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The Derivatives of Equilibrium States
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— To the memory of Ricardo Mané.

Abstract. We find some estimates for the derivatives of equilibrium states of subshifts
of finite type. We prove the differentiability (with respect to the potential) of integrals
of certain discontinuous functions for the equilibrium state of a potential.

Introduction
In this paper we are interested in certain singular integrals with respect
to equilibrium states of a subshift of finite type.

Let o : ¥ < be a topologically transitive subshift of finite type
endowed with one usual metric (e.g. diameter(n-cylinder) = 277), let
¢ : ¥ — R be a Holder continuous function and let kg be its equilibrium
state.

Let K C X be a compact subset such that g (e-neighbourhood of K)
< Ae*, A, o > 0. Consider a measurable function L : ¥ — R having
a singular set K of order |L(z)| < B [logd(x, K)|, where B > 0 is a
constant and d(-,-) is the distance in ¥. Then, using the condition on
tg and K, one can prove that L is pe-integrable. On the other hand,
it is known that the map C%(Z,R) 5 ¢ — Mo € (CQ(E,R))* is real
analytic. We will prove (theorem B) that, if moreover, L has local
Hoélder constants D(x), |L(x) — L(y)| < D(z)d(z,y)", such that Diz) <
Cd(z,K)™®, C,~, § > 0, then the map CA(,R) 5 ¢ [ Ldus €Ris
.

In order to prove theorem B, one has to show that Dy (g (L)) exists.
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For this we need estimates on the derivative Dg(ug(1c,)), where 1¢,, is
the characteristic function of an n-cylinder. Observe that one can not

expect to have a bound

|(Dg 1 (Cn)) ()] = (D 1) () - 1| < A llpll |1(Chn)]

(where the first equality is proven in (6)), because for ¢; = ¢ +t p, we
would have an estimate

16, (Cn)| < exp(A | pl11) 190 (Ch),

implying the absolute continuity ps, <<pg,, which is false. The Theorem
A below is the following estimate for n-cylinders Cp:

| (D5 1s(Cn)) (0,2, 0) | < ¥ llill® Al k) 1o(Cn) -

where || || is the a-Hélder norm. We show here two applications of

theorem B.

a. One dimensional dynamics.

The first application is in 1-dimensional dynamics. Consider the map
f:[-1,1] «; f(z) =1— 2¢2. This map is conjugated to the Tent map
g:[-1,1] <, g(y) = 1—2 |y|. The conjugacy h: [-1,1] — [-1,1], foh =
ho g is given by h(y) = sin (§y). The full 2-shift is semiconjugated
to the Tent map by an a-Holder semiconjugacy k : £o — [—1,1], for
some 0 < a < 1. The function F : [-1,1] — R, F(p) = log|f'(p)|
has at p = 0 a singularity of order |F(z)|~ — log|z|, and has local
Lipschitz constants of order ~F’(x)~1/|x|. Since h is Lipschitz, if we
choose K = k™1{0}, L : 5 — R, L(z) = F(ho k(z)), then L has a
singularity at K of order L(z)~ —logd(z, K)*~ — logd(x, K) and local
a-Holder constants of order ~1/d(z, K)¢. In particular the pair (K, L)
satisfies the hypothesis of theorem B. If ¢ : [-1,1] — R is a-Holder,
then ¢ = pohok : X9 — [—1,1], is B-Holder for some 3 = (), and the
map C%(Z9,R) — CP(29,R) : ¢ — 9 is real analytic. We get that the
Lyapunov exponents of equilibrium states of f depend smoothly with
respect to the potential ¢, i.e.

(11,1, R) 3 ¢ = g i= [ log |f ()] duo(@)
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is €, where pg4 is the equilibrium state for (¢, f).

b. Average linking numbers.

