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Abstract. An interval exchange map T satisfies the infinite distinct orbit condition if 
the T-orbits of the T-discontinuities are infinite and distinct. We characterize among 
the interval exchange maps that satisfy this condition those that are uniquely ergodic 
by the convergence of an associated multidimensional continued fraction in the sense 
of Jacobi and Perron. 

O. introduction 

Suppose that for some irrational a E (0, 1), T is the interval exchange 
map that acts on [0, 1) by exchanging the intervala [0, a) and [a, 1). 

We say that n is a critical left (or right) iterate if Tn(0) < a (or 
Tn(0) > a, respectively) and there is no point of the orbit {T 1 (0), 	, 
• • • 	, Tn-l (0) } that is strictly between Tn(0) and the T-discontinuity a. 
By writing L for every left critical iterate and R for every right critical 
iterate we associate an infinite L, R word to the T-orbit of 0. By amal-
gamating successive letters that are the same the word will be of the 
form Ln 1 Rn2 Ln3Rn4 • • • , where ni > O and nk > O, for k > 2. We have 

n3 + 

[Ba2] contains a proof of this well known fact that can serve as a moti- 

vation for what we do here. Indeed, the main result of this paper gen- 

eralizes this assertion to interval exchange maps that permute m > 2 
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intervals using multidimensional continued fractions in the sense of Ja-

cobi ([J a] ) and Perron ( [Pe]). 

Roughly, the Jacobi-Perron algorithm in dimension N > 1 is a rule 

that transforms a sequence of vectors in where N0 = N U {O}, into 

a given non-negative vector X E RN . We then say that the sequence 

of integer vectors is the N-ary continued fraction expansion of X (see 

section 3). Contrary to the case of ordinary continued fractions (N = 1), 

a given X E RN , for N > 1, allows many different expansions (which 

is rather an advantage), and convergence of the partial quotients for a 

given sequence of integer vectors is by no means guaranteed (which is 

the main difficulty). 

Suppose that for some positive vector (ai, 	, am), that satisfies 

ai + • • + am, = 1, T is the interval exchange map that permutes the 

intervals [O, ai), [ai, ai + a2), e.t.c. according to a given permutation 

(section 1). We say that n is a left or right critical iterate of T if 

the definition given in the beginning of the section for m = 2 holds for 

some T-discontinuity (section 2.1). We associate in this way as before 

a L, R-sequence to the T-orbit of O. 

Suppose now that T satisfies Keane's infinite orbit condition (i.d.o.c), 

which means that the T-orbits of the T-discontinuities are infinite and 

distinct. For some conveniently chosen critical iterate n, we represent 
T by a stack S(g, X), where g represents the combinatorial type of the 
stack and X is an integer vector (section 2.3). We then transform the 
L, R sequence that is associated to the T-orbit of O into a sequence of 

integer vectors of dimension N, the N-ary continued fraction associated 
to X (not of X, as convergence is a problem), where N = 2m — 3 
(section 4). 

Our main result is theorem 4 of section 4 which states that an i.d.o.c. 

interval exchange map is uniquely ergodic if and only if the N-ary con-

tinued fraction expansion associated to X converges to X. 
The result is constructive. Indeed, for a given permutation 7r on m 

symbols one can construct the finite number of possible combinatorial 

types (described in section 2.2). To a given combinatorial type and a 
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letter L or R there is associated another combinatorial type (section 2.4) 

and a finite sequence of integer vectors (section 4). This information 

is easy to determine and only depends on 7r. So starting with g as 

described above, we apply successively the letters of the L, R-sequence 

that is associated to the T-orbit of O to get a sequence of combinatorial 

types and hence an infinite sequence of integer vectors. 

For the reader who wishes a stronger analogy between the cases of 

an interval exchange map of m = 2 and m > 2 intervals, we propose 

two possibilities: Either we write in case m = 2 the L, R sequence as 

L • • LR • • R • • • and replace each L by the finite sequence 1, 0 and each 

R by 0, 1 to get an infinite sequence whose terms are in N0. The obvious 

rules 

[. • , n, 0, 0, m, • 	= [. • • ,n,m, • • 

and 

[. • • , n, O, m, • • • ] = [- • , n + m, • • • ] 

show that this procedure yields the same result as the one mentioned 

in the beginning of this section. Or we amalgamate successive letters L 

(or R) in the L, R-sequence in case m > 2 that correspond to a left (or 

right, respectively) criticai iterate of the same type (see section 2.1 for 

the definition) to get a sequence of the form Ln 1  • • • Lnk R ml • .Rms  • • • . 
To determine the finite sequence of vectors that correspond to a letter 

with its power we determine the finite sequence in case the power is 1 

as before and then multiply each vector by the power. 

