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Wronski Algebra Systems and Residues

Eduardo Esteves

Abstract.  We apply the theory of residues to characterize the substitutes for the
sheaves of principal parts on Gorenstein, projective curves introduced by Laksov and
Thorup [6], and we compare these substitutes with those introduced by the author
[2, 3]. Our characterization extends a characterization by Atiyah of the sheaves of
first order principal parts with coefficients in an invertible sheaf on smooth curves
(1, Prop. 12].

1. Introduction

The sheaves of principal parts play an important role in the study of
the projective geometry of smooth curves in any characteristic. One of
the most important properties of these sheaves is that they are locally
free over a smooth curve. However, they fail to be locally free, or even
torsion-free, over a singular curve.

Recently, locally free substitutes for the sheaves of principal parts
over singular curves were independently introduced by Laksov and Tho-
rup [6] and the author [2, 8]. It is one of the goals of this article to
compare them. We will see that the two substitutes seldom coincide
for singular curves (Corollary 3.5.) The difference does not come as a
surprise: even though the sheaves introduced in [6] are quite natural,
their introduction makes use of the normalization map of the curve, via
Rosenlicht’s local characterization of the dualizing sheaf [9, p. 76]. Thus
we might have expected that their definition does not extend to families,
in contrast with the sheaves defined in [2, 3].

Our main technical result is Theorem 3.2, where we give a charac-
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terization via residues of Laksov’s and Thorup’s substitutes when these
are taken with coefficients in an invertible sheaf. Of course such charac-
terization applies to a smooth curve, and thus it must extend Atiyah’s
characterization [1, Prop. 12] of the sheaf of first order principal parts
with coefficients in an invertible sheaf to higher orders. Atiyah worked
mainly with Chern classes, but the trace map provides a way to compare
his characterization with ours (Remark 3.4.)

The remaining of this article is divided into two sections as follows:
in Section 2 we introduce the nction of a Wronski algebra system, and
describe the systems constructed by Laksov and Thorup and by the
author; in Section 3 we prove our main technical result, and use it to
compare Laksov’s and Thorup’s substitutes for the sheaves of principal
parts with the author’s.

I want to acknowledge Prof. Kaji for the question that originated
this article, and Prof. Kleiman for useful comments on a preliminary
version. In addition, I thank the referee for several important remarks
on the first version of this article. Finally, I want to thank the peo-
ple at Waseda University, especially Prof. Kaji and his students, and
Prof. Homma for their warm hospitality during the period this work
was carried out.

2. Wronski algebra systems

Let S be a Noetherian scheme. Let f: X — S be a flat morphism of
schemes whose geometric fibres are reduced, Gorenstein schemes of pure
dimension 1. We say that f, or X/S, is a family of curves. For each
n > 0, let P™ be the sheaf of relative n-th order principal parts on X over
S. Recall that there are canonical surjective algebra homomorphisms
p": P* — P! for every n > 0. Let Q" denote the kernel of p™ for'
every n > 0. Of course, Q! is the sheaf of relative Kéhler differentials
on X over S. Recall that there are two canonical O x-algebra structures
on P" for each n > 0. By convention, we call them the left and right
structures of P", and denote the structure homomorphisms by

0;: Ox - P" and §6,: Ox — P",
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respectively. We don’t emphasize the dependence on n in the above
notation, since the p™ are natural Ox-algebra homomorphisms with
respect to both left and right structures. Recall that both @ x-module
structures coincide on Q" for every n > 0. Put 6§ := 6, — §,.

Let w be an invertible sheaf on X. Assume that there is a homomor-
phism n': Q! — W that is bijective on the S-smooth locus of X. Then
n' induces homomorphisms 7" : Q™ — w®" for every n > 0 that are also
bijective on the S-smooth locus of X (the argument used in the proof
of [3, Prop. 2.3] applies also here.)

A collection of sheaves of algebras F := (F™,m > 0) on X, together
with algebra homomorphisms

qn: N Fn—l
and an Ox-bimodule homomorphism
e =" — i

for every n > 0, is said to be a Wronski algebra system on X over S if
the following conditions are satisfied:

(1) 4 is an isomorphism;

(2) the diagram of maps

p

0 —— Q" pn p~l
n”l w"l w”—ll
n n
0 w — s Fn T, el g

is commutative with exact rows for every n > 0.

