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Minimal Hyperspheres in Rank Two Compact
Symmetric Spaces

Claudio Gorodski

Abstract. We describe a method to construct embedded, minimal hyperspheres in
rank two compact symmetric spaces which are equivariant under the isotropy action of
the symmetric space, and we supply the details of the construction for the exceptional
Lie group Ga.

0. Introduction
The simply-connected spaces of constant curvature can be characterized
by the property of being reflectionally symmetric with respect to any
given direction (a reflectional symmetry is an involutive isometry which
reverses only one direction), i. e. the group of the isometries of the
space which fix any given point is the largest possible, namely, equal
to O(n). They are the Euclidean spaces, the spherical spaces and the
hyperbolic spaces.

The family of symmetric spaces constitutes a natural generalization
of the spaces of constant curvature. A Riemannian manifold is called a
symmetric space if it is centrally symmetric with respect to any point,
that is, the isotropy subgroup contains an involutive isometry which is
the geodesic symmetry. Among them, the symmetric spaces of compact
(resp., non-compact) type are generalizations of the spherical (resp.,
hyperbolic) spaces.

It is therefore natural to investigate to what extent fundamental re-
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sults about the classical spaces of constant curvature remain true in the
larger family of symmetric spaces. In particular, among all hypersur-
faces of S™(1), the equator appears as the “simplest” global object, e.g.
it is the unique closed minimal hypersurface of S™(1) with least total
volume. Moreover, from the differential topological viewpoint, spheres
are the most basic closed manifolds. So, in [7] W. T. Hsiang, W. Y.
Hsiang and P. Tomter conjectured that every simply-connected, com-
pact symmetric space of dimension at least four must contain some
embedded, minimal hyperspheres (i.e., hypersurfaces diffeomorphic to a
sphere) and they proposed that those minimal hyperspheres should be
the candidates to generalized equators in compact symmetric spaces. In
the same paper, the method of equivariant geometry was used to estab-
lish the existence of such objects in the four compact symmetric spaces
of As-type. Furthermore, many more examples in other compact sym-
metric spaces of rank one and two have been constructed (see [7,8,3]).
The purpose of this paper is to show how the equivariant construction
of those generalized equators can be possibly extended to the remaining
compact symmetric spaces of rank two. We now explain this in more
detail.

Let G/K be an irreducible compact symmetric space. Under the
isotropy action of K on G/K, the orbit space K \G/K can be identified
isometrically with the closed Cartan polyhedron, which is a flat triangle
in the rank two case. The PDE for minimal hypersurfaces in G/K
reduces to an ODE in that triangle. The interesting feature of the ODE
is that the boundary of the orbit space is comprised of singular points.
We search for embedded, minimal hyperspheres in G/K which are K-
equivariant. Their generating curves in the orbit space are embedded
solutions of some geometric type of the reduced ODE., :

The technique that is utilized to find closed solutions to the reduced
ODE is based on a comparison lemma (see Section 4) adapted from the
one in [10]. It enables us to find suitable approximations to solutions of
the ODE. We then prove the existence of the desired closed solution by
continuity arguments. We have already used this approach in [4].

The complete details of the construction are presented for the ex-
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ceptional Lie group G9. But the method also provides examples of at
least one embedded, minimal hypersphere in each one of the symmetric

spaces:

Sp(4) SU(5) Sp(5) SO(10)
Sp(2) x Sp(2)” S(U(2) x U(3))” Sp(2) x Sp(3)" U(5) ’
Ee and Ga ;
U(1) xz, Spin(10) SO(4)

In particular, the inverse images of those minimal hyperspheres sup-
ply new examples of codimension one closed minimal submanifolds in
Sp(4), SU(5), Sp(5), SO(10), Eg and G. The examples in Eg/(U(1) Xz,
Spin(10)), G2 and G9/SO(4) are believed to be the first examples of
closed minimal hypersurfaces in those spaces.