This paper relies heavily on a paper by Rocha ([Ro] . In particular, 

an adaptation of the characterization of uniquely ergodic i.d.o.c. inter-

val exchange maps given there is crucial to prove convergence of the 

continued fractions mentioned above. Most of section 2 is a collection 

of results from [Ro] that are used in this paper. 

This paper is a sequei to [Ba2] where we expressed the topological 

entropy and the invariant measured foliations of pseudo-Anosov maps in 

multidimensional continued fraction form using interval exchange maps. 

As the foliations in question and hence the corresponding interval ex-

change maps are uniquely ergodic, theorem 4 of section 4 also gives a 
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continued fraction expansion of the invariant foliations. However, the 

methods used in [Ba2] are better adapted to the geometric problem in 

question. 

1. Interval exchange maps 

Throughout this paper we fix a number m > 2 and a permutation 7r of 

{1, 	, m}. We will always use the norm of x = (x1, 	, x N) E RN that 

is defined by 11x11 = 	ixil. 
Each a = (a1, 	, am ) in 

= {,3 = (131, 	, '3m ) E lel  1 	> 0, for i E {1, ... ,m} and 11311 = 1} 

defines an interval exchange map T = T(7r, a) that acts on [0, 1) as 

follows: decompose [0, 1) into half-open intervals I1 = /1(T), 	, Im  = 
4,(T) of respective lengths al, 	, am , such that the initial point of 

1-1 is 0, the initial point of /2 is D1 = Di(T) = ai, the initial point 

of 13 is D2 = D2(T) = al + a2, e.t.c. The restriction of T to each Ii  

is an Euclidean isometry. Moreover, starting from 0 we encounter in 

succession the half-open intervals T(4_1( 1 )), T(4_1( 2)), e.t.c. As we fix 

7r we can, and often will, identify T(7r, a) with a. 

Keane ([Ke]) showed that almost any interval exchange map satisfies 

the infinite distinct orbit condition (i. d. o. c) which means that for each 
i E { 1, ... 1} the T orbit of the discontinuity Di is infinite and that 

for different i and j the corresponding orbits are disjoint. Moreover, he 

showed that an interval exchange map T that satisfies this condition is 
minimal, i.e. the positive orbit of any point is dense in [0, 1). 

The main goal is to characterize among the interval exchange maps 

that satisfy i.d.o.c. those that are uniquely ergodic, i.e. those whose 

only invariant Borel measure is Lebesque measure. It was shown by 

Masur ([Ma]), Veech ([Ve]) and later by Lopes-Rocha ([LR]) that almost 

any interval exchange map is uniquely ergodic. 

It is clear that we only need to consider interval exchange maps 

whose underlying permutation 7r is discontinuous (i.e. 7r(i) +1 7r(i + 1), 
for i E {1, , m}), as otherwise we are in the situation of an interval 

exchange map that permutes fewer than m intervals. Moreover, an 
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obvious necessary condition for minimality and hence unique ergodicity 

is the irreducibility of 7r (i.e. 7r({1, 	, k}) = {1,... , k} only if k = m). 

We suppose throughout that our (fixed) permutation 7i is discontin-

uous and irreducible. 

2. Farey cells 
For the results of this section that are mentioned without proof we refer 

the reader to the paper by Rocha ((Rol). 

For a given n E N, we say that the interval exchange maps T and S 

are equivalent up to the order n, if for k E {1, , n} we have Tk (0) E 

Ii(T), where i = i(k), if and only if Sk (0) E MS), for the same i. The 

equivalence class of T (with respect to 71) is called the Farey cell of order 

n centered at T, .Fn  = .7n (T). .Fn  is a non-empty set whose closure is a 

convex polyhedron. 

We say that a Farey cell .Fn  is small, if for some (and hence all) 

T E interior.Fn  each interval Ii (T) and T(Ii(T)), for i E {1, , m}, 

contains at least one point of the orbit {T i (0)}r_ 0 . It is clear that 

the Farey cell of order n centered at an i.d.o.c. T will be small for n 

sufficiently large. 

We say that n is a left (or right) critical iterate of type i0 of T, if 

the orbit (as a set) {Ti(0)}1L 0  intersects the interval [Tn (0),Di0 (T)) (or 

[Di0 (T),Tn(0)], respectively) only in the point Tn (0). Note in particular 

that if Tn(0) = Dio (T) then n is a right critical iterate of type i0. 

