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Abstract. We show the family of tangent flags to smooth quadric hypersurfaces 
extends to a flat family parametrized by the variety of complete quadrics. This 
answers a question posed by S. Kleiman. 

Introduction 

Let S be the variety of complete quadrics, S nd  the open subset of non-
degenerate quadrics and Fn, the variety of complete flags in Pn . Let fo  : 
Snd  Hilb (F,,) be the morphism that assigns to each nondegenerate 

quadric the locus of its tangent flags. We prove the following. 

Theorem. fo  extends to a morphism f : S Hilb (F). 

This answers affirmatively a question S. Kleiman asked in ([14 

p.362). 

Let Fo,n_1 c Pn x Pn be the partial flag variety "point E hyperplane". 
We first show that S parametrizes a flat family 

K 	c S x Fo,n-i 

that restricts, over Snd, to the family of the graphs" of the Gauss map 

(point H tangent hyperplane) of nondegenerate quadric hypersurfaces. 
The family R S pertinent to Kleiman's question is obtained by pull- 
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218 ISRAEL VAINSENCHER 

back in the fiber square, 

K C Fn  x S 

K C 4 Fo,,,i x S, 

where the vertical maps are flag bundles. 
Our proof of flatness for the completed family of graphs relies on 

Laksov's description [L] of Semple—Tyrrell's "standard" affine open cover 

of S. 
The space of complete conics has recently reappeared as a simple 

instance of Kontsevich's spaces of stable maps (cf. Pandharipande [P]). 

It is also instrumental for the counting of rational curves on a K3 surface 

double cover of the plane (cf. [V1]). Complete quadric surfaces play a 

role in Narasimhan—Trautmann [NT] study of a compactification of a 

space of instanton bundles. 

We also show that any flat family of hypersurfaces on Grassmann 

varieties induces a flat family of subschemes of the corresponding flag 

variety. Precisely, we have the following. 

Proposition. Let G,,,, denote the grassmannian of projective subspaces 

of dimension r of Pn . For each r = 0...n - 1, let Wr C Tr x Gr,r, be the 

total space of a flat family of hypersurfaces in Gr,n parametrized by a 

variety Tr . Then 

W (W o  x•••x W 	x (T x F ri) 	T := To x • • • x Tn-i 

where x stands for fiber product over G0, 7, x • • • x G ri _1,„ x T, is flat. 

This statement was first obtained as an earlier attempt to answer 

Kleiman's question. The reason we include it here is that, in one hand, 

the proof rests on a nice, sharp count of constants, akin to dimension 

estimates of Fano varieties of linear subspaces of a hypersurface (cp. 

Harris [JH], thm. 12.8, p.154). 
On the other hand, for the specific case envisaged here, take Wr 

to be the family defined by intersections of Gr, n  with the complete sys-

tem of quadric hypersurfaces for the Plücker embedding. Recall that we 

have S c T (cf. Kleiman-Thorup [K11], (7.9) p.314, Laksov [L] p.375, 

[V], 6.3 p. 214). Now it is fun and instructive to realize that the fam- 
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ily W c T x F7, 	described in the proposition, does not restrict to 

the family of tangent flags. In fact, for conics (n = 2) its fibers are of 

arithemtic genus 1. It yields a double structure on the graph of the 

Gauss map. For n = 3 (and conceivably for higher n) the fiber of W over 

a point of S representing a smooth quadric contains the tangent flag as 
1 	 one of its two components. (cf. §7.4 for details). 

In section 1 we compute the Hilbert polynomial of the graph of the 

Gauss map of a general quadric. In section 2 we do the same for the 

subscheme defined by the initial ideal of the ideal of 2x 2 minors that 

cut out the diagonal subvariety of Pn. In section 3 we recall Laksov's 

description of the standard open cover of S introduced by Semple and 

Tyrrel. This is used in section 5 to study a torus action compatible 
L with the family of graphs defined in section 4. The proof of the theorem 

is accomplished in section 6 by comparing Hilbert polynomials at the 

generic and special points. The final section contains the proof of the 

proposition and some observations for the cases ri, = 2,3. Thanks are due 

to the referee for his help in clarifying and correcting several points. 

Table of contents 

1. The tangent flag to a smooth quadric 

2. Hilbert polynomial of loci of rank 1 matrices 

3. Semple-Tyrrell-Laksov cover of S 

4. Graph of the Gauss map 

5. A torus action 

6. Proof of the theorem 

7. Final remarks and proof of the proposition 

1. The tangent flag to a smooth quadric 

Write x = (Xl, 	Xfl,±1) (resp. y = (Y1, 	Yn+i)) for the vector of hom- 

ogeneous coordinates in P n  (resp. Pn  ). Let Fo, n_1 c Pn x Pn  be the 

incidence correspondence "point E hyperplane". It is the zeros of the 

incidence section x • y of Opn (1) Opn  (1). 

