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Some Existence Results for Quasilinear
Elliptic Equations in a Finite Cylinder

Sonia Omrani

Abstract. We study the existence of solutions u in the finite cylinder Sq = (—a, a)xw
of the quasilinear elliptic equation

n

Z a;;(x)0; ju+ f(z,u,Vu) =0

i,j=1

with Dirichlet boundary condition on flat parts of 0S5, and Neumann condition on
the curved parts. In this paper, we focus on the technicality caused by the “corners”
of Sq. We prove the existence of such solutions provided that suitable sub and super
solutions are known and under the condition that the coefficients a1,4,% # 1 vanish

on the corners. We also prove a more general result in R2.

1. Introduction — Main Results
In the finite cylinder S, = {z = (z1,y) € R*; ~a < 21 < +a,y € w}, we
wish to solve the boundary value problem,

Xn: a;;(2)0; ju + f(z,u,Vu) =0 in S, (1.1)
ij=1
Ou(x1,y) =0 for —a <z < +a,y € dw (1.2)
u(=a,y) =Y1(y), ula,y) = a(y) (1.3)

Here, w is a bounded regular domain in R”! and v is the exterior unit
normal to S, (or w).

For 4,7 = 1,... ,n, the coefficients a;j are continuous in S,, sat-
isfy a;; = aj; for 4,5 = 1,2,... ,n and the usual condition of uniform

Received 16 May 1994.
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ellipticity,
colé|? < Z aij ()65 < Colé|”

i,j=1
Vo € Sy, VEER™, ¢9,Cop >0

The functions 1 < 19 are assumed to belong to W2 (w) and to satisfy
compatibility conditions with (1.2), i.e

(1.4)

0, =00n 0w, j=1,2 (1.5)

The function f: S, x R x R® — R is required to satisfy certain assump-
tions detailed below.

H. Amann and M.G. Crandall [AC], considered this type of problems
in a bounded and regular domain. Under the hypothesis that f(x,u,p)
grows at most quadratically in p, they proved that the existence of an
ordered pair of sub and super solutions implies the existence of a solution
of this problem.

More general quasilinear elliptic equations of the type

n

Z a; j(x,u, Vu)0; ju + f(x,u, Vu) =0

ij=1
in a bounded regular domain Q with a Dirichlet boundary condition,
were studied in [LU] and [S]. Using a method due to Bernstein, J. Serrin
[S] reduces the solvability of this problem to tl}e setting of a priori
estimates for solutions:

i) estimation of sup |u| on Q

ii) estimation of sup |[Vu| on 0Q
iii) estimation of sup |Vu| on Q

This reduction is achieved through the use of the Schauder ,fixed
point Theorem in appropriate function spaces.

P.L. Lions [L2] applied this existence method to solve the Dirichlet

problem
Zaw Ju+Zb )Oiu + c(x)u + p(Vu) = f
=1

in a bounded regular domain with a convex function ¢.
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Coming back now to the problem in the finite cylinders Sa, we de-
note by % the set of “corners” of Sy, £ = {(%a,y),y € dw}. In [BN],
H. Berestycki and L. Nirenberg proved the existence of a solution in
Co(S,) N WQ’p (S4\X) of the semilinear equation

loc

n
Lu = Zaw ”quZb )Oiu + c(x)u = f(z,u) in S,
1,j=1
with the boundary conditions (1.2)-(1.3). To prove this, they used an
iteration method based on the existence of a pair of ordered sub and
super solutions.
They first solved the linear problem

Ly=g it S, (1.6)

with the boundary conditions (1.2)-(1.3). For g € LP(S,), p > n, they
proved the existence of a solution u € C9(S, )n Wfof (S.\%). In order to
overcome the technical problem of corners, they considered an approx-
imate problem in a subdomain of S, in which the corners have been
rounded off. Then they passed to the limit using a symmetric positive
barrier function.