If n is a critical iterate of some T E interior.Fn , then it is critical for 

all other elements of interior.Fn , so by abusing notation slightly, we will 

say that n is a critical iterate of .Fn . Moreover, the first critical iterate 

that follows the critical iterate n is independent of T E interior.Fn . 

An interval exchange map has arbitrarily large critical iterates. 

Moreover, if s < n are two consecutive critical iterates of T and if 

T E interior.Fn , then .Fs (T) D .Fn (T), whereas ..F9  (T) = .Fk(T) for 

k E {8, ,n — 1}. We remark in passing that it is possible that 

Ts(0) = Tn(0), and hence .F3 (T) = .Fn (T). 
We will show in section 2.3 that each small Farey cells .F8  with s 

Bol. Soc. Bras. Mat., Vol. 27, N. 2, 1996 



114 MAX BAUER 

critical can be identified with an abstract model to be defined next. 

2.2. Abstract Farey cells 

Associated to 7r is a bijection 

f = f (7r) : {0, 	,m - 1} 	{1, . 	, m}. 

The relevant data for an abstract Farey cell consists of a surjective 

map 

g : {O, 	,m -1} -+ {1, 	,m - 1} 

and a convex subset Cg  of 1ft2m  of dimension m - 1: 

There is exactly one io, the type of g, in the image of g such that the 

cardinality of the set g -1 ({io}) is 2, namely it contains gim` -1 (0) and 

another element that we call g -1 (io). By defining g -1 (i) = g-1 ({i}), for 

i io we get a right inverse of g. 

The column vector X = (Lo, 	,Lm _i,R1,... ,Rm ) t  is in C9 , if and 

only if 

a) Lo = 	= O; 

b) Li > O and Ri > O, for i E {1, ... ,m - 1}; 

c) lin 1; 
d) For i E {1, 	,m - 1} \ {io} we have Li + Ri = L g_i(i) + Rfog -1(i). 

Finally, 

Lio + 	= L g_i (i0 ) + R fog -1(i0 ) + L gm-i (o) + R fo gm-1 (0) 

We refer to Cg  as the abstract Farey cell of type g. 

2.3. Stacks 

Suppose that .F,9  is a small Farey cell with s a critical iterate. We show 

how to identify the elements of F, with the elements of an abstract 

Farey cell Cg . 

Suppose that n is the first critical iterate for the elements of 

interior.F, that follows s and that /1  is in the interior of We choose 

T in the interior of .F,,(1-1) C ..rs , hence the set 0,, = {Tk(0)}Z =0  contains 

no T-discontinuity. The points of 0,, decompose [O, 1) into a collection 

of intervals that we may take to be closed and the interval [M, 1), where 
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M =- sup{T k  (0) k = 1, . . . , n}. Except for the interval [M, 1), the in-

tervals are bounded below and above by a point of O n  and contain no 
other point of O n  in its interior. Note that m — 1 of the intervals will 

contain (exactly) one point Dj , for i E {1, , m — 1} in its interior. 

We now arrange the intervals that make up [O, M] into m stacks by 
placing an interval I' on top of an interval I, if I is mapped to I' under 
T in such a way that m — 1 of the stacks contain a point of discontinuity 

of T in the interior of its top interval. Moreover, the top interval of the 

last stack has Tn(0) as one of its end points but no T-discontinuity in 

its interior. 

We temporarily label the stacks as follows: The stack whose top 

interval contains D i  = Di (T) is referred to as Qi, for i E {1, , m — 1}. 

The top interval of one of those stacks, say Qi 0 , has Tn (0) as one of its 
endpoints. We then denote by Q'io  the stack whose top interval does not 

contain a discontinuity of T, but has T" (0) as one of its endpoints. 
For i E {1, , m — 1} \ {i0}, the discontinuity Di decomposes the 

top interval of Qi  into a left interval Lá = [T1 (i) , Di) and a right interval 
/=? 1, = [Di , Tr(i)], for some O < 1(i), r(i) < s. See figure 1 a). The notation 

used for various points and subintervals of the bottom interval of the 

stack will be explained presently. 

R
# 
1 0  

• 

T  

1-J 

Tn(0 ) D to 

o)) 

• 
D

. 

O 

Tn(0) 

m-1(0)) 

Q i  Qiio  Q.  Q . 

