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Abstract. Let x : M 2 	N3  be a stable immersion with constant mean curvature 
H of a complete orientable surface M 2  into a complete oriented three dimensional 
Riemannian manifold N3 . In this paper we prove that, if M 2  is compact and H 2  > 

infM RiccN, then M2  has genus g < 3, here RiccN is the Ricci curvature of N 3 . 
We also prove that, if M 2  is complete non compact and N 2  has bounded geometry, the 
area of M 2  is infinite in the metric induced by x. In this case, if H 2  > infra RiccN 
then x is umbilic and the equality holds. 

1. Introduction 

The goal of this paper is to present some results on the stability of 
immersions x : M 2 	N3  with constant mean curvature H. 

We first consider the case where M 2  is compact, orientable, and 
prove the following result. 

"Let M 2  have genus g. If x : M 2 	N 3  is stable and 

H2  > — 1  inf RiccN, 
2 

then g < 3. Here RiccN is the Ricci curvature of N". 

This is related to Fischer-Colbrie and Schoen [9] where it was proved 
that if x is minimal and stable, and N 3  has nonnegative Ricci curvature, 
then g < 1. A similar result was also obtained by El Soufi and S. Mas 
[6] 

It was proved in [2] that if M 2  is a compact, stable surface with 
constant mean curvature H in the three dimensional simply-connected, 
complete Riemannian manifold Q with constant sectional curvature c, 
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then M2  C Q3 is a geodesic sphere and (H 2  + c)A = 47r, where A is the 
area of M2 . It is a surprising fact that this equality becomes a sharp 
inequality in the case that the ambient space N 3  is arbitrary. 

"Let M 2  be compact, orientable and assume that x : M 2 	N 3  is a 
stable surface with constant mean curvature H. Let A be the area of M 2 

 and c = infm RiccN. Then 

(H2  c)A < 47r 

and equality holds if and only if M 2  has genes g = O, x is umbilic, and 
the sectional curvature K N c in M ". 

We next consider the case where M 2  is complete noncompact. For 
that case, we will need that the area of M 2  is infinite in the metric 
induced by x : M 2 	N 3 . This will be seen to be the case if N 3  has 
bounded geometry (i.e., it has sectional curvature bounded above and 

injectivity radius bounded below). More generally, we will prove in an 

Appendix to this paper the following result. 

"Let MT' be a complete, noncompact manifold and let x : Mm 	Nn 
be an immersion with mean curvature vector field bounded in norm. 
Assume that Nn  has bounded geometry. Then the volume of Mm in the 
induced metric is infinite". 

Now we can present our results on stability. 

"Let M 2  be a complete, noncompact, orientable surface and let 
x : M 2 	N3  be an immersion with constant mean curvature H. 
Assume that N 3  has bounded geometry and that H 2  > 	infM S where 
S is the scalar curvature of N3 . If M 2  has finite índex, then H 2  = 

infm S". 

From this theorem we obtain that, if H is nonzero and N 3  has 
nonnegative scalar curvature, then M2  has finite index if and only if 
M 2  is compact. 

Our final theorem generalizes results of Fischer-Colbrie and R. Scho- 

en [9] for stable minimal surfaces and of A.M. Silveira [12] for stable 
surfaces with constant mean curvature in Q. 

"Let M 2  be a complete, noncompact, orientable surface and let 
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x : M 2  ----÷ N3  be an immersion with constant mean curvature H. 
Assume that N 3  has bounded geometry and that H2  > infm RiccN . 

If x is stable, then 
1 

H2  = 	infM RiccN 

and x is umbilic. Furthermore, M 2  is conformally equivalent to the 
plane or to a cylinder. If M 2  is a cylinder,. then M 2  is flat" 

The results of this paper are part of my Doctoral Dissertation at 

IMPA, as were announced in [10]. Personal problems prevented its pub-

lication at the proper time. I want to thank to M. do Carmo for his 

orientation. 

2. Stability of Compact Surfaces with Constant Mean Curvature. 
Let M2  be a complete orientable surface and let N 3  be a three dimen-
sional complete oriented Riemannian manifold. Let x : M 2  —+ N 3  
be an isometric immersion with constant mean curvature H. We know 
that such surfaces are critical points of the area function for compactly 

supported variation that preserve volume. We say that the immersion 
is stable if the second variation of the area function is nonnegative, i.e., 

I (f) = f m [ — fO f — (RiccN(e3) + 1141 2 ) f 2JcIA > O 	(1) 

for any piecewise smooth function f : M 	IR with compact support 
and with fM  fdA = O (see [2] ). Here 0 is the Laplacian in M, e3 is a 
unit normal vector field, RiccN(e3) is the Ricci curvature of N in the 
direction of e3 and liBil is the norm of the second fundamental form B. 

