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Three Dimensional Expansive
Diffeomorphisms with Homoclinic Points

José L. Vieitez

Abstract. Let M be a compact connected oriented three dimensional manifold and
f:M — M an expansive diffeomorphism such that Q(f) = M. Let us also assume
that there is a hyperbolic periodic point with a homoclinic intersection. Then fis
conjugate to an Anosov isomorphism of 7. Moreover, we show that at a homo-
clinic point the stable and unstable manifolds of the hyperbolic periodic point are
topologically transverse.

1. Introduction
Let M be a compact metric space with metric dist: M x M — R defining
its topology. Let f: M — M be a homeomorphism.

Definition 1.1. We say that f is expansive if there exists a positive
constant « such if we have x,y € M and for every n € Z it holds that
dist(f™(x), f"(y)) < o then x = y. The number « is called an expansivity
constant for f.

Let us assume now that M is a compact connected oriented 3D-
manifold and f: M — M an expansive diffeomorphism such that € f) =
M. Let us assume that there is a hyperbolic periodic point with a
homoclinic intersection associated to it. Then f is conjugate to a lin-
ear Anosov diffeomorphism and M ~ T3, the three dimensional torus.
Moreover, at any homoclinic point the stable and unstable manifolds of
the hyperbolic periodic point must be topologically transverse.

In a previous paper [Vi2], the author proved that if we have an ex-
pansive homeomorphism f defined on a three dimensional manifold M
with topologically hyperbolic periodic points dense in M (see definitions
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at the end of this section), then f is conjugate to an Anosov diffeomor-
phism and M ~ T3. In this article we show that it is enough to assume
the existence of a local product structure given by local folliations in-
variant by f defined in an open subset A C M (see Theorem A), and
we prove that this condition is fulfilled provided f has a hyperbolic pe-
riodic point with a homoclinic intersection (see Theorem C). We also
prove that the stable and unstable manifolds of the periodic point are
topologically transverse at the homoclinic one (see Theorem B).

In fact we believe that it is enough to assume the hypotheses of f
to be expansive, M to be three dimensional and Q(f) = M.

None of these hypotheses can be dropped. Pseudo-Anosov maps
defined on closed surfaces of genus greater than one, are expansive with
the non-wandering set all the surface and they are not conjugated to
hyperbolic toral automorphisms. Moreover, for dimensions greater than
three the device of taking products of pseudo-Anosov maps by Anosov
ones allow us to construct expansive diffeomorphisms with the non-
wandering set the whole manifold which are not conjugated to Anosov
diffeomorphism.

In fact there are singular points in all the last mentioned examples
in the sense that at these points the stable and unstable sets are not
locally homeomorphic to Euclidean spaces, i.e.: they are not topological
manifolds. Thus they cannot be conjugated to Anosov diffeomorphisms.

On the other hand, Franks and Robinson exhibited a counterexample
in which Q(f) is strictly included in M = T3 £ T3. Moreover, f is a
quasi-Anosov diffeomorphism but it fails to be Anosov (see [Fr-Ro]).

In this paper we give results which represent a new approach to the
above conjecture. We assume differentiability of f, in order to simplify
the techniques although it seems that most of the results are valid for
expansive homeomorphisms. And we assume that there is a hyperbolic
periodic point with a homoclinic intersection. This assumption is per-
haps easier to check than that of having a dense set of topologically
hyperbolic periodic points.

Let us state the main results of this article, most of the definitions

needed to understand their meaning are stated immediately below.
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Let M be a C*° compact connected oriented three dimensional man-
ifold and f: M — M a homeomorphism. Assume that M is endowed
with some metric dist: M x M — R* defining its topology.

Theorem A. Let f: M — M be an expansive homeomorphism (see defi-
nitions below in this section). Assume that the non wandering set of f,
Q(f), 1s M and that there exists an open set V.C M, V # &, such that
there is a local product structure in V given by local foliations invariant
by f. Then f is conjugate to a linear Anosov isomorphism and M ~ T3.

Theorem B. Let f: M — M be an ezpansive diffeomorphism with a hy-
perbolic periodic point p with a homoclinic intersection x € W2(O(p)) N

WO(p)). Then W*(O(p)) is topologically transversal to W (O(p))
at x.

Theorem C. Let f: M — M and p be as in Theorem B. Assume that
Q(f) = M. Then M ~ T3 and f is conjugate to a linear Anosov iso-
morphism.

Let us recall that p € M is f-periodic of prime period k > 0 if
f¥p) = pand fi(p) £pifj=1,2... k-1 We define Per(f) =
p € M/pis f-periodic. »

We say that a linear isomorphism is hyperbolic if it has no eigenval-
ues of modulus 1.

Definition 1.2. Given f a homeomorphism we say that a point p € Mis
an f topologically hyperbolic periodic point (abbr.: p is f-thp) if there
is k € ZT, V(p) and V(0) neighborhoods of pand 0 € R3 respectively,
a homeomorphism h: V(p) — V(0) and a hyperbolic linear isomorphism
T:R3 — R? such that ff¥p)=pand h1oTo hlv(p) = fﬁ/(p). If s is the
number of eigenvalues of T of modulus less than 1 we say that p is of
index s.

We define Pery(f) = p € M/p is f-thp. Observe that if fis a
diffeomorphism and p is a hyperbolic periodic point in the usual sense,

the Hartman-Grofman Theorem says that it is an f-thp.

Definition 1.3. For x € M we define

Wiz, f) = {y € M/ dist(f*(z), f* () < ek > 0}
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as the local e-stable set for the point  and the homeomorphism f.

Analogously we define the local e-unstable set for x and f as
Wz, ) = Welw, f “1}. If there is no ambiguity we shall usually omit
any reference to € and f and speak about local stable and unstable
sets of the point x denoting them by W2 (x) and W!(x) respectively.
Observe that W(x) and W (x) verify that f(WZ(x)) C Wi(f(z)) and
W) c Wi ().

Definition 1.4. We define
W, f) = {y € M/ lm dist(f*(z), f*(y)) = 0}

as the stable set for the point z and the homeomorphism f.
Analogously we define the unstable set for x, f as W4%x, f) =

We(z, f~1). We usually will omit the reference to f. If p is a peri-
odic point with prime period k we define the stable set of the f-orbit
through p, denoted as O(p), as

il '

W*(O(p), f) = |J W*(f (p), f)

j=0
We put W(O(p), f) = W*(O(p), f~1). Again we remark that the refer-
ence to f will be avoided if no ambiguity results.

Definition 1.5. Given a set A in a metric space (X,d) we define its

[Als = {y € X/ int d(y, ) < 8}.

o-parallel body

The Hausdorff distance H dist between two non empty compact sets A,
BcC X is

H dist(A,B) =inf{6 > 0/AC [B]s and B C [A]s}.
With this distance the space C = {C € M/C # @ is compact} is a
complete space (see [Fa]).

Definition 1.6. We say that a sequence of compacta {Cy} converges in
the Hausdorff metric to C' and write H lim C,, = C' if given € > 0 there
is N € N such that for all n > N we have H dist(Cy,C) < €.
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Definition 1.7. Let S be a surface and 7 a curve both immersed in M.
We say that S is topologically transversal to v at a point € SN or that
S and + are topologically transverse at z, if there is a neighbourhood
V of x and a homeomorphism h: V — V(O) C R3 such that h(SNV) =
OzyNV(0) and h(yNV) =0zn V(0).

As usual Ozy = {z,y,2) € R3/z = 0} and Oz = {(z,y,2) € R3/z =
g =it

Definition 1.8. Given f:M — M and a point x € M we say that
there is a local product structure in z (abbr.: z has an f-Ips) if there
is a neighbourhood V(z), and a homeomorphism h:V(z) — [—1,1)3,
the standard 3D cube, such that either A sends the local stable sets
of points in V(x) onto horizontal squares and the unstable sets onto
vertical segments or, alternatively, sends the local stable sets of points
in V/(z) onto vertical lines and the unstable sets onto horizontal squares.

Observe that the local product structure is invariant by f, i.e.: if
there is a local product structure for z then there is a local product
structure for f*(x) for k € Z. Our definition of local product structure
differs from the usual one (see [Sh]). We require the existence of local
basic foliations. We say that a set A C M has an f-local product
structure (abbr. A has an f-lps) if every point of A has an f-lps in M.
By definition A is open. The open ball of center z and radius r > 0 is
the set B(z,r) = {y € M/ dist(x,y) < r}. As M is a compact manifold
there is 7y > 0 such that for all 0 < r < r1B(z,r) is homeomorphic
to B3 the standard 3-cell of RS, We assume from now on that we take
T ST,

Definition 1.9. Let D, D’ C M be continua such that both separates
B(z,r) and such that D is contained in one region of B(z,r)\D’ and
D' is contained in one region of B(z,r)\D. We say that a point z is
between D and D’ in B(z,r) if it belongs to the region of B(z,r")\D
containing D’ intersected with that of B(x, r’ )\D’ containing D. We say
that a set S C B(z,r) is between D and D’ in B(z,r) if every point in
S is between D and D’.