Lg m_i (o) Rf(grn-1 ( 

• 

Lg m_i (o) Rf(g .4 >4 
b 	b 

Lg_1(i) Rf(g-1(1)) 
b 	b 

• rt 
g-  (1o) 	f (g-  (10)) 

>( 	> 

Lg
_1(1 0)) 

Rfb g_1(i 0))  

a) 
	

b) 
	

c) 

Figure 1: Stack. 

We next combine the two stacks Qi 0  and Q'io  so that its top inter-

vais are joined at their common endpoint Tn(0) and form a connected 
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horizontal interval. The point Di o  decomposes this interval into a left 
interval Lg0  and a right interval

o  . See figure 1 b) in case n is a left i 
criticai iterate and figure 1 c) in case n is a right critical iterate. The 
stack Q'io  is shaded in the figure. 

Suppose that i E {1, ... ,772 - 1}. In case T(I4) is [M,1), which is 
not part of any stack, we have that T2 (L4) is contained in the bottom 
of a stack. In this case we denote the interval T2 (L) by Lb. Otherwise 
T(L) itself is contained in the bottom of a stack in which case we set 
4 =T(14). 

We similarly denote the interval T(M) that is contained in the bot-
tom of a stack by ./1 / , for i E {1, 	,m - 1}. 

For convenience of notation we introduce the empty intervals L lõ and 
Rmb  . One can see that there is a map g as in the definition of abstract 
Farey cell, so that the lower side of the stack Qi  consists of the intervals 
L9 _1(i) f  and  Rb og- (2  .) , for i E {1, ,m - i} {i0}. See figure 1 a). 
Moreover, the lower side of the stack Qi 0  or Qiio  that was placed to 
the left of the other is made up of the intervals L gb  _ 1(i0)  and Rbfog _ i(i0) , 
whereas the lower side of the stack  placed to the right consists 

g  of the intervals Lb m-i (o) and Rb
fm o 	

. See figure 1 b) and c). 

Example 1. As an example we take 7r = (2, 4,1, 3) and suppose that T 
T(71- , a) is an interval exchange map whose points {T °(0), , T15 (0)} 
are as indicated in figure 2 a). We take s = 7. The first critical iterate 
that follows s is n = 10. The stack that describes T up to the order 
is shown in figure 2 b). We have /(1) = 2, r(1) = 3, /(2) = 5, r(2) = 7, 
/(3) = 7 and r(3) = 4. The function g is given by g(0) = g(3) = 1, 
g(1) = 2 and g(2) = 3. Moreover, f(0) = 2, f (1) = 3, f(2) = 1 and 
f(3) = 4. So io = 1 and the bottom interval of Qi consists of the empty 
interval L9 _1(1) 

f (0) 2 
L b  and Rb = Rb 1  whereas the bottom interval of 

Qio 	
O  

consists of L9 3(0)  = 4 and the empty interval R bf(3)  = 
We set Lo = O = R, and denote the length of the interval L (and 

Rth by Li (and Ri, respectively), for i E {1, 	, m - 1}. We set X = 
(Lo, . , 	R1, 	, Rm) and refer to the m stacks as the collection 
of stacks S(g, X) or, if there is no risk of confusion, simply as the stack 
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S(g, X). 
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Figure 2: Example 1. 
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One can show that g is independent of T E interior.Fn (t), so the 
relation that associates to T = T(7r, a) E interior,Fn  the corresponding 
stack S(g, X) induces a map G defined on interior.Fn  that sends a to 

X. One can see that G is linear and we denote by the same symbol the 

extension of G to all of Fn(t)• 

Note that for i E {1, 	, m — i}, Li  = Di — T1 ( i), where 1(i) is the 

left critica! iterate of type i that remains critical up to the order s, i.e. 
the largest left critical iterate of T of type i that is smaller or equal to 

s. Similarly, if i E {1, , m — i} then Ri = TT(i) — Di, where r(i) is 

the right critical iterate of type i that remains critical up to the order 

s. So X only depends on the orbit of O up to T8 , in fact /(i) and r(i), 
for i E {1, , m — 1}, are independent of interionFs . As g is in fact 

independent of T E interiorFs , the linear map G defined on .7,(1 -7) is 
independent of T E interior.Fs , hence is defined on all of 

If T = T (ar, a) E interior.F8  and X = G(a), then we say that the 
stack S(g, X) represents T up to the order s. In this case it is immediate 

that G(a)/11G(a)11 is an element of the abstract Farey cell Cg . In fact the 

map G/1141 is a bijection between Fs  and Cg . One can find a linear map 
M defined on the image of G that is the inverse of G, hence MiiiMii, 

defined on Cg , is the inverse of G/11£11. The map M, when represented 

in matrix form with respect to the usual basis of Euclidean space, is 

referred to as distribution matriz associated to .Fs . 

