cases: either T is
entirely contained in S, and so is diffeomorphic to S!, or else it has
its both ends on the boundary of S, and so it is diffeomorphic to an
interval. In both cases, we can find an analytic parameterization

&Ucsl — g
where U is a connected subset such that £(U) = I' and 3 (t) # 0 for any
t € U. Now, we perform the following local change of coordinates
(,y) = U(t,5) = £(t) +5- £(1)"

where t € U and s € (—¢,¢), for some € > 0. In fact, since' ¥ is a local
diffeomorphism when restricted to U x {0}, and it is also bijective in
this set, it is a global diffeomorphism of W = U x (—€,¢€) on its image,
for a sufficiently small positive e.

In these new coordinates, the field X has the form
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where F(¢,0) = 0 and G(t,0) = 0. Using again the z and y to name the
variables, we write finally

X:{i' IyF(.’IZ,y)

o 3
y =y G(z,y). )

where F' and G are analytic functions at W. The line of singularities
corresponds exactly to the set {y = 0}, and we can prove now that there
are only two possible types of singularity curves.

Proposition 2.2. If T is a connected 1-manifold of singularities then it
is either a H.N-curve or a N-curve, according to definition 2.

Proof. Using the form (3) we obtain

(4)

it X (2,0) = {0 F(:C,O)}

0 G(z,0)
so we have two possible situations:

e G(x,0) = 0: Then, by hypothesis (H), F(z,0) # 0 for any z € U,
and T is a N-curve.

e G(x,0) # 0: So it has a finite number of isolated zeros in I'. This
points correspond exactly to the isolated nilpotent singularities in-
side the line of semi-hyperbolic singularities. So, I' is a H.N-curve.
[

Remark. It is possible to understand more geometrically the classifica-
tion above. For this, we define a new vector field on W given by

A_{i = F(z,y)
y = G(x7y>

()

with F and G as in (3). By hypothesis (H), X(z,y) # 0 for V(z,y) €T,
and so we can identify I" as a H.N-curve or a N-curve according to
the contact of this curve with the field X. Indeed, if p € S is a point
where an orbit of X crosses T transversally, then p is a semi-hyperbolic
singularity of X; if there is a higher order contact, p is a nilpotent
singularity. If the intersection is non-transversal at every point of T,
then, by analycity, the curve T coincides with a regular orbit of X and,
in this case, it is a N-curve of X.
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Still using the vector field X defined above, we can demonstrate the
following transversality results:

Proposition 2.3. Suppose that T is a N-curve of singularities of X, and ¥
s an analytic curve in S which cuts T transversally at a point p. Then,
there exists a neighborhood W C S of p such that any regdlar orbit in
this neighborhood cuts ¥ transversally.

Proof. Since I is a N-curve, the remark above gives us that T' corre-
sponds to a regular orbit of the field X. So, by the continuity of the
flow in a neighborhood of a regular point, the regular orbits of X are
all transversal to ¥ for a sufficiently small neighborhood of p. Now, we
observe that the field X defines exactly the same foliation as the field
X outside I'. O

Proposition 2.4. Suppose that ' is a connected curve of semi-hyperbolic

singularities. Then, there exist two disjoint analytic connected curves

50 and £ contained in S such that:

i) The field X is transversal to £° and $!;

ii) If~ is a reqular orbit of X which accumulates at T, then it necessarily
cuts 20 or 1.

Proof. It suffices to take both the positive and the negative images of
the curve T' by the flow transformation ¢; generated by X. We take
a time tq sufficiently small to have ¥V = &Sto and ©1 = &)—to disjoint.
Since the flow transformation Q%ito is a diffeomorphism, and the field X
is transversal to T, it is also transversal to ¢+t,(T). To finish, we use the
fact that X defines the same foliation as X outside T'. O

3. Structure of the limit periodic set
Consider an analytic family X, with a L.p.s. Q C S at \q. In this part,
we will study the dynamical structure of Q.

In order to start, we will prove a basic lemma:

Lemma 3.1. Let X\ and Q be as above. If ¥ is a connected curve
transversal to the field X, then Q cuts ¥ in at most one point.

Proof. Let us suppose, by contradiction, that Q cuts ¥ in more than one
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point. We consider then a sub-arc £; C X containing at least two points
of intersection, and such that the X ) does not vanish in ;. Then, by
continuity, there exists a neighborhood V' C P of A\g such that for every
A €V, X, is transversal to X1. Since (2 is approximated by limit cycles,
there exists a A\; € V such that X has a limit cycle v; which cuts X
more than one time.

Now, there is a natural ordering of the points in the intersection set
¥1N7y1, which is given by the orientation of the limit cycle. We consider
any two consecutive points p; and pp of this ordering. The union of
the arc of orbit between p; and po and the sub-arc of £ between these
two points form a topological closed curve which separates S in two con-
nected components. By the transversality at £, one of this components
is invariant by the flow (either forward invariant or backward invariant).
This obviously prevents the orbit which passes by ps to be connected
with the orbit which passes by pi, and contradicts the fact that both
these points belong to a closed orbit. O

We proceed now to prove a general result about the structure of
closed invariant sets of C"(r > 1) vector fields with isolated singularities.
In the following, we will denote by w(U) (resp. «(U)) the union of the
w-limits (resp. a-limits) of all the elements of U.

Proposition 3.1. Let X be a C"(r > 1) vector field defined in S, and
having a finite number of singular points. Let K C S be a compact,
connected subset which is invariant by the flow, and which cuts every
connected curve transversal to the flow in at most one point. Then, K
is either:

i) an isolated singularity;

ii) a periodic orbit;

ili) a union of a finite number of singular points and regular orbits con-

necting them.

Proof. Since K is a closed and invariant set, clearly w(K) C K. So, if
K is a single point, it must be a singular point. Otherwise, by connect-
edness K contains regular points.

Let us suppose first that there exists a regular point p € K such that
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w(p) or a(p) is not a single point. Eventually by reversing the sense of
the flow, we can suppose that w(p) is not a single point.

