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Abstract. 	In this article, we study vector fields bifurcating through a saddle- 
node equilibrium with an unstable homiclinic orbit. Bifurcating diagrams for two-
parameter perturbations of these vector fields are exhibited. It is proved that Smale's 
horseshoe dynamics, surrounding the bifurcating homoclinic orbit, exists for a large 
set of such perturbations. 

1. Introduction 

The complicated dynamical behavior arising from the existence of a 

homoclinic orbit have been much studied in the last thirty years or 

so. These investigations started with early works of Poincaré, about a 

hundred years ago, and afterwards Birkhoff. It is implicit in the works 

of Cartwright-Littlewood and Levinson, and its dynamic prototype as a 

horseshoe map is in the remarkable work of Smale [Sm]. The objetive of 

this paper is to analyze vector fields with a special homoclinic scenario 

consisting of an equilibrium point and a regular orbit converging to it in 
positive and negative time, a homoclinic loop. For vector fields (flows) 
on surfaces, homoclinic loops were considered in [AL]. Later references, 

specially for diffeomorphisms, are [NPT] and [PT]. 

To describe the main assumptions under which homoclinic loops for 

flows will be studied here, some preliminar notations and well known 

results are introduced. First of all, we restrict our study to Cr-vector 
fields in a three-dimensional closed manifold, where r is a positive large 
integer. Singularities of a given vector field x will be understood as those 

Partially supported by CNPq-Brazil and CONICIT-Venezuela. 
Received 15 April 1996. 



146 
C. A. MORALES 

points a such that X(a) = O. Throughout, a singularity a of X is called 
saddle-node if the linear part DX(a) of X on a has three real eigenvalues 
Ai, —À2, —À3 satisfying —A 2  < —A3  = o < A i  (see [So]). When o is a saddle-
node singularity of X, it follows from the invariant manifold theory (see 
[HPS]) that the set Ws(a) (resp. Wu(0-)), consisting of those points whose 
forward (resp. backward) X-orbit converges to a, is a submanifold with 
boundary W"(0-) (resp. W"(a)). Both, Ws(a) and Wu(a), are usually 
called center-stable and center-unstable manifold respectively. 

In this paper, we shall consider a homoclinic loop r such that its cor-
responding singularity a is a saddle-node and such that Ws (a) \ w"(a) 
and Wa(0-)\ W"(0-) intersect nontransversally along F. This last assump-
tion, often called inclination flip, was studied in [KKO] in the case when 
the corresponding singular point is hyperbolic. 

The motivations behind the study of saddle-node singularities ex- 

hibiting inclination-flip homoclinic loops come from several works. Ho-

moclinic loops associated to saddle-node singularities in dimension two 

were studied in [AL]. In higher dimensions, a similar problem was treated 

in [SN, but with the hypothesis of transversal intersection between 

the center-stable and center-unstable manifolds along the loop: it was 

proved that a unique (hyperbolic) periodic orbit is generated after 

saddle-node singularity disappears. In addition, such a periodic orbit 

is the unique nonwandering orbit in a fixed small neighborhood of the 
loop. 

On the other hand, inclination-flip homoclinic loops associated to 

hyperbolic singularities were also considered. In fact, such loops were 

studied in [KKO] and in [HKK]. In the first work it is shown that periodic 

and homoclinic doubling bifurcations do occur under suitable conditions 

on the eigenvalues of the singularity. The second considered the problem 

of finding Smale's horseshoes in generic perturbations of an inclination-

flip homoclinic orbit. It was proved that, under certain open conditions 

on the eigenvalues of the singularity, such a phenomena actually occurs 

at least in a thin region of the parameter space. By a thin region we 

mean a (two-dimensional) Lebesgue density zero set at the bifurcating 
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parameter value. In [Ry] it was proved that geometric Lorenz attractors 

can bifurcate from a pair of inclination-flip homoclinic orbits associated 

to hyperbolic saddle-type singularities. Our main result is the following 

Theorem A. Let {x,,} liER2 be a generic two-parameter family of vector 
fields such that X (0 , 0)  exhibits an inclination-fiip homoclinic orbit r as-
sociated to a saddle-node singularity. For a small neighborhood U of r, 
the following two properties hold: 

1. the set of parameters µ for which the nonwandering set of X µ  (re-
stricted to U) is either empty or a hyperbolic set has full two-dimensional 

Lebesgue density at p, = (0, o); 

2. the set of parameters for which the nonwandering set of 

(restricted to U) is a suspended Smale's horseshoe has positive two-
dimensional Lebesgue density at µ = (o, o). 