Let iç c Pn denote a smooth quadric represented by a symmetric 
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matrix a. The Gauss map -y : k --Pn is given by x H y = x • a. Hence we 

have 

7* (015 7,(1)) = Opn 

The tangent flag R c Fn  of k is equal to the restriction of the flag bundle 

Fn  , Fo,n_i c P" x én 

over the graph rt, of -y. Consequently, flatness of the family {R} of 

tangent flags is equivalent to flatness of the family of graphs {r k } as long 

as we stay over the open set Sn d . The family {r„} will be handled 

in §4: we will show it extends flatly over S; therefore so does { ,, E snd • 

We proceed to compute the Hilbert polynomial of the graph F,, of 

the Gauss map of a general quadric hypersurface K c Pn  . 

1.1 Lemma. Notation as above, the Hilbert polynomial x(O r,jr®t)) with 

respect to 

r = (Opn (1) ® Opri (1)) ir  

is equal to 

C2 t ± 	(2(t — 1) 
n 

Proof. We have r = opn (2) IK  under the identification 	Thus we 

may compute 

X(,C®t ) = X (Opn (2t)) 

= X (Opn (2t)) — X (Opn (2t — 2)) 

C2t + 	(2(t — 1) ± n) .  

2. Hilbert polynomial of loci of rank 1 matrices 

The image of the Segre embedding pn x pn pN is the variety of matrices 

of rank one. The image á of the diagonal Pn —+Pn x Pn  PN  is the 

subvariety of symmetric matrices of rank one. Its Hilbert polynomial is 

easily found to be given by 

dim (10(á, O p N (t)) = 
(2 t + n n) 	 (1) 
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for t » o. The bi-homogeneous ideal Io  of the diagonal is generated by 

the 2 x 2 minors of the matrix 

x1 

Y1 

X2 

Y2 

xn+1 

Yn+1 
(2) 

Write 

S = k[Xi, 	Xn+11 Y1 • • • Yn+1] 

for the polynomial ring in 2n + 2 variables, and let Si j  denote the space 

of bi-homogeneous polynomials of bi-degree (i, j). We have for t >> 

2t + n 
dim k St,t/(i-A)t,t = 	n 	 (3) 

Indeed, quite generally, for a closed subscheme X c Pm x Pn  defined by 

a bi-homogeneous ideal 1 c S we have, by Serre's theorem (cf. Kleiman-

Thorup [KTB], (4.2) p. 189), 

H°  (X, Opm (i) Opn (j)ix) = SI ,j/(/) i , 3  for all i, j » o. 

Thus (3) follows from 

H°  (X , O p N (t) I x) = H °  (X , O p m (t) Opn (t)ix) 

2.1 Lemma. Let ro  be the subscheme of Pn  x Pn  defined by the ideal 

(xiyi 115_i<j<n+ 1) + (E xiyi). 

Then we have 

C2t + 	(2(t-1)+ nl  
`P iro ( t) = 

Proof. The whole point is to notice l  that the x zyi span the ideal of 

initial terms ofl-p with respect to a suitable order. In fact, the set of 

2 x 2 minors of (2) is known to be a (universal) Grõbner basis for Ip 

(see Sturmfels [BS], thm.1, p.137 or [BS1]). By (1), we may write (cf. 

Eisenbud [E], thm. 15.26, p.356), 

2t + n 
(Pin(iá )(t) = (P.râ  (t) = 	n  

1 I'm indebted to P. Gimenez for his precious help on this matter. 
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One checks at once that E xiyi is a nonzero divisor mod the initial ideal 

in(/p) (see 7(i)). Therefore 

(Pro (t) = (Pin ( rá ) ( t) — (Pin (16 ) ( t — 1). ❑ 

We will deduce flatness for the "completed" family of Gauss maps 

from the fact that the above Hilbert polynomial at the special point Fo 

coincides with the generic one (1.1). 

3. Semple-Tyrrell-Laksov cover of S 

Let Un  denote the group of lower triangular unipotent (n + 1)-matrices. 