Note that ™ induces left and right Ox-algebra structures on F" for
each n > 0. By definition, a” is Ox-linear with respect to both left and
right structures on F". Moreover, note that the Y™ are isomorphisms
on the S-smooth locus of X, since the n” have this property and
is an isomorphism. Finally, note that F™ is locally free of rank n + 1
under both left and right Ox-algebra structures for every n > 0, since
FY = Ox and w is invertible.
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Assume for this paragraph that the geometric fibres of X/.S are local
complete intersections. Let w denote the canonical sheaf on X/S (see
3, Section 2] or [7].) There is a canonical homomorphism 7': Q! — w
that is bijective on the S-smooth locus of X [3, Section 2]. By [3,
Theorem 2.6], there is a Wronski algebra system (F™,n > 0) on X over
S. More precisely, there is a unique Wronski algebra system, denoted
in this article by @ = (Q™,n > 0), if we choose it with the additional
property that its formation commutes with base change on the class of
all families X/S of local complete intersection curves.

Assume for the rest of Section 2 that S is the spectrum of an alge-
braically closed field k, and X is irreducible. Let 7: X — X denote the
normalization of X. Let K denote the field of meromorphic functions
of X and X. For any sheaf F on X we denote by Fx its stalk at the
generic point of X. If V is any K-vector space, we also denote by V' the
corresponding constant sheaf on X. For each ¢ € X denote by res, the
Tate residue map at g (see [4, p. 247].) Let w denote the O x-submodule
of regular differentials of Qk (see [9, p. 76] ) If p € X, then

wp={V € Ok Z resq(fv)y =01for all f € Oxp}. (2.0.1)
q€7r—1(p)

Of course, there is a canonical homomorphism n': Q! — w, and n' is
bijective on the smooth locus of X. .

In [6, Section 6], Laksov and Thorup defined a Wronski algebra sys-
tem, denoted in this article by R := (R",n > 0), on X. We describe
locally the sheaves R™ below. Let p € X. There are an open neighbour-
hood U of p in X and a rational function ¢t € K such that ¢ is regular
on 7~ }(U) and the differential dt is a basis for the sheaf of Kéhler dif:
ferentials of 7~1(U). Choose U small enough that w is free on U. Then
wy is generated by the meromorphic differential dt/h, for some regular
function h on U, and the restriction of R™ to U is the Oy-subalgebra of
P} generated as a free left Oy-submodule of Py by the basis

1,(6t/h), ..., (6t/h)"
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for every n > 0.

3. The characterization

Let S be a Noetherian scheme. Let f: X — S be a projective family
of curves. Let w be a relative dualizing sheaf on X over S, and let
T: R'f.w — Og be a trace map. The sheaf w is invertible, since the
fibres of X/S are Gorenstein. Assume that there is a homomorphism
nt: @l — w that is bijective on the S-smooth locus of X. Finally,

assume that there is a Wronski algebra system F := (F",n > 0) on X
over S.

Let L be an invertible sheaf on X. For each n > 0, let F "(L) denote

the tensor product of F™ and L with respect to the right Ox-structure
of F". For every n > 0 we have an exact sequence,

a"eidf, q"®id
®n n L 1
0—-w""®@L —— F*(L) —— F" (L) — 0,

that we regard as a sequence of left Ox-modules. The above exact
sequence gives rise to a global section [F™(L)] of

Exty(F"Y(L),w®" ® L).
Since F"~1(L) is locally free, then
Exty(F"Y(L),w®" ® L) = R f, Hom(F" (L), w®" ® L).

From the inclusion

1 an_1®idL
Mgl - A A S0

Y

we obtain a homomorphism

R'f.Hom(F"Y(L),w® ® L) — R'f,Hom(w® 1 ® L,u®" ® L).

(3.0.1)
We also have the canonical identification:

R'f.Hom(w®* 1 ® L,w®" ® L) = R f.w.