2.4. The transition matrices 

Suppose that .Fs (t) is a small Farey cell with s critical. Let n denote 

the first critical iterate of the elements of interior.Fs (t) after s and p 
the first critical iterate of the elements of interior.Fn (t) after n. 

We represent a given T E interior.Fp(t) by the stack S(g, X) up 
to the order s and by the stack S( -g, X ) up to the order n. Suppose 
that 'kl  is the type of g. So, in the notation used in the construction of a 
collection of stacks, S(g, X) is made up of the stacks Qi, , 

We perform the following operation on the stack S(g, X): The top 
side of ■Çe%  is mapped (by T or T2 ) to some interval, which we tem- 
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porarily call I, in the bottom of some other stack, say 	We separate 
the stacks Qi 0  and Qiio  and place QZ o below Qi in such a way that the 
top interval of Q', 0  is below I. We then mark the points {T i (0)} 7i5_,,±1  in 
the intervals that constitute Qi above the point T" which is contained 
in the top interval of We constructed a new stack which can be 

seen to be S(g, (so in particular, j is the type of We say that we 
performed a left cut if n is a left critical iterate (as in figure 1 b) and a 
right cut if n is a right critical iterate (as in figure 1 c). 

Example 1. (continuation). By applying the right cut to the stack shown 

in figure 2 b) we get the stack of figure 2 c) that represents T up to the 

order 10. Applying the left cut to the stack of figure 2 c) yields the stack 

of figure 2 d) that represents T up to the order 11. 
We set 

X = (Lo, 	, Lm_ , R1 , • • • , Rm) 

and 

= (-LO • • • Lm--i, 	• • Rn). 

If we get g, X) from S(g, X) by a left cut, then Ri = Ri, for i E 
{1, , m} and Li  = Li , for i E {O, ,m - 1} \ {i0}. Finally, we have 
Lio  = Lio  - (Lg _1(i0 ) + R f 09 _ 1  ( i0 )). This means that the distribution ma-
trices M and M associated to .f", and .F,,, respectively, can be written as 
/14-  = M K , where K differs from the identity matrix only by containing 

1 in two off diagonal positions, namely in the (i0 + 1, g -1 (i0) + 1) and 
the (io + 1, m + f o g -1  (i0)) position. 

In case of a right cut we have Li  = Li, for i E {O, 	, m - 1} 
and Ri = Ri , for i E {1, 	, m} \ {i0}. Finally, we have A o  = Rio  - 
(Lgm _1(0)+ R fogm_1( 0)). So the matrix K that is defined as before differs 
from the identity matrix only by containing 1 in the (m+io, gni -1 (0)+1) 
and (m+i0, m+f ogm -1 (0)) position. We refer to K as transition matrix. 

Example 1. (continuation). The transition matrix that is associated to 

the left cut applied to the stack of figure 2 b) differs from the identity 

matrix only by containing extra entries 1 in positions (5,4) and (5, 8). 
The latter accounts for the empty interval R4 not shown in figure 2 b). 
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Finally, the transition matrix that describes the right cut applied to the 

stack of figure 2 c) has an additional entry one in the (4, 3) and (4, 5) 
position. 

From now on we delete the dummy variables L0 and R m  in the vector 
X and also the rows and columns of the distribution and transition 

matrices that correspond to those two variables. 

Suppose next that ,Fs (f), 	p, T E interior.F(t), S(g, X) 
and S(~g,X- ) are as in the beginning of the section, except that we only 
demand that .F (T) is a Farey cell with n > s and n critical but not 
that n is the first critical iterate that follows s. 

It follows from the above that the distribution matrices M and /1/ 
associated to J., and .7-n , respectively, can be written as /14" = MK, 
where K is a product of transition matrices. 

We give a description of K that is similar to the one for distribution 
matrices given in [Ro]. 

Let 1(i) and 1(i) be the critical left iterate of type i that remains 
critical up to the order s and n, respectively. Denote by ã(i) the smaller 
of p and the first critical left iterate that follows 1(i). Similarly, let r(i) 
and -r(i) be the critical right iterate of type i that remains critical up to 
the order s and n, respectively, and denote by (i) -the smaller of p and 
the first critical right iterate that follows (i). 