Throughout this paper, except in section 2, we assume that M is
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a compact connected orientable smooth 3D-manifold so we will usually

avoid to state it.

2. Basic properties of expansive maps

In this section we state most of the properties of expansive homeomor-
phisms used in the subsequent ones. For the proofs of such properties we
will usually refer the reader to the corresponding reference. Nevertheless

in certain cases we will sketch the proofs.

Proposition 2.1.  (Hyperbolic metric.) Let (M,d) be a compact metric
space and f: M — M an expansive homeomorphism with constant of
expansivity a > 0. Then there are X\, 0 < A <1 and an adapted metric
§, defining the same topology as d, such that for all x € M and for all
y € W(x) it holds that 6(f(x), f(y)) < Aé(z,y)- The same is true for
y € WH(x) changing f by f~1. Moreover, there is pu > 0 such that for
all z, y € M we have

max(8(f(x), f®)), 6(f (@), F 7' () = max(A8(, y), 1)

Proof. See [Re] Theorem 1 and [Ft], §5, Theorem 5.1. O
In propositions 2.2, 2.4, 2.6, 2.7, 2.8 and 2.10 let M be a compact

n-dimensional manifold and f an expansive homeomorphism of M with

expansivity constant a > 0.

Proposition 2.2.  (Existence of Lyapunov fun_ctionsf) There are func-
tions U, V and W defined in a neighbourhood N of the diagonal M x
M,U,V,W:N — R such that V(z,y) = AU(z,y) = U(f(@), f(¥)) —
Ulz,y) and W(z,y) = AV(z,y) = V(f(@), f(®) — V(z,y) = AAV) =
U(f2(x), 2(y)—2U(f(z), f(y))+U(z,y) with the properties that U(%,y)
and W (x,y) vanish only at the diagonal of M x M and are positive else-
where, and V(z,y) > 0 if y € W¥(z) and V(x,y) <0 if y € W(z),y =
x, where € > 0 is less than some expanswity constant c.

Proof. See [Le3], §1, see also [Lel] §4. O

Remark 2.3. As in [Lel] §4 we may construct Lyapunov functions for

the suspension flow ¢ associated to f.
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: Let (M, ¢) be the suspension of (M, f) under the constant func-
t.10n 1. Identify M v&zith m(M x {0}), m being the suspension projec-
tion of M x R onto M, and ™ (y) with ¢(y,n). Call M; the manifold
¢(M,t). Let dist be some Riemannian metric dist: M x M — R Thej
expansivity of f implies that there is B > 0 such that if Y z.E M
and for all s € Rdist(p(y, t), #(2,t)) < B then Y = 2 observe7 that we
don’t loose generality supposing that o = 3. Then there are continy-
ous functions U,U’,U",:N — R, N = {(z,y) € M x M/3t e R,y € -
My and  dist(x,y) < A}, A > 0, such that: o

Ui,y) >0 and U(z,y)=0 iff 2z =y
00, 5) =t 2000 000:0) = UGy

a;qd ify € W2 (z)(y € W(z)),y # x, then U'(x,7) < 0 (resp. U'(z,y) >
0). |

U”(l‘,y) _ }E% U/(d)('fat)v ¢(ytv t)) B U’(LIT, y) and U”(.T y) S 0.1 74 y

We .VViH have the opportunity to use Lyapunov functions for the
suspension flow ¢ of f below in sections 4 and 5.

Definition 2.1. Let M and f be as above. We say that a point z € M is
a stable point for f (Lyapunov stable) if for every € > 0 there is § > 0
such that dist(z,y) < § implies dist(f™(x), f"(y)) < € for all n > 0.

Proposition 2.4. If f: M — M is expansive then it has no stable points.
Proof. See [Le2] lemma 2.7. O

Qorollary 2.5. If p is f-thp and f is expansive then p must be either of
index 1 or 2.

Proof. Otherwise we will have a periodic repeller or attractor and there-
fore a Lyapunov stable point either for fFor i O

Proposition 2.4 is used in [Le3] to prove the following result.

Proposition 2.6. Let 0 < € < . There is 7,0 <r < € such that for every
T € M there exists a compact connected set D(z) ¢ Wi(x)(C(x) C
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W(x)) such that x € D(x) (resp.: x € C(x)) and for all open set
A C B(z,r),z € A, we have that D(z)NOA # @ (resp.: C(x)NOA # ).
Proof. In [Le3], lemma 2.1, it is proved that given A C M an open set,
x € A C B(xz,r) there exists a compact connected set D(z),z € D(z) C
clos(A), D(z) N OA # @, such that for y € D(x),dist(f"(x), f"(y)) < e if
n > 0. It seems from this that D(x) depends on A. On the other hand,
it is not difficult to see that such a D(z) may be constructed for B(x,r)
itself, and therefore it will cut the boundary of any open set A C B(x,7)
such that z € A. 0

Proposition 2.7. Let 0 < o < €. There is v > 0 such that if y € W¢(x)
and dist(x,y) < r theny € Wji(x).
Proof. See [Le3|, lemma 2.2. O

Proposition 2.8. Let a,e and r be as in Proposition 2.6. Given 0 <
r’ < r there exist u > 0 and A > 0 such that if dist(z,y) < A then
dist(WE(x) N OB(z,r"), We(y) N 0B(z,r') > p. (We put dist(4,B) =
inf{dist(x,y)/x € A,y € B}.)
Proof. Assume that the contrary holds. Then there exist sequences
{z,} and {y,} and a number 7', 7 > ' > 0 such that

dist(Zn, Yn) < L

n

and ¢
dist(WE () N OB(zn, "), W(yn) N OB (zp, ') <

Sy =

Since M is compaét we may assume that {z,} converges to a point
z. Also limy, = z. As 7" < r we have that W:(z,) N 0B(zn, ') # 2
and We(yn) N 0B(zn, ') # . Letting z, € W(xn) N 0B(zy,r') and
Wy € WE(yn) N OB(zp, ') be such that dist(zn,w,) < 2 and taking a
convergent subsequence {z,, } from {z,} we will have that {wn, } has
the same limit z € dB(z,r'). But z € W2 (z) N\W¥(z): given h € Zt we
have that dist(fh(:rnk}, fh(znk} < € so that letting k — +00 we have that
dist(f*(x), f*(2)) < € hence 2 € WS (z); analogously z € W (z). Thus
z € Wi(x)NWE(z)NOB(z, ') so z # z and dist(f"(x), f"(2)) < aVn € Z
contradicting the expansivity of f. O
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Remark 2.9. The same kind of arguments enable us to prove that there
exist A > 0 and p > 0 such that if dist(z,y) < X then

dist(We (2)\B(z, "), W' (y)\B(z, 1)) > p

Proposition 2.10. Let ¢ > 0 be an expansivity constant for f- Then
for all € > 0 there is N > 0 such that ff"(W2(z)) C We(f™(z)) and
fP(WE(z)) € WE(f~™(x)) for alln > N and x € M.

Proof. See [Ma], Lemma I p. 315. a

From now on let us assume that M is three dimensional, hence, by

2.10, if p is an f-thp point of index 2 then for 0 < € < a, Wi(p) is a
2-disk and W¥(p) is an arc.

Proposition 2.11. If p is an f-thp point of index 2 then given €,0 < € <

5, there is v > 0, depending only on €, such that

1. S(p), the connected component of W2(p) N B(p, ro) containing p, sep-
arates B(p,rg) in two connected components.

2. U(p), the connected component of W¥(p) N B(p, o) containing p, is
an arc which reaches the boundary of B(p,r), for all 0 < r < 1, in
both components of B(p,r9)\S(p).

Proof. The proof of this proposition may be found in [Vil] section 2. O

Let S'(z,y,r, f) = (connected component of clos(B,x,r)) N WE(y)
containing y) and

S@,y.r) = lm Sy, f)
O pl<s
(S(x,y,r) is the inverse limit in 7’ of S'(z,y,7", f)). We define
Uz, y,r, f) as S'(x,y,r, f~1) and
U(z,y,r) = lm U'e,y,", f)
o<r/<r
We have that S(z,y,r) and U(z,y,r) are compact sets. When 2 = Y we
denote S(z,z,r) as S(x,r) and U(x,z,r) as U(z,r). It is not difficult
to prove from 2.11 that S(z,r) separates B(z,r) for 0 < r < ry in
two connected components and that U(z, ) is an arc which reaches the
boundary of B(z,r) in both components.
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Remark 2.12. It also occurs that if z is close enough to p then S(z,p,r)
separates B(z,r) in two connected components and U(z,p,r) is an arc
reaching OB(z,r) in both components.

In what follows we choose € < § and, (Proposition 2.7) r > 0 such
that r < 7o and such that if y € W (z) and dist(x,y) < r then y €
Wi(z),t = s,u.