Our situation is more intricate since we need a priori estimate on the
gradient to prove the existence of solutions of (1.1)-(1.3) as explained
above. We can not apply the classical elliptic estimates, since the do-
main is no smooth (with corners). Another difficulty comes from the fact
that different boundary conditions are imposed on parts of the boundary
which touch each other. Indeed we can prove the existence of solutions
in C0@) N C2(9) of some Dirichlet problem

Zam:cuVu)@”u—kf(a:uVu)—O inQ, wu=¢ onoN

when Q is a bounded domain in R™ satisfying an exterior sphere con-
dition on AQ and ¢ € CYOQ). This is proved by approximation of
the domain Q by C?" domains Q,, and the function ¢ by functions
¢m € C%7(Q,). Then we use the procedure of Serrin [S] described
above to solve the problem in Q,, (See [GT], Theorem 15.16).
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We will first seek for solutions in W22(S,), for some p > n, of the
linear problem. This gives us some conditions on the coefficients a; ;. We
assume that the nonlinear term f(z,u, p) is continuous on S, x R x R™,
locally lipschitz continuous in (u,p) and grows at most quadratically in

p i.e.
£z, u,p)| < K(1+|pl) for (z,u,p) € Sa x R x R"

Then, we prove that the existence of sub and super solutions of (1.1)-
(1.3) implies the existence of a solution in some Sobolev spaces W2P(S,),
p > n.

Our main results are,

Theorem 1.1. Let u < W be sub and super solutions of the problem
(1.1)-(1.3) belonging to C°(S,) N VVi’f(?a\Z). That is they satisfy,

> aij(@)du+ f(z,u, Vu) >0 >

ij=1

> aij(@)dia+ f(@,w, V) i S,

ij=1

dou(z1,y) <0< d,a(r1,y) for —a <1 < a,y € dw

u(—a,y) < P1(y) <u(—a,y), wu(a,y) <Pa(y) <u(a,y) for y €w

If the coefficients a; ; satisfy,

a1i(fa,y) =0 for i#1 and ycw (1.7)

then there is a solution u € W2P(S,) of (1.1)-(1.3) for all p > n, with
u<u<Tu.

We do not know if the condition aj ;(+a,y) = 0 for ¢ # 0 is really
needed for this result, this is still an open problem. However in the case
of dimension 2, we prove a more general result,

Theorem 1.2. Consider the case of dimension n = 2, and‘let u <u be
sub and super solutions of the problem (1.1)-(1.3) belonging to C°(S,) N
I/Vl%’f(ga\il). If the coefficients a; ; satisfy,

a1 2(8:) = ag1(S;) <0 for 4 € {1,... ,4} (1.8)
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where {S1, ... ,54} denote the corner points of S,, then there is a solu-
tion w of (1.1)-(1.3) and u < u < U. Furthermore u is in W2P(S,) for
all 2 < p < p* where p* is defined by the following conditions:
(i) p* = +o0, if Vi € {1,... ,4} we have,
1
m o AS)  [e11(Si)az2(Si) — af 5(Si)]2

—tan — < = <0 oray9(S;)=0
3 7 a1,2(5) a1,2(5;) or 61,2(51)

A(S;)

|: 2 arctan ‘1172( 5
A(S;)

3arctan ﬁlﬂ( i)—i—n

i if i € {1,...,4} such that,
ie{l,... 4} ] f (e }

A(S;)
a1,2(S;)

To prove these theorems, we use a monotone iteration which is a

s
< —tan —
3

slight modification of the arguments of [AC]. In fact the main difficulty
here is to prove a shift theorem in S, for the linear problem (that is a
theorem which ensure the existence of solutions in W?2P(S,) of the linear
problem (1.6)-(1.2)-(1.3) when g € LP(S,;)). This is the aim of section
2 of this paper. The proof of the two theorems is then given in section
3. Some technical results particular to the dimension 2 are proved in
section 4.

