
Nova Série 

BOLETIM 
DA SOCIEDADE BRASILEIRA DE MATEMATICA 

Bol. Soc. Bras. Mat., Vol. 27, N 2, 199-215 

©1996, Sociedade Brasileira de Matemática 

Fibred Links and a Construction of Real 
Singularities Via Complex Geometry 

Jose Seadel 

Abstract. This note gives a method for constructing real analytic maps from R 2n 
 into R2 , with an isolated critical point at O E R2n , for ali n > 1. This provides infinite 

families of real singularities which fiber "a la Milnor". 

O. Introduction 

In this note I give a method for constructing real analytic maps from 
R2' into 11 2 , with an isolated critical point at O E R2', for ali n > 1. 
These maps have a very rich geometry, which is a reminiscent of the 
geometry of complex singularities [Mi], and in some ways it is even 
richer. This provides infinite families of real singularities which fibre 
"a la Milnor" [Mi, p.100]. The construction arises from the work of 
Arnold [Ar], Camacho-Kuiper-falis [CKP] and Gomez Mont-Verjovsky 
and myself [GSV, Se], by studying holomorphic vector fields from the 
differentiable point of view. 

The construction is in fact simple: Let x(en, O) denote the space of 
ali germs of continuous vector fields at O E en , and let F, X be elements 
in x(C", O). One has a continuous map, 

OF,X: C n 2 
:2 R2n —> C R2 , 

defined by OF,x(z) = (F(z), X (z)), where 

(F(z), X(Z)) = 	Fi (z) • X i(z), 
i=i 
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is the usual hermitian product. These are the maps to which the title 

of this article refers. We note that if F and X are both differentiable 

of class Cr, then /F,x is of class Cr, if they are both real analytic, 

OF,x is real analytic, but if F and X are complex analytic, then li)F,x is 

not complex analytic, unless X or F are constant. So the singularities 

we obtain are truly real singularities, though we shall be considering 

holomorphic vector fields. 

As an example, let f: C2 	C be the Pham-Brieskorn polynomial 

f (z) = zj.  + 4, with p, q > 2, let 

ef  0,n  
F = az2 ' az1 )' 

a holomorphic vector field whose solutions are the fibres of f, and take X 

to be a constant vector field X = (ai, a2). Then 7PF,x is a holomorphic 

function with an isolated critical point at O and M = OF-lx (0) is the 

polar curve determined by a linear form (studied by Teissier, Lê and 

others, still unpublished). Now take F to be the linear vector field in 

C3  which is in the Siegel domain with generic eigenvalues [CKP] , for 

instance F = (zi,iz2,(-1— i)- z3), and take X to be any linear vector 

field X(z) = (zi, z2, z3); then M = OF-lic (0) is the cone over the 3-torus 
si x  si x  S1 [CKP, Lm] . Hence M = 2PF  ix  (0) is not a complex singularity, 

because the 3-torus is not the link of any complex surface singularity 

[Su]. Though M is not a complex singularity, M — {O} is canonically a 

complex manifold with a holomorphic C*-action with compact quotient 

M/C*, which is not a projective manifold [LV]; M is the space of Siegel 

leaves of F. 
Although some things can be done in general, for F and X contin-

uous vector fields, I prefer to restrict myself to what I think is the ideal 

environment: F holomorphic and X the gradient vector field of a real 

analytic function f. Then the variety M of IPF,x is the polar variety of 

the foliation of F and the foliation given by the levei surfaces of f, 

i.e. M is the set of points where the two foliations are tangent. 

In §1 below we look at the geometry of the functions 1PF,x in general. 

In §2 we look at the varieties defined by these maps, the polar varieties 
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(or contact sets), and in §3 we show that this construction produces 

singularities which fibre a la Milnor [Mi], i.e. they give rise to locally 

trivial fibre bundies of the type, 

— M 5 1  , 
f (z)  z 

(z)li 
where f is now the mapIPF,x. The existence of this type of examples was 

asked by Milnor on page 100 of his book. This question was answered 

positively by Looijenga in [Lo], by proving that for every n > 1 there 

exists a real polynomial map (R 2n, 0) (R2 , 0) defining a fibration of 

Milnor's type. However, Looijenga's proof is not constructive in the 

sense that it does not give explicit polynomials for which one has such 

fibrations. (See also [Pe].). Our construction gives infinite families of 

such examples. In §4 we study in detail one such family. We show 

that in these cases there are surprising analogies with [Mi] regarding 

the topology of the fibers. I do not know if this is a coincidence or if 

this is a special case of some general theorem. 