Associated to the quadratic form I we have the operator 

L = 	RiccN(e3) + 11B11 2 , 

called the Jacobi operator. 

Let (M2 , ds2 ) be a compact orientable surface of genus g. Then M2 
 has a Riemman surface structure compatible with the metric ds2 . 

In the study of stability of a compact surface with constant mean 

curvature, it is fundamental to have some way of constructing smooth 
functions f : M R with mean value zero, i.e. fM  f dA = O. For this, 
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we will use in this section the following result. 

Lemma 1. (see [5], Lemma (2.1).) Let S 2  C R3  be the round sphere 
of radius one and let : M2  —4 S 2  be a nonconstant meromorphic 
function. Then there exists a conformal transformation 
such that 

fm 2PidA 

for i = 1, 2, 3, where ik_ o 2,b (ik1,l-k27 1773) E R3 . 
Let ei, e2, e3 be a positively oriented orthonormal frame defined lo-

cally on M with el and e2 tangent to M, and e3 the unit normal vector 
field. Let bii = (V ei  e3, es) , 1 < i , j < 2, be the coeficients of the second 
fundamental form B, where V is the Riemannian connection of N. 

By the Gauss formula, we have 

K = K12 + b11b22 b12 

where K is the Gaussian curvature of M and Kii  is the sectional cur-
vature of N for the plane determined by e i  and ei. 

Therefore, 

(b11 + b22)2 	 2 
12 = 	 

2H2  — K + K12 = 	 bilb22 + b 2 2 	 2 
(2) 

 

  

and 

H2  — K + K12 — 	
b22)2 

 b1
2 
 2 > o. 4 

We now prove the results about stability of compact surfaces with 
constant mean curvature mentioned in the introduction. 

Theorem 2. Let (M 2 , ds2) be a compact orientable surface of genus g, 
and let x : M2 	N3  be an isometric immersion with constant mean 
curvature H. If x is stable and H2  > 	infm RiccN, where RiccN is the 
Ricci curvature of N, then g < 3. 

Proof. Suppose that g > 4. Then there exists a nonconstant meromor- 
phic function //) : M 2  —4 S2  of degree less or equal than (3g + 1)/4 (see 
[7], pg. 118). So, by Lemma 1, there exists a nonconstant meromorphic 
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function : M 2  —> S2  of degree less or equal to (3g + 1)/4 such that 

fm 1Pi dA = O, 

for i = 1, 2, 3, where //) = (01,02,03). Since x is stable, we have 

fm igradtPi i 2 dA > f ( -2K + 4H2  + 2K12 + RiccN(e3))0i2  dA, 

i = 1,2,3, where grad denotes the gradient in M. 

3 	2 
By summing up in i = 1,2,3 and by using that 101 2  = EtPi  = 1 

i=i 
we obtain that 

fiar I 
VOI 2 dA > f (-2K + 4H 2  2K12 RiccN(e3))dA, 	(4) 

where 1V/P1 2  = igradOi l 2 . By using that fM  KdA = 4R- (1 — g), that 
i=1 

fM IV 01 2  dA = 87r(degree (0)), 

and that 

2K12 + RiccN(e3) = RiccN(e1) + RiccN(e2) > —4c, 

we obtain 

87r(degree (0))+ 8R- (1 — g) > 4(H2  — c)A, 	 ( 5) 

where A is the area of M 2  and c = 	infm RiccN. 
If g = 4, degree 	< 13/4. So degree (0) < 3, and by (5), 4(H 2  — 

c)A < O, which is a contradiction. Now suppose that g > 5. By (5), 

4(H2  — c)A < 8ir 3g 	4- 1  + 87r(1 — g) < 27r— + 5 <0 

which is again a contradiction. It follows that g < 3 and the theorem is 
proved. ❑ 

Corollary 3. There is no compact orientable stable surface of genus 

g > 4 with constant mean curvature in a three-dimensional manifold 

with positive Ricci curvature. 
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Remark 4 . Corollary 3 also holds if the ambient space has nonnegative 
Ricci curvature and the compact surface has nonzero constant mean 
curvature. 