The second application is to average linking numbers for hyperbolic
flows. Let A C S3 be a hyperbolic basic set of a flow o in S3. Let
PO(t) be the set of periodic orbits of ¢;|5 with period < . Denote by
£(7y,n) the linking number of the knots v and 7 in S3. Define

L(s,t):==) {l(v,n) |y € PO(s), n € PO(t), v #n}
In [3] we proved that identifying S3 ~ R3 U {oo}, with oo ¢ A, we
have that
L(A) = lim —£ (s,t) / L(z,y) d(p x p)(z,y)

s,t—oo St
where 1 is the measure of maximal entropy of ¢;|s, and

1 F@)xFy) (z—y)
vol(S3) ez =yl |z —y|?

where x is the vector product in R3 &~ 3 — {c0}, - is the inner product
in R3 and F is the vectorfield of p¢. We show now that there exists a
neighbourhood U of F with the C'3 metric such that the mapU > G +—
L(Ag) € Ris C*, where Ag is the continuation of A for the vectorfield G.
Using the Taylor expansion of F' one can see that the factor
F(z) x F(y)
|z -yl

is bounded in a neighbourhood of the diagonal x = y, therefore L(z, Y)
has order 1/[|z — y|| near the diagonal. By dimension arguments, it is
seen in [3] that L(z,y) € £1(u x p).

Using a Markov partition, it is shown in [2] that there exists a semi-
conjugacy 7 of a suspension S(X, 77) of a subshift of finite type  onto A,
where 75 : ¥ —]0, +-00[ is Holder continuous and S(%, 77) is the quotient
space

]L(Z', y) =

S(Z,7) := {(:I:,t)|:E€E,OStST(m)}/E

with the equivalence relation (z,7(z)) = (o(z),0), where o : ¥ < is
the shift map. The lift of the measure of maximal entropy p to the
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suspension is (7*u) = ([ 7pdv) 12 x A where A is the Lebesgue mea-
sure on [0, +oo[ and v is the equilibrium state of the function ¢r(z) =
htop(F) Tr(x), where hiop(F) is the topological entropy of ©|A-

Define £: ¥ x ¥ — R, by

Uz, y) / / L (s(m ), pu(r y)) dsdt

then
1

L{A) = m /Eng(x’y) d(vr X vF)

It can be proved (cf. [3b]) that the function f(z,y) has order
—logd(z,y) near the diagonal x = y on ¥ X ¥ and has local Lipschitz
constants of order 1/d(x,y). The structural stability for hyperbolic ba-
sic sets and the topological invariance of the linking number yields that
when we change the vectorfield on a neighbourhood of F', the new aver-
age linking can be calculated using the same shift and the same function
¢. The corresponding orbits under the topological equivalence will have
the same linking numbers but their periods will be different. In general
the new measures vg will be singular with respect to vp.

In [4] it is proven that if ¢/ is a small neighbourhood of the vector-
field Fy endowed with the C?-metric, then the maps U > F — ¢ €
C*%,R), and U 3 F — [7pdvp, are real analytic. So we need to see
that

U5 F Ld(vr X vp) -
Xx2

is C*. Here we apply theorem B to K = {(z,y) € £ x Z|z =y} and
the function ¢. For this we observe that the product map o x o : ¥ X
Y «, (0 X o)(z,y) = (c(x),0(y)) is also a subshift of finite type, the
measure v X Vg is the equilibrium state of Yp(z,y) = ¢r(x) + ¢r(y)
for the product shift. Moreover since the measure v satisfies a uniform
estimate v (e-neighbourhood of K)~e? with 8 > 0, one gets that (vp x
vr)(e-neighbourhood of K )~€®. Finally, if one constructs the Markov
partition using small embedded differentiable transverse sections to the
flows, the projection of ¢, J(p,q) := {(z,y), where mx = p, Ty = g,
p,q €(smooth transversal), is differentiable on the transversal sections
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and |J| ~—log|lp — q||, || D J|| Nm. This gives the required conditions
on theorem B.

I want to thank the referee for the detailed suggestions of improve-
ments in the exposition.

Statements of the Results.
Given a matrix 4 € {0,1}**¢ such that for all 0 < i, j < ¢ there
exists M = M(i,5) > 0 such that Af-‘f > 0, consider the (topologi-
cally transitive) subshift of finite type o: ¥ « (resp. 04: 2" «=) where
(0(2))i = it1,

H=dn =) {1, SO | A, i) = 1, VieZ}

s {o= @) e {L... 0" [ A@izii) =1, VieN)

Endow ¥ (resp. X71) with the metric d(z,y) = b'®Y for some fixed
0 < b < 1 and where

(2,y): = max({0} U {k | 2: = s, ¥li] < k}).
For z € T (resp. £%) let Cy,(2) be the n—cylinder containing :
Cn(z)={y € Slas =y, Wi <n},  (resp. 0< i <n).
For 0 < a <1 let C*(%,R) (resp. C*(=*,R)) be the Banach space

of a—Hélder continuous functions on % (resp. 3 A

CE,R):={$:Z = R|3K > 0,|¢(x) — ¢(y)| < Kd(x,y)*}
with the norm ||@||: = |¢|g + |$|a, Where