Parts of this work were done while the author was a guest at the Uni-

versity of Geneve in Switzerland, at the ICTP in Trieste, at IMPA in 

Rio de Janeiro, at TIT in Tokyo, and at CIMAT, Guanajuato, Mexico. 

He would like to thank these institutions for their support and hospital-

ity. He is specially grateful to professors Alberto Verjovsky, Francisco 

Gonzalez-Acufia, César Camacho and Lê Düng Tráng for fruitful con-
versations. 

1. The Geometry of 21)F,x 

Let F and X be elements in x(en, 0), with F holomorphic and X being 
the gradient vector field of some real analytic function 

f :  Cri R2n 	R, 

    

with an isolated critical point at 0. The levei surfaces of f , V t  = f -1 (t), 
are normal to X and define a (real) codimension 1 foliation S of 
singular at 0. Let .F be the holomorphic foliation by complex curves 
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defined by F. 

1.1 Definition (c.f. [Th]). The polar variety of f and F is the set M of 

points in C' where the foliations F and S are tangent. 

It is clear that one has, 

M {z E Cn  I (F(z), X(z)) = O}, 

so it is a real analytic space defined by the equations: 

Re(F(z), X(z)) = O, 

Im(F(z), X(z)) = O. 

Away from M these two foliations meet transversely, defining a foliation 

F by real curves. 

1.2 Lemma. The curves of F are the integrais of the real analytic vector 

field, 
T(z) = (i(F(z), X (z))) F(z), 

whose zero locus is M. 

Proof. It is clear that T(z) is always tangent to .F, because at each point 

z E en , r(z) is F(z) multiplied by a complex number. So we must prove 

that r(z) is normal to X(z). One has, 

(r(z), X(z)) = ((i(F(z), X(z))) • F(z), X (z)) 

= (i(F(z), X (z))) • (F(z), X (z)) 

ill(F(z), X(z))11 2 . 

Hence Re(7- (z), X(z)) = O, so r(z) is normal to X(z), because the real 

part of the hermitian product is the usual inner product in 11 2n  Cn . 
E 

This vector field gives the dynamical behaviour of F in the direction 

determined by the level surfaces of f . For instance, if X(z) = z and F 

is a linear vector field in the Poincaré domain with generic eigenvalues, 

then T is Morse-Smale [Gu], which is used in [CKP] to prove that the 

linear vector fields in the domain of Poincaré are structurally stable. If 

we multiply r by the complex number i, we get another vector field, 

which commutes with T and gives the dynamical behavior of F in the 

direction transversal to the level surfaces of f . 

JOSE SEADE 
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The following proposition gives a geometric interpretation of the 

map z i(F(z), X(z)), which is essentially the map mentioned in the 

introduction of this article. 

1.3 Proposition. For each z E Cn  — M, the argument of the complex 

number i(F(z), X(z)) is the angle by which we must rotate the vector 

F(z) in its complex line, to make it tangent to the levei surface of f at 

z. 

Define a function Ç = OF,X:en  — M —÷ § 1  C C by, 

0(z) =  i(F(z), X(z)>  

i(F(z), X(z))M 

and set Eo = 0-1 (ei° ). For each O E [0,7r) c R, we define a map, 

Cn  R, 

by 00(z) = Re(eie F(z), X (z)). We set, 

M8 
00— 

 1 
 (o) { z  E  ,-,rt 

I Re(e 2e F(z),X(z)) = 0}. 

Mo is the set of points where F(z) is orthogonal over IR to X(z); M,12 

is the set of points where iF(z) is orthogonal over R to X(z), and so on. 