The case of a saddle-node singularity exhibiting both inclination-flip 

and transversal homoclinic orbits is also considered. By a transversal 

homoclinic orbit we mean a homoclinic orbit which is not an inclination-

flip. In [AS] it was proved that a suspended Smale's horseshoe of p-

symbols arises from the disappearance of a saddle-node singularity with 

p-transversal homoclinic orbits, all of them belonging to the interior 

of the center manifolds of the singularity. This fact lead us to study 

situations which are obtained when it is unfolded a saddle-node singu-

larity with p-transversal homoclinic orbits and just one inclination-flip 

homoclinic orbit. As a corollary of the proof of theorem A, we obtain 

Theorem B. Let {,ç,} 1_, ER2  be a generic two-parameter family such that 
x (0 , 0)  exhibits a saddle-node singularity having p-transversal homoclinic 

orbits and one inclination-fiip homoclinic orbit, all of them lying in 

the interior of the corresponding center manifolds. Then, for a small 

neighborhood u of there homoclinic orbits, the set of parameters ,u such 

that the nonwandering set of x in u is either a hyperbolic set conjugated 

a subshift of p-symbols, a hyperbolic set conjugated to a subshift of (p+2)- 

symbols or two hyperbolic singularities has full two-dimensional Lebesgue 
density at 1.£ = (o, o). 

We point out that there is some relation between the inclination-flip 
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homoclinic loop considered here and the Lorenz attractor bifurcation 

process showed in [M]. In this reference, it was shown that a geomet-

ric Lorenz attractor can unfold into homoclinic tangencies through a 

codimension-one lamina formed by a special class of vector fields called 

saddle-node Lorenz attractors. It is easy to see, in such a codimension-

one lamina, that there exist open regions having a dense set of vector 

fields all of them having a inclination-flip homoclinic orbit associated to 

a saddle-node singularity. The viewpoint we present here, concerning 

prevalence of certain features (positive density) in dynamic bifurcation, 
has been inspired by [PT]. 

This paper is organized in five sections. In section 2 a precise ver-

sion of theorem A is presented (Theorem 2.2), together with some basic 

definitions. In section 3 we shall prove two previous propositions which 

are immediate consequences of the standard transversal theory. In sec-

tion 4, an approximated bifurcation diagram is presented. This diagram 

yields full Lebesgue density regions where the nonwandering set, dose 

to the homoclinic orbit, is either two hyperbolic singularities, empty or 

a topological horseshoe. Finally, in the last section, this region is refined 
in order to obtain hyperbolic horseshoes. 

2. Inclination-flip sadclle-node homoclinic orbit 

Here we consider a three-dimensional vector field X 0  which has a singu-
larity at (x, y, z) = o, o). We assume that it is a saddle-node singularity, 
i.e. Dx0 (0, o, o) has three real eigenvalues —À2 < --À3 = O < Ài. It fol-
lows from the invariant manifold theory (see [HPS]) that there exist the 

next invariant manifolds associated to 0=-(0, o, o): W3(0), w cs (o), wu (o), 

 wcu(0) and wc(0) which are tangent to the set of eigenvectors associated 

to the corresponding set of eigenvalues given by {—À 2 }, {—À 2  , o}, {À 1 }, 
{À1 , 0} and { o }. They are called the stable, center-stable, unstable, 

center-unstable and the center manifolds respect.. In addition, these 
manifolds are as smooth as the initial flow Xo. 

We also assume the existence of a homoclinic orbit associated to the 
origin O, that is, there exists a solution of x 0 , namely h(t), such that it 
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goes to zero when t +00. Let us set r = C1({h(t) : t E R}). We assume 
the following hypotheses respect to the homoclinic orbit r: (N-P) r is 

in (Wcu(0) n Wes (0)) \ (Wu (0) n Ws (0)). 