This verifies the Hsiang-Hsiang-Tomter conjecture for all symmetric
spaces of rank at most two, except for the higher dimensional Grass-
mannians SU(2 +m)/S(U(2) x U(m)) and Sp(2 + m)/(Sp(2) x Sp(m)),
m > 4. Since this is a case-by-case verification, they have been left out.
Th; conjecture is certainly true for them, too; what remains to be done

is purely some more computational work.

1. Symmetric Spaces
Let M = G/K be a simply connected, compact, irreducible globally

symmetric space of dimension n, where G is the connected group of
isometries of M and K is the isotropy subgroup of a chosen basepoint
o. Let g, € be the Lie algebras of G, K, respectively. The symmetry
at o induces an involution of g; let g = ¢+ p be the corresponding de-
composition into the +1-eigenspaces. The action of K on M is called
the isotropy action of the symmetric space. Let a be a maximal abelian
subalgebra of g contained in p. Then A = Exp(a) is a maximal flat,
totally geodesic submanifold of M which intersects every K-orbit in M
orthogonally. Let h = a + (¢ N h) be a Cartan subalgebra of g, A(g, a)
the set of restricted roots, ¥ = {aq,- -, ap} the simple roots, and  the
highest root (with respect to some chosen ordering). Then it follows
from E. Cartan’s work ([1,2]) that the orbit space M/K is isometric to
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A/W, where W is the Weyl group of M generated by the reflections
on the orthogonal hyperplanes of the restricted roots. In turn, the quo-
tient A/W is isometric to the Cartan polyhedron in b, defined by the
inequalities a1 > 0,--- ,0p >0, 8 < 7.

2. Equivariant Differential Geometry

The reader may want to consult the references [9,11,12,7] for informa-
tion about the results stated below. In what follows, M is a simply-
connected, compact symmetric space of rank 2. Then the orbit space
X of the isotropy action (K, M) can be identified isometrically with the
Cartan polygon which is a flat triangle in § = R2. Note that the interior
points of X parametrize principal orbits and the boundary points of X
parametrize singular orbits.

We intend to construct an embedded minimal hypersphere (i.e., an
hypersurface of the diffeomorphic type of an sphere) in M which is
equivariant with respect to the isotropy action of K. If N is an equiv-
ariant minimal hypersurface in M, it is generated by a curve oy = N{K
in X, parametrized by arc-length, which is a solution of the ordinary
differential equation

K(s) = - logv((s)) (1)
where k is the geodesic curvature of v, n is its oriented normal, and
v : X — R is the volume functional which registers the (n — 2)-
dimensional volume of the fibers. Since v vanishes on the singular strata
of X, the ODE (1) becomes singular there. Nevertheless, many interest-
ing solutions providing examples of closed submanifolds N originate and
terminate at boundary points of X. In fact, a non-self-intersecting so-,
lution curve connecting boundary points in adjacent edges of X which
meet at a corner which is a fixed point of the K-action generates an
embedded minimal hypersphere in M.

For a boundary point P which is not a corner, the singularity is of
the regular type studied in [7, pp. 587-589] (see also [13]), from where we
know that there is a unique continuous curve v(s) in X which defines an
solution of the reduced minimal equation with 7(0) = P. Furthermore, v
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is analytic in (P, s) as long as it does not intersect the singular boundary
again, and it is perpendicular to the boundary at P.

Any solution curve which hits the boundary can be continued back
along the same trajectory with a discontinuous jump in the angle at
the boundary. Such a boundary point is called a bouncing-back point.
Close by solutions will generically avoid the boundary, but we have the
phenomenon of “sharp-turning” close to the boundary (see [11, pp. 205
207]). By examining that phenomenon, one can show that a compact
segment of a solution of the reduced minimal ODE depends continuously
on the initial conditions of the solution, also when the segment contains
some bouncing-back points on the singular interior edges, and a compact
segment which do not contain bouncing-back points depends in a Cl way
on the initial conditions of the solution.

It is also known that there is a unique solution to the reduced min-

imal equation emanating from a corner point and it is analytic.

4. The Explicit Form of the Reduced Minimal Equation
The orbit space X is a flat triangle in R? = {(z,y) : z,y € R} defined
by the following inequalities, a1 > 0, g > 0 and 8 < 7, where aq, ag
are the simple roots and 3 is the highest root.