By composing (3.0.1) with the trace map T, we finally obtain a regular
function 0% (L) on S corresponding to [F™(L)).
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The function 0% (L) depends on the choice of w and the trace map T,
but its class in HY(S, 0Os)/HY(S, Os)* is independent. Moreover, this
class depends only on the equivalence class of F. Note that in most
cases the function 0% (L) determines the extension [F™(L)], as the next
proposition shows.

Proposition 3.1. If le*(w@’m) =0 for all 2 < m < n, then o (L)
determines [F™(L)]. In particular, if the arithmetic genus of every geo-
metric fibre of X over S is at least 2, then the functions (c%(L),n > 0)
determine the Wronski system (F™(L),n > 0).

Proof. Since the trace map T' is an isomorphism, then o%(L) deter-
mines [F"(L)] if and only if (3.0.1) is an isomorphism. We will show by
induction on j that the inclusion o/ ® idy, induces an isomorphism

. 57 .
R'f,Hom(F’(L),w®" ® L) — R!f, Hom(w® ® L,w®" ® L)

for 0 < j < n— 1. Since the homomorphism (3.0.1) is A1, then
the proposition will follow. Since ol is an isomorphism, then so is
(9. Assume that ™2 is an isomorphism for a certain integer m with
2 < m < n. Note that g™ 1 is surjective because X/S is a family of
curves. On the other hand, the kernel of 37! is a quotient of

R f,Hom(F™%(L),w®" @ L),

and the latter sheaf is zero by the hypothesis of the proposition and
the induction hypothesis. So ™! is an isomorphidm, finishing the
induction argument and the proof. O )

Theorem 3.2. Let X be a projective, integral curve of geometric genus g
defined over an algebraically closed field k. Let w be the dualizing sheaf
on X, and let T': Hl(X,w) — k be the canonical trace map, given in
terms of residues. Let L be an invertible sheaf on X of degree d. Let
R := (R",n > 0) be the Wronski algebra system constructed by Laksov
and Thorup. Then ‘

oR(L) = ((n—1)(1 — g) — d)1

for every n > 0, where 1, denotes the unit of k.
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Proof. (For details on the theory of residues on singular varieties, and
in particular for the construction of the trace map from residues, see
[8].) Tensoring the canonical flasque resolution of Ox by meromorphic
functions,
. K
0—-0x - K — EDJP*——%O, (3.2.1)
peX Xyp
with w®"® L, we obtain a flasque resolution of w®" ® L. (The morphism
Jp 18 the inclusion of p in X.) By means of this flasque resolution, we
have:
(QL)®" oL

_ ; W)

Hom(R*1(L)k, (0%)®" ® Ly)’
where the above direct sum runs over all p € X. To obtain an element
in

@ Hom(R"1(L),
Ezt'(R"Y(L),w®" ® L)

(Q%)®" ® L

P Hom(R" (L), T
D D

peX
representing [R"™(L)] in Extl(R"‘l(L), w®" ® L) we proceed as follows.
Let ¢ be a separating variable for K over k. Let dt denote the associated
differential in Q}( Then dt is a generator of Q}{ over K. Let i be a
K-generator of Li. Then '

)

VK, 6t ® YK, (5t)2 ® Y, . .., (60)" ® Yk (3.2.2)

form a left K-basis of R"(L)x, where ® denotes the tensor product with
respect to the right Ox-algebra structure of R™. A splitting p of the
inclusion of left K-vector spaces

OB @ L —s | BAE) 5
is then defined by mapping the basis elements

VK, 6t ® Yk, ..., (66" ®
to 0 and (6t)" ® ¥k to (dt)®" ® 1g. Consider now the following com-
position,

(@) s L

P
RN(L) — Rn(L)K —— (Q}{)®n ® Ly — ®p€X jp*_m,
p
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where the first and last maps are canonical. It is clear that the above
composition factors through R"1(L), yielding the representative of
[R™(L)] we were looking for. By composing with the inclusion

w®n—1 QL — Rn—l(L)

we get a homomorphism
Ql )®n ® LK
Pl o @ j,, ) " O Lk 3.2.3
I@(]P wgn ® Lp ( )
that we describe locally below.
Let p € X, and s, be a local parameter at all points of 7=1(p). Then

wp is generated by dsy/hy, for some hy, € Ox,. Let 1, be a generator of
Ly,. Then R"(L), is generated as a left Ox p,-module by