Remark 5 . M. Ross proved in [14] that the classical Schwarz P-minimal 

surface of genus three in the flat three torus is a stable constant mean 

curvature surface. He also mentions ([14], p. 193) that the constant 

mean curvature companions of the Schwarz P-minimal surface that are 

dose enough to it are stable. Thus, the result of Theorem 2 is sharp. 

Remark 6 . It follows from the above Remark that it is unlikely that 

an explicit description for stable surface can be found even in the flat 

3-torus. However, M. Ritoré and A. Ros proved in [13] that if M 2  is a 
stable compact orientable surface with nonzero constant mean curvature 
in the real projective space RP 3 , then either M2  is a geodesic sphere 
(g = O) or is an embedded flat torus (g = 1) of radius r, with 7r/6 < r < 
7r/3, about a geodesic. If H = O, they also proved that M2  is a two fold 
covering of a real projective plane (g = O). 

Theorem 7. Let M 2  be a compact, orientable surface, and let 
x : M 2  N3  be an isometric immersion with constant mean curva-
ture H. If x is stable, then 

(H2  + c)A < 47r, 

where c = infM RiccN  and A = area(M). Furtherrnore, the equality 
holds if and only if M 2  has genus zero, x is umbilic and K N --== c in M 2 . 
Proof. Let g be the genus of M. From the Riemann-Roch Theorem, 
there exists a finite number of points pl, , pk, called Weierstrass points 
of M, such that, if p E M—{pi,...,pk}, then there exists a meromorphic 
function : M S 2  such that is holomorphic in M — {p}, and p 
is a pole of order g 1 of 1/). Then degree0 = g +1. By Lemma 1, we 
obtain a conformal transformation ç : 8 2  S2  such that 

im  OdA = O 
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where 	qS o o. Then, by (4), 

fM  IVOI 2dA > f (-2K + 4H2  + 2K12 + RiccN(e3))dA, 
11/1 

since x is stable. Using the facts that 

fM IV 	87r(g + 1), f KdA = 47r(1 — g), 
M 

and RiccN > 2c in M, we obtain 

87r(g + 1) > —87r(1 — g) + 4(H2  + c)A. 

Thus (H2  + c)A < 47 r . Now we suppose that (H2  + c)A = 47r. Then 
KN a c in M, and equality holds in (4). Therefore, 

+ (-2K + 4H2  + 4c)0 = O in M. 	 (6) 
In the other hand, since is a meromorphic function we have 

A/P+IVOI 2/P = O in M. 	 (7) 
Equalities (6) and (7) imply that 

= (-2K+ 4H2  + 4c)(q), 

for any point q E M. 
If g > O, V2,I 2 (p) = O, since p is a pole of order (g + 1) > 2. 

Then K(p) = 2(H2  + c). Because this equality holds for every point 
p E M — we obtain that K 2(H2  + c) in M. Since 
H2  — K + K12 > O, we have that H 2  + c < O, wich is a contradiction. 
Then g = O. 

Moreover, since 11/13 11 2-1- RiceN(e3) = — K +3H2  +3c+ (H2  — K + 
and the equality holds in (4), we have 

[IV:01 2  + K — 3H2  — 3c — (H 2  — K + Ki2)]dA = O. 

By using that fM  IIV0 2 dA = 87r, that fM  KdA = 47r, and that 
(H2  + c)A = 47r, we conclude that fM (H2  — K + K12)dA = O. Then, by 
(3), H2  — K + K12 a O in M, i.e., x is umbilic. 

Now suppose that M 2  is an umbilic sphere in N3  and KN a- C in M. 
Then 

47r = fM  KdA = I.  (H2  + c)dA = (H2  + c)A, 
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and this completes the proof of the theorem. 
❑ 

3. Stability of Complete Noncompact Surfaces with Constant Mean 
Curvature. 
Let M2  be a complete orientable surface and let T = A+q be an operator 
in M, where q : M --+ I1 is a smooth function. Let D be a relatively 
compact domain in M, with smooth boundary. The index of T in D, 
denoted by IndT(D), is the number of negative eigenvalues of T with 
Dirichlet boundary condition. We define the index of T in M by 

IndT(M) = sup IndT(D), 
DcM 

where D is any relatively compact domain in M. 
When T is the Jacobi operator L, the index of T in M is called the 

index of M, and is denoted by Ind(M). One can prove (see [13]) that if 
the immersion x : M2  N3  is stable with constant mean curvature 
then Ind(M) is at most one. For minimal surfaces, we know that the 
condition I (f) > O for all compactly supported function f is a necessary 
and sufficient condition for stability. Thus, a minimal immersion is 
stable if and only if Ind(M) = O. 