The volume functional can be computed to be

(@) =opr H sin™® a(x) (x € X)
acA+(g,a)

where c)s is a constant depending only on M and m,, is the multiplicity
of o as a restricted root of M. Write a solution to the reduced minimal
ODE as ~(s) = (x(s),y(s)), where s is the arc-length parameter, and
let o denote the angle from d/0x to the tangent direction dy/ds. Then
eqn. (1) can be conveniently expressed as

T = cosOo
Yy =sino 2)
o= Z Mg cot(aa® + bay)(by cos 0 — aq sino)

acAt(g,a)
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where the constants a,, b, are determined by (T3, T/3)

/3
a(z,y) = aax + boy

for each a € AT (g, qa).

The constants appearing in eqn. (2) (for some of the compact sym-
metric spaces of rank two which have not been considered in [8]) are
listed in Tables 1 and 2. In each case, the highest root is indicated with FRor 31 Qubirapacs 1y e e 4.5 0
an asterisk. It follows that the orbit space X is as in F igs. 1, 2 and 3. T ' ' ]

/6

(0, 0) (T3, 0)

Ma,
i | 7ﬁ7
Qg by | SO su@+m) | _S2+m) | 50(10) 0
(7/2,70/2) 717917 5@y < Sp) | SR x V) | S x Spim) | U6) | UL Xz, Spin(10)
‘ m>2 m>2 |
| _9) 4(m—2) 4 8
= 101 4 | 2m-2) 4m-2) 4
2|1 -1 3 2 4 4 6
3111 3" 2 4 4 6
7t/3 B
i v 4l 10 4 2(m—2) 4(m—2) 4 8
(0, 0) (. 0) 5lol2] - 1 3 1 | 1
6 9 0\ _ 1* 3* 1* 1*
Sp(4)

Figure 1 — Orbit space in the case Sp(2) xSp(2)

(m/2,7/2) , |  ma,
J| Qo boy T
Gy | G2/SO(4)
/4 1 0 1 2 1
!
2| V3/2 —-3/2 2 1
3| V3/2 -1/2 2 1
/4 L Q/ , 4| V32 12 2 1
(0,0) (772, 0) | 5 | V3/2 7 3/2 2 1 |
| 6| V3 0 oF | i
: y y 2 Sp(4)
Fgnre 3 Ol spacetn e cons'o = o eiiliierien 5p(2) Table 2: Restricted roots for the case 0 = 0, d = 6.
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Observe that the vertex (0,0) of X is a fixed point for the K-action.
We wish to develop a method to construct a non-self-intersecting solu-
tion of eqn. (2) which starts at the boundary y = 0 of X and terminates
at the boundary y = ztan7/d. In the next sections we will describe an
approximation technique suitable for findind the desired solution and
then we will apply it to the case of Gs.

4. Comparison Lemma

We want to consider solutions to eqn. (2) with initial condition y(0) = 0.
Then, 0(0) = 7/2. We define v = —coso and, as long as sinc > 0, we
may rewrite eqn. (2) in the following form in which y is an independent
variable:

dx —v
WA
dv (3)
@ 5 W(.’E, Y, U)
where
6
W(z,y,v) = — zjl May; c0t(Ga; T + ba;y)(ba, v + aa; V1—02).
j=

The comparison lemma below is taken from [10]. It guarantees that
an actual solution of eqn. (3) is sandwiched between two approximating
curves up to first order. The key ingredient in its proof is the fact
that the function z — W(z,y,v) is increasing for y fixed and for v €
[0, cos(/2 + 7 /d)] fixed.