Proposition 2.13. Let A be an open set in which there is an f-lps and
x € OA, x = limy_ 4o Pn where {p,} C Perg(f) N A and let the positive
real numbers € and r < rqg as above.
Then there is Ng € N such that for all n > Ny index (p,) = constant
=1 or?2.
Assuming that it is 2, there is a subsequence {pn, } C {pn} and there
are continua C(z) C W (x) and D(x) C W(z) such that:
1. C(z) = Hlimg_4oo(U(pny, 7)) and D(z) = H limp— 400 (S(Pny 7))
2. D(x) separates B(z,r) and C(z) has points in two connected compo-
nents of B(z,7)\D(x) and in both components C(x) reaches 0B(x,T).
3. There ezists (at least) a component X of B(x,r)\D(z) in which there
are infinitely many points of {pn, }. If {p,} C Perg(f)NX and
2 = limy,_ .t oo pl, then D(z) = Hlimy 4o S(p,,7)-

Proof. As p, € Perg(f) C A there is an f-lps in a neighbourhood V
of p,. Hence, given y € V, there is ¢ > 0 such that W5 (y) and Wk (y)
are topological manifolds. By Proposition 2.10, for all y € M, for all
€,0 < € < a, there is N € N such that if & > NFEWe(y) c W(fky))
and f~R(W2(y)) € WX(f~*(y)), therefore W& (py) and W (py) are topo-
logical manifolds of the same dimension of that of WZ(p,) and W' (pn)
respectively. As & = limy_, 4o Pn, for every A > 0 there is Ng € N such
that for all n > Ny, h € N, dist(ppn, Pptr) < A. From this it may be
proved that dim(W?(p,)) = dim(W2(pnp+n)) if we choose A > 0 small
enough, otherwise, if W?5(p,,) and W (pp+p)) are both two dimensional,
then, by Proposition 2.11, they will have more than one point of inter-
section which contradicts expansivity (see [Vil] §3 for more details).
The proofs of 1., 2. and 3. may be found in [Vi2], nevertheless we
will sketch how to construct D(x) and C(z) for the sake of completeness.
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1. As C = {C C M/Cis compact} with the metric H dist is a com-
plete space and {S(pn,7)} is bounded we have that there is {pn, } such
that Hlim(S(pnk,r) exists. Let us call D(z) to this limit. The se-
quence {p,} converges to z, so € D(x). To see that D(z) € W?(x)
let y be any point of D(z), then there is Yn), € S(pnk,r) such that
Wm0 Yny, = Y- Given h > 0, as Yn, € S(pnk,r) C Wj(pnk) we have
that dist(fh(ynk), fh(pnk)) < ¢, taking limits with k& — +oo we obtain
dist(f"(y), f(z)) < € so that y € WS(z). Therefore D(z) C W5(x).
Take from U(pp, ,r) a convergent subsequence and call C(z) to its limit.
As above we may prove that C(z) C W (x) and changing notation, if it
were necessary, we may suppose that U(pn,,, ) itself converges proving 1.

2. The proof of 2 uses the fact that S (Pny,, ) separates B(z,r) if Pny, 18
close enough to x and that as limg_. 4 Pny =, S(pnk,r) cannot shrink
to a point (it joins p,, with 0B(z,r)) and cannot shrink to a continu-
ous of dimension less than 2, if not, points of S (pn]€7 r) will collapse with
points of U (Pny,,7) in the boundary of B(z,r) contradicting expansive-

1ness.

3. To prove 3 we use that there is K € N such that for £ > KS(pnk, T)
separates C'(z) and therefore they have a point Yn,, of intersection
(unique by the expansive properties of f). Omne of the subcontinua
C™T(z) or C~(z) in which D(z) separates C(z) must intersect S(pn,,,7)
for infinitely many values of k. Hence, for these k, P, and yj are in
the same connected component of B(x,r)\D(x). Otherwise Pny, and yn,
are separated by D(z), so that § (Pn,, ) will intersect D(z) for infinitely
many values of k. Hence there are two different periodic points Py,
and Pn; in W3 _(x) and therefore, by our choice of r, Py, and Pn,; are in
Wé(x). Then p,, € Wf’e(pnj) and, as 2¢ < «, this implies the absurd
that lomy 1o fh"(pnk) = Pnj where h is the period of Pnj- Therefore
there exists a component of B(z,r)\D(x) with infinitely many points of
{pn, }- Let us call X to the connected component with infinitely many
points of {py, } (if there are more than one component with this prop-
erty choose one of them). To prove that if {p),} C Pergy(f) N X and
x = limp), then D(z) = H lim S(p),,r) see [Vi2]. O
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The following proposition states the principal result of [Vi2].

Proposition 2.14. The following statements are equivalent:
a) f is conjugate to a linear Anosov isomorphism.
b) f is expansive and clos(Perg(f)) = M.

Proof. a) implies b) follows from well known facts about linear Anosov

diffeomorphisms and the commutativity of the diagram,
3 a
7° —— T3

hl Th

f
M —— M

where A is Anosov and h is a homeomorphism, (see [Fr]). To see that
b) implies a) see [Vi2], sections 9 and 10. O

Proposition 2.15. If f: M — M is an expansive homeomorphism with
Q(f) = M and there is an f-lps in an open set A C M then the periodic

points are dense in A.

Proof. Observe that if € > 0 is less than §, o an expansivity constant
for f, and V is a connected neighborhood in which there is an f-lps
and there is zg € V such that dim(W2(zg)) = 2 (hence dim(Wk(zg) = 1)
then dim(Wg(z)) = 2 for all z € V. If it were not true, we would
have points zg and z1 in V such that dim(WZ(zg)) = dim(W¥(z1) =
2, and we may assume by the connectedness of <V that z7 is in the
product neighborhood V (zq) ~ [0,1]3. Therefore W (z1) N W2 (xg) will
contain an arc of points such that if z,y are in this arc then Vn €
Z dist(f™(x), f"(y)) < a. But this contradicts the expansivity of f. In
order to prove that periodic points are dense in A we use arguments
similar to those of Franks (see [Fr| lemma 1.7). In fact, having an }’—lps
and in view of Proposition 2.1, the hyperbolic theory applies.

Let V C A be a connected neighborhood of x € A and let us assume,
by the above arguments, that dim(W2(y)) = 2 and dim(Wg(y)) = 1 for
ally € V. Let N be a product neighborhood N ~ W2(x)x W (x) with €
so small that N C V and let N’ = 65/4(30) X 6”/4(30). Since Q(f) = M,
there exists =’ such that 6178(33’) C N’ and f™(z') € N’ for some n
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which is sufficiently large that L = f"(Wg‘/S(m')) AN W;;Z(f”(a:’)).
By 2.10, such n exists independently of the particular 2’. Let Ly be
the component of L containing f"(z’). Then, by the existence of the
f-lps, Lo is an arc. We define a map h: Ly — Lo in this way: let
z € Lo, 2/ € W&S(LI}/) be such that 2’ = f~"(z). As there is an f-
Ips in N’W€5/4(z’) intersects Lg at, say, w. Define w = h(z). h is a
continuous map from an arc into itself so it has a fixed point y. Let
D = 65/2(]”*”(3/)), then D is a 2-disk and we may assume that n is
large enough to guarantee that f”(Wj/2(f_”(y))) a 5/8(31). But y is
in W, (f7"(y)) so f*(W2o(f™"(y))) C W2o(f™(y)) = D. Hence f™ is
continuous and has a fixed point p € N. It is clear that f(p) =p. O

Proposition 2.16. If p is a periodic point in an open set A C M such
that there is an f-lps in A then p is an f-thp point.

Proof. Assume, without loss of generality that dim(W?(p)) = 2,

dim(Wg(p)) = 1. Moreover, as there is an f-lps in p, we may also
assume that p = 0, the origin of R3, and that

Wip) D D ={(z,y,2) € RB/Z =0 and 22 +y2 <1}
and
Wip) DI ={(z,y,2) €R3/z=y=0 and -1<z<1}.

Take k > 0 such that f*(p) = p and fﬁvg(p) and f¥(p) = p and
fﬁvg(p) are orientation preserving and such that f*(D) C int(D) and
f®(I) ¢ int(I). Let U be the unbounded component of Oxy\ f*(0D).
The intersection of clos(U) with D is an annulus A. By the Schoen-
flies Theorem (see [Mo] Ch. 10 and Ch. 13 Th. 1) f¥(D) is a 2-
disk homeomorphic to {(z,y)R?/z% + y?> < 1/4} by a homeomorphism
¥:R? — R? which is the identity outside {(z,y) € RZ/x? + 42 < 1/2}
and such that if z € D then (f*(x)) = %x We foliate the annulus
Ag = {(z,y) € R?/1/4 < 22 + 42 < 1} with two foliations Fy and Gy,
transverse to Fy, such that the leaves of F are the circles z2 + y2 = r2,
1/2 <r <1, and the leaves of Gy are constructed with segments joining
Y(z) = z € 0D with ¥(f*(x)) = %x By using Fy and Gy we induce
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foliations F and G in A via ¢~ 1; i.e: F =y 1Fy and G = ¢~ 1Gy. This
construction allows us to define a CV flow ® on D using the device of
defining it first in 0D by

Bi(@) =¥ v@), 0 <

and for t € [n,n + 1) we put ®;(z) = f*(®;_n(z)). If we now have a
point y in D\{O}, there is j € N such that f=7(y) € A, and there is
7 € [0,1] such that * = ®,(f7(y)) € dD. We put ®(y) = ®j4rit(2).
Finally we define ®;(0) = O for all t > 0. It is clear that if we call T7 2
to ®1 then f*(y) = P! oTy/90%(y), T12(y) = %y In an analogous way
we may find a homeomorphism &: I — R such that ff@)=€¢1oTho
£(x), To(x) = 2x. Let us find a suitable neighborhood N of O such that
f~R(N), f*(N) € D x I. If we have that z € N and z = W2(z) NI,
y = W¥(2)ND, then, by the invariance of the f-Ips, we have that b
WE(f*(y))NW2(f*(x)) and therefore, defining F(y, z) = (1(y), &(x)) and
T(y,r) = (T1/2(y), T2()), we have that f*(z) = F1 0T o F(z). Thus
we have proved that p is an f-thp point. O

Corollary 2.17. If Q(f) = M and there is an open f-invariant dense set
A C M with an f-lps then f is conjugate to an Anosov diffeomorphism.