Then, since w(p) is connected, it contains a regular point ¢ € S.
Since w(K) C K, we have also that ¢ € K. If we consider a small curve
transversal to the orbit passing by ¢, we have that w(p) cuts this curve
exactly once, and so it must coincide with the regular orbit passing by
g. This implies that p and ¢ belongs to a periodic orbit 7. Now, by
the same argument, K coincides with v in a neighborhood of g. So, by
connectedness, K = 7.

So, if K is not a periodic orbit nor a single point, every regular point
in K has a single point as w-limit and as a-limit. Since these points are
invariant, they must be a singular points of the flow. As X have only a
finite number of singular points, we obtain case (iii). O

Remark. If K = w(x) for an arbitrary point = € S, then we obtain the
classical Poincaré-Bendixson Theorem. If K is a lL.p.s., the conclusion
of the proposition also holds due to Lemma 3.1.

Corollary 3.1. If we suppose that X is an analytic vector field, then K
forms a graphic in case (iii) (i.e. K contains only a finite number of
reqular orbits). Moreover, each regular orbit in K tends to a singular

point in a well-defined direction.

Proof. It is a consequence of the Seidenberg’s desingularisation theorem
that in a sufficiently small neighborhood of each singular point of X we
have two possible behaviors:

i) We can decompose this neighborhood in a finite number of hyper-
bolic, parabolic and elliptic sectors.

ii) There exists a small closed curve containing the singular point which
is everywhere transversal to the field. This is the case when there
are no separatrices.

Let us suppose by contradiction that K contains an infinite number
of regular orbits. Then, there exists a singular point p € K which is
accumulated by an infinite number of regular orbits in K. By the local
decomposition above, we can exclude the case (ii), since that would
imply that K cuts the closed curve transversal to the field an infinite
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number of times.

In case (i), we know that a regular orbit accumulating in p is either a
separatrix of a hyperbolic sector; or it is a member of an elliptic sector or
a parabolic sector. Since there exists only a finite number of hyperbolic
separatrices and a finite number of sectors of each type, there exists an
elliptic or a parabolic sector containing an infinite number of regular
orbits of K. Now, it is easy to construct in each case a small curve
transversal to the field which cuts K an infinite number of times. This
contradicts the hypothesis. O

It is not difficult to provide examples of analytic families containing
Lp.s. of each one of the types above. When 2 is a periodic orbit, it
is well-known that any analytic unfolding of Q has finite cyclicity (see,
e.g. [F-P]). When Q is a graphic, there are some partial results of finite
cyclicity of the unfolding for elementary graphics (i.e. graphic in which
all the singularities are hyperbolic or semi-hyperbolic) and nilpotent
loops, under generic conditions (see, e.g. [Mo], [R2], [I-Y]).

Now, we will deal with the degenerate case. First, we will show that
if Q intersects a IN-curve then necessarily Q is contained in it:

Proposition 3.2. Let us consider X and Q as defined above. Then, if T
is a N-curve of X, such that T NQ # @, necessarily Q is contained in

I'. More precisely, Q is a closed connected sub-arc of T.

Proof. The proof is by contradiction. Suppose that there is a decom-
position Q@ = (2 NT) U Qy, where Q1 # &. Since Q is connected,
must intersect I'. But we have seen that T" is topologically isolated as a
singular set, that is, there exists a neighborhood W-C S of T" such that
X, does not contains singularities in W —T'. So, the set Qg = Q1 NW
must be constituted entirely of regular orbits.

Let us consider a point p € Q9 NT. By proposition 2.3, if we take a
curve ¥ transversal to I' at p, every regular orbit sufficiently near p must
also cut this curve transversally. So, as Q9 approaches p, it must cut £
an infinite number of times. Since we have supposed that 9 belongs to
a limit periodic set, this contradicts lemma 3.1. O

Let us see an example of analytic family with a l.p.s. which is an
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entire closed sub-arc of nilpotent singularities inside a N-curve.

Example 3.1. Consider the family X given by
r =Y
X*:{y::,ﬂm+x%+xmb+m @)

where a,b € R are fixed values for which X7 (i.e. the field X, for A = 1)
presents a limit cycle. It is easy to see that, as A — 0, this limit cycle
vertically shrinks and accumulates to a closed segment of the N-curve
I' = {y =0} of Xj.

If T is a H.N-curve of X \g» then there are several possibilities. The
next result characterizes the possible intersections of I' with a l.p.s. of
the family X.

Proposition 3.3. Let X, and Q be as above. Suppose that T is a H.N-
curve of X, and QNT # &. Then, there are two possible cases:

i) Q ¢ T: In this case, Qr = QNT is composed of a finite number of
closed connected components, each one of them containing at least
one nilpotent singularity.

ii) Q C I': Then, either
"i.1) Q = {p} and p is nilpotent singularity, or

ii.2) Q=T and T is diffeomorphic to S';
Proof. We will prove each item separately:

(i) First, let us suppose that Q ¢ I'. Then, if we take an isolated
connected component Q C Qr, necessarily there exists a neighborhood
V C S of O such that R = (2N V) — is a union of regular orbits which
accumulates at Q. We assume, by contradiction, that Q is composed
entirely of semi-hyperbolic singularities, say, of the attractive type. So,
every regular orbit of R has as w-limit some point of .

Now, we use the general fact that, if a regular orbit belongs to a
Lp.s., then all the limit cycles bifurcating from this l.p.s. must have the
same orientation of this regular orbit (this is simply a consequence of the
continuity of the family X ). In the case above, it is easy to see that the
sense of the regular orbits in R prevents Q) from being accumulated by a
limit cycle. In fact, since only a portion of the limit cycles approaches (2,
the part of the limit cycles which goes out of a neighborhood of Q should
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follow the orientation of some regular orbit in R; and this contradicts
the fact that every orbit in R accumulates in Q. So, Q must contain at
least one nilpotent singularity.