(Q-T) Wcu(0) and W'(0) have quadratic tangency along r. 
A homoclinic orbit as r is called inclination-flip saddle-node homo-

clinic orbit. Let us define w as the set of three-dimensional vector fields 

which have a inclination-flip saddle-node homoclinic orbit. 

Proposition 2.1. Let W be as above. Then IN is a codimension two 

submanifold in the space of three-dimensional vector fields. 

Based on this proposition, we deal with two-parameters families 

which are transversal to W. To start, we consider a small neighborhood 
U of its corresponding inclination-flip saddle-node homoclinic orbit and 

we say that a parameter g is hyperbolic relative to U iff the nonwander-
ing set of the corresponding vector field, in U, is either a empty set or 
a hyperbolic set. Also we say that it is a suspended horseshoe param-

eter relative to U iff such a nonwandering set is a suspended Smale's 

horseshoe. Theorem A can now be stated as follows: 

Theorem 2.2. Let {X,,} tieR2 be a two-parameter family of three-

dimensional vector fields which is transverse to W at tt = (0,0) and 

consider a small neighborhood U of the corresponding inclination-flip 

saddle-node homoclinic orbit. Then, the set of hyperbolic parameters 

relative to u has Lebesgue density one at g = (0, 0). Moreover the set 

of suspended horseshoe parameters relative to U has positive Lebesgue 

density at the same parameter value. 

In the proof of this theorem we will see that parameters correspond-

ing to vector field which has empty nonwandering set in U have also 
positive Lebesgue density at tt = (0, 0). In addition, it will be clear 

that kt = (o, 0) is also accumulated by positive Lebesgue measure sets of 

parameters which correspond to vector field with a Henon-like strange 

attractors (see [MV] and [PT]). A different unfolding of the horseshoe 

(see [PT]) is explained in the sequei. Briefly, the unfolding consists of 
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the disappearance of the horseshoe through a fixed parabolic curve. 

3. Basic propositions 
Suppose that {xli } iLER2  is a two-parameter family of three-dimensional 
vector fields such that X0 E W. Our goal here is to give some basic 
propositions and also conditions to test when such a family is transverse 
to IN at ,u = (0,0). 

The first main assumption is related to the behavior of X I., dose to 
the saddle-node singularity attached at µ = O which we suppose that is 
the origin O = (0,0,0). We assume that the following expression for the 
given vector field holds. 

`Yµ (x, 	= (Ai .f. (z,1.1))ax ( — À2 + .g(z, tz)) 5y H(z,A)az 

with 

1-1  = (1/1;ii2) E R2  ; f (O, O, O) --= g(0, 0,0) = 0 ; 	> 0 

and H(z, t) being a saddle-node arc in the following sense: H(0,0,0) 
Hz  (0, 0, 0) = Hp2  (O, O, O) = 0 ; Hpi  (O, O, O) = — b < o and Hzz  (O, O, O) = —2.a < 0. 

This is a generic condition (see [T]) and can be dropped using the 
methods given by [D]. That is assumed for the sake of simplicity. We 
also assume that the following global properties hold for the initial field 
Xo. 

Wre (0) 1-1 Wcs  (0) C { x = y O } 

Wicosc (0)C1W"(0)C{x=y= O ;z> O } 

where wizoc (0) (i = cu, cs) are the local center-unstable and center-stable 
manifolds (resp.) associated to the saddle-node O. Let us consider two 
transversal sections: E 0  = { 	iyi < 1 , z = 1 } and E 1  = { ixj, lyi < 1, z 
—1 }. 

Also we consider the two natural coordinate systems (x o , yo ) and (x, y) 
in E0  and E 1  respec.. Then a successive flow-defined map G is defined 
for kt dose to O: 

G  ia,(x 
	(91(x, 

Íz), 92 (x, y, p))  
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from E 0  to E 1  and it has the following properties: 

Go,o) (0 , 0) = 0 
gl (O, O, O, O) = o ; 	(O, O, O, O) 	0. 

because of X(0 , 0) E W. 