Lemma 1. Let y — (x(y),v(y)) be the solution of eqn. (3) with initial

conditions x(yo) = 0, v(Yo) = vo (vo =0 if yo =0). Let z; = 2y, 7/

1,2, satisfy xj(yo) = zo, vj(yo) = vo where v;(y) = —z(y)/\/1 + 2(y)2,
7: 1,2, and suppose

z1(y) <z2(y) and cosm/d > vi(y) > va(y) >0 for y € (yo, y1].
Define
U)](y) = W(:E?)—j(y)aya Uj(y))7 fO'f'j sl
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Assume further that
vi(y) >v'(y) > va(y)  fory—yo >0 small,

and

vi(y) > wi(y), wa(y) >va(y)  fory € (yo,y1l-

Then

r1(y) < z(y) <w2(y) and vi(y) > v(y) > v2(y) for y € (yo, 1]

Proof. Since v}(y) > v'(y) > vy(y) for small y —yo > 0 and v1(yo) =
v2(yo) = v(¥o) = vo, ¥1(Y0) = z2(¥0) = z(yo) = zo, we have vi(y) >
v(y) > va(y) and z1(y) < z(y) < xa(y) for y — yo > 0 small. Without
loss of generality, suppose by contradiction there is an y2 € (yo, y1] such
that z(y2) = za(y2). Then there must be an y3 € (yp,y2) such that
v(y3) = va(y3). Let g be the first g > 0 such that v(y) = v2(y). Then
v'(g) < vy(y). We may also assume that z(y) > z1(y). Now we have

v'(g) = W(z(),7,v(7))
> W(z1(9), 9, v2(7))
= wa(7)

Thus, v5(7) > wa(y), a contradiction. O

For the sake of future reference, we now state the comparison lemma
for solutions starting at the boundary y = xtan7/d. Let us change to
the coordinates (z,w) = (zcosw/d + ysinm/d, xsinm/d — ycos/d) and

put 7 = —0 + m/d, u = —cosT. Then eqn. (3) can be rewritten
dz = -—u
Ly X @
d
Y Y (z,w,u)
dw
Ral Qar Rwac Mat Val 27 N 1 1004
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where
6
Y(z,w,u) = — Z Mo cot[(aaj cosm/d + baj sinm/d)z+
j=1

+ (aaj sinm/d — baj cos T /d)w] x
X [(—baj cosm/d + Qi sin 7/d)u+

+ (baj sinm/d + Qo COS m/d)V1 — u?]
Lemma 2. Let w — (z(w),u(w)) be the solution of eqn. (4) with initial

conditions z(wg) = zg, u(w) = ug (ug =0 if wg = 0). Let zj = zj(w)
J 1,2, satisfy z;(wg) = 2, uj(wp) = ug where

b

/

wiw) = —zjw)/\/1+ 2 w2, j:1,2,
and suppose
z1(w) < z2(w) and cosw/d > ui(w) > ug(w) >0
Jor w € (wg, wy]. Define
yj(w) =Y (z3_5(w), w, u;(w)), forg.: L2
Assume further that
uj(w) > u'(w) > ub(w) for w —wy > 0 small,

and

ui(w) > y1(w),  ya(w) > uh(w)  for w € (wp,wy].
Then

z1(w) < z(w) < z9(w) and up(w) > u(w) > ug(w)

Jor w € (wp, wyq]. /

5. Foliations by Solution Curves .

We want to establish a corridor starting at the boundary y = 0 such
that the family of solutions of eqn. (3) with initial point in a certain
subinterval of that boundary will be guaranteed to comprise a foliation
of the Qrbit space X, up to a certain height. This will be achieved
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by linearizing eqn. (3) with respect to xg, where (zg,0) is the initial
condition of a fixed solution curve y — (x(y), v(y)) defined for y € [0, y1].
The linearization is

()

where the initial conditions are Z(0) = 1, 9(0) = 0 and

Aly) = —(1 —v(y)*) /2,
6
By) =Y Ma, G csc2(aajﬂc(y) + ba;¥) (ba; v + aa; V1 — 02),

=2

6
Cy) = = ma, c0t(@a, 2(y) + ba,¥)(ba, — da. ,
() j;lm]co (3a;2(3) + ba; 1) (ba; — o —ess)

are functions defined along the solution curve y — (z(y),v(y)). Now
eqn. (5) is equivalent to the following

[p()Z'(y)]' + a(y)z(y) = 0, (6)
where
py) =el’ 1,
q(y) = f2(y)p(y),
and Ay)
fi(y) = — Aly) C(y),

fa(y) = —A(y)B(y).