We proceed to show that Qr contains a finite number of components.
For this, we will use the proposition 2.4. We consider the set of sub-
arcs {I'1,...,[x} of T which form the complement of the finite set of
nilpotent singularities. For each I';, we take the transversal segments E?
and Eil as in proposition 2.4. Now, if a connected component Q1 of Qp
has one of its extremities in I';, necessarily there exists a regular orbit
~v C Q, accumulating at €1, and which cuts transversally either E? or El-l.
Using lemma 3.1, this implies that each I'; can contain the extremities
of at most two connected components of Qr (because there exists the
possibility that one regular orbit of Q cuts E? and another orbit cuts
E}) Now, since there are a finite number of arcs of semi-hyperbolic
singularities, and a finite number of nilpotent singularities, Qr can have
only a finite number of connected components.

(ii) Let us suppose now that @ C I'. Then, by connectedness, either
Q is a point, a closed sub-arc or the entire curve I'. We will show that: in
the first case, the point is always a nilpotent singularity; that the second
case cannot happen; and that in the third case Q is diffeomorphic to S1.

We will make use of a result in [P-T| which states that, if p € S
is a semi-hyperbolic singularity of X),, there exists a neighborhood
W C 8 x P of {p} x {\o} in which the family is C?-equivalent to the
family

n:{?: ) (3)

y = *y .

We will denote by ¥(z,y,\) = (¥1(z,y, A),Y2(N)) the equivalence func-
tion between the two families. Now, we analyze each case separately:
(ii.1) Suppose that 2 is a single point p. By absurd, let us assume that it
is a semi-hyperbolic singularity. Since {p} is a l.p.s. for X at Ao, there
is a A near \g such that X has a limit cycle ~ arbitrarily near p. And
0, {7} x {\} is eventually contained in W. But this would imply that
the family (3) has also limit cycles arbitrarily near the origin, which is
an absurd (because this would imply that, for some value of 7, the field
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Y, would have an orbit which is horizontal at a point outside the line
{y =10}).
(ii.2) Suppose now that the Lp.s. Q is a closed sub-arc of I'. Since T is
a H.N-curve, there exists a semi-hyperbolic singularity ¢ of X ) inside
Q. So, we can apply the result above and consider a neighborhood
W =UxV CS8xPof {¢g} x {\} in which the family is equivalent to
the family (3). Now, we choose any two points p; and ps in U N Q such
that ¢ is contained in the sub-arc of I' between these two points. The
image by 1 (-, Ag) of this sub-arc is a closed segment Q of the z-axis.

We consider a sequence \;, — A\ such that X Ky has a limit cycle v,
and v, — Q as k — oo. If 4 x {\} is sufficiently near O x {Ao}, we
can consider the image of v N U by t1(-, \g). Since v, — Q, what we
will obtain are two regular orbits 4 and 4 approaching the segment
Q and going in opposite horizontal directions. This implies that, in (3),
the function f(z,7;) does not vanish, for any z in some sub-interval
I C (%1(p1, Ak), ¥1(p2, Mk)), and 7 = 9a(Xg) sufficiently near tp(Ag).
But now, we have obtained a contradiction to the expression (3), because
since f(x, ;) does not vanish in I, there can exist only one horizontal
sense for the regular orbits near Q.
(ii.3) Now we assume that @ = I'. If Q is a Lp.s. entirely contained in a
H.N-curve and different from a single point, the limit cycles bifurcating
from © cannot approach a same segment of I' going in both senses. In
other words, using the same construction as above, we see that each limit
cycle ~y;, sufficiently near Q must have one definite sense with respect to
Q. So, the only possibility is that the limit cycles turns all around
before closing. That means that all the curve I' originates a hmlt cycle,
and T is diffeomorphic to S!. O

Finally, we have all the elements to prove the result stated in the
introduction:

Theorem 1. Let Q be a limit periodic set at Ao of an analytic family X
obeying hypothesis (H). Then, if Xy, has a curve of singularities T' such
that QNT # &, there are two possible cases:

i) If T is a N-curve then Q C T,
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ii) If T is a H.N-curve, then QNT is composed of a finite number of
closed sub-arcs Q1,Qq, ..., Q. Possibly, we can have Q; = {p}, and
in this case p € T' is necessarily a nilpotent singularity.

In the second case, Q is a degenerate graphic.

Proof. It follows directly from propositions 3.2 and 3.3. O

4. Desingularization of limit periodic sets of nilpotent type

In this part, we will utilize the family desingularization method (see

[D-R]) to reduce the question of finite cyclicity of 1.p.s. contained in

N-curves to the problem of finite cyclicity of graphics and degenerate

graphics (see definitions in the introduction).

So, suppose that we have an analytic family X defined in S x P
and that for some parameter value \g € P, X xo has a N-curve I'. We
will proceed in the following fashion:

i) Define a new analytic family X, » (with (¢,,\) € P), which in-
duces the family X, in a sufficiently small neighborhood of T x {\¢}.
This new family will present an analytical expression convenient to
the blowing-up operation.

ii) Effectuate the blow-up along I' x P inside the family Xowr In
this particular case, we will need only a part of the general theory
developed in [D-R].

As we will see, after the blow-up operation we obtain a new object
which is no more an analytic family of vector fields, but for which the
definitions of limit cycle, limit periodic set, cyclicity etc, can easily be
extended. Further, this new object can be partially seen as an analytic
family X 5 In some special chart. We will prove that if all the Lp.s.
of X5 have finite cyclicity, then all the possible 1.p.s. of the original
family X contained in I' also have finite cyclicity. This represents a
real reduction of the complexity of the problem, since the new family
X 5 Will not contain N-curves of singularities.