To prove our results we will need the following theorems: 

Theorem 1. (A.M. da Silveira [15], pg.630.) Let (M 2 , ds2 ) be a com-
plete surface and let T =á—K-Fq be an operator as abone, where K 

is the Gaussian curvature of M. Assume that the operator has finite 
index and that the function q is nonnegative. Then M 2  is conformally 
equivalent to a compact Riemannian surface minus a finite number of 
points. Furthermore, 

fm qdA < 

where dA is the area element in the metric ds 2 . 

Theorem 2. (A.M. da Silveira [15], pg. 630.) Let (M 2 , ds2) be a com-
plete surface conformally equivalent to a compact Riemann minus a fi-
nite number of points, and let T = á + q. Assume that q is nonnegative, 
q O, and that the area of M is infinite. Then there exists a piecewise 
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smooth function f : M 	R with compact support such that 

fm —fT(f)dA < O, and fM  fdA = O. 

Now we will give the proof of the theorems mentioned in the intro-
duction. 

Theorem 3. Let M 2  be a complete, noncompact, orientable surface, and 
let x : M 2 	N 3  be an isometric immersion with constant mean cur- 
vature H. Assume that N 3  has bounded geometry and H2  > 	infm S, 
where S is the scalar curvature of N3 . If M 2  has finite index, then 
H2  = 	infm S. 

Proof. By (2) Jacobi's operator may be rewritten in the form 

L = — K + q, 

where q = 4H2  — K + K12 S, and S is the scalar curvature of N given 
by S = K12 + K13 + K23 = K12 + RiccN(e3). Since 3H 2  + infm S > O 
and H2  — K + K12 > O, we obtain that q > 3H2  + infm S > O. Because 
the operator L has finite index, we obtain by Theorem 1 that 

fM  (3H2  + in S)dA < f qdA < oo. 
M 

On the other hand, since N has bounded geometry, we have that M 
has infinite area (see Theorem 1 in the Appendix). So H 2  = infM S, 
and this completes the proof. ❑ 

Corollary 4. Let M 2  be a complete orientable surface, and let 
x : M 2  N3  be an isometric immersion with constant nonzero mean 
curvature H. Assume that N 3  has bounded geometry and nonnegative 
scalar curvature. Then M2  has finite index if and only if M 2  is compact. 
Proof. Suppose that M is compact. Since L is an elliptic operator, the 
index of L in M is finite. 

If M has finite index and it is noncompact, we obtain, by Theorem 
3, that H = O. So M is compact. ❑ 

It should be remarked that when the immersion is minimal the above 

situation changes. In fact, it has been proved in [8] and [11] that if M 2  is 
a minimal surface in R 3 , then Ind(M) < oo if and only if fM (—K)dA < 
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oo. Thus, there exist several examples of noncompact minimal surfaces 
in R3 , with finite index. 

Corollary 5. If M 2  is a complete surface in the hyperbolic three-space 
of sectional curvature —1, with constant mean curvature H > 1, then 
Ind(M) < oo if and only if M is compact. 

If H = 1, M. do Carmo and A.M. Silveira proved in [4] that Ind(M) < 
oo if and only if fm (—K)dA < oo. Thus there are examples of noncom-
pact surfaces with H = 1 in the hyperbolic space with finite index. 

Corollary 6. There is no complete, noncompact surface with constant 
mean curvature and finite index in a three-dimensional compact Rie-
mannian manifold with positive scalar curvature. 

Theorem 7. Let M 2  be a complete, noncompact surface with constant 
mean curvature and let x : M2 	N 3  be an isometric immersion with 
constant mean curvature H. Assume that N 3  has bounded geometry. 
If H 2  > 	RiccN, where RiccN is the Ricci curvature of N, and x 
is stable, then H2  = 	infm RiccN = — ã RiccN(e3) and x is umbilic. 
Furthermore, M2  is conformally equivalent to the complex plane or the 
cylinder. If M 2  is a cylinder, then M 2  is flat. 
Proof. Since x is stable and H 2  > 	RiccN > 	infig S, we have, by 
Theorem 3 that H2  = infm S infM RiccN. From Theorem 1 
we also have that M2  is conformally equivalent to a compact Riemann 
surface minus a finite number of points. 