Let Z(y) be a solution of eqn. (6) satisfying the initial conditions
z(0) = 1, '(0) = 0. We know that if Z(y) > 0 for y € (0,1] and
zo € [a,b], then (xp,y) € [a,b] X [0,y1] — (z(y),y) defines an analytic
foliation of its image. So we need to estimate the zeros of the solution
for the initial value problem for Z(y), and in order to do that we apply
the standart Sturm comparison method to eqn. (6).

Lemma 3. (Sturm) Let 1(y) be a solution of eqn. (6) defined for y €
[0, 31] with $(0) = 1, ¢'(0) = 0. Let 4(y) > q(y) for y € (0,y1] and
suppose that 1(y) is the solution of

W)Y @) + ay)P(y) =0 (7)
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with 1(0) = 1, ¥/(0) = 0. If ¥(y) never vanishes on [0,1], then ¥(y)

never vanishes on [0, y1].
Proof. Suppose that yo is the first zero of 1 in [0, y1]. Then, since

Y(y) > 0 on [0, ys], we get:
Y)Y — PP = (@ — g > 0
on (0,y2); integrating, we obtain
[ 1w9 — @byiay > o
Now, since
(PY'Y) = 0Y'y) = (p¥')'d — ('),

and using the various initial conditions, it follows that

p(Yy2)¥' (y2)1b(y2) > 0.

But this contradicts the fact that p(y2) > 0, ¥(y2) > 0 and V' (y2) < 0.
This last inequality follows from the assumption that yo is the first zero
of 1. O

Remark. In the case we are dealing with, p(0) = 0, so that the require-

ment that 1'(0) = 1'(0) = 0 is not necessary. For example, the following
application of Lemma 3 will suffice.

Lemma 4. Let ¢(y) be a solution of eqn. (6) defined for y € [0,y1] and
satisfying the initial conditions (0) = 1, (D) =1.1Tf
s a1
ve(0u1] f1(¥) + yfa(y) 1
then ¥ (y) never vanishes on [0, y1].

Proof. In fact, we may choose !

—fa(y) 1
inf —227 S ks _
veOul AW +12®) ~ " m

and define {b(y) =1+ ky. Then the above inequalities imply that g > 0
on [0,y1] and ¢ satisfies eqn. (7) where

o ot e[y
q(y) = Tky > q(y)
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for y € (0,y1]. Now use Remark 1 and apply Lemma 3. O

6. Polynomial Approximations
We know that the solution curves of eqn. (3) are analytic. Therefore,
in order to find the approximations x1, x5 to a particular solution as
described in Section 4, it is reasonable to use the power series expansion
of that solution.

We recall eqn. (3):

dx =
dy ~ Vi-12
dv (8)
@ = W(.’E, Y, U)
where
6
W(z,y,v) = — Z M ; COt (o, + bajy)(bajv + Ga, V1-12).
j=1

It is easy to compute the Taylor expansion of a solution
y = (2(y),v(y)) at y = 0, namely

— Ti o9

z(y) = A,
5(22)!

) = 3

o @+1?
1=0

Let m = mg, and
6
R(y) = Z maj COt(a’Oéjx(y) + bajy)(bajv(y) + aaj 1= U(y)2)
j=2

Then eqn. (8) is

d_x_ —v

dy B V1 —v?