We claim: 

Lemma 1. 

a) The jth column 	= (Alá, 	À2m-2,j) t , for j E {1, 	,m — 1}, of 
K is given by 

#{k 1 Tk (0) E [TI(I) (0), Di) and l(j) < k < ã(j)}, 

if 1 < i < m - 1, and 

Aid = #{k 1 T k (0) E [Di-m,±1, Tr(i-m+1) (0)) andi(j) < k < ã(j)} , 

if m < i < 2m — 2. 
b) The last m-1 columns pi = (Piá, • - P2m-2,i) t , for j E {1, 
1}, of K are given by 

Pi,j = #{k 1 T k  (0) E (77/(z)  (0), Di] and "r(j) < k < b(j)} , 
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if 1 < i < m — 1, and 

piá  = #{k 1 T k  (0) E (Di_m_Fi,Tr(i-m+1) (0)] and r(j) < k <RA, 
if m < i < 2m — 2. 

Proof. We choose the notation for various points and intervals of the 
stack S(g, X) as in the definition of stack and add a "tilde" to the 
notation of the corresponding points and intervals of S(g, fC). 

Suppose that k is the matrix as defined in the lemma. To motivate 
the definition of k, note first that Tã(i) is the first iterate after T i(i) 
that is in the top interval of a stack. Each iterate Tk (0) E [T1 (i) (0), Di) 
used in the definition of Ài j , for 1 < i , j < m — 1, determines a unique 
interval in L of the same length as L. A similar statement holds for 
the iterates of T(0) used in the definition of the other entries of K. As 
the union of the top intervals L and R are decomposed in this way 
into intervals of lengths L i  and 4, for j E {1, 	,m — 1}, we see that 
X = k.k , which implies that 	mk. 

This does not yet show that k = K. To that end we suppose next 
that p is a left criticai iterate of type i0, perform the corresponding left 
cut and calculate the matrix K' as defined in the lemma with respect 
to the new stack. Although there is a new criticai iterate of type i0 the 
iterates used in the definition of the io-row of K' are in the same stack 
above the interval 40  as the iterates used in the definition of the i0-row 
of K, so the rows are identical. 

The T-iterates used in the definition of the g -1 (i0)-row of K' are 
those used in the definition of the same row of K plus the iterates used 
in the definition of the io-row. So the g -1 (i0)-row of K' is the sum of 
the g -1 (i0)-row and the io-row of K. 

Similarly, the iterates of T(0) used in the definition of the (m — 1 + 
f o g-1 (i0))-row of K' are those used in the definition of the same row 
of K plus iterates that visit the same intervals as the iterates used in 
the definition of the i0-row. 

The other rows of K and k agree. 
One readily sees that K' = KM, where M is the transition matrix 

that describes the left cut. 
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One proceeds similarly in case p is a right critical iterate. 

This constitutes the induction step in an obvious inductive argu-

ment that proves that the matrix defined in the lemma is a product of 

transition matrices, proving the claim of the lemma. ❑ 

2.5. Unique ergodicity 

Suppose that T = T (7r, a) is an i.d.o.c. interval exchange map whose 

sequence of critical iterates that follows the first critical iterate n(1) for 

which the corresponding Farey cell is small is {n(k)}r_ i . 

O is already the image of a T-discontinuity, so the (positive) T-orbit 

of O does not contam a discontinuity of T. We conclude that T is in the 
interior of each Farey cell centered at T. It follows that for k E N, n(k) 
is critical for Fri (k) and n(k+1) is the first critical iterate of the elements 
of interior.Fn( k ) after n(k). For each k E N we denote the distribution 
matrix that corresponds to .F„( k) by Mk. 

The study of Farey cells is motivated by the fact that the collection 

of T-invariant Borel probabilities is in bijective correspondence with 
n ck'°_ l interior.Fn ( k )(T). 

One can see that nr_i interior*Fn ( k )(T) consists of exactly one ele-

ment if and only if each column of the sequence of distribution matrices 

converges projectively to a, i.e. the jth column h(ki)  of Mk satisfies 

k  
h(i)

,
11 	

a, 
k—,00 hi3) 

for each j E {1, 	, 2m — 2}. 

As we are more interested in the transition matrices, we will need to 
adapt these results. 