0
d}p ! ( ZI;L)

Let f, € K be such that 1/1p = fp¥Kk in Lig. We need only describe the
image of

63,,

®wp7"', ®wp

ds@n 1
hn 1 ®wp

in

QL)®"® Lk

W™ @ Ly
to describe the localization of (3.2.3) at p. But ds?”_l/hg_l ® Pp is
mapped to the quotient class whose representative is dt®" @ ¥, times
the coeflicient of (6t)” ® ¥k in the expression of (63p)”_1/h;‘_1 ® 1p in
R"™(L)k with respect to the basis (3.2.2). This class is easily found to
be
Dtl(sp)n_lDtl(fp) + (n “ll)Dtl(sp)n_Qth(Sp)fp
ha—

( )dt®n & wK7 /

where DJ denotes the Hasse derivation of order j on K with respect to
a separating variable z. Tensoring (3.2.3) with w®!=" @ L1, we get a

@ %k

peX Wy

canonical element of
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whose component at p has

D}(f) 2B
Dltl(sp)fp+(n 1)Dtl(sp)2

(

as a representative.
Let
TSy’ Q}( — k
denote the residue map at p. The map res, may be defined as the sum
of the Tate residue maps res, at all ¢ € 7 1(p). It follows from (2.0.1)
that res, factors through Q}{ Jwp. It follows from tensoring the flasque
resolution (3.2.1) by w that

HY(X,w) =

where the above direct sum runs over all p € X. It follows from the
residue theorem that the sum of the residue maps at all p € X induces
a map HY(X,w) — k. The latter is the trace map 7' in the statement
of the theorem. Thus

E 7"68p

peX p
Note that the residues of both

DL(f,) D(s)
Tds and Dtl(s)Q

D D2s,)
= UDI,)2

)dsp).

ds

at ¢ € 71(p) do not depend on the choice of a local parameter s at q.

peSe= Y. . Tesy,

ger=1(p)

Because

we may assume that X is smooth, or in other words, that X = X. The
proof of the theorem is thus reduced to showing the following lemma.[]

Lemma 3.3. Let X be a projective, smooth, connected curve of genus g
over an algebraically closed field k. Let L be an invertible sheaf of degree
don X. Lett (resp. 1) be a separating variable for the function field K
of X over k (resp. a generator of Li.) For every q € X, let sq (Tesp.
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fq¥) be a local parameter of X at q (resp. a local generator of L at g,
where f, € K.) Then

(f )

) D re

qgeX

dsq) = —dly;

Zresq Dl( )) dsg) = (1 — g)1.
geX

Proof. For every g € X, let v, denote the valuation at g. Then

B
resq(%fq)dsq) =0l )L (3.3.1)

The first statement of the lemma is an immediate consequence of (3.3.1).

As for the second statement, recall that dt is a generator for Q}( and
dsq is a generator for Q; for every ¢ € X. Of course, dsg = Dtl(sq)dt for
every ¢ € X. Note also that

D2
D, (D (sy) =2 000)

Hence, if char.k # 2, then (3.3.1) with f, replaced by D}(s,) proves the
second statement of the claim as well.

Assume now that char.k = 2. Let ¢ € X. First note that, by the
chain rule for Hasse derivations,
1 D%(s,)  D2.(2)

and —

1 - _
D) =Dy * Bllsy? " DL

for any separating variable z. Write t = t{ + t5, where t1 (resp. t3) can
be expressed as a Laurent series on s, with odd (resp. even) powers.
Note that ¢ is also a separating variable. We have that

D3 (t) DZ(t1) D2 (ts)
= + .
D, (t) DL (t1) = DL(t1)

o

It is easy to show that

DZ (t1) oy _ YD) - ug(Dy, () vg(D} (s4))

= e 1= —— B0y
res (Dl( o) Sq) : k 5 k 5 k
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On the other hand,
2 (t2)

res (Dl( )ds)