@ = R(y) —muvcoty
dy

Here we specialize to the case o = o. Then R is exactly the “non-
singular” part, and so the coefficients of the Taylor expansion can be
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inductively computed as

B
D T
n—1
__2ntl Vi BQ(”—i) 2(n—i) (2n)
R e | el ; @i+ 1) @m— i) A

n > 1, where B; is the ¢th Bernoulli number, and
I = —vo,
_ 3
T9 = —3vy — V1,
ot 5 2
r3 = —45vy5 — 30vjuy — v,
x4 = —1575v§ — 15750¢v1 — 2100903 — 63v3vy — vs,
5 = —992250] — 132300001 — 37800vdv; — 84003 — 5670vdvy—
— 1512vgv1v9 — 1081}81}3 — 4, etc
For solutions starting at the top boundary, the Taylor expansion at
w = 0 of a solution w — (z(w), u(w)) to eqn. (4) is

o '
Y= ; (2;)!“)22’
o9 o _
u(w) = 1:20 @i—le)!w2’+l.
Let m = mq,, a = aq, and
! :
Rw) = — ]Z_:l M cot[(aaj cosm/d + baj'sin m/d)z(w)+
J#2

+ (aa sin w/d— baj cos T /d)w] X

X [(—baj cos /d + Qo sin 7 /d)u(w)+

(baj sinm/d + Ga,; COS 7/d)y/1 — u(w)?].

Then eqn. (4) is

% Joa Tl
dw /1= o2
du

e R(w) — mau cot(aw)
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and the coefficients can be computed inductively as

_ R(0)
S
wrih Int 1 m(2n)'T§ Uj By(n-i) (2a)2(n—i) + R(2n) (0
Un = g rm |V L G D @ - ) ik

n > 1, where B; is the ¢th Bernoulli number, and
21 = —Uuo,
ol 3
z9 = —3up — U1,
285= —45u8 — 3Ou(2)u1 — U9,
z4 = —1575ug = 1575u61u1 — 210u0u% — 63u(2)u2 —usg,
25 = —99225u) — 132300uu] — 37800ufu; — 840uT — 56T0UFUg—

— 1512uguqug — lOSU%U3 — uy4, etc.

7. An Example: the Case of G

Now we show how the above ideas can be applied to construct a solution
to eqn. (2) starting at the bottom boundary y = 0 and terminating at
the top boundary y = x tan7/d; in fact, a solution to eqn. (3). Since the
theoretical bases of such construction are the same for all cases involved,
we shall work out the details in the specific case of G.

Denote by y — (X4, (y), Vi, (y)) the solution of eqn. (3) with initial
condition (zg,0) at y = 0. Denote by w — (Z,,(w), U,,(w)) the solution
of eqn. (4) with initial condition (zg,0) at w = 0.

First step: use the comparison lemma to find approximations for solu-
tions starting at the bottom boundary.

Let xg € [1.46,1.47] and define

z] €

X1,00(¥) = w0+~ y” + Sy + (865 — 6z0)y°,
x1 )

Xo.ag () = w0+~ y* + Sy + (8.76 — 6z0)y°

where x1, x9 are coefficients of the Taylor expansion at y = 0 of the
solution X, (y) with X, (0) = x( (see Section 6). Then use the com-
puter to verify the last condition of Lemma 1 with y; = 0.41 (the other
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conditions are very simple to verify), that is, if

‘G,.’EO (y) = —X;—,ZO (y)/ \/ ]‘ + X_;,IO (y)2 a‘nd
Wiao(¥) = W(X3_j.20), ¥, Voo (¥))
for j:1,2, then
Vi@ > Wigo(y) and Wa, (y) > Vawoy)  for y € (0,0.41].
We conclude that X 1zgs X2,2, Provide C ! bounds for the actual solution
Xz, which are valid on the interval [0,0.41], that is,
X120 (Y) < Xay(y) < Xo g, (y), Viao () > Vag(y) > Vo, (y)
for y € (0,0.41].

Second step: use the above C1 bounds establish a corridor foliated by
solutions starting at the bottom boundary.

The C! bounds X1,2, and X2ymo for the actual solution Xz, enable
us to estimate (with the aid of a computer) that

—f2(y)

nf =20 5 979
v€(0,0.36] f1(y) + yfa(y)
1
sy
0.36

for zy € [1.46,1.47]. Then we apply Lemma 4 and it follows from the
argument of Section 5 that the Xao(y) for zg € [1.46,1.47] foliate a
region of the orbit space from y = 0 until 1= 0:36.,

Third step: use the comparison lemma to find approzimations for solu-
tions starting at the top boundary.