One has the following decomposition theorem: 

1.4 Theorem. 

i) Cn = UMe, O E [0,7r). 

ii) M = nmo , B E [0,71- ). 

iii) M9 = Eo U M U Ee+7-r, for each O. 

Proof. Statement (ii) is clear and statement (i) follows from statement 

(iii), so we prove (iii). It is also clear that M C Mo. Let us prove that 

E0 c Me. If z E Et9 then, 

e -26  i(F  (z), X (z))  = 1 

 i(F(z), X (z))M 

thus, 

   

    

i(F(z), X (z)) = i(ei 9  F(z), X (z)), 
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is a real number. Hence Re(e ie  (z), X (z)) = O, so z is in Mo. The prove 

that E0+, c Mo is similar, so we leave it. Let us prove, 

Me C E° U M U Eo-Hr • 

If z E M9 then i(ei°  F (z), X (z)) E R. If (F(z), X(z)> O, this implies, 

ei°  i(F(z), X (z)) 	+1  

i(F(z), X (z)) 

and that z is in E0 or in E0+,, depending on the sign in the right hand 

side. 	 ❑ 

2. The Polar Varieties 
In this section we give some general properties of the polar varieties 

arising by the construction of §1 above. We start with a few examples, 

giving an insight of the difficulty for understanding these singularities: 

2.1 Examples. a. Let F= z ..2, z2, A3, z3) in C3  and X = (zi, z2, z3), 
3 

so M ={zECC3 I E 	= 0}. 
j=1 

i) If Re Ai > O for i = 1,2,3, then M = {0}. 

ii) If Ai = 1, A2 = —1, À3 = i , then M is given by the equations: 

= liz211,z3 = O; 

M is the cone over the 2-torus, it has real codimension 3. 

iii) If Al = 1, A2 = 1, A3 = —1, then M is given by the equation: 

ilz111 2 	liz211 2  = ilz311 2 , 

so it is a codimension 1 real quadric. 

iv) If Al = 1, A2 = i , A3 = —1 + i , then M is given by: 

Ilzlll = ilz211 = liz3ii, 

which is the cone over the 3-torus. It has codimension 2. 

b. Our next example is due to T. Ito 	p. 186]: Let X = (zl, z2) and 

let 

F = (2zi + (1 + i)zd, z2) • 
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Then M has two connected components: One component consists of 

O E C2 , which is an isolated point of M, and the other component 

has a circle S 1  as singular set E ;  if we remove E from M1 what we get 
is the disjoint union of two cylinders homeomorphic to S 1  x R, which 

are transversal to all the spheres around O. 

We see in these examples that the behaviour of the corresponding 

polar variety changes drastically in each case. Still, one has the following 

theorem, which is an easy extension of Theorem 2.3 in [GSV], so we state 

it without proof. 

2.2 Theorem. M is a real geometric complete intersection in Cn , of 

real codimension 2, with a unique singular point at O E Cn  if and only 

if all the contacts of and S are generic, except at O. In this case 

M* = M — {O} is canonically a complex (n — 1)-manifold. 

A contact of two foliations is a point where they are tangent, i.e. a 

point in M. We refer to the article of R. Thom [Th] for a discussion 

of "generic contacts". The idea is simple: X is a gradient vector field 

of some function f . By restricting f to the leaves of .F, one gets a 

vector field X7 whose solutions are contained in the leaves of F. The 

zeros of Xj- are the points in M, and the contact is generic when the 

corresponding zero of X .F is non-degenerate. Hence, these are contacts 

which are either non-degenerate local minimal points in F , or local 

maximal points or saddles. It follows (c.f. [GSV, Theorem 2.3]) that if 

M is a complete intersection with an isolated singularity at O, and if it 

has a point x E M — {O} which is either a minimal point, a saddle or a 

maximal point, then the connected component of M — {O} that contains 

x consists of contacts of the same type. 