For k E N we denote by S(gk, Xk) the stack that represents T up to 
the order n(k). For each k E N we denote the various points and intervals 
of S(gk, X 1,) by adding the superscript (k) to the notation given in the 
definition of stack. For each k E N we have a transition matrix Kk that 
satisfies Mk+1 = MkKk, hence Mk+1 = M1K1K2 • • Kk. We will need: 

Proposition 2. The i.d.o.c. interval exchange map T = T(7r, a) is 

uniquely ergodic, if and only if each column of Kl• • • Kk converges pro- 
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jectively to X1, as k tends to infinity. 

Proof. Suppose first that each column of the product of the transition 

matrices converges projectively to X1. It follows that each column of the 

sequente of distribution matrices converges projectively to a = M1X1, 

which implies the unique ergodicity of T. 
Conversely, we suppose that T is uniquely ergodic and imitate the 

argument used in [Ro] to show that unique ergodicity implies the con-

vergence of the rows of the distribution matrices. 

One can show that for each pair of integer sequences {ak}r_ i  and 
{Ak}c kx-L i  such that limk,(Ak — ak) = oo, the sequence of Borel proba-
bilities 

1 
ltk = 	 2 ÕTt(0) , — ak 

t=ak 

where 6, denotes the Borel Dirac measure that is concentrated at z, 
converges weakly to the Lebesque measure on [0, 1). 

Fix j E {1, . 	— 1} and set ak(j) = 1(k)(j), i.e. the critical left 
iterate of type j that remains critical up to the order n(k). Denote 
by Ak(j) the smaller of n(k + 1) and the next critical left iterate. For 
i E {1, , m — i}, we calculate the µk measure of n = [T /(1) (i) (0), Di), 
to be 

t  
1 	

A k  (3)-1 

	  E xyi  (T (0)). J xyi
dp,k = Ak(j) — 	

t=ak (.1)  

The right hand side of the above equation is the ith entry of the jth 
column of K1 • - • Kk, whereas the left hand side converges to the length 

( of the interval n which is L i 1) 
 . By determining the tik  measure of Zi  = 

[Di, Tr(1) (i)(0)), for i E {1, ... 	— 1}, we find an equation whose left 
( hand side converges to R i 1) 
 and whose right hand side is the (m—l+i)th 

entry of the jth column of K1 • • Kk. 

We showed that the jth column of K1 • • • Kk converges projectively 
to Xi, for j E {1, ... ,M, — 1}. 

Using the right critical iterates, a similar argument shows that each 

of the last m — 1 columns of K1 • • • Kk converges projectively to X1, 
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finishing the proof of the proposition. 

 

MAX BAUER 

o 

3. The Jacobi-Perron algorithni 

For more information on the Jacobi-Perron algorithm we refer the reader 
to [Hu] and the monograph by [Be]. 

To motivate the definition of the Jacobi-Perron algorithm we recall 
the definition of the usual continued fractions. 

For x, y E RN , we write x P y, if x = cy, for some strictly positive 
c E R. 

If (n2)''_'1 1  is a sequence of positive integers, then we say that the 
continued fraction expansion of x > I is x = [n1, ... ,nk,...] if 

1 
x = ni + 

 

(i
) 1 

n2 + 

 

1 
n3 + 	 

n4 + • • • 

To be more precise, we define C[n](x) = n + 1/x and rewrite equa-
tion (i) as 

x = fim C[ni] o • • • o C[nk](oo). 
k oo 

We remark in passing that often one prefers to restrict x to (O, 1], rather 
than [1, ao). This can be done by performing the change of coordinates 
y = 1/x. The maps C[n](x), for n E N, then become the inverse branches 
of the Gauss map G(x) = llx — [1/x]., where [z] *  denotes the integral 
part of z. 

To use homogeneous coordinates one defines 

D[n] = 	
• 

D[n] xl  g ( c[nl](x)  

we see that equation (i) is equivalent to 

) 	klim D[ni] • • D[n k] (°].) . 
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We now define multidimensional continued fractions in the sense of 
Jacobi ( [Ja] ) and Perron ([Pe]). 

We set No = N U {0} and define for each N E N and y = (yi, 
• • YN) E NOv  

O O • • O 1\ 
1 O • • O yi 

D[y] = DN [y] = O 1 O y2 

\O O 1 yN / 

Suppose that for some N E N we have a sequence of vectors y( i ) E 

Nij, for i E N. We then say that a non-negative and non-zero w E RN  
has N - ary continued fraction expansion [Y (1)  , • • • , y(k) , • • .1 if 

( 1  ) 	
k -+(x) 
lim 	 tY1 DN[y(1)] 	(k), 

e
O 

N) 

where eN = (O, 	, 0,1) E N. 