Ol = sup (6@, (o= sup 1D =00
zey d(zy)20 (@, y)*

It is known (cf. [6]) that the map ¢ — te¢ from C*(Z,R) into
the dual space (C*(Z,R))* (with the dual norm) is real analytic. For
peEX n>0,let 16, (p) be the characteristic function of Cr(p). Since
1¢y,(p) 1s a—Holder continuous, it follows that the map C*(X) - R: ¢ —
g (Cn(p)) is real analytic.

Theorem A.
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(a) Let & be a topologically transitive two-sided subshift of finite type,
and let o > 0, ¢g € C*(Z,R). Then there exists a neighbourhood U
of ¢g and D = D(U) > 0 such that

(D (1g) (1, 00 (10, )| < Kt DE* el

o]l e (Cn(p))

foralln>0,k>0,peEX, p €U and p1,... ¢k € C*(%,R), where
l¢ll is the B—Hélder norm of .
(b) The same estimate holds for one-sided topologically transitive sub-
shifts of finite type.
Theorem A will be proven at the end of the paper. In the following
theorem we can think on Q, as Qn:= Uzcx Cn(z), where K € ¥ is a

subset of measure 0.

Theorem B. Let & be a topologically transitive two sided subshift of finite
type. Let ¢ € C*(Z,R), a >0, and let py be the equilibrium state for ¢.
Let (Qn)n>0 be a collection of subsets of & such thatVn > 0, Qpt1 C Qn;
Qn is a (disjoint) union of n—cylinders Cp(z) and

(a) limsup % log p14(@n) <0
Let L: (;]_)\4—}2) — R, K C N, @n, be a function such that there exist
A, B >0 and v > 0 which satisfy

(b) |L(z)| < Bn if v ¢ Qn

(c) |L(z) — L(y)| < A™d(z,y)” if 2,y €\ Qn. -
Then there exists a neighbourhood U of ¢ in CHZ,R) such that for all
© € U the integral py(L): = [ Ldu, exists and the mapping U — R:p+—
(L) 18 G .
Proof of Theorem B :
Here we prove theorem B using theorem A. We need the following result.

1. Proposition. Let ¥ be a two-sided subshift of finite type. Suppose that
we have

(a) A a probability on X.

(b) px € (C*(Z,R))* such that there ezists k > 0 and D(k) > 0 such
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that

Vp € X, V¥n > 0: Iuk(lcn(p))[ < D(k) n* \(Cin(p)) .
(c) A subset K C X such that if Qp:= Uycre Cn(x) then

] 1
lim sup - log A(Qn) < —c < 0.

n—-+oo

(d) L: (Z\K) — [0, +00[ a non-negative function such that there exist
A, B > 1 such that

L)< Bn ifr ¢ Qn
|L(z) — L(y)| < A" d(z,y)" ifz, y €T\ Qp.

Then there exists a sequence (gy) of simple non-negative functions which
are locally constant on n-cylinders, such that

Zgn T L outside ﬂQm O K
> luk(gn)| < D(k) G(k),

with G(k) > 0, in particular 3", |uk(gn)| < co.

Proof. For simplicity we prove the proposition only for B = 1. Observe
that g is not necessarily positive and that it can only be applied to
Holder continuous functions. Let Dy = Cx(p) be an N-cylinder in

@n-1\Qn. Let
log A
=
(—Vlogb> e
and choose n = n(N) € N such that

< logA
—~vlogb

>N<n§RN

so that AN Yo 8] of
D
g N (z) := Z <min L(z)) 1g,(z),

B zeEnp

where the sum is over all the n-cylinders E,, such that E, C Dy. In-
ductively, for m > 0 let

D m

N ot ¢ D

gn+m+1 z : <En 1n 1L> 1En+m+1 In+r
En+m+1CDyn Al r=0
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where the sum in on all the (n +m — 1)—cylinders E, 1 ,,+1 C Dn. The
gﬁN ’s are simple functions of the form