2.3 Example. Let F be a linear vector field in the Siegel domain with 

generic eigenvalues (see [CKP,Lm]) and let X(z) = z. Then M is a 

complete intersection with a unique singular point at O. It is the inter-

section of two real quadrics, and it is a cone with vertex at O. The base 

of this cone is the intersection of M with the unit sphere, and it may 

have a very interesting topology, as it is shown in [Wa,Lm,LV], where 
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these varieties are classified. 

3. About Milnor's Fibration Theorem 

J. Milnor in [Mi] proved the following fibration theorem: 

Theorem . Let f : (U C Rn+k  , P) 	(R k  , O) be a real analytic function 

with a criticai point at P, such that for each point x P near P, the 

Jacobian matriz D f (x) has rank k. Let V = f -1 (0), let S, be a small 

sphere around P and let AT = Ar (v) be a tubular neighbourhood of V n SE 

in S E . Then one has a function, 

0: SE 
— .Ar 	sk-1 ,  

which is the projection map of a C°° fibre bundle. 
We proved in [Se] that the method above produce infinite real sin-

gularities satisfying Milnor's hypothesis: whenever F is a vector field in 

C" of the form., 

F(z) = 	, 	, 	an 

where the ki's are ali non-zero complex numbers and the ai's are integers 

> 1, and if X is the radial vector field X(z) = (zi, , zn ), then the map 

OF,X satisfies Milnor's hypothesis. 

We note that in ali these cases '11) F,x satisfies Milnor's hypothesis, 

one has the fibre bundle, 

0: Cn — .AÍ(M) —> S 1  C C, 

where 	
11)  F X  

= 110 F Xli 

and Theorem 1.4 above implies that each pair of antipodal fibres is glued 

together along M forming a real analytic space homeomorphic to, 

Mo = {z E Cn  Re(F(z), X (z)) = 0}. 

This is necessarily a real hypersurface in Cn with an isolated singularity 

at 0, c.f. [Pa]. 

We now give more examples of vector fields F and X for which the 

corresponding function /PF,x satisfies Milnor's hypothesis, so one has an 
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associated fibre bundle. In these examples X is no longer the radial 

vector field. 

3.1 Example. Let f:C2n C be the Pham-Brieskorn polynomial, 

f(z) = zi1  + • • + z2r, 

with ai > 2 for ali i. Set 

.1; 	azi  
and let F be any hamiltonian vector field of the form 

(f2, 	• • • , f2n, 	 (f3, f4, 	—f2, • • • ), 

etc., whose solutions are contained in the fibres of F. Let 

X = (ai,. • • , an) 

constant. Then ÇF,X  is a holomorphic function with an isolated criticai 

point at O. Hence the polar variety M is a complex hypersurface in 

C2" with an isolated singularity at 0, so it has an associated Milnor 

fibration. It would be interesting to understand the relationship among 

these fibrations as we take different hamiltonian vector fields, and also 

their relationship with the original Milnor fibration of the function f. 

An extra bonus we have in these cases is that Theorem 1.4 above tells us 

that the double of the Milnor fibre is the intersection of the unit sphere 

54"-1  with the real analytic variety, 

2n 

M0= {Z E C2n I Re 	rtiFi(z) = 0}. 
i=1 

3.2 Example. Let F(z)= (41 , 	, znan), and X.= (1, 	, /, zr+1, • • • , zn)• 
Then, 

ar 	ar+1.— 	 an- 
IPF,X(Z) = Zi + • • • + Zr + Zr+i  Z r+i + • • • + Zn  Zn . 

We write, 

F,X (Z) = 2 ( 11)  F,X ( 2) + F,X(Z), F,X (Z) 	F,X(Z)), 

and we consider its derivatives with respect to 	, zn , zn . This 

is a 2 x 2n matrix. The determinant of the first 2 x 2 minor is O if and 

Of 
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only if, 

—2Cd II z111 2a1 	"" 

i.e. if and only if zi = O. The same statement holds for z2, 	, Zr . 

Considering the minor given by the partial derivatives with respect to 

zr+ i and 4+1 we see that its determinant is O if and only if, 

2 	 zr+1 2ar+1  ar+1 lizr+111
2(ar+i) 

and similarly for ar+2, 	, an . This happens if and only if zi = O for all 

zi, i > r. Hence OF,x satisfies Milnor's hypothesis. 