4.1 The new family X, , »
Let X and T be as defined above. As we have seen in section 2, we can
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Y: would have an orbit which is horizontal at a point outside the line
{y =0}
(ii.2) Suppose now that the L.p.s. Q is a closed sub-arc of I'. Since T is
a H.N-curve, there exists a semi-hyperbolic singularity ¢ of X 2o inside
Q. So, we can apply the result above and consider a neighborhood
W =UxV CS8xPof {g} x {\o} in which the family is equivalent to
the family (3). Now, we choose any two points p; and ps in U N Q such
that ¢ is contained in the sub-arc of I' between these two points. The
image by %1 (-, Ag) of this sub-arc is a closed segment € of the z-axis.

We consider a sequence \;, — )¢ such that X X has a limit cycle v,
and 7, — Q as k — oo. If v x {A\;} is sufficiently near @ x {)\g}, we
can consider the image of 4, NU by v1(-, \¢). Since v, — Q, what we
will obtain are two regular orbits 41 and A approaching the segment
Q and going in opposite horizontal directions. This implies that, in (3),
the function f(z,7;) does not vanish, for any z in some sub-interval
I C (%1(p1, Ak), ¥1(p2, Ax)), and 73, = 9o(Ag) sufficiently near 15(Ag).
But now, we have obtained a contradiction to the expression (3), because
since f(z,7x) does not vanish in I, there can exist only one horizontal
sense for the regular orbits near Q.
(ii.3) Now we assume that Q = TI'. If Q is a Lp.s. entirely contained in a
H.N-curve and different from a single point, the limit cycles bifurcating
from © cannot approach a same segment of I' going in both senses. In
other words, using the same construction as above, we see that each limit
cycle vy sufficiently near Q must have one definite sense with respect to
Q. So, the only possibility is that the limit cycles turns all around
before closing. That means that all the curve I originates a 11m1t cycle,
and T is diffeomorphic to S!. O

Finally, we have all the elements to prove the result stated in the
introduction:

Theorem 1. Let Q be a limit periodic set at Ny of an analytic family X
obeying hypothesis (H). Then, if X Ao has a curve of singularities T' such
that QN T # @, there are two possible cases:

i) IfT is a N-curve then Q C T,
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ii) If T is a H.N-curve, then QN T is composed of a finite number of
closed sub-arcs 1,92, ... ,Q. Possibly, we can have Q; = {p}, and
in this case p € T' is necessarily a nilpotent singularity.

In the second case, Q is a degenerate graphic.

Proof. It follows directly from propositions 3.2 and 3.3. O

4. Desingularization of limit periodic sets of nilpotent type

In this part, we will utilize the family desingularization method (see

[D-R]) to reduce the question of finite cyclicity of l.p.s. contained in

N-curves to the problem of finite cyclicity of graphics and degenerate

graphics (see definitions in the introduction).

So, suppose that we have an analytic family X, defined in S x P
and that for some parameter value A\g € P, X, has a N-curve I'. We
will proceed in the following fashion:

i) Define a new analytic family X, 4 (with (¢,%,\) € P), which in-
duces the family X, in a sufficiently small neighborhood of I x {\g}.
This new family will present an analytical expression convenient to
the blowing-up operation.

ii) Effectuate the blow-up along I' x P inside the family X, . In
this particular case, we will need only a part of the general theory
developed in [D-R].

As we will see, after the blow-up operation we obtain a new object
which is no more an analytic family of vector fields, but for which the
definitions of limit cycle, limit periodic set, cyclicity etc, can easily be
extended. Further, this new object can be partially seen as an analytic
family X;\ in some special chart. We will prove that if all the l.p.s.
of X:\ have finite cyclicity, then all the possible l.p.s. of the original
family X contained in I' also have finite cyclicity. This represents a
real reduction of the complexity of the problem, since the new family
X 5 Wwill not contain N-curves of singularities.

4.1 The new family X, , »
Let X and I be as defined above. As we have seen in section 2, we can
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find a system of coordinates in a neighborhood M C S of T in which
the family has the expression
0o={7 Zood )
Yy = G('T7 Y, A)
where A\ € P, z € U C S!, Yy € (—¢,¢) for some € > 0; and the N-curve
I' is simply given by {y = 0}. In this coordinate system, we have,

Mgte0) = [0 o] @)
and, by hypothesis (H),
8F(ag;), Ao) 40 )
for any x € U. So, we can define the following change of coordinates
T=a@
y=F(z,y,M) (4)
A=)

In fact, this map is bijective when restricted to the set I' x {\g}, and,
by (3), it is also a local diffeomorphism in this set. So, there exists
a neighborhood N C U x (—¢,e) x P of T x {)\g} in which (4) is a
diffeomorphism.

Writing the family in this new coordinates (and dropping the hats),

we obtain .
T =y
X =
g { y = H(iL’,y,)\) ®

where H is an analytic function in N. If we develop H in power of y up
to the second order

H(z,y,2) = 9(z, ) + yf (@, ) + 57 Q. y, X, (6)
the condition (3) for a N-curve can be exactly expressed as
f(z,Ag) =0 and g(z,)\g) =0. (7)

Now, we will put the functions f and g in a form which will be more
convenient to effectuate the blow-up in the next section. For this, we
will introduce the concept of ideal of coefficients, first considered in [R3].
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We consider an analytic function h(z, A) with domain U x V', where
U is a compact connected subset of S! and V is an open neighborhood
of a given point \g in R*. We suppose that h(xz, \g) = 0. Given a point
zg € U, there exists an open interval I C U centered at xg in which we

can write the expansion:

h(z,X) = ) ai(\, z0)(@ — zo)" . (8)
i=0

Since U is compact, we can suppose, by eventually reducing V', that
this expansion is valid for any A € V. Now, we define J,, as the ideal
generated by (ag,at,...) in the ring of analytic functions in V. One
important result of the theory is that this ideal is independent of the
point xg. This is a direct consequence of the following result:

Proposition. (see [R3]). Let h(z,\) be as above. Then, there erists a
constant R > 0 such that, for any point xg of U, we can find a compact
neighborhood Vy, C V' of Ay and analytic functions ho(x, A, xq),. ..,
hi(z, A, o), defined in [xg — R,z + R] X V), such that in this domain,

k
h({E, )‘) =3 Z G@(A,JIO) hZ(l‘v )\,IEO) » (9)
i=0

Moreover, each function has the form hi(z, \,zg) = (x — z20)'[1+ O(z —
zg, \)].