Proof. With the above hypotheses, by 2.15 and 2.16, we have that
Pery(f) is dense in M so the thesis follows from 2.14.

Remark 2.18. The above corollary, as well as Proposition 2.14, are true
only in the three dimensional case. PseudoAnosov maps defined in a
surface of genus greater than one verify the hypothesis but certainly
are not conjugate to Anosov diffeomorphisms. By taking products of
pseudoAnosov maps by Anosov ones we may see that for dimensions
greater than three the statement is false too. On the other hand, there
are no expansive homeomorphisms in the one dimensional case.

3. Proof of Theorem A
Let A C M be the maximal open set in which ther is an f-lps. It is
easy to see that A is invariant. In view of 2.17, to prove Theorem A, it
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suffices to show that A is dense in M. Let us suppose that this is false.
Therefore there exists an open set B C M, B # @, such that nor in B
neither in any non empty open subset of B is defined an f-lps. We may
assume that B is connected. By hypothesis B # M hence 0B # @. Let
r € OB, then x also belongs to the boundary of A. By 2.15 and 2.16
there is a sequence {p,} C Perg(f) N A such that limp, = z. By 2.13
we may assume that {S(py,7)} and {U(p,,r)} are convergent sequences
to D(x) C Wi(z) and C(x) C Wi(z).
Remark 3.1. If we have an f-thp point p € A then we have an f-lps in
an open connected neighborhood N of U(p,)US(p, 7). Thus A includes
Up,r)U S(p,T).

Before going into the details let us give a brief idea of the proof of
Theorem A, see also figure 1.

e D(z) N D'(x)
< N\

N

Figure 1

1. Assume that p, is of index 2. Hence D(x) separates B(z,r) and
B is contained in a single component of B(z,r)\D(z). For, B is open-
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connected, and if BND(x) # @ then BNS(pn,r) # @ for n large enough.
Therefore, by our previous remark, there is an open set N C B in which
there is an f-lps contradicting our choice of B.

2. In at least one component of B(z,r)\D(z), say X, there is an f-lps.
Thus BN X = @.

3. There is N € N such that for n > NU(p,,r) is separated by D(z).
Therefore there is an f-lps in an open set Y C B(xz,r)\D(z), such that
XNY = @ and z € 9Y. To see it, let us intersect the connected
neighborhood N of U(p,,r) U S(pn,r) in which there is an f-Ips with
B(z,r)\(D(z) U X). Taking the union in n > N of the sets N we find
Y. By 2.15 there is a sequence p,, C Perg(f) NY converging to .

4. We use 2.13 to construct with {S(p,,)} and {U(p},,)} another pair
of continua D'(x) C W2(z) and C'(z) C W¥(x) in such a way that B
is between D(z) and D’(x) and C’(z) contains a subcontinuum C”(x)
reaching OB(z,r) and between D(z) and D’(z) too.

5. We are able to iterate the above construction finding sequences
Dy(x) € Wi(z) and Cp(xz) C WX (x) such that C,i1(x) is between
D, (z) and D,1(z). This yields a contradiction, for it implies the exis-
tence of a common point of W2 (z) and W!(x) in the boundary of B(z,r)
contradicting the expansive properties of f.

We need the following lemmas.

Lemma 3.2. Let D(x), C(x) and X be as in 2.13. Then we have:

a) D( ) contains a 2-disk A, x € A.

b) C(z) contains an arc vy, x € 7.

¢) 6X D{x).

d) There is a neighborhood V of x such that if y € VN D(x) and z €
VNC(x)NX then C(y) intersects D(z) in a single point w € X.

e) The map h: (D(z)NV)x(C(z)NVNX) — B(x,r) defined as h(y, z) =
w 18 a homeomorphism such that h(y,x) = y, h(x,2) = z and which
defines an f-lps in VN X.

Proof. a) Let us prove that D(z) contains a 2-disk A, x € A. Take N,

a connected neighborhood of U(p,,r) U S(pn,r) with an f-lps. For n
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large enough, by 2.13, we may assume that D(z) separates U(pp,r) and
S(pn,r) separates C'(z). Using 2.8 we find numbers A\ > 0, "> 10rsueh;
that if y, 2 € B(x, ) then dist(W?(z) N 0B(z, ), We(y) NOB(z,r)) > u;
take n so large that H dist(S(p,,r), D(z)) < pu. If we have a point y €
S(pn, )N B(x, A) then y € N,, and therefore it is the limit of a sequence
{an} C Perg(f). Thus, by 2.13, we have a continuum Cly) Cc Wi(y)
separated by S(py,r) in two subcontinua such that each of them reaches
the boundary of B(z,r) if we assume that ) is sufficiently small. We
claim that one of the subcontinua intersects D(z). Otherwise we will
have points of W (y) N dB(z,r) and W2(z) N O0B(z,r) at a distance
less than 1 contradicting 2.8. Moreover, expansiveness implies that
C(y) N D(z) is a single point, say w. Let us define the map g 8(p, v
B(z,\) — D(z) sending y to C(y) N D(z) = w. We have that g is
injective. If y,4" € S(pn,r) NV have the same image w then, as they
are in W¢(p,) we have that dist(f™(y), f™(y')) < 2¢ < « for m > 0; as
they are in W (w) we also have that dist(f™(y), f™(y/)) < a for m < 0.
Therefore dist(f™(y), f™(y')) < a for m € Z and therefore y=1vy. We
also have that g is continuous: let {yx} be a sequence in S (Pn, T)NB(z, \)
converging to y € S(pn, )N B(z, A). The sequence {wy} given by C(yx)N
D(z) = wy, has a convergent subsequence {wkl}, say imp_, oo Wk = Woo.
Hence we, € D(z) N WX(y) and therefore by expansiveness w., = w =
C(y) N D(z). Thus limg_, 4o wk = limg 4o g(yr) = g(y) = w. From
the existence of g it follows that D(z) contains a 2-disk A. As S (Pn,T)
intersects C'(z) it is easy to see that x € A for, choosing p, sufficiently
close to x we will have that C(z) N S(py,r) is a point in Bz, \).

b) The proof of this part is similar to that of a). See [Vi2] §2 for details.

c) As there are infinitely many points of {p,} in X and Hlim S(p,,r) =
D(z) this is a simple remark.

d) Finally we prove that there exists a neighborhood V of z such that
ify e VND(r)and z € VN C(z)N X then C(y) intersects D(z) in a

single point w € X. From this it will follow the existence of an f-lps in
X.

Let z € C(z)N X, if 2 is close enough to =, we may find points p,, and

Bol. Soc. Bras. Mat., Vol. 27, N. 1, 1996



2 JOSE L. VIEITEZ

DPn+h such that z is between S(z, p,, r) and S(x, pp+n,T), for it holds that
there is N € N such that forn > N, h € N, S(x,pp,r) and S(z, pr+n,T)
separate B(x,r). Moreover, there is a sequence {¢,} of thp points such
that lim, 4o ¢, = 2. For z € HlimU(py,,r) and as p, € Perg(f) we
have that there is a neighborhood N,, of U(p,,, r) in which there is defined
an f-lps. By 2.15 and 2.16 thp points are dense in N,, and from this
the existence of {g,} follows. We conclude, using 2.13, that there are
continua C(z) C W¥(z) and D(z) C W2(z) such that z = C(z) N D(z),
D(z) separates B(x,r) and C(z) intersects 0B(z,r) in two connected
components of B(x,r)\D(z). It is clear that D(z) is between S(z, py,T)
and S(x,pptn,r) so that there exists N € N such that for n > N, C(z)
must intersect both S(x,pp,r) and S(z,p,4n,r). Otherwise, as C(z)
intersects dB(z,r’) we will have a sequence of points z, € C(z) N X
converging to z and a sequence w,, € C(z,) N 0B(z,r") converging to a
point w € D(z) N W2 (z) (by compactness of M and taking into account
that wy, is between S(x,p,,r) and S(x, pn+n,r) which converge with n
to D(x)). But this violates the expansivity of f.