:07

since both D;lq (t1) and qu(tg) can be expressed as Laurent series on Sq
involving only even powers. Hence,

DZ(s,)? D, (#) vg(DL(s,))

resg(——5dsq) = —res,(———ds,) =
q<Dtl(5q)2 q q D;q(t) q) 9

1

for every ¢ € X. The second statement of the lemma is an immediate
consequence of the above equality.0]

Remark 3.4. Atiyah [1, Prop. 12] had shown that ci(L) = —[Pl(L)]
when X is a smooth curve, where ¢;(L) is the Chern class of L, and
[PY(L)] e HY(X, Q) represents the extension

1 1 Pl
0 —— olgL —— PYL) L 0.

It folows from the first statement of Lemma 3.3 that T'(cq(L)) = d1.
So we see that Atiyah’s characterization is equivalent to ours (Theorem

3.2) under the trace map. Atiyah’s characterization was used by Kaji to
show that a tangentially degenerate smooth curve in" a projective space
must be contained in some 2-plane if the characteristic of the ground
field is 0 [5, Thm. 3.1, p. 436].

Corollary 3.5. Let X be a projective, integral, local complete intersection
curve over an algebraically closed field k. For everyp € X, let Op denote
the singularity degree of p. Let Q := (Q™,n > 0) and R := (R",n > 0) be
the two Wronski algebra systems on X described in Section 2. If 6,1, # 0
for some p € X, then the sheaves Q™ and R" are not 1somorphic as P"-
algebras for every n > 2.

Proof. Of course it is enough to show that Q™ and R" are not isomorphic
as P"-algebras locally around a singular point of X. Taking a partial
normalization of X if necessary, we may assume that (p, — g)1x # 0,
where p, (resp. g) is the arithmetic genus (resp. geometric genus) of X.
We now observe that, given a Wronski algebra system F := (F™,m > 0)
on X, with associated homomorphisms ¢™: P™ — F™ for m > 0, then
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the sheaf F™* and the homomorphism ™ are determined by F™*1 and
Y™+ for every m > 0. In fact, we have that F™ is the torsion-free
quotient of F™TL/ym+lm+1) " while 4™ is the composition of the
homomorphism P™ — Fmtl/ Y™t Q™1 induced by ™ 1! with the
quotient map onto F™. It follows from this observation that if the
sheaves Q™ and R™ are isomorphic as P™-algebras, then so are Q™ and
R™ as P™-algebras for every m < n. So we are reduced to showing the
corollary for n = 2. Moreover, it follows from the same observation that
if Q2 and R? are isomorphic as P2-algebras, then the exact sequences

0 w®2 Q2 Ql 0

0 —— W®2 R? L

are isomorphic, where w is the dualizing sheaf on X. Thus we need only
show that there is an invertible sheaf L on X such that the induced
exact sequence

0 — w® —— QL) — Q') — 0 (3.5.1)
is split, while
0 — w8 — R¥L) —— RY(L) —— 0 (3.5.2)

is not.

Since X is a projective, local complete intersection curve, then there
is a projective family X' /S of local complete intersection curves where:
(1) S is a connected smooth curve over k; ‘

(2) X = X(s) for a certain s € S;
(3) X is smooth over S\ s.

Since S is connected, then the geometric genus of X(t) is p, for
every t € S\ s. Let wy /s be the canonical sheaf on X over S. Let
Q := (Q™,m > 0) be the unique Wronski algebra system on X over S
(3, Prop. 4.3]. As mentioned in Section 2, we have that Q(s) = Q. Since
X is smooth over S\ s, then Q™(t) is the sheaf of n-th order principal
parts on X (t) for every t € S\ s and every n > 0.