If we consider the ideal J,, for a point x1 € (zg — R,z9 + R), it is
easy to see by (9) that J, C Jz,. By symmetry, also Jz, C J,. So, as
we have claimed, the ideal is independent of the base point xq that we
choose. _

The ideal J = Jy, is called the ideal of coefficients of the analytic
function h(z, A). It is an ideal in the ring of germs of analytic functions
at A\g. Since this ring is Noetherian, J is finitely generated.

We consider now any minimal set of generators (¢q, @1, .. ,@r) of
the ideal J (for us, this will mean that ([¢g], . .. , [¢r]) is a basis of J/ MJ,
where M is the maximal ideal of the ring of analytic germs at Ag).

Our goal is to show the following result:

Lemma 4.1. There exist a neighborhood Vo C V' of Ay and functions
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ho, ..., he analytic in U x Vjy such that we can write the expansion

h(z,X) = " @iN) hi(@,\) , for z €U, A€V . (10)
=0
Moreover, the functions hy, ... , h, are R-independent (i.e. for any fized
A1 € Vo, any non-trivial linear combination of ho(-,A1),... , he(-, A1)
does not vanish identically).

Remark. This is not a direct consequence of the previous proposition,
because we do not have uniqueness in the local expansion (9).

Proof. Our first step is to complexify the problem, in order to apply
results of the theory of holomorphic functions in several complex vari-
ables.

Since h, g, ... , @, are analytic functions in U x V, there exists a
neighborhood W c CA*! of U x {Ao} such that {h,pq,...,p.} C
H(W), where H(W) is the set of holomorphic functions in W.

Now, it is easy to see that we can find a neighborhood W < W of
U x{ Ao} which is a domain of holomorphy (by definition, this means that
it is the maximal domain of definition of some holomorphic function).
In fact, it suffices to take some W which can be written as a Cartesian
product of A + 1 domains of C.

One of the most important properties of domains of holomorphy is

the following (see e.g. [G-R]):

(The Division Property). Let f, f1,...,fr € H(D), for some domain
of holomorphy D of C™. Suppose that the zero set of f contains the
intersection of the zero sets of f1,..., fi (counted with multiplicities)
or, equivalently, that £, (the germ of f in the point z) is contained in the
ideal (f1,,... ,fk ), for every point z € D. Then, there exists functions
hi,... ,ht € H(D) such that f =3 h;f;.

By our construction, it is clear that the hypothesis are fulfilled, and
so we obtain a complex expansion:

h@,X) = @i(A) hi(z,A) for (z,)) € W.
=0
Finally, it suffices to take the real parts of the functions h; to get the
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desired real analytic expansion. The domain Vj of the enunciate is
obtained by taking the projection of W into the original real space of
parameters.

It remains to show that hg,...,h, are R-independent. For this,
we take any point z9 € U and consider the power series expansion
(8) around zg. It is easy to see that we can choose a minimal set of
generators of J inside the set {ag,ai,...}. Suppose that the set of
generators is given by

00 = Gigy--- Pp =iy , for0<ipg<--- <i,.

The previous proposition give us a local expansion of h in [zg— R, z +R),
T
h(z, ) = D @i\, o) hi(x, A, z0)
=0

from which it is immediate to see that the h] are R-independent. In-
deed, the demonstration given in [R3], consists basically of showing the
validity of the following operation:

h(z,A) =Y a;j(A z0) (x — z0)

1

o

<
Il
o]

<Z b.{u()\) aiy (A, x0)> (z — z0)’

k=0

r

i
g

ai, (A, @) (Z Bl (z — xo)j)
§=0

[
M-

(p;c()‘v 'TO) h;c(xa /\7 IO) )

il
(e}

where we have written a; = Z};:O b;c i - From this, it is clear that the
particular term (x — z()'* appears in the asymptotic expansion of hy,
and of no other h'r. So, there can be no non-trivial linear combination
of the functions hg, ... , h, which vanishes identically.

Now, in order to show that the h; are also R-independent, it suffices
to observe that, in a neighborhood of the point xy € U, there exists a
linear isomorphism which takes {h;} into {h;}, i.e. a matrix U(\, )
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such that:

Zuw A, x0) (:1: A, xq) -

Indeed, {[¢}]} and {[p;]} are two bases of the vector space J/MJ (where
M is the maximal ideal of the ring of germs of analytic functions at \g),
and the isomorphism above is the change of base transformation. So,
since the matrix U;; has evidently rank r+1 (over the reals), and the set
{hg, - -, hy.} is R-independent, the same is valid for the set {hg, ... , h,}.
(]

Finally, applying the lemma 4.1, we can find a neighborhood K of
Ag such that the expansions

Z% Vfilx, A) and g(x, A) = Zz/)] )95 (z, A) (11)

are valid for all (z,\) € T' x K. We remember the important fact that
the functions {f;} and {g;} form R-independent sets.

Our last step will consist of embedding the family X in a larger fam-
ily X, y.x, which is constructed simply by taking the functions ¢, ...,
©r, 0, - - - , s as independent parameters, taking values in R 512, This
operation of embedding usually receives the name of family induction.
It is immediate to see that if T contains a l.p.s. Q of X at Ay, then Q
is also a limit periodic set of X, 4  at (0,0, Ag). Also, the cyclicity of Q2
with respect to the latter family is never smaller than its cyclicity with
respect to the former one.

The final family takes the form

r =Yy
X%w:{y gw J(@ ) +y (3 @i fila, M) +52Q(@, 9, A)

g=

By the terminology of the introduction, this family is an analytical un-
folding of T'.
For shortness, we will again denote the new phase space by S, and
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the parameter space K x R"T512 by P.