D
gm = Z ar lgr .
E;:I%CDN
(where a, > 0 and the EJ, are m—cylinders) and hence y—Holder con-
tinuous. Therefore
D
Mk(gmN) = Z Qr ,UJk(lE,Tn)'
E,’,"nCDN
Since for z € Dy, L(z) < N, we have that

‘Mk(gD )| <D(k) > NnFAE,) < DR)REN*IADy). (1)
n ETLCDN

Let E,4,,—1 C Dy be an (n +m — 1)-cylinder in Dy. Since

var L < AN b7<n+m_1),
Epnim-1

we have that

gfivm(x) < AN plntm=1)  yr e Dy, Vm > 1.

and then

{uk(gffm>)§D(k>ANm<”+m1>E ZD (M + 1)* A(Bomn)
n+mCL N

< D(k) b b7 (m + n)* A(Dy),

because AVH™ < 1. Since

e} n
vam(m—kn Zlﬂm m+mn) +Zb7m (m + n)*

m=1 m=1 m=n ’

ki -k ym k:
<2*n (1—m> Zb 2

writing S(k): = 32001 VY™ mF, we have that

i uk(gf’fv | < D(k) % 2% (R¥ N* 1+ S(k)) \(Dw).
m=1 (N)+ 1-b
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From this and (1) we get

oo b_
20 \uk(gﬁﬁvmm)f < D(k) (1 _Vm) 2R)* (S(k) + 2N*t1) X(Dy).

For each NV > 1 consider a partition P of Qu_1 \ @Qn into N-cylinders

Dy and the corresponding (gf(]]\fv) +m) o' V€ get
m2
SO |me™)| <

DNeP i>n(N)
b= k k41
< D(k) <1 — ) GRS +2N) A@Qn-1\ Qw)

Define

gi = >, giDN.

N with n(N)<i

Since 3y A@n-1\ QN) < AZ) =1 and A(Qn_1\ Qn) < ANQn_1), We
have that

S lus(a] < Dby (1) @R (S(k) v 2ZN’“+1A<QN_1>) )
% N

where the series

F(k):=2) NFIxQn_1)
N

is convergent by hypothesis (¢).0
Given ¢ € C%(Z,R), let P(¢) be its topological pressure (cf. [7]).

Proof of theorem B

It is enough to prove theorem B for B = 1 and L non-negative. There
are constants Ag, By > 0, uniform on a neighbourhood of Uy of ¢ (cf.
[1]) such that for any n-cylinder Cy,(p) in ¥ and all ¢ € Uy, we have

#(Cn (D)) € [Ao, Bol exp(—2n P(¥) + Spib(p)) , (3)

where

= i It

k=-n

Bol. Soc. Bras. Mat., Vol. 26, N. 2, 1995
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It is easy to see from the definition of pressure that |P(¢ + @) — P(¢)| <
lolg- For ¥ = ¢ + ¢ € Uy, we have

0 < Ugto(Cn(p)) < By exp(—2n P(¢) + Snd(p)) exp(4 ||y n)
< Aal By exp(4 |<p|0 n) e (Cn(p)).

Since @, is a disjoint union of n-cylinders, we have

lim sup — log%w(Qn <2|80|o+thUP —log 1g(Qn) <

n—4oo M n—+oo

if ||y is sufficiently small. Choose a neighbourhood U; of ¢ and ¢ > 0
such that

lim sup — log pop(@n) < —c <0 (4)

n—+oo T
for all ¥ € Uy.
Using Theorem A(a) and (4), we can apply Proposition 1 to L,
X = tig, and g = (D®pug)(p1, .. ., px) (with D(k) = k! DUs)* oy -
- |lekll), and a neighbourhood Us C U;. Tt follows that there exists a
decomposition L = >, g, and for any » > 0 a number H(r) > 0,
constant on Uy and so that

>

n

gn| < H(T) [lo1]l - lleorl] (5)

(OD uy)(p1,-- - r) -

for all ¢1,... ,@, in C¥(Z,R) and 9 € Us.
Now we prove that for all £ > 0, one has :

DP ) @1, o8) - 9n = <D<§>k)u¢(gn)> (P1,---,00).  (6)

Observe that if (ut);>0 C (C*(E,R))* and w = tli_{r(x)ut in the dual
a—Holder norm on (C*(X,R))*, then for all g € C*(3,R) we have that
w(g) = }1_1% pe(g). For k =0, (6) is trivial. Suppose by induction that
(6) is true for k > 0, then