Let now y be a point in D(x). Then y € H lim S(x, p,,r) and as for
every n there is a neighborhood N,, of S(z, py, r) in which there is defined
an f-lps we have that there is a sequence {¢,} C X N Perg(f) such
that lim g, = ¥, so that there exists a compact connected set CT(y) C
WX(y) N X which reaches the boundary of B(z,r). We will have that
there is N € N such that if n > N then C(y) intefsects S(x, pn, 7).

Otherwise, as we state above, the violaté expansivity. From this
and the fact that D(z) is between S(z,p,,r) and S(z, ppyn,r) we will
have that D(z) intersects CT(y) if both z and y are close enough to x,
i.e.: they belong to a neighborhood V' of x. Expansiveness implies t'hat
C*t(y) N D(z) = w a single point. ;

e) Define h: (V N D(z)) x (VNC(z) N X) — X by h(y,2)- = w where
as above w = CT(y) N D(z). As in [Vil] §5, we may prove that h is a
continuous injective map. In view that D(x) NV contains a 2-disk and
C(z) NV contains an arc, by the Theorem of Invariance of Domain, h
is a homeomorphism. By the definition of h it is clear that it extends
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as the inclusion map in D(z) NV and in C(z)N X NV. As in [Vi2], §§3
and 4, we may see that we have an f-Ips defined on X NV. This finishes
the proof. O

Corollary 3.3. If V is homeomorphic to B> then the connected compo-

nent of D(x) NV containing x is a 2-disk and the connected component
of Clx)N X NV is an arc.

Proof. It follows from the existence of the f-lpsin X NV and the fact
that the map h in lemma 3.2 extends as the inclusion to clos(X). O

Lemma 3.4. Let Y be the other region of B(x,r)\D(z), different from
X, in which there are points of C(x). Then, for every neighborhood V
of x, there are points p € VNY N Perg(f). Hence there is a sequence
{pn} CY N Perg(f) with limy, 4 pl, = z.

Proof. Let {p,} C Perg(f) be as in 2.13 such that H lim Ulpg,r) =
C(z). We have that there is N € N such that Vn > N,

U(pn, m)\clos(X) = U(pn,7) NY # 2.

Moreover, given V' an open neighborhood of z, there will be points of
U(pn,r) in Y NN if N is large enough. There is a neighborhood N,, of
U(pn, ) in which there is defined an f-lps. But VNY NN, is open so, by
Proposition 2.2, there exists p’ € VY NPerg(f). AsV is an arbitrary
neighborhood of 2 we have that there is a sequence {p,,} C Y N Pery(f)
with gt 9 = 2 O

We will call Z to B(z,r)\clos(X),so Y C Z.

Let {p,} C Y be as in 3.4. Using 2.13 and taking subsequences
if it were necessary we obtain continua D'(z) = H limy, 4o S(p,, )
and C'(z) = Hlimy 4., U(p,,r). Let X’ be the connected compo-
nent of B(z,r)\D'(z) in which there is defined an f-lps and Z’' =
B(z,r)\clos(X").

Lemma 3.5. We have that H dist(D(z), D'(z)) > 0. Moreover, B is
between D(x) and D'(z) and for every neighborhood V of x, nor D'(z)N
V C D(z) NV neither D(z)NV C D'(z)NV.
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Proof. We may assume that B C B(z,r). As S(z,p,,,r) and B are both
included in Z for all h € NS(z, pp,r) C X, there is N € N such that for
all n > N they are in the same region of B(x,r)\S(z,ps,r), for both B
and S(p,,,r) may be joined by an arc with D(z) without intersections
with S(x, pp,r). Similarly there is H € N such that S(z, pp, ) and B are
both in Z’ and in the same region on B(z,7')\S(z,p,,r) if h > H. Thus
B is between S(z,p,,,r) and S(x,pp,r) for all n and h sufficiently large
and from this it follows that B is between D(z) and D’(x). Suppose
that there is a neighborhood V of z, V' C B(x,r), such that D(x)NV C
D'(x) N V. Hence for all ¢ > 0 there is N € N such that for all n,
h > N it holds that S(z,pn,7) NV C [S(z,p,,7)], the o-parallel body
of S(z,p;,,r). Therefore, as B is between S(z,pl,r) and S(z,pn,7),
BNV C[S(z,p,r)]s for all ¢ > 0 which contradicts the fact that B is
open and = € 0B. O

Remark 3.6. 1. We have proved a bit more than 3.5 says: for every
neighborhood V of z, V' N B is between D(x) NV and D'(z)N V.

2. By 2.15 and 2.16 the thp-points are dense in X U X’ and we may
consider a sequence {q,} converging to the boundary 9(X U X') =
D(xz) U D'(z). We will show that we may choose U(qg,,,r) such that
it intersects D(x) U D'(x) and enters into B(z,7)\(X U X’) in the region
By of B(z,r)\(D(x)U D'(z)) containing B.

Lemma 3.7. There is a sequence {q,} C Perg(f) ¥By such that

lim ¢, = x.
n—oo

Proof. By the remark above, for every neighborhood V of z we have
V' N B # @. On the other hand, if clos(X UX")NV =V N B(x,r) then
V' N B = @ contradicting that € OB. Let z € V, z # x, be a poirft in
the boundary of By. Hence z is in (X U X’) = D(x) U D'(z) too and
there is a sequence {¢,} C Perg(f)N(XUX') such that lim,_,4+.q, = 2.
Assume that z € D(z) (if it belongs to D’(z) we simply change X by X’
in the arguments following below). Hence we may take {¢/,} C X and
from this it is not difficult to prove that U(q,,, ) intersects D(x) near z

as n — +400.
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In fact, if this is not true, we will have that either U(q;,, ) is between
D(z) and S(q;,, ) or U(q,,, r) intersects D(z) at a distance bounded away
from zero for infinitely many values of n. In the first case we will contra-
dict 2.8, and in the second one we will have two points of intersections
of W¥(z) with D(zx), contradicting expansivity. Thus U (qy,,7) enters in
By and this implies that there is a point wy, € ByNU(q,,r), lim Wi =%,
As there is an open set N, O U (¢, 7) in which there is an f-1ps we
conclude from 2.15 and 2.16 that there is a point g, € Perg(f) N By
near wy. Hence, as V' is an arbitrary neighborhood of z, we have that
there is a sequence {gn} C Perg(f) N By such that limy, 4o q, =z. O

Lemma 3.8. There are continua C"(x) C W¥(z) and D"(z) C Wi(x)
such that C"(x) contains a subcontinuum CY included in By, = € cy,
reaching OB(z,r) and D"(x) separates B(x,r) and is included in
clos(By), x € D"(z). If X" is the region of B(x,r)\D"(z) in which
there are infinitely many points of the sequence {mi}'c Perg(f) N By
of 3.7 then there is a neighborhood Vo of x in which there is defined an
f-lps. For all neighborhood V of x neither

D'(x)NV C D) NV(D"()NV C D'(x)"V)

nor
D()nV cD"(@)NV (resp. D'(z)nV c D"(z)nV).
Proof. Taking a convergent subsequence from

{U(qn7r)}7 {qn} C PGT‘H(f) N BOa

we find the desired compact connected sets C” (z) and D"(z). Asin 2.13
we prove the existence of V5. Observe that B is between D(x) and D" (x)
and also between D'(z) and D" (z) and repeat the arguments of 3.5 to

prove that for every neighborhood V of xD"(x) NV is not included in
DE)nV. O

Remark 3.9. 1. There is only one region, say By, of Bz, )\ND(@) b
D’(z) U D"(x)) that contains B. Otherwise for a point p € Perg(f)

Do oo n _— S, bt



76 JOSE L. VIEITEZ

of one of the sequences used to construct D(x), D'(x) or D"(x) we will
have that S(p,r) intersects B.

2. (" is included in By and therefore it is between D(x) and D’(z).
If we call C4 to C(z) N X and C', to C'(x) N X', then C4 is between
D’'(z) and D"(z) and C' is between D(x) and D"(x). Thus between
every pair of separating continua, like D(z), included in WZ(x) we have
a continuum, like C'(z), included in W*(z). Observe that, in spite of the
size of the neighborhood V5 in which there is an f-lps, D(z), D’(x) and
D’ (z) separate B(z,r), and Cy(x), C’ (z) and C’ (z) reach 0B(x,T).
3. We may iterate the same procedures used in the previous lemmas to
construct a sequence of continua D, (z) C W2(x)N By separating B(z,r)
and Cy,(z) C W¥(z) such that it contains a subcontinuum C," between
D, (z) and D,,+1(x), which reaches 0B(x,r).