Proposition 3.1. A two-parameter family {.4} M ER2 2 as the above consid-
ered, is transverse to W at µ = (o, 0) iff gp, 2  (0, 0, O, O) 0. 

Proof. Using 	(O, 0, 0, 0), H zz (O, 0, 0) # O we obtain two functions p x(p) 
and p, z(p) such that 

gx (x(p),O, p,) = Hz  (z(p), p) = O x(0,0) = z(0,0) = 0. 

Now we define 0(tt) = (g 1 (x(p), O, p), H(z(p), p)). Then Xµ  E W iff -0(//) 
(0, 0). Therefore, the family is transversal to W at p = (o, 0) iff D-0(0,0) is 
not a singular matrix. But this last statement is true iff g 11, 2 (0, 0, 0,0) 0. 
The proof is complete. 

Next proposition give us a first aproximating bifurcation diagram 
for a two-parameter family transverse to W. 

Proposition 3.2. Suppose that {xp} mER 2 is a two-parameter family as 
above-mentioned and it is transversal to W at p = (O, O). Then there exist 
a smooth change of parameters v = v(p) and a small neighborhoodU of 
the homoclinic loop at p = (O, O) such that: 

a. for v 1  < o, the nonwandering set of X v  relative to U consists in two 
hyperbolic singularities and therefore v is a hyperbolic parameter relative 
to U; 

b. for v i  = o the nonwandering set of Xv  in U is a unique singularity 
of saddle-node type; 

c. for v 2  = 0, there is a quadratic tangency between the invariant 

manifolds wcs (v) and wcu(v), which are the analytic continuation of 
W"(0) and wcu(0) respectivelly. 

Proof. This proposition follows by standard arguments about generics 

unfolding of a saddle-node singularity: Let us consider the functions 
x(p) and z(p) of proposition 3.1. Then, the equation H(z(p),p) = 0 has 
a solution function ,u2 fll (P2) for which = 0. Also the equation 
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g i  (x(p), O , = o give us a solution function 1.11 	A2(// 1 ) which has finite 
derivative at the origin. Let us define the following change of parameters: 

{

= — µ1 (µ2) 

V2 = P2 — P2(P1) 

This completes the proof of proposition 3.2. 

Remark. If we still denote by H and G the expression of the correspond- 
ing maps with respect to the new parameters, then g,1, 1  (O, O, O, O) =  O. 
Moreover, the following expansion holds: 

H (z , v) = g(v2).v 	B(v).(z — h(v)) 2  O(Iz — h(v)I 3  Ivil 3 ) 

where g, b and h are smooth functions with 9(0,0) < O , B(0, 0) < o and 
h(0, O) = o. Indeed, if we expand H around z(v), it follows that: 

H (z, v) =H (z(v), v) + H z  (z(v), v). (z — z(v))+ 

+ (1/2).H z z  (z(v), v). (z — z(v)) 2  0(Iz — z(v)I 3 ) 

then we set g (v2) = 	(O, v2) (cp(v) = H (z(v), v)), B(v) = (112).H z z (z(v) , v) 
and h(v) = z(v). Throughout we assume that v = tt, for the sake of 
simplicity. 

4. Topological horseshoe region 

The approximating bifurcation diagram given in proposition 3.2 says 
that µ is a hyperbolic parameter while P1 < o. Here we consider the case 
mi > 0. There is a successive flow-defined map R, from E 0  to E 1  when 

> O. It give us a Poincare map Fµ  = Gµ  01-T i,. The nonwandering set of 
in a small neighborhood u of the homoclinic loop at µ = (0, 0) is the 

suspension of the nonwandering set of Fµ  in E0 , for mi  > o. fii, has the 
following form, for 1/ 1  > O. 

11/, (xo , yo) = (a (m)•xo, ) (12)•Yo) 

where 

Gr(u) = e[A1.T(4)+foT(11) f(z,g)dej 

A(p)e[—À2'7'(2)+foT(4) 9(z,g)c101 

1 
T(p) = 	

ds  

11 (s ,  11). 
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We are going to assume that gl x  (o, O, 0, 0) > o, 9i2  (0, o , 0, O) < o. The 
remaining cases can be handled in the same way. 