{(Dék+l)u¢)(8017 e ,ﬂﬁk+1)] (gn) =

1
= 1im | (DB ottog)orse 00 = OPwion, . o] (0o

t—
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but since g, is a—Holder, we have

1
& gg;[(Dé’fﬁwwwkﬂ)(m, cor 08 (gn) — (Dik)w)(m, < ,wk)(gn)}

and by the induction hypothesis

1
= i 2 [ (D8ttoren(am) (o1, )= (DPnoton) ) o1, 0]

= <Dék+1)u¢(gn)> (@1, Pr+1)-

Moreover, for k > 0,we can write

(D) (@) @1, s 08) = (D (@) @1, -, 08)
+ (O g (ga)) 1, - » 0k )

1
+ [ s (D8 uuton) (oo on £ s (@)

From proposition 1 we get that py (L) = 3, pty(gn) is finite. Equa-
tion (7) for £ = 0 and equations (5) and (6) for r = 0, 1,2, prove the
continuity and differentiability of ¢ — py(L) in Up. By induction we
assume that 1 — g, (L) is k-times differentiable, £ > 1, and that

(fo)(uw(L)))(cpl,-.- L Pk) = Z(bek)u¢(gn))(so1,--- ) Pk)-

Then (7), (5) and (6) for r = k,k + 1,k + 2, prove that ¢ — (L) is
(k + 1)-times differentiable in i € Us.OI

Observe that since S(k) and F'(k) in proposition 1 have order k!, the
estimate (2) in proposition 1 is not enough to prove the analyticity of

¢ — [ Ldug.

Proof of Theorem A.

In order to prove Theorem A we need some estimates. Let X1 be a
topologically transitive one-sided subshift of finite type. From now on
fix 6=a/2>0, ¢ € 05(2+,R), p € ¥ and n > 0. Consider the
B—Holder norm, || ||, in C4(=F,R), we have that

1f - glg < |flolgls + 1715 1glo;
1f-gll < £ llgll-
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Given ¢ € CP(x1,R) let P(¢) be its topological pressure (cf. [7]).

2. Lemma. For all ¢ € CP(S1,R) there exists A(o) > 0, constant on
a neighbourhood of ¢g, such that for all ¢ € CA(ST,R) and all n > 0,
k >0 we have

DY exp(~P@)n) (o1, on)| <
<nFkLA@B)* exp(—=P(o)n) |la] - - llenl -

Proof. We know that (cf. [6] 5.27) the map C#(ZT,R) — R; ¢ — P(¢)
is analytic. Hence the coefficients of its Taylor series can grow at most
exponentially. Therefore there exists B(¢) > 0 such that, for all k > 0,
1
k!
Moreover, B(¢) can be chosen constant on a neighbourhood of ¢. Since
the map ¢ — exp(—P(¢) n) is also analytic, we have that

D (exp(—=P(6)n)) (o1, - ., 0x) =

k
=3 ¥ en(-P@m) ' nt (DFNP) i, -

s=1A;++As=N,

k) o

DY P(g)| < B

#Aizl
As
- (DP#IP) (oiens
where Ni := {1,2,... ,k} and + denotes the disjoi:nt union of sets.

Therefore

1D (exp(—P(@))) (01, .., on)] <

k
= Z Z exp(—P(¢)n) n® (#Aq)! - -

s=1 Aj+-+As=N, ’
o (#A4)! B(@) [lenll - - lloxl

k
< Y exp(=P(¢)n) n* k! B(@)* [lpall - - lloxl
=1

<nFk kI B(@)* exp(—P(o)n) [lo1 - loxl -
Now let A(¢) =2 B(¢). O
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Let f,, be the branch of the inverse of ot which sends f,: Co(a7(p))
— Cr(p). For ¢ € CA(ZT,R), n >0, p € SF, write Snip:= Spp o fo,

Sn: Co(o’tp) — R, where S,p(2): = ZZ;%] ©(c% (2)). Let ||| ||| be the
p-Hélder norm in C#(Cy(o™ (p))), i.e.