4.2 The blow-up operation

The basic idea of the family blow-up is to consider the analytic family
Xy, as a global vector field X' defined in the total space T = S x P
(using the same notation as in the previous section). The important
characteristic of X is that it is a foliated vector field; that is, it is every-
where tangent to a foliation F given by {dy = 0,dy = 0,d\ = 0}. To
every analytic family we can always associate a foliated vector field in
the Cartesian product of the phase space and the parameter space; and
the foliation will evidently be always regular. Conversely, under certain
hypothesis, we can see a foliated vector field with a regular foliation as
an analytic family: the phase space will be diffeomorphic to the leaves
and the parameter space to the normal space.

The sub-manifold M = {(z,y, ¢,¥,\) € T: (y,¢,v¥) = (0,0,0)} con-
tains the curve of singularities I', and is evidently contained in Z(X), the
set of singularities of X. Our desingularization operation will consist of
blowing-up ail the manifold M. For this, we express the normal space
at M, parameterized by (y, ¢, ), in quasi-homogeneous coordinates as

follows:
y=1
i = Tbi(,_oi (12)
;=T
where 7 € R*, and (g, @0, ... ,?r, Y0, ... ,0¥s) € STT5H2,
The values of a,bg,...,bq,cg,...,cs Will be precised later. The

transformation (12) is a diffeomorphism for 7 # 0.

Let us denote T the new analytic manifold given by (z, (7, @, %), A, 7).
According to i the observation above, there is a surjective projection map
m:T — T which is bijective in T — M. Let us denote the set 71 (M)
by M, usually called the exceptional divisor. Clearly, we can pull-back
both the vector field X and the foliation F defined in 7" to obtain new
analytic objects in T'— M.

It can be proved (see lemma II.11 at [D-R]) that there exists an in-
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teger s > 0 such that the vector field X = 75 (7* X’ ) can be analytically
extended to all 7.
~ On the other hand, the foliation ' = 7*F cannot be reqularly ex-
tended to M. As we will see below, there is a singular maximal foliation
F which coincides with F’ in T — M. The vector field X will be every-
where tangent to F.
Explicitly writing, the foliation " is given by

d\=0
F =S drbg)=0; ie{o,...,r} , (13)
d(r9;) =0 ; jed{o,...,s}

where 7 # 0. To better understand (13), we will decompose 7' in two
different domains:

G ={(z, (@, ¥),\7) € T:|7] > p2}

2 (14)
F = {(x7 (57 (1_071[})’A7T) e T: |y‘ < pl} Y

for some 0 < py < p; < 1. In the following subsections, we will analyze
the foliation in these two domains separately.

4.2.1 The family chart
We can define another quasi-homogeneous change of coordinates by:

y="7
@i = 7@ ;i€{o,...,r} (15)
@Dj:%cj’(z)j ;jE{O,...,S}

where (7, (¢, 1), 7) € R x 8§75+l x R+

It is clear that, restricted to the domain F, there exists a diffeo-
morphism ¥p which maps the blow-up (12) into the blow-up (15);
l.e. which maps the domain ((7,®,%),7) € (S7+512 x RT) N F into
@, (@, ), 7) € [-L,L] x §T+s+1 x R+ (where L depends of p;), and
commutes with the blow-up transformations. The pair (Uf, F) is known
as the family chart, by a reason that we will see below.
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The image Fr of the foliation F'|z by ¥ is given by:
dA =0
Fr=3d#i@;)=0; iefo,...,r} . (16)
d# ;) =0 ; je{o,...,s}
Each leaf can be described as {7 = const, »; = const, QLJ- = const, \ =
const}. Indeed, from (16) we obtain the following differential system:

b7 p; di + 7% d@; =0 for i€ {0,...,r}

cji'cj_l{bj di + 79 dip; =0 for j € {o0,... , S}
Multiplying the lines of the first group by 75~%®; and the lines of the
second group by #57¢ &j (where S =3 _gb;+ Z;:O ¢j), we can sum up
all the lines. The second members will annihilate since they represent

the differential of a constant (i.e. the modulus of the vectors contained
in a sphere). So, we finish with the equation:

D b + Y cpd)dr =o.
i=0 j=0

From this, we get immediately that dr = 0. Also, d@; = 0 and d{bj = 0
The exceptional divisor has the following expression in this chart:

Mp=MNF={7=0}.

By this, we can extend the foliation (16) in a regular way to Mp. In
fact, the leaves in the exceptional divisor will simply have the form
7= 0,0 = const,ﬂ}j = const,\ = const}. The vector field
Xp = (U 7). X will be everywhere tangent to this regular foliation. So,
using the duality between vector fields tangent to a regular foliations
and an analytic families (as we have observed in the beginning of this
sub-section), we can consider Xz as an analytic family, say X5, where
the phase space S can be realized as an open set of S2 and the parameter
space P is given by RT x §7+s+1 x K (see the previous sub-section for
the definition of K). The new parameter \ is equal to (T, @,, \).

It is not hard to write the analytical expression of the family X X
in the family chart. All we have to remember is that in this chart the
parameter space is tangent to the field, which means that the vector
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field Xz obeys N B we apply the change of coordinates given by
(15) in the original family X, , \, we obtain:

&=7Y;
i S N i
X = 0 = D T 05,0 + 79 Q7% filz, N))
7=0 =0
~2a~2 T
+79°Q(, §, A, 7).
This expression permits us to choose conveniently (a, by, ... , b, cg,...,

Cs), the weights for the quasi-homogeneous change of coordinates (12).
The choice that will suffice to us is:

a=1,b;=10=0,...,7); €& =2(f=0,....,8).