The main result of this section is the following 

Proposition 4.1. Let {4},,, ER2  a two-parameter family of vector field 
which are transverse to W at µ = (0, 0) and as the one given before (see 
§3). Then there exist two functions K , K± : { p > O } —+ R such that the 
following hold: 

b. K±(0) = O, K± (x) > o and K-  (x) < o. Also (K)' (0) = o; 
a. if 	I-12) is dose to zero, pi > o and o < P2 < 	then 

the nonwandering set of 	in some fixed small neighborhood U of the 
homoclinic loop, is empty; 

c. if µl > o and tt 2  > K+(2 1 ), then the nonwandering set of X µ  in U 
is a suspended topological horseshoe. 

Before the proof of this proposition, we consider the map 11 1, associ-
ated to the singularity. Let U be a small neighborhood of the homoclinic 
loop at p = o and suppose that it contains the cube [-1,1] 3 . Let A(p) be 
the preimage of [-1,1] 2  x {-1} through the above considered map and, 
at the same time, let B(p) be the image of A(p) under Hg . Then we have 
the following expressions, 

f A(p)  .= o--1  (p), o--1  (g)] x [-1, 1] x {1} 

B (p) = [-1, 1] x [—A(p), MA)] x {-1} 

Define x +(µ) and x —  (p) by the equations 

gx (x (p),±À(p), p) = O, p E { p1 > O } 

Moreover, we define c+(µ) and c — (µ) by 

c±(p) = g1 (x ±  (p), ±À(p), p), 12 E { mi > O } 

These last two functions are the critical values of the corresponding 
maps x 9 1 (x, ±) (p), p). We have 

Lemma 4.1. Suppose that bt E { µl > 0 }, p2 > 0 and 

max{ c+  (p), c (p)} < —cr -1 (p) 

(this is called the topological horseshoe condition, T.H. C.), then the 
nonwandering set of the corresponding vector field in U is a topologi- 
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cal horseshoe. On the other hand, assume that u E { µi < O }, 	< O, 

and 

min{ c +(u), c (1.1)} > 	(g) 

(this is called the empty condition, E. C.), then the nonwandering set of 

corresponding vector field is a empty set. 

This lemma already implies that topological horseshoe and empty 
nonwandering set appear in parameter regions given by inequalities as 
the following one. 

c±  (g) + (k + 1).a-1 (g) + 1.À(g) 

for some positive fixed constants k and 1. 

Lemma 4.2. Let (pkag) be the map defined by 

(Pk,l(l-t) = 49(l 1) = Cs  (li) 	(k + 	(1-1) + 1. \(/1) 

with s = +,— and 1.2 E { 	> o }. Then has a Cl -extension in a whole 
neighborhood of µ = (0, 0). If this extension is still denoted by yo, then 
(p 1, 1 (0,0) = O and (191,2  (0, 0) # 0. 

Proof. Here we consider the case s = +. By doing elementary computa-
tions we obtain that 

p (g) = 	(x +(/1 ), A(p), g) + 1). Ag, (g) + g gl  i (x +  (g), A(p), p) — (k + 1).°- cr2
2 
 (12)  

if g E { tti > O } (i=1,2) but 

Am, (g) -,A(g). 5 (—A2 + g(-1, g)).Tp i (g)+ 

+ 
 f

¡T (µ) 
[g. (z(9 , u), pi)-ztit( 0 ,11) + gp.,(z(0, A), 1-01c10 } 

13 

and 

e fiz (II) =G r 	(À1 + f ( -1 , 1.4)).T#,(1-0+ 

T(.t) 

[fz(Z( 0 , 	 (e, 	+ fgi  (z(0, tt), /1)l  de} 
o 

Claims. For any real number b Glose to zero the following holds: 
a. 10--1 (g).T(g)1 and IA(p).T(it)1 go to zero when i1 E { 	> O } goes to 

(0, b). 
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b. 10- -1 (p).T,„ (4 and 1A(tt).Ti„(p)i go to zero when bi E { µ1 > O } goes 
to (0, b). 