Il = [lo+Wls , W= swp |y()

zeCy (a7} (p))

_ [Y(x) = d(y)|
W’],B “= sup {W

Since d(fn (), fn(y)) < b™d(z,y), we have that

z,y € Co(ot(p) , d(z,y) # 0} :

oo fulll < el for all ¢ € CP(=F, R). (8)

3. Lemma. The map C°(xt,R) — CE(CO(O'QL_(]))),R): ¢ — exp(S'nqﬁ) s
analytic.

Moreover, there exist B(¢) > 0 and E(¢) > 0, constant on a neigh-
bourhood of ¢q, such that for all ¢ € Cﬁ(E+,R) and k > 0 we have

@) || he) @, 00| < R E@F lorll- - llgxl -

\(Dé,’“) exp(Sp®) (@1, - 0)|[| SB(®) v (o1 prl] exp(Snd(p))
Proof.  The estimate (8) shows that the map C7 (ZH,R) —
CB(C’Q(Ufﬁ (p);R), ¥ — 9o f, is a bounded linear map. Since the map
CP(zt,R) ¢ — hg is analytic, we get that ¢ — fz¢ = hgo fr is
analytic. This implies the existence of E(¢) > 0.

We have that

n—1 n—1
[[3n2]]| < 3= @0 0%y o fu] = 3 M0 fucslll < lio]
k=0 k=0

Therefore S, is a bounded linear operator S, : Cﬂ(2+,R) —
CP (C’O(USLr (p)),R) and hence analytic. We have that

(DS exp(End)) (1, , 9k) = (€50 5ud)(Snip1) - (Suith)
I1D5? exp(SagDers - )l < Il espBad)llln® oy il
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If z,w € Cy(0% (p)) and x: = fn(2), y: = fn(w), we have that

n—1
$n(2) — Sng(w)| < Y [p(0k2) — Bk y)|
k=0

n—1 n—1
<|gls D dohz,oky)’ <85> bd(z,y)?
k=0 k=0

< |8l Bod(z,w)’ < By |9 ,
where By: = (b=? — 1)~!. Thus, taking z = o’ (p) we obtain
[exp S < (exp Snb(p)) exp(Bo 1) ,

exp Sn(2) — exp Sud(w)| = [exp Su(2)]| [1 = exp(Sng(w) — Sni(2))|
< (exp Snd(p)) exp(Bo |5) Ao Bo |6] d(z, w)?
where
Ap: = exp(By |¢|5) > sup {’%6%0 : |zo| < By !¢|/3} :
And then
Ilexp Sndlll < (Ao + AF Bo [$]5) exp(Sn(p))-
Therefore

11D exp(8nd)) (01, - - oi)lll < B()n* lleoall -~ lonll exp(Snd(®))

where B(¢>): = Ao + A§Bo |#]5. We can choose B(¢) = B(¢p) + 1 for all
¢ on a small neighbourhood of ¢g. O -
Let Ly: CA(zT,R) « be the Perron-Frobenius operator:

(Lop)@)= > oy) exp(d)).
yeoy ~1(z)

We use the following notation from Ruelle’s theorem ([1] (1.7)): ,

Lolhg) = Aohy /h¢ dug=1 , Xy=eF®),

,CZ)(Z/¢) = /\¢ Vo » H¢ = h¢ V.
A proof that the maps CA(Zt,R) — R : ¢ — P(¢), CA(zt,R) —
(CP(=t,R))" : ¢ — pg, ¢ — vy and CH(ST,R) — COSH,R) : ¢ — hg
are real analytic can be found in [5].
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Define
Jg(z): = )\q;n ﬁg(h¢ / lcn(p))(z)
& { exp(—P(¢)n + Sno(x)) hg(z) if otx =z, € Cp(p)
0 if z ¢ Co(otp)
Thus the measure of a one-sided cylinder is given by
16 (Cn®)) = vo(hs10,() = A3 V6 (L3(hs 10, () = /C o]
anp
Given p € £, n > 0, denote by fn the branch of the inverse of o7 il
sending f,, : Co(0™.(p)) — Cn(p). Given ¢ € CA(=T,R), let
h = hy o fo € CP(Co(o%(p)), R)
Jy = exp(—P(¢p)n + Sn(;S) f~z

Jg dl/¢ .