So, we get:
T=TY
3l — ~ 3
AT 0= W 9@ N + 75 (O @i film V) + T57Q(, §, A, )

j=0 =0
Finally, we can divide this family by 7 (which means that we extend
the vector field m*&" to the exceptional divisor by taking s = 1 in the
transformation X = 75 - (m*X)). This important operation permits us
to get a non-trivial dynamics at the exceptional divisor M. The final
form of the family is:

"
ST =2 i@ + 5 (s file ) + Q@A) 1)
7=0 =0

Now, the crucial step is to observe that the analytic family (17), which is
evidently equivalent to the original family Xy ,) outside the exceptional
divisor, does not present any N-curve of singularities. ‘Indeed, since
the vector of parameters (@, ... , @, U, . .. ,15) € 8™t pever vanish
altogether, we conclude from the R-independence of the {f;} and the
{g;} that, for any fixed \; = (11, ®, ¥, A1) € P, either

D @i film, A1) #0 or > i gl M) 0.
i=0

J=0
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So, at the worst case, the vector field X Al presents a H./N-curve.

4.2.2 The germ chart
Now, we proceed to analyze the foliation F in the set G. This set
is composed of two connected components G4 = {7 > 0} N G and
G- ={y < 0} NG. As in the previous case, it will be convenient to
define a diffeomorphism which will simplify the geometry of the foliation.
We consider the following map:

T |
Z‘:(Oi/nbi ;1€ {0,... ,7’}
i =11;/n% 5 je{o,...,s}

F=n-7,

(18)

S B

where n = (y)é. This map takes (7,,v) € ™12 into (y,@i,{/;j) IS
{—1,+1} x B(0,Q) (where B(0,Q) Cc R™ts+2 is a ball of radius Q =
\/1— p% /p2). The chart (G, ¥¢) is usually called the germ chart, since
it contains the blow-up of the single vector field X0,0,70-
In the germ chart, the foliation Fg = (¥q).(F) has the expression:
d\=0
Fo=1d(Fp:)=0; ief{o,...,r} . (19)
d(F*P;) =0 ; je{o,...,s}
The regular leaves of F¢ are clearly two dimensional surfaces. Next to

the exceptional divisor, the foliation accumulates at the following two
sets:

Ly ={(z£1,0,9,77) | A€ K, (2,9) = (0,0)}
and
Mg =MnNG = {+=0}.
These sets intersects transversally, and the intersection is a (A +1)-
dimensional sub-manifold D (where A is the dimension of the parameter
space of the original family X). By this, it is clear that the foliation
(19) cannot be regularly extended to all the space ¥ (G). Anyway, it

is possible to obtain a singular foliation, defined globally, and which
extends Fe.
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First, we define foliation in LA — D by taking as leafs the sets:
Ly, =Lyn{d=X}

for each A € K.
To extend the foliation to Mg — D, we define the leaves as follows:

We choose one parameter, say (¢g, and take a typical leaf as

(wa:tlvsba@z},)‘ai—)‘sbl :Cl'¢07"' 7@T:cT'Sb0a

-Z/: QLOZdO'@%a"'a{bS:dS‘@(QM ’
A= const, T=0
where (c1,--- ,ds) are constants, and @g € [—1,0) U (0,1]. This defines

the foliation except at the hyper-plane {9 = 0}. Then, we proceed
inductively by choosing another parameters, up to cover all the set Mg—
D by two dimensional leaves.

Finally, we must also foliate the set D by including one-dimensional

leaves of the form:

= {(xvilﬂbv{b?A?%) ‘ SbO =0,...,¢r :quvb() =0,... aQLS:O?}

A= const,7=0

It is easy to see that this foliation of My is compatible with the foliation
of My defined in the family chart (i.e. the function ¥go ‘111_?1 maps one
foliation into the other in the intersection F' N G). By this, we get
a globally defined singular foliation in the manifold T, which we will
denote F.

In the germ chart, the blown-up vector field X can no more be
considered as an analytic family. Anyway, as we will show below, this
fact does not represent a difficulty to the desingularization procedure in
this particular case.

Let us calculate the vector field X in the germ chart. Applying (18)
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composed with (12) in the family X, » we get
Jh= aeii

= L F ANl g A) = (O @1 i)+ Ol 1,5, 7]
7=0 =0

~ =

ey it .
FO;+7T@; =0 ; 1 €{0,...,r}
27:7:12}.74_7'2 112}]:0 7.76{07 75}
A=0

(20)
If we write H(z,%1,,0,\7) = éo{pj gi(x, ) + (éogbi filz, N) +
Q(x,+1,\,7), we can substitute 7 in the second and third rows to ob-
tain:
= ok
# = +72H(z, +1,0,%, A, 7)
Xo =1 @i =F2F H(z, £1,0,90,\,7) - @; ;i €{0,...,r} (21)
by =7 H(m, £1,0,9,\7) % ; je{0,...,s)

A=0

~¢

which we can divide by 7 to have the new vector field:

+1

F=+H(z,£1,0,9,\,7) -7

Xo =1 ¢i=F2H(z,£1,0,9, M%) -@; ;i€{0,...,r} (22
¢j=¥H(x,i1,¢,¢,A7f)-zbj ; j€{0,...,s}

A=0 '

K-
Il

This last system is analytically equivalent to the original system X re-
stricted to the set G — Mg. Also, if we define the following family of
leaves:

EA:{L/\Z(%Z/,%%)\)ET | AEK, (%@D):(an)},

then each regular leaf L € F not belonging to £, is mapped into a
regular leaf L € F.
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We observe also that X has two regular orbits, which we will denote
by Fg and T, passing exactly by the intersection L A N M.

4.2.3 Study of the cyclicity

As we know, in each leaf L € F it is defined an unique element of the
family X\ (i.e. a vector field acting in the phase space S ), which we
will denote simply by Xr. We have seen above that, if L & £, there is
a corresponding regular leaf I € F and a vector field X 7 defined in this
leaf which is analytically equivalent to X. In this section, we will use
the language of foliations to state our results.

In the following, we will use the term limit cycles in a leaf L to
designate the periodic orbits of the field X which correspond to limit
cycles of the restriction of this field to the leaf L € F.

First, we show that Fg and I'; have a finite cyclicity, in the following
precise sense:

There exists a neighborhood V- C T of the orbits Fg and T',, and a
natural number N, such that the number of limit cycles which intersect
V., in each leaf L € F, is bounded by N.