2. Resolution of the linear problem
We first begin with some propositions, they will be used several times
to solve the linear problem in S,;. Consider the linear problem,

Lu= i a; j(2)0; ju + bi(x)Ou + c(x)u = g (2.1)
3,j=1

du(x1,y)=0 for—a<z) <a,y € ow (2.2)

u(—a, y) e wl(y)v U(G,, y) - 1/12(9) (23)

Here, the coefficients a; j, 11, ¥ satisfy the conditions imposed in the
introduction, g € LP(S,) and the coefficients b;, ¢ satisfy,

|bil,|c] <C and ¢ <0 a.e. in S, (2.4)

Bol. Soc. Bras. Mat., Vol. 27, N. 1, 1996
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Proposition 2.1. [f the coefficients a;; satisfy the condition (1.7), then
the linear problem (2.1)-(2.3) has a unique solution u € W2P(S,) for all
p>mn and

lullwep(s,) < C1 (IlgHLp(sa) + D 15l + HUHLp(sa)) (2.5)
J

In the particular case where S, is a rectangle of R%, we have,

Proposition 2.2. If the dimension is n = 2 and the coefficient a1 o = as
satisfies the condition (1.8), then the linear problem (2.1)-(2.3) has a
unique solution u in W2P(S,) for the values of p satisfying one of the
conditions (i), (ii) of Theorem 1.2 and

lullw2p(sy) < C1 (Hgl\m(sa) + D 15l + Hu”LP(Sa)) (2.6)
J

Proof of Proposition 2.1. The uniqueness of a solution of (2.1)-(2.3)
follows from the maximum principle. To prove the existence, we write

a-— a+ I

u=v+ i)+ 2 () 27)
then v satisfies the linear problem,
Lv=ge LP(S,) (2.8)
ov(r1,y) =0 for —a<zi <a, y€oiw (2.9)
v(z1,y) =0 forzi+a, yew @ (2.10)

By reflecting across x; = +a, we consider an .extended problem. We
extend the coefficients a; ;, b;, ¢ and g to be periodic in x; of period 4a
and such that aj 1, a;j for i and j # 1, ba, ... , by, ¢ are symmetric with
respect to the hyperplane {z; = —a}, that is ;

a;,j(—2a — x1) = a;5(x1) for 1 € (—a,a),i and j#1

and ay; for i # 1, by and § are antisymmetric with respect to the
hyperplane {x1 = —a}, that is

a13(—2a — 1) = —a14(z1) forz) € (—a,a), and i+#£1
We will use the same letters as a notation.

Bol. Soc. Bras. Mat., Vol. 27, N. 1, 1996

SOME EXISTENCE RESULTS FOR QUASILINEAR ELLIPTIC EQUATIONS 97

By standard elliptic theory there is a unique 4a-periodic function
v € W?P(]—3a, a[xw) satisfying (2.8) in the infinite cylinder (by multiple
reflections) and d,v = 0 on its boundary i.e. for y € Jw.

We can see that —v(—2a—x1,y) is also a solution of the same periodic
problem. By uniqueness, it equals v. Hence we get that —v(—a,y) =
v(—a,y) and then, v(—a,y) = 0. Similarly v(a,y) = 0 for y € w. Thus v
is a solution of problem (2.8)-(2.10) and we have the estimate

Iollwam(se) < € (1llzags) + 101l ogsa)) (211)

The function u given by (2.7) is then a solution in W?2P(S,) of the
problem (2.1)-(2.3) and satisfies the estimate (2.5). a

The proof of Proposition 2.2 is more technical, it is givenin section4.

3. Proofs of the main results
We show here how Theorems 1.1 and 1.2 follow respectively from Propo-
sition 2.1 and 2.2.

Proof of Theorems 1.1 and 1.2. First, we wish to obtain a priori esti-
mates for any solution u of our problem (1.1)-(1.3) satisfying u < u < .
Let u be such a solution, then it satisfies,
n

Z a;,j(x)0; ju = g = —f(z,u, Vu)

ij=1
using the representation of w (2.7) and the elliptic estimates, we see
that,

ollw(se) < C (1l oy + 101l ogsa))

In the following C denotes various constants not depending on u but
possibly depending on the v; and their W2P norms and on max |u| and
max |u|.