Theorem 3.10 (Theorem A). Let f: M — M be an expansive homeo-
morphism (see definitions below in this section). Assume that the non
wandering set of f, Q(f), is M and that there exists an open set V C M,
V # &, such that there is an f-lps in V. Then f is conjugate to a linear
Anosov isomorphism and M ~ T,

Proof. If B exists, by the previous lemmas, we may construct sequences

of continua
Dy (x) = D(x), D2(z) = D'(z), D3(z) = D"(z),- .. , Dn(2),. .. ,
all Dy, (z) C W¥(z) separating B(z, ), and
Cy(z) = C"(z), Ca(z) = C(x), C3(x), ... ,Cn(®), ... ,

all Cp(x) C WH(x), such that for all n € NC,(z) contains a subcon-
tinuum C;F which is between D,,(z) and D,,41(z) and reaches 0B(%, ).
Thus we will have a common limit point w € 0B(z,r) of {Dy(x)} and
{Cy(x)}, which implies that w € W(z) N W(z), w # z, contradicting
that f is expansive. O

4. Proof of Theorem B
We will assume that p is a hyperbolic fixed point of index 2 and that z €
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We(p) NW*™(p), z # p. The general case in which p is only periodic and
z € W5O(p)) NW*(O(p)),  # p may be obtained from this particular
one.

We may take linearizing coordinates and assume that, in a certain
neighborhood B(p, r) of p in which Hartman-Grofman Theorem is valid
S(p,7) is a disc centred in O in the Ozy plane and U( |

: ' p,T) is an arc,
centred in O too, in the Oz axis.

Definition 4.1. We say that a set D locally separates a set A at a
point y, y € AN D, if there is a neighborhood V of y such that for every
neighborhood W of y, W ¢ V, WN A has points in different components
of W\D.

Let S,,(r) be the connected component of W2 (f~"(x)) NB(f~"(x)

, )
that contains f~"(z).

Lemma 4.1. Let p be a hyperbolic fized point and x € Ws(p) N W¥(p)
x # p. Then there are rg > 0, and N € N such that for n > N
0 <7 <70, Sn(r) separates B(f~"(z),r). (See Figure 2 for illustration,).

Figure 2

Proof. Azs Wi(z) C Wi(p), j = s,u, we have that there is a 2-disk
D = g(D?), where D? is the standard 2-disk and g is an embedding,
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such that D = [(W2(z)), z € D, and W} (z) is an arc if € is less than a.

As every topological disk locally separates R? (see [Bi]), we have that
D locally separates a neighborhood V' of . Let v C D be a continuous
arc joining x with D, i.e.: 7:[0,1] — D, v(0) = z, and (1) € dD. We
will prove that there is N € N such that for all n > N and all arc ~y
joining x with 0D, f~"(v) intersects 0B(f~"(x),r)if 0 < r < 1o, rg to be
chosen, this will enable us to prove the thesis. We use arguments similar
to those used in [Vil] to prove 2.11. We choose Lyapunov functions
U, U' and U” for the suspension flow ¢ of f, as in remark 2.3 and
positive numbers k, r, such that for z, y € M ~ w(M x 0)dist(z,y) <
ro = U(x,y) < k and U(z,y) < k = dist(z,y) < € < 3. De:ﬁne a
Lyapunov tube for z as K(z) = tLEJR Ki(z) where Ky(z) = {y € M/y €

M; and U(é(z),y) <k}

Let also int(Ky(z)) = {y € M;/U(d(z,t),y) < k} and 0Ki(z) =
{y € M;/U(¢(x,t),y) = k}. The disk D is included in W¢(z) hence if
y € D then we have that dist(f™(z), f*(y)) < « for all n > 0. Thus
for every y € D, y # x, we must have that there is n(y) > 0 such that
f‘”(y) (y) = o(y, —(y)) € /K_n(y) (x), otherwise expansivity is violated.

By compactness of D, there is N > 0 such that if y € 0D then
n(y) # N. We claim that if y € 9D and v joins z with y then for all
T > N there is a point s* = s*(T) € (0,1] such that ¢(y(s*),-1) €
/ [(K_7(z)). If this were not true we would haye that v = ¢(v,0) C
[ (Ko(x)) and ¢(y, —T) [(K_1(x)) but ¢(y, —n(y)) € /K _y(y)(x) s0 there
will be a point y(sg) such that ¢(y(sg), —t) € K~*(z), t € [0,T] and there
is tg € (0,T) such that ¢(y(sg), —to) € OK_¢,(x) which contradicts the
fact that U”(¢(x, —tg), ¢(v(s0), —to)) is positive. It is clear, by continu-
ity of ¢ and U, that for all ¢ > N¢(v, —t) intersects OB(¢(x, —t),r) if
0<r <.

Using the fact just proved we are able to prove that $_+(g(D?))
separates B(¢_¢(z), (), moreover, Sy the connected component of ¢_; o
g(D?) N B(¢_¢(x), o) containing ¢_(z) does it. In order to prove this
observe that:

1. B(¢_¢(x),mp) is open in M and B(¢_¢(p),r0) =~ B3 = {(z,y,2) €

THREE DIMENSIONAL EXPANSIVE DIFFEOMORPHISMS... 79

R3jx2 222 < 1} the standard 3-cell by our choice of r.

2. By 1., the definition of S; and the fact that ¢_; 0 g is an embedding,
glo ¢¢(St) is open and connected in D2, which is locally arcwise
connected. Thus ¢~1 o @+(St) is arcwise connected.

3. g7lo ®:(S;) N OD? = &, otherwise there would exist an arc v join-
ing (0,0) with dD? such that ¢_; o g(y) C B(¢_4(x),r0) C K_4(x).
Therefore g~1 o ¢4(S;) is open in R2.

4. By definition S; is closed in B(¢_4(z),79) and, by 3., it is the image
of an open 2-manifold by the embedding ¢ —t o g.

5. Thus we have reduced the proof to the following fact:

If F is closed in B = B3 and is the image of an open surface included
in R? by a topological embedding, then it separates B. To prove the
last statement we will use rational homology.

Let X be an orientable manifold and U an orientable submanifold
U C X. Denote the absolute n® homology group by H,(X), the rela-
tive n* homology group with respect to U by H,(X,U) and the nt*
cohomology group with compact support by H?(X). Recall that if
dim(X) = s then by Alexander-Pontrjaguin’s Duality Theorem we have
that H,(X,U) = H:"™(X\U) (see [Sp] Chs. 4, 5 and 6).

Now let X = B and U = B\F. As F is closed in B, U inherits from
B the structure of an orientable submanifold. By the Exact Homology
Sequence (see [Sp] Ch. 4) we have that:

— H1(B) — H1(B,U) — Hy(U) — Ho(B) — Ho(B,U) — (0)

As U # @ and B is arcwise connected we have Hy(B,U) = (0) and also
as B is a 3-cell H{(B) = (0) thus we have the short exact sequence

(0) — H1(B,U) — Ho(U) — Ho(B) — (0).

Again as B is a 3-cell Hy(B) ~ R and, by Duality, H{(B,U) = H?(F) =
Hy(F,2) = Hy(F) ~ R, where we have used that F is orientable being
the image of an open set of R under an embedding. Therefore we have
that Ho(U) ~ R2 and this implies that U has two connected components.

To finish the proof we observe that S, is contained in We(d_¢(x)).
Moreover ¢,(S;) C K;_4(x) for all 7 > 0. If it were not true, as for
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T =1t (St) C g(D?) C Ko(z), then we could find a ¢-trajectory through
a point in S; tangent to the tube K (z) contradicting that U” >0. O

Let 79 > 0 and N € N be such that for 0 < r < rg, S,(r) separates
B{f%=),r) for all m = N.

Lemma 4.2. Let p be a hyperbolic fixred point and x € W#(p) N W"(p),
x # p. Then givenr >0, 0<r <rp, thereisT1, 0 <ry <7 and N €N
such that for allm > N, and 0 < r’ < ry, every closed curve vy contained
in Sp(r) N B(f~™(x),r") is homotopically trivial within Sy (r).

Proof. Observe first that fixing n the thesis is trivial, for f~"(z) is an
interior point of Sy (r), which is locally R2. Moreover, it is clear that
if the thesis holds for r then the same is true for r”, r < " < rp; this
follows from the fact that S,(r) C S,(r”). By Sard’s Theorem the set
of r such that W2 (f~"(z)) N B(f "(x),r) is a non singular set (ie: a
finite union of smooth curves) is a residual one. Suppose that the thesis
is false and observe that, by our previous remark, we may assume that
r is fixed and the same for all n, and that S,(r) N B(f~"(z),r) is non
singular.

Therefore we will have that for all 71 there exist ', 0 < ' < ry, and
Spy, (1) such that there is a sequence of non singular closed curves 7 in
Spy, (r) N B(f ™" (x),r"), with limp_,o np = 00, such that H limy,_,o v =
p, and a sequence of points {z,} C B(f"(x),rg) such that z, belongs
to the 2-cylinder C;, C W2(f ™ (z)) such that OC), = y4 U Br, 21 € B,
where f3, is a non singular closed curve in the intersection of th(r) with
OB(f"h(x),r). As limp_o f "h(x) = p we have that WZ(f™"h(z)) C
[WE(p)]s so that Cj, is also included in [W¢(p)lo with o > 0 small if
h is large enough. Let us close Cp with disks Gy, and G}, OGp = Y,
G, = By, such that dist(Gp, G},) > r/2. Take a point wy, in the interior
of C,, UGp UG}, and another disk Dj, wy € Dy, at a distance > r/4
from Gp, U G}, such that dDj, = y;, C C} is a non-contractible curve in
Cj,. By 2.6, for every point z € M there is a continuum C(z) C Wi (z)
which intersects OB(z,r). If z € Dj, then, by 2.8, choosing o small
enough, C(2)NGLUG), = @ and therefore C(z) intersects C}, in a single
point (if we have 2 points of intersection then expansivity is violated).
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Thus the map H: D} — C}, such that H(z) = w where {w} = C(z)NCy
is well defined and continuous: let {z,} C Dj, limz, = z € Dj}. Let
{wp} = C(2,) NC. As {wp} is a bounded sequence it has a convergent
subsequence so let {wy, } converge to w. Clearly w € Cj, N W (2) so by
the expansivity of f it holds that {w} = C(z) N Cy. Thus lim H(z,) =
H(z) and h is continuous. If z € ~, then H(z) = z, hence y;, C H(Dj},).