For this, we will prove a more general result, valid for arbitrary
analytic foliated vector fields (we refer to [D-R] for the definitions):

Proposition 4.1. If T is a periodic orbit of an analytic foliated vector
field (E,7,A, X), then there exists a neighborhood V. C E of T and a
natural number N such that the number of limit cycles which intersect
V', for each leaf of the foliation, is uniformly bounded by N.

Proof. We can construct an analytic hyper-surface ¥, transversal to the
field X, and which cuts I in a single point pg. For a sufficiently small
compact neighborhood X1 C ¥ of pg, there exists an analytic first return
map |
p:¥; — X.
Since the vector field X is everywhere tangent to the singular foliation
F, it follows that this foliation is also transversal to the section . So,

we can define an induced analytic foliation G = FNY of the transversal
section.
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The set of periodic orbits of X', which cuts X, is given by:

A={pei|pb) =p}.

This is obviously an analytic set, since it is defined as the zero set of the
analytic function. Now, we consider the following analytic map:

7T:A—>Q,

associating to each point of A the leaf of G to which it belongs. Since
the leafs of G are defined by a finite set of parameters, we can consider
the map 7 as having as image the space R™, for some natural number
m.

Let us now state a well-known result of A.Gabrielov:

Theorem. (see [G]). If M is a compact analytic set in the real space,
and g : M — R™ a real analytic map, then the number of the connected
components of the pre-images g‘l(a) is bounded from above uniformly
over a € R™.

By this, we conclude that there exists a uniform bound N for the
number of components of A in each leaf of G. Since the limit cycles are,
by definition, topologically isolated inside each leaf, we have obtained
a bound for the number of limit cycles which cut £j in each leaf L.
Taking the inverse image of the section ¥ by the flow generated by X,
we obtain the desired neighborhood V of I'. O

As a direct consequence, if Fg and I'; are periodic orbits, we obtain
a neighborhood V' in which number of cycles in uniformly bounded.

We suppose now that Fé is not a periodic orbit. Then, it is easy to
see, by the expression (22), that either Fé is transversal to the boundary
of T or else it is tangent to the boundary and its closure is a periodic
orbit. In the former case, there exists a neighborhood of V in which
X has no periodic orbit (since we have always supposed that a l.p.s. is
entirely contained in the original phase space S). In the latter case, we
can still apply the argument above to find a transversal section and a
bound for the number of limit cycles by leaves in a neighborhood of Fé.

Finally, we are ready to demonstrate that the blow-up operation
reduces the question of finite cyclicity of a L.p.s. Q C T, of the original
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family X, to the same question for the new family X ;- Below, we will
use the following result:

Lemma 4.2. (see [R1]) Let Y, be an analytic family as defined in the
introduction. Suppose that there exists a convergent sequence of param-
eter values T, — 710, such that the corresponding vector fields Y;, have
an increasing number of limit cycles. Then, there exists a l.p.s. Q at 1
with infinite cyclicity.

Now, our result can be stated as follows:

Proposition 4.2. If the analytic family X 5 has the finite cyclicity prop-
erty, then all the l.p.s. of the original family X\ contained in T have
finite cyclicity.

Proof. We are going to suppose that there exists a l.p.s. © C I of X,
at Ag which has an infinite cyclicity. This means there exists a sequence
Ax — Ag, each XAk having a set C} = {’y%,... ﬁ:k} of limit cycles
such that C, — Q, and ny — oo as k — oco. Let us denote by {L;}
the sequence of leaves in F corresponding to the sequence of parameter
values {\x}.

Now, we look at the inverse image of this sequence by the blow-up
map 7: T — T. If LyNM = @, then 71(Ly) is a well-defined regular leaf
Ly € F. Otherwise, since M C Z(X), it suffices to take 7—1(Ly — M),
because it is clear that C, N M = @. To simplify the notation, we will
also denote the inverse image in this case by L.

So, we obtain a sequence of leaves {L;} accumulating at the union
MUL Ag» Such that in each leaf Ly, there is a set of limit cycles Cj, with
an increasing cardinality, and which approaches the exceptional divisor
M as k — oo.

By proposition 4.1, we can find a ps > 0 in the definition (14) of
G such that, for all k sufficiently big, the subset of the limit cycles in
Cy which intersects G, has a bounded cardinality. Choosing a p; in the
interval (p9,1), we consider the subset C’,f C Cy of limit cycles entirely

contained in the set F. Obviously, the cardinality of the set O,f tends

to infinity as k — oo.
Since the sets C’,f are entirely contained in the family chart, there
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exists a sequence {Xj(k)} in the parameter space P of the family X 0
such that, for each k, C’,f is in the set of limit cycles of the vector
field X5
i) )
(1, @, %, A) € {0} x ST+ x {Ag} of the parameter space P. So, there
exists a subsequence of {S\j(k)} (Yvhich we will denote simply by {)\;})
which tends to a definite point A\g € {0} x S™5t1 x {\g}. The cor-
responding vector fields X 5. have each a set of limit cycles C; whose
(]

. The sequence {Xj(k)} accumulates on the compact subset

cardinality tends to infinity as \; — Mo. This implies, by the lemma 4.2,
that the family X 5 has a Lp.s. Q C S of infinite cyclicity for the value
Ao of the parameter (we observe that we can apply the lemma 4.2 to
the family X 5 because its phase space can be realized as an open set of
s?). O
Finally, we state the second main theorem:

Theorem 2. Any analytic unfolding (X,T) of a N-curve can be desin-
gularized (in the sense of [D-R]) in a collection of unfoldings (XX,f),
where T is an isolated singularity, a periodic orbit, a graphic or a de-
generate graphic.

Proof. It follows easily from the above results. O
The following corollary is now clear:

Corollary. In order to prove the finite cyclicity conjecture to analytic
families under condition (H), it suffices to prove the conjecture for fam-
ilies not containing N -curves.

Proof. As we have seen above, the finite cyclicity property is preserved
by the operations of desingularization. O
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