For N = 1 this definition agrees with the one for usual continued 
fractions as given in the beginning of this section. DN is a representation 
of the map 

xi \ 	 x  I Y1 + -1N   \ 

( 
X2 	 Y2 + e 

CN[Y]: 	• 	
h-, 

xN / 	\ yN  + XxN.N.  1  / 

in homogeneous coordinates. 

Observe that the kth column of a (N +1) x (N +1) square matrix M 
equals the (k — 1)th column of MDN[y], for k E {2, ,N+ 1} It follows 
that the (projective) convergence of the last column of D[y( 1 )] • • • D[y(k )], 
as k tends to infinity, implies the convergence of the other columns. 

We will need 

Proposition 3. Suppose that M is a (N + 1) x (N + 1) matrix. Then 
there exist vectors y( 1), ... ,y( k) in such that M can be written as a 
product M = DN[y( 1 )] • • • DN[y(k)], if and only if M can be reduced to 

the identity matriz by repeatedly applying the following two operations: 
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cyclic permutation of the columns and subtraction of the ith  column from 
the ith  column, if i j. 

The result is constructive and proved in [Bal]. 

4. A characterization of unique ergodicity 
Suppose that T = T (7r, a) is an i.d.o.c. interval exchange map whose 
sequence of critical iterates that follows the first critical iterate n(1) for 
which the corresponding Farey cell is small is {n(k)} kx11 . 

Suppose that S(g, X) is the stack that represents T up to the or-
der n = n(1) and that Mk, for k E N, is the distribution matrix that 
corresponds to ,Fn(k)(T). So we have a = Mi X. 

We showed that Mk+1 = M1K1K2- • • Kk, where Kk is a (2m — 2 x 
2m — 2) transition matrix, for k E N. As each transition matrix differs 
from the identity matrix only by containing two extra elements 1 off 

the diagonal in a single row, it follows from proposition 3 that each Kk 
can be decomposed into a product of matrices DNH, with N = 2m — 3, 
as used in the definition of N-ary continued fractions. So there is a 
sequence 	of vectors in Nv.  and a subsequence{m(k)}r i  of 
1, 2, ... , such that 

M1 • • • Mk = DN[Y (1) ] • • • DN[Y (m(k)) ]. 

We say that [y( 1 ), 	, (k),•,•1 is the N-ary continued fraction as- 
sociated to T(iT - , a) or S(g, X). 

This is formal, as convergence of this continued fraction expansion 

is not guaranteed in general. Indeed, as we will show next, convergence 
is equivalent to unique ergodicity of T. 

Theorem 4. Suppose that T = T(7r, a) is an i.d.o.c. interval exchange 

map that permutes m intervals. Suppose that n is the first critical iterate 
for which the corresponding Farey cell Fn  is small and that S(g, X), for 
some X E Fern-2 , is the stack that represents T up to the order n. 
Writing (1, Y) 1- X we claim: 

T is uniquely ergodic if and only if the N = 2m — 3-ary continued 
fraction expansion associated to T converges to Y. 
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Proof. We continue to use the notation introduced before the theorem. 
Suppose first that 

lim DN[Y
(1) 

 • • DN[Y (k)p 
 (yi  

where eN+ 1 E RN+l  is the (N + 1)th unit vector. As follows from the 
last section, we can replace eN +1 by any other unit vector e i  E 1[gN+1 . It 
follows that each column of the product of transition matrices converges 
projectively to (1, Y) .13-- X, which, using proposition 2, implies that T is 
uniquely ergodic. 

Conversely, suppose that T is uniquely ergodic. It follows again from 
proposition 2 that each column of K1 • • Kk converges projectively to 
X, i.e. 

lim DN[Y(1) ] • • • DN[y (m(k)) ]ei 	X, 	 (ii) 

for i E {1, 	, N 1}. 
For any t E N, the map Rt  = D N [Y (1) ] • • D N [Y (t) ] maps the positive 

cone determined by {e1, 	, eN+1} to the positive cone Ct  determined 
by {Rt e i , 	, RteN+1}. Equation (ii) implies that for a given E > O 
there is a k E N, such that some multiple of R n ( k)ei  is 6-dose to X, for 
every i E {1, 	, N + 1}. This implies that each element of Cn(k)  has a 
multiple that is 6-close to X. But Rt(eN+1) E Cn( k ), for t > n(k). This 
proves that 

hm RteN  1-1' X g- ( y1 ) , 
t—*oo

which is the claimed continued fraction expansion of Y. 	 ❑ 
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