Let zp € [1.4202816622, 1.4549226784] and define

21 9 Z9 4 z3 6 Z4 8
Z w) =20+ —w —w* + —w w !
Lao(W) = 20 + Jow” + 24 720" T 10320
+ (212.3499997012 — (149.3893819431)z0)w10,
1.2, %2 4 23 ¢ 2
Z W)=2z0+ —-w"+ —w + —w’ + —
2,2(®) =20+ 5 24 720 40320

+ (71.9789999008 — (49.6232555672) 20 )w 10,

where 21, 29, 23 and 24 are coefficients of the Taylor expansion at w = 0
of the solution Z, (w) with Z(0) = 29 (see Section 6). Then proceed
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in analogy with the first step and apply Lemma 2 with wy = 0.55 to
conclude that Z . , Z2., provide C! bounds for the actual solution
Z 4, (w) which are valid on the interval [0, 0.55].

Fourth step: study the intersections of solutions starting at the top
boundary with solutions starting at the bottom boundary.

Let X(y), Z(w) be solutions to eqns. (3) and (4), respectively, start-
ing at the bottom and top boundaries, respectively, and consider the
corresponding C! approximations X7 (y), X2(y) and Z1(w), Za(w), re-
spectively. In order to show that X(y) and Z(w) cross each other, we

consider the following function:
F 1y € lya ) = Z(BXW),y) - TiX w),y),
where
T(2.) = (T, ), Ta(@,9) = (5 @VE+1), 5@~ 9v3)

is the change from the coordinates (z,w) to the coordinates (z,y). We
want to show that it has a zero. For that, it is enough to show that it
assumes a positive value and a negative value on [yq, yp]. Let (zg, wg) =
T(X2(Ya), Ya) (Zawa) = T(X(Ya),Ya). Since X(ya) < X2(ya), we have
2 < 22. Also Z(w,) < Z(w,). Therefore,

22 < Z1(wa) = 24 < Z(wa) = F(Ya) > 0

Let (zf,w}) = T(X1(ys)9b) (26, wp) = T(X(ys),9p). Since Xi(yy) <
X (yp), we have zl} < zp. Also Z(wp) < Za(wp). Therefore,

Zo(wp) < 2t = Z(wp) < 2 = Flyp) <0

Thus, the conditions for X (y) and Z(w) to cross each other on [yq, 1] at
an angle (measured from the X-direction to the Z-direction; see Fig. 4)

less than 7 are
1
zf < Zi(wg) and Zo(wp) < 2p-
Since X1, X9, Z1, Z9 are decreasing, those conditions are satisfied if

T1(X2(Ya); Ya) < Z1(T2(X2(Ya) Ya))
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and

Zo(To(X1(yn)s yb)) < T1(X1(yb), Yb)-

X(y)

Figure 4 — Crossing at an angle < 7

Similarly, the conditions for X and Z to cross each other on [Ya, yp] at

an angle (measured from the X-direction to the Z-direction; see Fig. 5
more than 7 are

Z2(T2(X1(Ya)s Ya)) < T1(X1(Ya)s Ya)

and

T1(X2(ys), yo) < Z1(T2(X2(ys), Ub))-

X(y)

Figure 5 - Crossing at an angle > 7

From the first step, we have the following C! approximations valid

for y € [0, 0.41] for the solution Xz, (y) starting at the bottom boundary
with X3 (0) = xp.
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If%0g =146, then
X1.1.46(y) = 1.46 — 0.4558551314y + 0.1447836669y* — 0.11y5,
Xo1.46(y) = 1.46 — 0.4558551314y” + 0.1447836669y* — 0.5.
It 29 = 1.47, then
X1.1.47(y) = 1.47 — 0.4978218951y + 0.1562579343y " — 0.173°,
Xo1.47(y) = 1.47 — 04978218951y + 0.1562579343y* — 0.063/°.
From the third step, we have the following C L approximations valid
for w € [0,0.55] for the solution Z(w) starting at the top boundary
with Z,,(0) = 2.
If 2o = 1.4202816622, then
21 (w) = 1.4202816622 — 0.1881760127w? — 0.0834483267w™+
+0.01540925912w5 — 0.0081428042w® + 0175w,
Zo, 5 (w) = 1.4202816622 — 0.1881760127w? — 0.0834483267w* +
+0.01540925912w5 — 0.0081428042w® + 1.5w1°