Using the argument in [AC] based on the Gagliardo-Nirenberg in-
terpolation inequality [N],

vl , < Ml <llwly

Bol. Soc. Bras. Mat., Vol. 27, N. 1, 1996



98 SONIA OMRANI
we get the a priori estimate for u solution of (1.1)-(1.3) and u < u <@
||u||W27P(Sa) < C(ai,j7 Sa7 ¢1, ¢25 max ’ﬂ|7 max |ﬂ|ap7 n, K) (31)

In place of equation (1.1), we will solve a modified equation

n

> aij(@)0;ju+ f(z,u, A(Vu) =0 (3.2)
ig=1
where £ is a smooth mapping: R" — R" satisfying |h(¢)| < 2|¢].
For this class of maps h, the preceding argument gives an a priori
bound of the form (3.1) with a different constant C, but independant of
the mapping h. Thus in particular we have the a priori estimate,

max |Vu| < Cp

with 'y independant of . Now fix such a map h whose range is bounded
and which satisfies in addition,

h(€) = & for [§] < max(C1, |Vl e, |V o)

With h so fixed, any solution of (3.2) satisfying (1.2)-(1.3) and u < u < @
is a solution of (1.1).
Let k be the Lipschitz constant of f in B, the subset of R"t! defined
by,
B = {(u,p) € R x R™|u| < max(|u| o, [@]0);

p| < max(|Vul e, [V, mal ]}

Rewrite the equation (3.2) as

3 a; j(2)0; ju — ku = — f(z,u, h(Vu)) — ku (3.3)
] !

7".7:1
We will solve this by monotone iteration using the following lemmas,

Lemma 3.1. Assume that the coefficients a;j satisfy the condition (1.7).

Let v € C(S,) be a function satisfying w < v <w. Then the problem

n

> aij(@)0iu — ku=—f(z,v,h(Vu) — kv in S, (3.4)
i,j=1
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under the boundary conditions (1.2)-(1.3), has a unique solution u = T'(v)
in W22(S,) for all p > n. It satisfies

u<u<u (3.5)
and furthermore
u<vy<ve<u = T(v)<T(v9) (3.6)
For the case n = 2, we have,

Lemma 3.2. Consider the case of dimension n =2 and assume that the
coefficient aj 2 = ag 1 satisfies the condition (1.8). Let v € C(S,) be a
function satisfying u < v < u. Then the problem (3.4) under the bound-
ary conditions (1.2)-(1.3), has a unique solution u = T(v) in W2P(S,)
for the values of p given by (i) or (ii) of Theorem 1.2. Furthermore the

solution u satisfies (3.5) and (3.6).
Proof of the lemmas. The uniqueness follows from the maximum princi-
ple. With the help of respectively lemmas 2.1, 2.2, the existence is easily
proved using the Schauder fixed point theorem, (since the right hand
side in (3.4) is bounded), the a priori estimate and the compactness of
the injection W2P(S,) < C1(S,), since S, is a Lipschitz domain.

To prove (3.5), we first observe that h(Vu) = Vu and then

i ai,j(x)c‘)i,j(u — g) — k‘(u — ﬂ) <
i.5=1 ’

< —f(z,v, h(Vu))

= _'f('ra v, h(vu))

— f(@,u, h(Vu))

< —f(z,u, M(Vu))

S bi(@)0j(u — u)

1‘7‘7:1

+f(z,u, h(Vu)) + k(u — v)
f(z,u, h(Vu))

n
n
n
+ f(z,u, h(Vu))

by the mean-value theorem.
By the maximum principle and the Hopf Lemma it follows that
u—u > 0. Similarly u — 7 < 0 and we prove (3.6) in the same way. O

Rol Snr Ryac Mat Val 27 N 1 1004
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To complete the proof of the theorem, we solve (3.3) by iteration
starting with u. Let the sequence (u,,) be given by ug = u and the
recurrence relation u,,+1 = T'(tp).