The Jacobi operator L can be rewritten in the form L = á.+q, where 
q = 2 (H2— K+K12)+2H2 +RiccN (e3 ). Since x is stable, H 2 —K+K12  > O 
and 2H2 +RiccN(e3) > O, we obtain by Theorem 2 that H 2  —K+Ki2 = O 
and H2  RiccN(e3) on M 2 . So, the immersion x is umbilic. 

On the other hand, since 

— 3H2  < S = K12 + RiccN(e3) = K12 — 2H 2 , 

we have that K = K12 + H2  > O. It follows that the operator D — K is 
positive semidefinite. So, there is a smooth positive function f : M 
IR that satisfies Af Kf = O on M2  (see Theorem 1 in [9]). Therefore, 
by Theorem 2 in [9], we know that the universal covering of M 2  is 
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conformally equivalent to the complex plane. So, M 2  is conformally 

equivalent to the complex plane or the cylinder. If M 2  is conformally 

equivalent to the cylinder we have by the Cohn-Vossen inequality, that 

fM  KdA < O. Since K > O, it follows that K = O. This completes the 

proof. ❑ 

Remark 8 . If N3  has nonnegative Ricci curvature, the theorem above 

extends to surfaces with constant mean curvature the result obtained 

by F. Colbrie and R. Schoen in [9]. 

Remark 9 . If N3  = Q3 (c), c = —1, O, 1, the theorem above yields the 

results proved by A.M da Silveira in [15]. 

Appendix 
Let N" be a complete Riemannian manifold of dimension n. We de-

note by iN(p) the injectivity radius of N in p and by KN the sectional 

curvature of N. As mentioned in the introduction, a manifold Nn has 

bounded geometry if there exist positive real numbers .5 and A such that 
KN < (52  and iN > on Nn 

The purpose of this section is to prove the following result. 

Theorem 1 
--> Nn 

bounded in 

infinite. 

. Let Min be a complete, noncompact manifold, and let x : 

be an isometric immersion with mean curvature vector field 

norm. If Nn has bounded geometry, the volume of Mv' is 

Remark 2 . In the case that N has nonpositive sectional curvature, the 

result above has been proved by D. Hoffman and R. Schoen (personal 
communication) . 

In the proof of Theorem 1 we will use the following result which 

gives us a bound from below to the volume of a geodesic ball in M. We 
denote by 13 ii (p) the geodesic bali in Mm with radius p, and center p, 
and by wm, the volume of the unit ball in R'. 

Theorem 3. Let x : Mm 	NT' be an isometric immersion with mean 
curvature vector field H bounded in norm. Assume that N 71  has sectional 
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curvature KN < 62 , where 6 is a positive real number. Then 

volm,(Bm (p)) > 6-mw m  (sin ,ttb)me -Hog, 	 (1) 

where µ < min{ 5- , iN (p)} and [Hl < Ho. 

Remark 4 . When Nn has nonpositive sectional curvature we obtain, by 
letting 6 tend to zero, 

vOlm (Bii (p))> wm prne-H0p ,  

where p < iN(p). 

For the proof of theorem 3 we will use the two lemmas below. First 
we give the following definitions. 

Let x : Mm 	Nn  be an isometric immersion. Given a vector field 
V : M —4 TN, its gradient V'V : TM 	TN is the map w 
where V is the covariant differentiation on N. The divergence of V on 
M, denoted by divmV, is the trace of V V on TM. If ei, , em  is an 
orthonormal frame of TpM , then 

m 

divmV(p) = 
i=1 

(Vei  ei)(P)• 

Lemma 5. (see [12], pg. 719.) If V : M 	TN is a vector field on M, 
then 

divMV T  = divMV + (V, H), 	 (2) 

where V T  denote the projection of V onto TM. 

Lemma 6. (see [12], pg. 721.) Let x : Mm 	N" be an isometric 
immersion, po E Mm and r(.) = dN(., 130), where dN is the geodesic 
distance in Nn . Let V = rgradr be the radial vector field centered at 

P0, where grad is the gradient in Nn. If Nn has sectional curvature 
KN < 62 , 6 > O, then 

div mV (p) > m6r(p) cot(6r(p)), 

for any point p E M such that r(p) < minfr /6, iN (po)}. 