4. Lemma. The map CP(st,R) — C%(Cy(o™ (p)),R) : ¢ T} is
analytic and there exists Do(¢) > 0, constant on a neighbourhood of ¢,
such that for all ¢ € C’ﬁ(E+ ]R) we have

(D @15 Rl <
< k! Do(¢)* n* exp< P<¢>n+sn¢ ) ol -~ llxll -

Proof. We have that

(D;k)lz?) (1. k)= D <(D<ES#A) eXp(_P(@n))(%)“eA) '

A+B+C=N;,

(O exp(Eu) (o (P95 woecc )

By lemmas 2 and 3 we have that

|5 en e < X A n#4 A@#4 exp(-P(g)m)
A+B+C=Ny,

'aIETAII%H B(¢) n#*P exp(Sp(p H s

- (#O)! E(p)#C ILlleell -

< k!l n* (Do(¢))* exp(—P($)n + Sp(p))
Nl - - ol

0¥ 501, 00
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where Do(¢): = max{A(¢), B(¢), E(¢),2}.0

Proof of Theorem A(b). Let Ey be the O-cylinder Ey:= Cy(c”} (p)).
Consider the map R: CP(Ey,R) — CA(x=t,R) given by R(¢)(z): = v(2)
if z € Ey, R(p)(2):=01if z ¢ Ey. We claim that for ¢ € C8(Ey,R), we
have

IR < @ +077) [llglll -

Indeed, clearly |R(¢)|y = . Now, if z, y € Ej, then
[R(e)(@) = Rp)®)] = (@) — )] < [¢]s d(z,y)°.

If z, y ¢ Ep, then |R(p)(z) — R()(y)| = 0. If x € Ey, y ¢ Ep, then
d(z,y) = b and

Therefore |R(p)|5 < b= [p]o. ~

We have that 1g(1c,, () = ve(J3) = ve(R(J})). Since the map
(CP(=T,R))" x CP(Ep,R) — R: (v, J) = v(R(J)) is bilinear, we have
that

(D 1616, (01, - 2 08) =
= Z ((D(#A) )(@a)aeA) R((Dé#B)jg)(@b%eB)

A+B:Nk

Since ¢ — vy € (CP(2T,R))" is analytic, there exists G(¢) > 0, constant
on a neighbourhood of ¢q, such that :

1O w) e, @l <71 C@ gl lorll,

where || ||, is the dual norm in (C#(2T,R))". Therefore, by lemma 4,

we have that

< > HAC@FA 1+ b P #B)! H‘#B <D(S)J$> (¢b)beB
A+B=N,

< kP Dy(9)* (1 +077) exp(=P($)n + Sug(®)) llpall- [l (9)
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where D1(¢) = (1 + b°) max{ C(¢), Do(#) }. Part (b) of Theorem A
follows from (9) and recalling (cf. [1]) that there are constants A, B>,
uniform on a neighbourhood of ¢, such that

#e(Cn(p)) € [A, Blexp(=P(¢)n + Spd(p)). O

In order to prove part (a) of Theorem A we need some definitions.
We say that two functions ¢, ¢ ¢ C’B(E,]R) are homologous if there
exists h € CA(2,R) such that ¢ = ¢+ hoo— h. Homologous func-
tions have the same pressure and the same equilibrium state. There
is a natural embedding C# (s, R) — CA(Z,R): ¢ — ¢ by considering
() = ®(x0,21,...). The proof of the following lemma appears in pg.
11 of [1].

5. Lemma. There exists a continuous linear map A:C*(Z,R) —
CA(=tR), B = a/2, such that A() is homologous to v. In partic-
ular A*:CWE*‘,R)* — C*E,R)*, (A*u)(p) = u(Ay) is a continuous
linear map.

Proof of Therorem A(a). We first claim that there exists E(p) > o0,

constant on a neighbourhood of ¢ such that for all n > 0,k>0,pex,
we have

'(Dq(jk)ﬂ¢(1cn(p)))((1017 s 790/6)‘ <
< k! (2n)° E(¢) exp(—2n P(¢) + Sue®) a1l loell,  (10)

where
p)= > ¢(a"p).
k=-n

The proof of this claim consists on using (9) (for 1-sided subshifts)
and observing that u,(Cy(p)) = ,u%(a‘"Cn(p)), where o~ (Cy(p)) is
considered as a cylinder in £t and pF 5 is the equilibrium state for ¢: =
A(p) € C¥2(xt, R) which is homologous to ¢ on . In particular
Ps:+(6) = P(¢) and [Sn(p) — S,d(p ’S2|u{,where¢>—¢+uoo—o.
This mtroduces a factor exp(2 |u|) in the constant E(9).

The corollary follows from (10) and recalling the Gibbs Property,
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stated in formula (3). O
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