Inductively, we find using Lemmas 3.1, 3.2,

u<up <up<---<7u

We have

n

> 4ij(®)0ijUng1 — kg1 = —f(@, tmy R(VUmg1)) — kum

ij=1
The right hand sides are uniformly bounded. Hence by Propositions 2.1,
2.2 we find that

[um+1llw2p(s,) < C for all m

Thus a subsequence of u,, converges uniformly in C''(S,) to a function
u € W?P(S,) satisfying (1.2)-(1.3). Since the u,, form a monotone
sequence, the whole sequence converges to uw and the function u is a
solution with all the desired properties. O

Remark. Using Lemma 7.1 in [BN], one can prove the following result:

Theorem 3.3. Let f be a continuous function which is assumed to be
bounded and locally Lipschitz in (u,p). Let u < uw be sub and super
solutions of (1.1)-(1.3) belonging to C9(S,) N I/Vl%f(ga\’Z). Then there is
a solution u in VVZ%CP(FG\Z) NCY(S,) of (1.1)-(1.3) satisfying u < u < 7.

4. Proof of proposition 2.2
In this section we give the proof of Proposition 2.2. '
We use the representation of u

Y1(y) +

and denote by X,(S,;) the functional space,

a — Iy a+ 1

2a

u=v+

Pa(y)

Xp(Se)={v e W2’p(Sa);8,,v =0 on (—a,a) X dw;
v=0 on (+a,y),y € w}
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Our purpose is to find the values of p > 2, for which the index of the
operator A defined by,

2 2
A= Z @i, 3 (2) s 5 + Z bi(x)0; + c(x)
4,5=1 i=1
from X,(S,) into LP(S,) is zero.

For this, we use two lemmas of technical character where we are
going to deal with the particular case when the domain has only one
corner. We follow in this the representation of P. Grisvard [G].

We consider a plane bounded domain Q whose boundary 09 is com-
posed of two rectilinear sides Y1 and Y9, a curvilinear side Y3 of class
C?2 and having one corner S = T1 N To whose measure of the angle is
7/2. We denote by Y,(Q2) the functional space:

U:Q — UQ
1 1
T1,Y2 =

Va1l Ay/ary
where a; ; = a; ;(S), for i,j € {1,2} and A = (a1,1a2,2 — a%,z)%-
Let w(y) = v(x) = vU1)(y), for y € UQ and Aw(y) = Av(zx), then

we have

(—a1,271 + a1,1$2)>

(z1,22) — <y1 =

A ;(US) =65
We denote by ag(A) or « the measure of the angle at US of U,

then we have

A
tana = ——— and a € (0, )
ai2

For every v € Y,(Q2) the function w(y) = v o U1 (y) satisfies
w=0 onUYT1NUT3
Oy, w — al—A’Qﬁww =0 onUY2
We will prove these two lemmas:
Lemma 4.1. There exists a constant C > 0 such that for all v € Y,(),
Il < € (140l ooy + lollzoey) (4.1)

forallp>2,if0<a§%orazgandall2<p<ﬁ,if%<a<%.
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Lemma 4.2. The image of Y,(Q) through the operator A is LP(Q2) for all
p>2,ifo<a<fora=3 andall2<p<ﬁ, if3<a<3.

Let us end the proof of Proposition 2.2. We denote by {I';}icq1,... 41
the open linear segments forming the boundary of S,.

Let f € LP(S,), then there exists a unique v € W2r(S,\V)NCY(S,)
solution of:

Av=f in S,
Ov=0 on TyUTly=(—a,a) X 0w
v=0 on TyUTl3={(ta,y),y € w}

V denotes a closed neighbourhood of the corners. The existence of this
solution is proved in Lemma 7.1 of [BN] by considering an approximate
problem in a subdomain of S, in which the corners have been rounded off
and by passing to the limit using a symmetric positive barrier function.

Then we fix a partition of unity {n;};=0..4 on S, such that n; €

D(R?) for each j and

(a) the support of 7y does not contain any corner of S,

(b) the support of 7; contains S; and not contain any other corner;
in addition the support of 7; does not intersect I'y for k # j and
k#35+1,

(c) Oyymj=0onTyfork=7jifje {2,4} and for k = jH1ifj+1e {2,4},
where v, is the exterior unit normal on T'.