But, by continuity of H and as Dj, is a 2-disk, we have that H(Dj)
is contractible in C}, contradicting the fact that ~; does not bound a
2-disk in the cylinder C}. Therefore there must exist 1 with the desired
properties. O

Theorem 4.3 (Theorem B). The stable manifold of p, WZ(p), is topolog-
ically transverse to its unstable one, W!(p), at the point x.

Proof. First we prove that W (x) locally separates W*(x). If it is
not true then there is a neighborhood W of = such that W N Wk (z)
is contained in a single region of W\W£(x). This implies that W (x)
is tangent to WZ(z) at . As x is a homoclinic point we have that
limy,_, 1o f™(x) = p and W"¥(p) will be tangent to W#(p) at f"(z), n € Z.

Let us now give a brief idea of the proof in the two-dimensional case
(see Figure 3). In this case, Sy(r) will be an arc tangent to W*(p) at
f™(x) for n sufficiently large. Moreover, S, (r) will have two prongs,
say A and p, separated by f~"(z) such that both of them are close to
Ws(p). If we take an arc § in the thin region of B(f~"(x),r)\Snh(r)
joining both prongs and at middle distance between f~"(z) and the
boundary of B(f~"(x),r), the existence of a continuum C(z) C Wk (z)
for all z € (3, such that C(z) intersects OB(f ™ (x),r) will lead us to a
contradiction.

For, if o is small enough, 2.8 prohibits C(z) to stay between the
two prongs near OB(f~"(z),r) and near f~"(z). Therefore C(z) must
intersect either A and u and, by the expansive properties of f, only one
of them.

We classify the points of 8 in two classes:

A={z€pB/C(z) intersects A}
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and
B ={z€ p/C(z) intersects u}.

We have that AU B = (3, as [ joins A with u, A and B are non void,
and both A and B are closed sets. Therefore 8 is not connected which
is absurd. The following argument is an adaptation of these ideas to the

Figure 3 "

three dimensional case.

Let N1 € N be such that for all n > Ny, S,(r) C W2(f"(z)) sep-
arates B(f " (x),r) with 0 < r < rp. Given 0 > 0 let Ny € N be
such that for all n > NaS,(r) C [WZ(p)l,- Hence one of the com-
ponents of B(f~"(x),r)\Sn(r) is contained in [WZ(p)], too. Choose
N = max{Ny, Ny} and let v’ < 7y, r; as in 4.2. Choose a Jordan
curve 7, ¥ C Sp(r) N B(f~"(z),r'), such that dist(y, f~™z))’> '/4
and dist(y,0B(f"(x),r)) > r'/4, n > N. By 4.2 we may choose ~y
such that it bounds a 2-disk D C S, (r) containing f~"(z) in its inte-
rior. Let D’ be another disk such that 0D’ = v and such that [(D’)
is contained in the connected component of B(f~"(x),r)\Sy(r) with no
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points of W (f™"(x)). Observe that we can take D’ satisfying that
dist(D’, 0B(f"(x),r)) > /8 and dist(f"(z),D’) > r’/8 too. Using
2.8 we may prove that if o is small enough this component is that one
contained in [W¢?(p)],, otherwise we will have points of WE(f~™(x)) and
WE(f~"(x)) at a distance less than 20 in the boundary of B(f™(x),r)
which contradicts 2.8. Also for the same reason we have that for ¢ > 0
sufficiently small we will have that for all z € D’ there is a continuum
C(2) C W¥(2) which intersects D in a single point w at a distance less
than r//16 from D', hence at a distance greater than /16 from both
OB(f~™(x),r) and f~"(x). Let h: D’ — S,(r) be such that hi(z) =w.

Asin 4.2, we have that h is a continuous map and h(y) = 7. Observe
that v is not contractible in S, (r)\B(f~™(z),r’/16). But, by continuity
of h, we have that h(D’) C S,(r) is homotopically trivial which contra-
dicts the fact that v is not contractible in S,,(r)\B(f~"(x),r’/16). This
finishes the proof that W?(z) locally separates Wi (x).

It seems clear that from this fact, taking into account that We(x)n
We(z) = z, we may derive that W?(p) is topologically transverse to
W*(p) at . On the other hand I cannot find bibliography for this, so
let me sketch the proof here. We may assume that z is the origin O in
R3 and W¢(x) is the standard 2-disk D in the Ozy plane. Moreover,
Wi (z) is locally a smooth arc 7, which we parameterize with the arc
length s, such that v(0) = O. We may assume that for s > 0y(s) e HT =
{(z,y,2) € R3/2 > 0} and for s < 0y(s) € H~ = {(z,y,2) e R3/z < 0}
(expansiveness implies that N D is a single point and D separates v as
we have shown).

On one hand, if we have that v,(0) # 0, where we have written ~+(8) =
(72(8), 7y (2),74(s)) for the derivative of y(s) with respect to s, then the
result follows from the Implicit Function Theorem. On the other hand,
if v.(0) = 0 we may assume, rotating the axes if it were necessary, that
(72(0),74(0),72(0)) = (1,0,0). Consider the plane A(s) normal to v'(s)
at the point ¥(s) and the arc of equation 7 (s) = (Y2(8), Yy (8), 572(8)),
s € (0,6), 6 € (0,1) to be chosen later, and let us define a positive
function €(s) such that €?(s) = (1 — 5)2(7(5))2, 5 € (0,0), and a compact
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set V1 = {(,9,2) € R¥/(z — %(9))2 + ¥ — %()? + (2 — 1:(8))% <
€(s), (z,y,2) € A(s)}. Hence v1(s) = y(s) + (0,0, —¢(s)) is included in V;
and lies in its boundary as well as

72(8) = 7(8) + (0,0, €(s)) = (72(s), y(s), (2 = 8)72(s)).

Moreover it is not difficult to see that the boundary of V4 may be thought
of as composed by arcs of the form T'(l,m,n)(s) = v(s) + e(s)(I,m,n)
where 12 + m2 + n? = L, l,m,n €R, sel0,]. We enlarge V; joining to
it the solid half-sphere

H={peR3|p—©)| < @), < p—16),7(5) >> 0}.

Let us call V5 to this new set.
If we have a point in V' N Oxy then we have that

(@ = Y2(9)2 + (¥ — 1())? < €2(5) = (12(5))2 = (1 — 8) = 1)(72(5))2 < 0

if s € (0,2). Thus choosing § < 1 we have that VN Oxy = O. Moreover,
for a fixed s € [0, 6] we have that the point of maximum height lies in
72(s) and that of minimum height lies in 71 (s), refine our choose of § in
order to have y3(6) as the point of maximum height of V; and in such a
way that the angle between the tangent versor 7/(s) and ~+/(0) = (1,0, 0)
remains less than /8 for all s € [0,8] and such that £, the straight
line segment joining O with (6), also forms an angle less than 7/8 with
(1,0,0). Let II(s) be the plane passing through ~(s)-and orthogonal to 7,
the versor of the direction of £ such that < 71,% >> 0 (here 7 is the verosr
(1,0,0)), and let us choose another straight line segment £ = [O, po|,
passing through O and a point pg such that pg = v(8) + \g(0, 0, 1) where
Ao > 0 has been chosen in such a way that £ forms an angle less than
m/3 with (1, 0,0) and such that it intersects V5 only at O. This is pos’sible
due to our previous choice of 8. Finally, let us enlarge V5 by tracing the
straight line segments joining points of V5 to those of £, we call V' to this
new set. We construct a homeomorphism which is the identity in the
boundary of V' and which “pushes” 7(s) against £’. We extend it to the
exterior of V' as the identity map. It is clear that this homeomorphism
is the identity in the 2-disk D. We repeat this construction for s < 0.
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Thus we have reduced the last case to that in which v, # 0 and hence
we may apply the Implicit Function Theorem again. O

5. Proof of Theorem C

1. From Theorem B we may assume for the rest of this paper that for
every hyperbolic periodic point p, W*(O(p)) is topologically transverse
to W#(O(p)) at every homoclinic point z, z € W2(O(p)) N W*(O(p)).
From the results of 4 we have that there are numbers 0 < 7/ <r, NeN
and a sequence Sy, (r) of surfaces such that for alln > N, S, (r) separates
B(f™(z),r), Su(r)NB(f~"(z),r’) is homotopically trivial within (T )
and S, (r) intersects U(p,r) and they are topologically transversal at
their (unique) intersection point.