)

(this one is in fact valid for w € (0,0.58]).
Tf 2 = 1.4549226784, then

71 (w) = 14549226784 — 0.2881043431w” — 0.1812941968w* —
— 0.09184112229w5 — 0.05990390855w" — 5.w'?,

Zo o (w) = 14549226784 — 0.2881043431w” — 0.1812941968w" —
— 0.09184112229w8 — 0.05990390855w® — 0.219w ™.

Consider the foliated corridor
(x0,y) € [1.46,1.47] x [0,0.28] — Xz (y).

Then Z.,,(w) enters the foliated corridor at y = 0.28 for all 29 € [1.42...
...1.45...]. In fact, the segment {(z,y = 0.28) : © € [X2146(0.28) =
1.4251508792, X1 1.47(0.28) = 1.4318492908]} is described in (z,w)-coor-
dinates by z = wv/3 4 0.56, w € [0.4700883265, 0.4734375323], and we may
check that given zy € [1.42...,1.45...], the function Z; ., (w) — (w/3 +
0.56) changes sign for w € [0.470...,0.473...].

Next it is easy to apply the method given above to check that
Z1 49, (w) crosses X1 .46(y) for some y € [0.28,0.30] and that it crosses
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X1.47(y) for some y € [0.20,0.23] (in that range, w < 0.56, so that the
approximations are still valid). Also, we check that Z1.45...(w) crosses
X1.47(y) for some y € [0.28,0.31] and that it crosses X1.46(y) for some
y € [0.20,0.25] (in that range, w < 0.55, so that the approximations are
still valid).

Now consider the extended foliated corridor (xo,y) € [1.46,1.47] x
[0,0.36] — Xz, (y). Since Zj 49 (w) enters this longer foliated corridor
by crossing Xj 46(y) at an angle less than T, Z1492.. (w) must remain
inside this corridor and cross every solution Xao(¥), o € (1.46,1.47),
at an angle less than 7 until it reaches the crossing with X 47(y) (at
an angle less than 7) and exits the corridor. Similarly, the solution
Z1.45..(w) enters the longer foliated corridor by crossing X7 47(y) at an
angle more than 7, and so, it must remain inside this corridor and cross
every solution Xy (y), for 2o from 1.47 to 1.46, at an angle more than 7.

In particular, Z; 42 (w) enters the shorter foliated corridor (zg,y) €
[1.46,1.47] x [0, 0.28] — Xz, (y) with an angle less than 7 and 21 45.. (w)
enters the shorter foliated corridor with an angle more than 7. By con-
tinuity there must be an zy € (1.46,1.47) and a P L R O | S
such that Z, (w) enters the shorter foliated corridor intersecting X, (y)
with an angle equal to =, that is, Zz(w) and X, (y) are “the same”
curve (see Fig. 6). Thus, we get a solution connecting the top and
bottom boundaries and we have proved

Theorem 1. There is an embedded minimal hypersphere in the excep-
tional Lie group Go.

A similar argument will prove the existence of an embedded minimal
hypersphere in each one of

Sp(4)/(Sp(2) x Sp(2)), G2/SO(4), SU(5)/S(U(2) x U(3)),
Sp(5)/(5p(2) x Sp(3)), SO(10)/U(5), and Eg/(U(1) Xz, Spin(10)).
In the first two cases the generating solution curve of eqn. (2) connects
the boundary y = xtann/d to the boundary y = 0, as in the case of

G2. However, in the remainig four cases (d = 4), the vertex (m/2,7/2)
ia also a fixed point of the corresponding K-action and the generating
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solution curve of eqn. (2) connects the boundary y = z to the boundary

& =72,

Figure 6 - Auxiliary solutions entering the foliated corridor
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