3.3 Example. The following is an example where the vector field X is 

not necessarily linear. Let F = (4, 4) and X = (.4 ,zD, with p, q, r, 

s > 0 and p r, and q s. 
The proof that these examples satisfy Milnor's hypothesis is exactly 

as in the example above, so we omit the details. One decomposes bF,x 

into its real part and its imaginary part, and considera the jacobian 

matrix taking derivatives with respect to the z a 's and the Then 

one shows that there is always a 2 x 2 minor whose determinant is 74  O, 

unless zi = 0 for all i. 

3.4 Example. As a last example, consider F to be a linear vector 

field, F(z) 	(Aizi, • • • , ) zri)• It is easy to see that if we take X to 

be the radial vector field X(z) = (zi, 	, zn), then the corresponding 

function F,x never satisfies Milnor's hypothesis. The rank of its ja-

cobian matrix drops at the axes. However, suppose n = 2n is even, 

and take X(z) = (z2, - zi, • • • , Z2r —z2r-1), then it is an exercise to 

show that OF,X satisfies Milnor's hypothesis if and only if A2 II, 

11À311 74 II A4I1, and so on until iiA2r-1 	liA2rli• 
It is worth noting that one produces more examples by mixing the 

previous ones. Whenever i = 1, , r, are pairs of vector fields 

in leni for which the map 2/)Fi ,x i  satisfies Milnor's hypothesis, the direct 

sum (F1 EB • • • ® Fr, Xi EB • • • ® xr  ) is a pair of vector fields in en1±-4-nr 
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satisfying Milnor's hypothesis. 

4. The Topology of the Fibres: An Example 
Let (F(zi, z2) be the vector field in C 2  defined by, 

F(zi,z2) = (z", 	k > 1. 

Let M be the set of points z = (zl, z2) in C 2  where F(z) is tangent to 

the spheres around O. That is, 

M = {z E C2  1 (F(z), z) = 0}, 

where (F(z), z) = 4 • 4 - 4 • .t2  is the hermitian product. 

We first state the results, the proofs come later. 

4.1 Theorem. M has real dimension 2, it is smooth away from O E C2 , 
and it is embedded in C 2  as the cone over a link L in S3  with (k + 3) 

components, each being a fibre of the Hopf fibration § 3  —> S2. 

4.2 Theorem. Let q = 	S3  - L 5 1 , defined as above: 

i(F (z), z)  

°(z) 	li(F (z), z)i .  

Then çb is the projection map of a (locally) trivial, C°° fibre bundle. 

4.3 Theorem. Each fibre E9 of ç  can be compactified by attaching L as 

its boundary; E0 is a surface of genus, 

(k — 2)(k + 1)  
g(Eo) = 2 

and (k + 3) boundary components. Moreover, E0 and Eo+, are glued 

together along L, forming the closed, smooth surface 

No = {z E S3  I Re(ei9F(z), z) = O}, 

which has genus g(No) = k 2 , equal to the (Poincaré-Hopf) local índex of 
the vector field F. 

Let us prove Theorem 4.2 first. Let F = (4, -4). For each ei9  E 
51 , let Fo be the vector field Fe(z) = (eie F(z)), and define We(z) = 
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Re(e2e F(z), z), as before. We claim that if k > 1, then (0,0) is the only 

criticai point of fie. By definition one has, 

09(z)  .= _1  {ei0(z221 — ziN) e-ie (z- 2 k z1  _ 
t1

k z2) } .  

Therefore, 

We (z)  = -1 {—kei°4 -1 z-2 + e-iaz-2k}, 
azi 	2 

alPe (z)  — 1 {keie z1 -14 e-M} . 
 az2 	2  

If °'Pe (z)  and "e (z)  are both zero then, 
azi 	az2 

—kei°4-1 2 e-ie-2  

This implies that either (zi, z2) = (0, 0), or else zi and z2 are both non-

zero. In the latter case, dividing the first equation by .t2 and the second 

by zl, one gets 

—keiezji-1
—ie k-1 

2 	O kCie Z2 k-1 	k  - 1  e zi  

which implies k = 1. Hence (0, 0) is the only criticai point of 00. 