It follows from the classical results of regularity [GT], that nov €

W2»(S,) and we have

!

o0 llw2m(se) < € (1401l oy + 1ol zo(sy) ) (42)

since the support of ngv is at a strictly positive distance from the corners.

Then we select an open neighbourhood W; of a corner S; containing
the support of 7;, having only one corner S; and such that the boundary
of W coincides with the 85, near S;. Thus assuming that j € {1,3},

SOME EXISTENCE RESULTS FOR QUASILINEAR ELLIPTIC EQUATIONS 103

we have
Anjv = n;f + [A;n5lv € LP(W5)
njv=0 onT;NoW;
81,T]j1) =0 on Fj+1 N 8W]
v =0 on dW;\(Tj UTj11)

We deduce using Lemma 4.2 that, n;v € w2 (W;) for the values of p
given by the lemma. Furthermore by lemma 4.1, we have the estimate

H77jv||w2,p(sa) = (HATIJ'UHLP(SG) + Hnjvlle(sa)) (4.3)

Adding the inequalities (4.2) and (4.3), we obtain that v € W2P(S,)
and v satisfies the inequality (2.11) for the values of p given by (i) or
(ii). This achieves the proof of Proposition 2.2. O

Now, it remains to prove the two Lemmas mentioned above.
Proof of Lemma 4.1. We choose a function n € D(R?) with support in
Q with 7 identically equal to one near S and 9,n = 0 on Ts. We shall
look separately at nv and 1 — nv. Set

w(y) = (p)(@) = (U (Y)), y €U

and select any plane open domain W with polygonal boundary such
that
(a) W CcUQ,
(b) W contains the support of w,
(c) OW coincides with 409 near US.
It is clear that w € W?2P(W) and that w satisfies

Oy — g}\g&zw =0 onUY9NOW

where 19 is the unit normal on Y9 and 79 denotes the unit tangent

vector on U Y.
w =0 on the rest of OW

2 2
Aw = Aw+ Z Bi,j(y)ai’ijrZ Bi(y)@-wH;Ow = (Anv)ou71 =¢ in w
ti=1 =l

where b; ; € CO(W), b; € L=(W), 0 < i < 2 and b;;(US) = 0.

Bol. Soc. Bras. Mat.. Vol. 27. N. 1. 1996
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With the notations of [G], we have at the corner US, ¢1 = 0 corre-
sponding to the Dirichlet condition on U1,

a
tan¢2 - _%7

where ¢g € (=%, %) is the angle between the vectors

a
vo and g =9 — %TQ

™

Thus we have, ¢2 = § — a and if we denote by ¢ the conjugate

exponent of p,
1 1
i)
p q

¢1—¢2+2%:<1+g>%

™

then

is not an integer forallp > 2,if0 <a < Fora = Fandall2 <p < 37%,
. ] .

It is always possible to choose the other angles of W, to avoid the
exceptional cases for the inequality (4.1.2) given in [G]. Accordingly, we
have

HwHWZﬁD w) =
<d Lﬁ }:bJ (y)0; jw — }:b )Osw — bow '+wmwm0 £
1,7=1 Lp(W)
<€ (I8l + 4 m B s )| [0lhwrony + Iolhwrnony )

Since Bz}j (US) = 0, we can choose the support of 1 small enough such
that

b-‘<
T, i ()| < <C

yesupp noud—1

QO | =

then we obtain
lellwzomwy < 2C (161w + lwllwroo) )
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Going back to v, this implies that
lmollw2e@) < C (1Al o) + lmlwie) (4.4)

We choose another plane domain W' with a CY! boundary. Then we

have:
1—nweWH W) and (1 -n)v

satisfies either the condition of Dirichlet or Neumann on the boundary
of W’. By the classical estimates, we get

10 = olws@) < C (A0 = mollp) + 10 = olwing) (45)