Replacing S by a connected, étale neighbourhood of s if necessary,
we may assume that there is an invertible sheaf £ on X of relative degree
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(1 —p,) over S. Let L := L(s). It follows from Theorem 3.2 that the
exact sequence

0 — wijs ® LE) —— QALH) — QELE) — 0

is split if ¢ € S'\ s. By semicontinuity, since (3.5.1) is the limit of the
above exact sequence when ¢ tends to s, then (3.5.1) is also split. On
the other hand, since

0%(L) = (pa — g)1k #0,

then it follows from Theorem 3.2 that the exact sequence (3.5.2) is not
split. The proof of the corollary is complete.O

Note that Q1 =~ R1 always. In fact, it follows from the definition of
a Wronski algebra system F := (F™,n > 0) that F! is the middle sheaf
in the push-out of the infinitesimal Ox-algebra extension

pl

0 ol pl Ox 0

under the canonical homomorphism n': Q! — w.
We now give an example where we describe both Q2 and R2.

Example 3.6. Let X C P be the zero scheme of y* — z32. The curve
X can be covered by the affine open subsets:

U=(2#0) and V:=(z#0).

To decribe Q2 and R? we need only describe them as subalgebras of PI%
locally on U and V, where K is the field of meromorphic functions of
X. Since V is contained in the smooth locus of X, then both Q? and
R? coincide on V with the sheaf of second order principal parts P2. We
will now describe Q2 and R2 on U.

We first compute the restriction R% of R? to U. On U we have the
identification U = Spec k[t3, %], where y/z = t3 and :v/z =4 It is
clear that ¢ is regular on the normalization U := Spec k[t] of U, and
the differential dt is a basis for the sheaf of Kahler differentials on U.
Moreover, wy = Oy (dt)/ t0 as an Op-submodule of Q}< It follows from
our description of the sheaf R? in Section 2 that R2U is the Op-subalgebra
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of PIQ( generated as a free left Oy-submodule by the basis

5t (6t)2

1’t_6,'t1—2- (3-6.1)

We now compute the restriction Q2U of Q2 to U. Assume from now
on that char.k # 2. Let S := Spec k[\]. Let X C P% be the zero

scheme of y* + Azz® — 3

2. Then X/S is a family of local complete
intersection curves, smooth over S\ 0, and X(0) = X. By [3, Prop.
4.3] there is a unique Wronski algebra system Q := (Q",n > 0) on X
over S. Its fibre over 0 is ). The scheme X can be covered by the
affine open subschemes U := (z # 0) and V = (z # 0). Note that
U(0) = U. It is clear that the canonical sheaf wy /g is invertible on
U. Tt follows from the general construction in [3, Sections 3 and 4]
that there is an isomorphism Q2 =~ Oy[T]/T? as P2-algebras, with the
structure homomorphism 1[12,: Pg — Oy[T]/ T3 being a homomorphism

of left Op-algebras “determined” by the fact that:
(/2 + 8(y/ Nt + Ma/z + 6(x/2) — (x/z+ 6(x/2))} =0.  (3.6.2)

(In fact, ng, is determined up to unique automorphism of Oy [T]/T3.) Tt
“follows” from applying ¥ to (3.6.2) that

Va(6(x/2)) =4(y/2)3T + 6(y/2)2(3(z/2)? — NT?,
Ya(6(y/2)) =(3(z/2)? — NT +12(z/2)(y/2)>T>.

Considering the fibre over 0, where we have the identification (y/z) = t3

(3.6.3)

and (z/z) = t4, the first equation in (3.6.3) becomes
V2 0)(5(t%)) = 49T + 18¢1472,

Since we also have that 6(t%) = 4t36t + 6¢2(6t)? in PZ, then T = 6t/t6 —
3(6t)2 /t7 in PIQ(. So QQU is the Opy-subalgebra of PIQ( generated as a free
Op-submodule by the basis

2 2
RN C)

t6 _t;?—, tl‘z. (3-6-4)

(If char.k = 2, then we have to work with a different deformation of X
to a family whose general member is smooth. We will not write down
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the computation of Q7 in this case, but we mention that the same
description (3.6.4) works for Q% when char.k = 2 as well.)

Since ¢° is not a regular function on U, we see from (3.6.1) and (3.6.4)
that Q2 and R? are isomorphic as P2—algebras if and only if char.k = 3. .
So the converse to the statement in Corollary 3.5 is true for X. As a
matter of fact, I do not know of any curve X where this converse is not
true.
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