2. Choosing 7 > 0 small enough, we will have, for every convergent
subsequence {Sy, (2r)} of {S,(2r)}, that H limy_ . Sn,.(2r) C S(p,2r).
Otherwise we will have points of W3 (p) not in S(p,2r) for arbitrarily
small €, 0 < € <e.

3. In view of 2, let us assume that {S,(2r)} converges in the Hausdorff
metric and that S, (2r) C [S(p, 2r)], for all n € N where ¢ > 0 is so small
that (see 2.8) for every point z between S(p, 2r) and Sy (2r) in B(p,3r/2)
there is a continuum C(z) C W¥(z) which intersects either S (p,2r) or
Sn(2r) (or both).

We assume without loss of generality that p is a hyperbolic fixed
point and z is homoclinic, x € W*(p) N W¥(p).

Lemma 5.1. There is " > 0 such that for every z between S(p, 2r)
and Sy (2r) in B(p,r") there is a compact connected set D(z) C W2(z);
z € D(z), which separates B(p,r) and p and f~"(x) are in different
connected components of B(p,r)\D(z).

Proof. Let z be in the hypotheses of the lemma. As Q(f) = M, there are
sequences 2z;j — z and nj — 400 such that lim; 4., f 7 (%) = z. By &
for every y between S(p, 2r) and S, (2r) in B(p, 3r/2) there is a continuum
C(y) € Wl(y) which intersects either S(p, 2r) or S,(2r). If we have
that C(y) intersects only S(p,2r), then there is a neighborhood V()
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between S(p,2r) and S,(2r) in B(p, 3r/2) such that every y’ € V(y) has
a continuum C(y') C WX(y') intersecting S(p,2r) too; otherwise there
would be a sequence ¥, — y such that the corresponding C'(y,,) intersects
only S,(2r) and taking a convergent subsequence of {C(y,)} we will
have (see 2.13 and also [Vi2], section 1) a continuum C(y) C WX(y)
intersecting S, (27).

Therefore we may assume that for the sequence {z;}, C(z;) intersects
the same surface, say S(p, 2r), in a point w;. Thus f~"7(C(2;)) intersects
" (S(p,2r)) in f " (w;). By 2.10, given A > 0 there is L € N such
that for all n > L, for all w € M, f~"(W(w)) C W{(f ™ (w)).

Therefore the diameter diam(f™ "7 (C(z))) — 0 uniformly with j —
+00, and, as f "i(z;) — 2, we have f "i(wj) — z too. As in 4.1,
see also [Vil], section 2, e have that there is N € N and a sequence
of surfaces S; C W2 (f "(wj)), such that S; separates B(f "I (w;),2r)
if nj > N. To see this observe that, as M is compact, we have that
{w;} converges to a point w. For, if for a certain subsequence {wj, } we
have that limy_. 4+, wj, = w then we have that {w} = C(z) N S(p, 2r) by
uniqueness of the intersection point (expansivity of f). Take a 2-disk
D c S(p,2r) such that w € int(D) and D C 5/4(10). Therefore, there
is J € N such that for all j > J, w; € int(D) and D C WES/Q(wj).

Without loss of generality we may assume that w; € int(D) for all
j € N. Given an arc v; C D joining w; with D there is N; € N such
that f~"(v;) reaches the boundary of B(f~"(w;),”) (same arguments as
in 4.1) for all n > Nj for all arc ; (compactness of D). It follows, by
compactness of {w;};jey U {w}, that there is N € N such that for all arc
~ joining 0D with a point w;, f~"(v) reaches 8B(f_nj (wj),2r) provided
that n > N. Hence, if n; > N, f "i(y) reaches OB(f " (wj),2r)).
From this, as in 2.11, we may prove that the connected compénent
S; of W2(f "i(wj)) N B(f "i(w;),2r) containing f~"J(w;) separates
B(f " (wj),2r). Asin 2.13, taking a convergent subsequence from {S;},
we have that there is a continuum D(z) C W2(z), z € D(z). Assume,
without loss of generality, that D(z) = H lim;_,(5})-

We have that D(z) separates B(z,2r) if z is sufficiently close to p,
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say z € B(p,r"”). For, with similar arguments as those of section 4,
we may prove that §; intersects U(p,2r) in a single point if we take
z near p, say z € V(p). Moreover, S; separates U(p,2r) (in fact they
are topologically transversal at their intersection point). Then D(z)
will intersect U (p, 2r) and as in 2.13 (see also [Vi2] Proposition 1.5), we
may prove that it separates U(p, 2r) in B(z,2r). Therefore it separates
B(z,r") for 0 < r’ < 2r.

Taking r” such that if 2 € B(p,r”) then B(z,r/2) C B(p,r) C
B(z,2r) we may prove that D(z) separates B(p,r). It is clear that D
and f~"(z) are in different connected components of B(p, r)\ D(z). This
finishes the proof. O

Lemma 5.2. For every z between S(p,r) and Sy(r) in B(p,v"), v as in
5.1, there is a continuum C(z) C WX(2), z € C(z), such that C(z) is
separated by D(z) in B(p,r). Moreover, C(z) joins S(p,r) with Sy(r).

Figure 4

Proof. By 5.1, for all z € B(p, r") we have that D(z) intersects U(p, 7).
As Q(f) = M we have that there are sequences {z;},limj_ 2 = 2,

n; — oo such that limj_., f"/(z;) = 2. With arguments similar to
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those of 5.1 we find C(z) C W!(z) as the Hausdorff limit of a sequence
of arcs v; C WX(f"I (wj;)), where {w;} = D(z;)NU(p, r). Moreover D(z;)
separates U(p,r) into two arcs Ut (p,r) and U~ (p,r) and from this we
have two sequences {’yf} and {v; }, with v; = vf U, o) =
v Ny C WE (wi)) N M (U (p,r/2)) and v € WE(F™ (w;)) N
f"(U~(p,7/2)) such that both ’yf and ~; reach OB(f"i(wj),r) and
D(f"J (w;)) locally separates one from each other at f"J (wj). As Sp(r) C
[S(p,7)]s We have that 7]7L and 7; must intersect Sy, (r) or S(p,r). But if
vf intersects S(p,r) then v, intersects Sy(r) and viceversa; otherwise
we violate expansivity.

Thus C(2), being the Hausdorff limit of {~;}, intersects both S, (r)
and S(p,r); therefore C(z) joins S(p,r) with Sy, (r). We have that S,,(r)N
S(p,r) = @ and, by 5.1, D(z) separates U(p, r) so it separates Sy (r) from
S(p,r). It follows that the points given by C(2)NS(p,r) and C(2)NSy(r)
are in different components of B(p,r) with respect to D(z). O

Theorem 5.3. There is an open set W C M in which there is defined an
f-1ps.
Proof. Let x be a homoclinic point, 7’ be as in 5.1, n € N like in 3, at
the begining of this section, and n’ > n be such that f=" (z) € B(p,r").
Therefore S,/ (r) is between S,(r) and S(p,r). Consider an arc v of
points of U(p,r) between S,(r) and S(p,r) such that f=" (x) € int(y)
and every point of v is in B(p,r”). Let D be a<2-disk in S,/(r) such
that f‘"/(x) € mnt(D) and D C B(p,r"). For every point y € D there is
C(y), asin 5.2, joining S(p, r) with S, (r); and for every point z € v there
is D(z), as in 5.1, such that D(z) separates p from f~"(z) in B(p,r).
Therefore C'(y) intersects D(z) and, by the expansive properties ’Of I
C(y) N D(z) is a single point w. Let us define a function h: D x vy —
M by h(y,z) = w, it is clear that h(f~" (), " (z)) = f~ (z). We
claim that A is continuous and injective. Therefore — as.dim(M) = 3,
int(D) xint(y) ~ R? and by Brouwer’s Theorem of Invariance of Domain
(see [Sp] Ch. 4) — h is a homeomorphism and its image contains a
neighborhood W of f _"/(:r). Therefore h defines an f-lps in W.

Proof of our claim. To see that A is continuous we consider a sequence
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{(Yn,2n)} C D x v such that it converges to (1y2)€ DX 7 as'n —hog)
As M is compact, the sequence {wnk}, say to a point w.,. But W, =
C(ynk)ﬁD(znk) hence wo, € W (y)NWS(2). Thus wy, = w = C(y)ND(z)
by expansiveness. Therefore h is continuous. To prove that it is injective
let (y, z) and (y/, 2) be points in D x v such that h(y,z) = h(y', 2') = w.
This is the same to say that C(y') N D(2) = C(y) N D(z) and therefore
Cly) N D(2') = Cly) N D(z). As w € W2(z) and w € WE(z') we have
that for all n > 0dist(f"(2), f"(2')) <2 < . As z, 2’ € v CU(p,r) we
also have that for all n < 0, dist(f"(2), (') < o Therefore, by the
expansive properties of f, z = 2’. In a similar way we may prove that
y = y'. This finishes the proof of the claim and the theorem. O

Proof of Theorem C. It follows from Theorem A and Theorem 53 48]
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