Adding inequalities (4.4) and (4.5), we obtain the desired estimate (4.1),
with the help of the interpolation inequality

lollwie@) < ellvllwarq) + Kf*lH’UHLp(Q), Ve >0 U

Proof of Lemma 4.2. We denote by Q the domain 4 and by }7})(@) the

functional space
) 0 on UYTLUUTS,
a
0,0 — 1—’28717 =0 on Uy}

As U is invertible, we shall calculate the image of Yp(fl) through the
operator A.
Let us set
Aty =tA+ (1 —t)A, teo,l]
Then since (A(t))m US) = 6;, applying Lemma 4.1, we know that for
each t € [0, 1], there exists a constant Cy such that

olhyasy < Co (|40 g + 1Pl0(e))

for all o € Y,(Q (~). Accordingly A(t) is a semi-Fredholm operator from
f/p(f)) into LP(Q) for every t € [0, 1].

By a theorem of Kato [K]|, the index of A(t) does not depend on t
since A(t) depends continuously on ¢. Then index A = index A.

To calculate the index of A, consider a function f € LP(Q). By the
results in [G] using an abstract lemma of J.L. Lions [L], there exists
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v € HY(Q) solution of

Abv=f inQ
v=0 onUYiUUTs
a
8o — 2285 =0 onlUTy

A

By the classical results of regularity [GT], & € W2P(Q\V), where V

is any closed neighbourhood of ¢ S. Then choose a function 1 € D(R?),
7 is identically equals to 1 near US and

a
o,n — %8717 =0 onUYy

It is clear that (1 —n)v € W2’p(f2) and we have
Ao =0f + 8]0 = fr € LP(W)

Where W is a polygonal domain which contains the support of n and
such that OW coincides with 9O near US.
Thus nv satisfies also
8, (%) — =20, () =0 on Uy
=0 on OW\UTs

Applying Theorem 4.4.4.13 in [G], we know that there exist numbers
¢, and functions S, such that

= > cmSm e WE(W)
—%<)\m<0 -
Am#E—1

where A, is the eigenvalue defined by

\ 91— ¢a+mm
mT a7 /

¢ denotes the conjugate exponent of p, ¢1 = 0 and tan g = =2

ay o’
Furthermore, we have

2
card{m € Z;—; <A <0, A #—-1}=0

for the values of p and « fixed in the lemma. Thus & € W2P (Q) and
index A = 0. O

Bol. Soc. Bras. Mat., Vol. 27, N. 1, 1996

SOME EXISTENCE RESULTS FOR QUASILINEAR ELLIPTIC EQUATIONS 107

References

[AC] H. Amann and M.G. Crandall: On some ezistence theorems for semilinear
elliptic equations, Indiana. Univ. Math., 27: (1978), pp. 779-790.

[BIN] H. Berestycki and L. Nirenberg: On the method of moving planes and the sliding
method, Bol. da Soc. Brasileira de Matematica, 22: (1991), pp. 1-37.

[G] P. Grisvard: Boundary value problems in non-smooth domains, Pitman Publising
(1985).

[GT] D. Gilbarg and N.S. Trudinger: Elliptic partial differential equations of second
order, (second edition), Springer Verlag, Berlin, (1983).

K] T. Kato: Perturbation theory for linear operators, Springer Verlag, New York,
(1966).

[L1] J.L. Lions, Sur les problemes auz limites du type dériée oblique, Annals of
Mathematics, 64 (2): (1956).

[L2] P.L. Lions, Résolution de Problémes Elliptiques Quasilinéaries, Arch. Rat.
Meca. Analysis, 74: (1980), pp. 335-353.

[LU] O.A. Ladhyzenskaya and N.N.Ural'tseva, Linear and Quasilinear Elliptic Equa-
tions, New York, Academic Press (1968).

[N] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Sup.
Pisa., 13: (1959), pp. 116-162.

[S] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations
with many independent variables, Phil. Trans. Roy. Soc. London, A264: (1969),
pp. 413-469.

Sonia Omrani

Laboratoire d’Analyse Numérique, tour 55-65
Université Pierre et Marie Curie

4, place Jussieu

75252 Paris cedex 05

France

Bol. Soc. Bras. Mat., Vol. 27, N. 1, 1996