If both claims hold the required C 1 -extension exists by setting yo(p) = 
g 1  (x(µ), O, p) (recall proposition 3.1) for g E { µ1 < O }. In order to prove 
both claims, we adapt arguments given in [DRV] as follows: 

First we observe that for every S > o and every nonnegative integer 

ES 

of 

;y 

LS 

	

1 	 6 
lim sup[-9(µ2).µ1] (i+1 /2)  f 1 x(di+s 	lim sup[-9(112)411]

(i+1/2) f 	ds  
p—.(0,b) 	 4—(0,b) 	 _6 x(i+ 1-) 

(recall remark after proposition 3.2 §2) where X is either H(.5,12) or 
= —g(p).1.11 — B(//).(z — h(P)) 2 . Also, we have that for any c > O 

there exist S > o and A > o such that 

1 — c < 
—H(s,p) 

<1+ 
H(s, p) 

if (s, µ) E [ — 6, 6] x { Iµl < A }, because of the remark after proposition 3.2 
applies. Then 

i 
lim sup[-9(112)./41

(i+1/2) 

g-4(0,b) 	 1 

1 	
ds 

 —1 [ — H(s,12)] (i+1)  

A-4 (0,b) 
< (1 — €)—(i+1) 

lim [-9(µ-2).µ1](i+1/2) f 	ds 

Moreover, 

lim inf [-9(µ2)•µ1](Z+1/2)
f 	

ds 

—1 [ — H (s , 11 )1 (i+1)  

< (1 + E) (i+1) lim {-9(P2)•/1 1] "1/2)  
(0,b) 

and therefore 

1 
ds  

lim [-9(µ2)•µ1]
(Z+1/2) 

 

= ffin [-9(µ2)•µ1]
(Z+1/2)

/ 

1 	
ds  

1 [
11

(s, 
4

(2+1)  
provided the second limit exists, since e > O is arbitrary. 

Boi. Soc. Bras. Mat., Vol. 27, N. 2, 1996 

1 

i 
ds  

11 [111 (s, 11)] (z+1)  



156 
C. A. MORALES 

It can be proved, by a direct computation, that this last limit exists 
and it is a positive number C(i) for all i. When i = 0 we get 

IT(p)1 	ec(°)/ ✓-90,2)•mi 

and then IT(//)1 goes to infinity if µ goes to (o, b), hence claim (a) follows. 
In the case i = 1 we have 

f  
ds 	 C(1)  

1 —1 	[H(s,µ)J2 g (1-12)- 	/ 2  
then (b) follows. 

Now, proposition 4.1 follows by applying lemma 4.2 with 1= 0, k = 0, 
s = + for T.H.C. and s = - for E.C.. 

5. Hyperbolic region: proof of theorem 2.2 
In order to prove theorem 2.2 we study the case pi > o in details. More 
precisely, we search the topological horseshoe region (given in §4) to get 
conditions which leads hyperbolic horseshoes. 

In fact, not all of the topological horséshoe appearing in the Topo-

logical horseshoe region are hyperbolic ones, but it will be proved that 
hyperbolicity do occur in most of the cases. 

Let us consider the region given by 

gl  (x+  (p,), A(p), 	k.o--1 (F/) 1.À(p) < 	(A) ; 	E { Ecl > 0 } 

where k, 1 are positive constants. Then, by using lemma 4.2, it follows 
that if we define the function Vi(p) as 

ço ( 	= gl  (x +  (p), A(11), 	(k 1).a.-1  (A) 1.A(p) 

then the equation '(µ) = o is solved by a C'-function µ 2  = µ2(µ1) > K +(µ1) 
such that 7.72(0) = µ' (0) = 0. The main result of this section is the following 

Proposition 5.1. There exist 1 and k large such that if du is a parameter 
valise in { mi > O } and the following condition holds. 

g l  (x +  (g), A(Á), 	< — (k 1 ).o- -1 (µ) — 1.À(11) 

(this is called the hyperbolic condition, H. C. ), then bt is a suspended 
horseshoe parameter relative to U. 
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Before the proof of this proposition, we give some previous lemmas. 