Thus one has: 

4.4 Lemma. Let, 

MB {z E c2 1 ei61( z1-zi  422 ) e-i0(t- 2 kzi 21k z2 ) 0} ,  

with k > 1. Then each M9 — {O} is a non-empty, smooth, orientable 

3-submanifold of C2 . 
That M9 — {O} 0 is a consequence of 1.4 above and 4.5 below. 

Let us define a 1-parameter family of diffeomorphisms of C 2  by, 

ha (Zi, Z2) = 

with a E IR. It is clear that if a is of the form 2irr(k — 1), then 1.4„ is the 

identity, so the orbits of this flow are ali periodic, of period 2ir(k — 1). 

It is clear from the definition that one has M0 = Mo+, for ali O. Thus, 

given t E R we identify Mt  with Mi, where [t] is t reduced module 7r. 

BoL Soc. Bras. Mat., Vol. 27, N. 2, 1996 
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4.5 Lemma. Let z = (zl, z2) and let 

-ia 	-ia 

(W1, W2) = (e - z1,ez2). 

Then 	z2) E M9 if and only if (wi, w2) E Me+ce. 

Proof. By definition, 

A/4+c,  {ei(e+a) (z i2c-21  _ .422) e-i(e+a) (2k zi  _ 4k z2  =0 

and, 

Me = {ei9 (421 — 	+ eie (.i2 k z1 — 4 k z2) = 0}. 

One has, 

ei(9-Fa)( w l ftyi 	417)2 ) + e  -i(0-1-a) ( 17.22 k 	i k w2 ) 

= 	4-22 ) e-io(-22kzi — 21kz2). 

Hence (zl, z2) E Mo if and only if (wi, w2) E Mo+,. 	 ❑ 

The theorem below summarizes the previous discussion. 

4.6 Theorem. Let F be a holomorphic vector field as above. Define a 

rnap 
e2 {M}  sl, 

by 4)(z) = arg(i(F(z), z)). Then (I) is the projection map of a locally 

trivial fibre bundle over S 1 . Each fibre Ee, is an open 3-manifold, that 

can be "compactified" by attaching the boundary M. Furthermore, for 

each O, the fibers E9 and Eo+, are glued together along M, forining the 

real analytic variety M9 of points where the vector field e i°  F is tangent 

to the spheres (as a real vector field); M9 — {O} is smooth away from 0. 

This theorem essentially implies Theorem 4.2. To complete the proof 

of 4.2 we observe that the above 1-parameter family of diffeomorphisms 

preserves the sphere 53 , and the standard action of 118 in C 2 , 

t • (zl, z2) = (tzi,tz2) 

preserves each Mo. Hence each M9 is a cone that intersects transversally 

the sphere § 3 . This proves 4.2. 	 ❑ 

The proof of the following lemma is a straight-forward computation. 

This lemma is also a special case of [Se]. 
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4.7 Lemma. The Jacobian matrix of the map W(z) (F(z), z), has rank 

2 everywhere except at O. Hence, M is smooth away from O, of dimension 

2. 

It follows that M is embedded in C2  as the cone over a knot or link 

L C 53 . We will prove that L consists of (k + 3) fibres of the Hopf 

fibration. For this we recall how the Hopf fibration looks like. One 

has two special fibres, given by the intersection of § 3  with the two axis, 

which define the Hopf link. If we remove from § 3  these two fibres we get 

a thickened open torus T 2  x (-1,1). This can be foliated by tori T 2  x t, 

and-each such torus can be foliated by torus knots of type (1,1). These 

are the fibres of the Hopf fibration. 

Let us prove Theorem 4.1. By definition one has that M is the set 

of points (zi, z2) that satisfy, 

k- 	k- 
Z2Zi = ZiZ2. 

Hence one has, 

4.8 Lemma. M is the union of the two axes {zi = 0} and {z2 = O}, with 

the real analytic variety, 

f k 1 Z2 = zi-1 
	 z2}. 

k 2  I 	1 	k -±" 	I  

This means that every point in M-  satisfies: 

i) ilzili = 112211, and 

ii) (k + 1) arg(zi) = (k + 1) arg(z2). 