Remark. In the case that Nn  has nonpositive sectional curvature, we 
have 

divmV(p) > m, 

Boi. Soc. Bras. Mat., Vol. 27, N. 2, 1996 



L 	 STABLE COMPLETE SURFACES WITH CONSTANT MEAN CURVATURE 	 141 

T 

for any point p E M such that r(p) < i N (At ). For this, we let 6 tend to 
zero and observe that s • cot(s) 	1 as s tend to zero. 

Proof of Theorem 3. Let po be a point in M, r(p) = dN(p,p0) and 
V (p) = r(p) grad r(p). Let p be the function r restricted to M. Since 
grad m p = (gradr)T , we obtain by (2) that 

Amp 2 (p) = 2divm(p(grad r)T )(p) 

= 2divmV T  (p) = 2(divMV + (V, H))(p) 

> 2(mb p eot(6 p) – pH0)(p), 

for any point p E .131,(p0), where UI is the Laplacian on M and p < 
min{r/6, iN(po)}. By integrating the above expression, 

L31.1(Po) Amp
2dA > 2m6C(p) – 2H0 

JB 
	pdA, 
m(Po) 

where C (p) = f wpo)  p cot(8 p)dA. On the other hand, by using Stokes 
theorem, we obtain 

grad m p2  
fB 11 , (P0) 	 faBg(Po) 

àmp2 dA = 	 dS , 

where j is the exterior normal vector field to 13 1,(p0) on OBIL (p0). So, 
since 'grad m pi < 1 and p(p) < dm(P,P0), we obtain 

1N(Po) Amp
2 dA < 2pA(p), 	 (4) 

where A(p) = volm_1(aBm (p0)). 
Moreover, since p(p) < itt < 7r/26 and p E Bm (p0), 

p(p) = p(p)cot(6 P)(p)tan(b P)(p) < p(p)cot(S p) (p) tan(6p). 

By (3), (4) and (5), 

pA(p) > (m6 – Ho tan p6)C(p). 

From the formula co-area formula (see [3] pag. 80), we obtain 

dC 
—dtt  > p cot(6p)A(p), 
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since the function s H s • cot(s) is decreasing in [0, 7r/2] and p(p) < 
dm(p,p0)• So by (6) and (7), 

—

4

(C(p,)(sini.16) -m+1 ) > (sin 1.2(5) -m (6 cos ,u6 — 	sin ii(5)C (,u). 	(8) 

Therefore, 
(C (p)(sin 0) -m+1 ) 
	  > 6 cot i,5 — Ho. 

C (p)(sin p,(5) -m+ 1  

By integrating the above expression from c to ,u, we obtain 

log 
(C (g) (sin f.u5) -7n 

C( c) (sin c(5) -m 	11.°  — E).  
It follows that 

C(12)(sin 	> C (€)(sin cã) -me-Ho (m-f) .  

We now consider the function p(p) = dm (p, Po) and the function 

C(E) = f 	pcot(0)dA. 
Be(Po) 

Since C(c) > C(c) and 

lim C(c)(sin(c6)) -rn = 
E-0+ 

we obtain 

C(µ) > (5-m -1 	sin(11,6)m 

On the other hand, since the function s H s • cot(s) is decreasing and 
s • cot(s) 	1, as s tend to 0, we have 

volm (B ii (p0)) > 	(p)• 

Then 

volm,(A, (R))) > 6 -mwm, (sin 46)m e-Hom, 

and this completes the proof of Theorem 3. ❑ 

Proof of Theorem 1. Let A > O be a real number such that iN(q) > A 
for any point q E N", and let µ0 = min{ir/26, À}. Then, by (1), 

volm (B1,0 (p)) > L > 0, 	 (9) 
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for any point p E Mm, where 

L = 6-mwm  (sin ttob) m e-Hoo . 

Since Min is complete and noncompact, it has a geodesic ray 
: [0, oo) 	Mm. Consider the sequence of points p i  = 'y(3jpo), j > 0. 

Then, if j k, 

B (pi ) n B (p k ) = 0. 

So, by (9), for any positive integer k, 

k 

volm (M) > volm  (U 131,0 (pi )) > (k +1)L. 
i=0 

Since k is arbitrary, the volume of Mm is infinite, and this completes 
the proof of Theorem 1. ❑ 

Corollary 8. Let Mm be a complete, noncompact Riemannian manifold, 

and let Nn be a compact Riemannian manifold. Let x : 

be an isometric immersion with meán curvature vector field bounded in 

norm. Then the volume of Mn' is infinite. 
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