Lemma 5.2. For every E > 0, there exists a positive number á such that 

the following holds: there exist two C 1 -functions 

x +,x_: A(g), A(g)]  x [ — 	(m), 	0A] x  : 1 g l< á H.C. holds } 

for which 

	

y i (x± 	ált) 	
g)5 I 	1 7 	= 

and 
I 	x+  (g) I  E [1 — 6,1 

	

K. 	
— c + 	F.(Y MIA) 

for some positive fixed constant F and K. 

Proof. The existente of both x +  and x_ follows by the quadratic nature 

of g' respect to x. Now, we have 

gl  (x,y, p) =c+  (g) {d(g) 	
x  „) 
	}.(x — x +  (p)) 2 + 

(x — x+ (g)) 2  

(Y 
R(x' Y )) (Y — A(11)) 

Mil 

for some appropriates functions f* , R and d, such that 

	

PI) = 	= .~9x1  x( 0 , I-1) = R(x, O, 	= Ry (x, O, 	= o 

for every g and d(0, O), f* (0, 0, 0) > o. Thus the following identity holds. 

x± (y, ,11) — x+  (g) = ±\ 
— c+ (IA —  [f * (x,P)+ R(y( x_±):(y/:,))) ].(y Mit)) 

d(g) 	p).x1 2  

hence we are done iff tt is small enough. 

Lemma 5.3. For every E > o there exists A > O such that 

Y A(11 )  

	

x+(Y,, 	— x +  (12 ) I 
< 

if (y,) E H À(p), À(p)] X H a -1 (p), cr_ 1 (p)], g E { µl > O }, IgI < A and H.C. 

holds with 1 large enough. 

Proof. Using lemma 5.2 one has 

Y A(1.4) 	

K 	

2À(p)  
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— c +  (g) — F.(y — A(11)) > ka .-1  (g) (1 — 2F)A(g) 

because H.C. holds. Then we are done if kt is small enough and l is large 
enough. 

Now, let us define the following cone family 

CÉ (y, 	= { (u, v) : I I <e} 

this induces a cone field in GI,(B(A)) n A(g) (recall §3 and §4). 

Lemma 5.4. Suppose that µ E { µl > O } is a parameter value for which 
H. C. holds. Then the angle between the horizontal lines and the vector 
(91-, g)(x+(y, g), y, g) is less than 

ko--1  (g) + .A(g) 

for some constants K' , > 0 where 1' is as large as 1. 
Proof. First we look at the following quotient: 

q(11) = 
2 

gx (X± (Y) e, 	y,  

9 j (x+(y, 	1-1), y, 1-1 ) 
it follows that 

cl 
c2  + c3• [(y - A(1-1))/(x+ - x +)] 

for some functions ci  such that e 1 , e2  are positives at µ = (O, o). Then, 
using lemma 5.3, we have 

< 	C4 	< 	  

IX+ x + 	Vka-1(//,) i/À(//) 

Back to the proof of proposition 5.1, let us define 

K' 
= 

Vlecr--1 (g) + 1'À(µ) 

Then, the cone field given by { C 2a(m) (y, } is well defined and is carried 
by IIµ  into the cone field ão( m)(x, y) = { (u, v) : lu/vi < 0(g) }, where (g) = 

(g).A(g).ce(g) and thus D(G O 1.1)(C,,(p)(y, g)) c int (C,(m) , e)) for 

	

some V, because of (ku-1(it)+n(i1)) 	
ps ) A(m) goes to zero if µ goes 

to zero. Finally, by doing straightforward computations, expansivity of 

Bol. Soc. Bras. Mat., Vol. 27, N 2, 1996 
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both D (G ofl ) and D(Gp ori,) -1  in C2„ (12)  (y , and R2  \ C2a (m)(y, respect. 
follow. Then the hyperbolicity follows as in [PT}. This finishes the proof 
of proposition 5.1. 

Now, the proof of theorem 2.2 is completed using proposition 5.1 
and proposition 4.1. 
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