Hence one has, 

4.9 Lemma. M-  can be parametrized by, 
z (e+ 2sr ) 

1\4 --  = {(zl, z2) 1 Zi = reze  and z2 = re 	k+1 

with s = 0,1, 	, k, r > O and O E [O, 27r). 

Proof. We already know that I I zi II = I I z211 = r, for some r > O. To prove 

that if (zi, z2) E M-  then their arguments are as stated in the lemma 

(and vice versa), is a straightforward computation. 

If (zi, z2) E M n s3 , then r = 1/22 ; for each fixed O one has 1 point 

in the zraxis, the point 2 • eie  , and (k + 1) points in the z2-axis, the 
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points 
i(o+ 2sir 

e 	
) 

s = 	k. 
2 

As the angle increases from O to O + 27r, we go round the first axis 

once, and each of the (k + 1)-points in the z2-axis also goes round once. 

Therefore n S3 consists of (k + 1) torus knots of type (1, 1). These are 

(k +1) fibres of the Hopf fibration, which together with two fibres of the 

Hopf link, shows that L consists of (k + 3) fibres of the Hopf fibration, 

proving Theorem 4.1. 

Let us now determine the monodromy map of the fibre bundle, 

0:Se  — L 	S 1 , 

z 1-4 
ii(F(z), z)1 .  

We already know that the above flow 	, transports fibres onto fibres. 

Moreover, the orbits of this flow can be regarded as liftings of the gen-

erator of 7ri of the base Si. Thus; the monodromy h is the first return 

map of this flow. To determine h, take a point (zl, z2) in some fibre E9, 

then h(zi, z2) is the first point in E9 of the form, 

-iO 	-iO 
(wi, w2) = 	e -- z2), 

for some a > O. But we know that (wi, w2) is in Mo+,, so that a must 

be a multiple of 27r. Hence 
—2iri 	—27ri 

h(zi, z2) = (e k- 1  zi ,  e -krz2), 

so it is periodic, of period (k — 1). 

We now recall that 5 3  — L is the total space of the Hopf fibration 

minus (k+3) fibres. This means 53  —L is Si x (52  — (k+3)-points). Hence 

the monodromy h maps E9 onto (52 —(k+3)-points) as a (k —1)-fold cover. 

Thus, if we attach a 2-disc D 2  for each boundary component of E9, we 

get a closed surface E,9 which is a branched cover of 52 , ramified at (k +3) 

points. Hence, by Hurwitz formula, the Euler-Poincaré characteristic of 

Ê9 is, 

X(Ê0) = (k + 3) — (k — 1)(k + 2) + (k — 1) = —k 2  + k + 4. 
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Thus E9 has genus, 
— 2)(k  + 1)  

g(Eo) = 
2 

as stated in Theorem 4.3. 

By Theorem 1.4, the fibres Eo and E9+, are glued together along L 

forming the closed smooth surface, 

No = {Re(e it 9  F(z), z) = o} n S3 . 

Topologically, No is the double of Eo , so its genus is twice the genus of 

Et) plus the number of new handles that we create when we identify the 

boundaries. Since we have (k + 3)-boundary components on each fibre, 

we increase the genus by (k + 2). Hence the genus of No is, 

g(No) = (k — 2)(k +1) + k + 2 = k2 , 

thus we arrive to Theorem 4.3. [That k2  is the Poincaré-Hopf index of 

F follows from the well known fact, that the local index of F equals its 

algebraic multiplicity 
023 0  

= d'm  k IcN 
(zl , Z2 ) 

which is k2.] 	 ❑ 

The same approach can be used in other cases. For instance, if 

F = (4, 4), k > 1, one gets that M is the cone over (k + 1) fibers of 

the Hopf fibration, the corresponding vector bundle is also trivial, and 

every two antipodal fibers are glued together forming a closed surface 

in the 3-sphere, whose genus is (k — 1) 2 . 
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