Thus, Un  is isomorphic to the affine space An(n+1)/ 2  with coordinate 

functions ui ,j, 1 < j < i — 1, i = 2 ... n + 1. These are thought of as 

entries of the matrix, 

- 1 	O 	0 	 O 

	

u2,1 	1 	O 	 O 

u = 	2/3,1 	U3,2 	1 	 O 

1 
un+1,1 Un+ 1,2 Un+1,3 

Let d1, 	, dn  be coordinate functions in An. Put 

(4) 

- 1 O 	O 	 O 

O di 	O 	• 	O 

O O did2 	 O d( 1) = 

O 	o 	O 	• 	(11(12 • • • dn  

For a matrix A let its ith adjugate be the matrix ÁA of all i x i minors. 
i 

We denote by d(i) the matrix obtained from Ad(i) by removing the 
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common factor 4-1 4-2  • • • di_i. E.g., for n = 3 we have 

= diag(1, d1, d1d2, d1d2d3) 

d(2) = diag(di, d1c12, d1d2d3, cdd2, d1d2d3, did2c13)1(d1) 

= diag(1, d2, d2d3, d1d2, d1d2d3, d14d3) 

d(3) = diag(1, d3, d2d3, did2d3)• 

i=n 
The map U me, x An S C jj P(S2 (A kn+1*)) defined by sending (u, 

i=i 
to 

(u d(1) ut , (/2\ u) d(2) Xut, 	, (Xu) d(n) Rut ) 

is an isomorphism onto an affine open subset S 0  of S. The variety of 

complete quadrics may be covered by translates of S 0  (cf. Laksov [L], 
p. 376-377). 

Let Sd Un  x And be the principal open piece defined by d1d2 • • 
• • dn  O. It maps isomorphically onto an open subvariety of Snd . 

4. Graph of the Gauss map 
The variety Snd of nondegenerate quadrics parametrizes a flat family of 

graphs of Gauss maps. For a nondegenerate quadric represented by a 

symmetric matrix a E Snd the Gauss map is given by x y = x • a. We 
define Knd  c Snd x Pn  x 15" by the bi-homogeneous ideal generated by the 
incidence relation x • y together with the 2 x 2 minors of the 2x (n + 1) 
matrix with rows y, x • z, where z denotes the generic symmetric matrix. 
Clearly Knd Snd is a map of GLn± i —homogeneous spaces. 

Now write a = vc(l)vt with v E U n , c E And (c( 1) as in (4)), and put 
x' = xv, y' = y(v -1 )t. We have y = xa iff y' = x'c( 1 ). Let 

K9 c S2 x Pn  x Én. 	 (5) 

be defined by x • y together with the 2 x2 minors of the 2X (n + 1) matrix 

[

xj_ d1x'2  d1d2x3 ... d1 • • . dnx'n+i 

 Yii y2 Yá - • • Yni  +1 
where we put x'i  = Ei  uiixi  and likewise y ii  denotes the jth entry 
of y(u -l ) t . Thus K9 is the total space of the family of Gauss maps 
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parametrized by S. Note that K I2 —> S2 is a smooth quadric bundle. 

Its fiber over (I, (1, ... 1)) E Un  x Ard is equal to the quadric given by 

x2 inside the "diagonal" Yi = x1, • • Yn+1 = xn+1 of Pn x Pn • 

Let 
K0  C SO xPn  xPn  

be defined by x • y together with the ideal 

J = (xj. il2 — 	 xiyn' +1  — c/i • dnyix'n+i, 

x2y3 — d2ãx'3, • • • X in,Y n/  +1 — dnY x in,±1) 

obtained by cancelling all di factors occurring in the above 2 x 2 minors. 

We obviously have K °  o  = K. sd 	d 

We will show that K°  is the scheme theoretic closure of Kd in 

S°  x Pn x 13n (cf. 6.2). 

5. A torus action 

Notation as in (4), embed Gmxn  in 	by sending c = (cl, 	, cn ) E 

Gmxn  to C(1)  = diay(1, ci, cie2, 	). We let (G;.," act on S°  by 

c (v, b) 	(c(1)  v (c(1))-1,  (dbi, • • c2nbn))• 

This action is compatible with the natural action of GL, 2+1 on the 

space P(S2(kn+ 1 *)) of quadrics, i.e., for a symmetric matrix a(v, b) 

v 	vt as above, we have 

c(i)  • a(v, b) = c(1 ) a(v, b) (c (1) ) t  = c(1)  v b (1)  v t  (c( 1 )) t  

= c(i) v  (c (1) ) -1 c(i) b(i) c(1) ((c(1) ) t ) --1 vt (c(1))t 

= c(i) v (c
(1)

) --1 (c (1) ) 2 b(1) ((c(i) ) tr i vt (c(1) ) t 

= a(c • (v, b)) . 

It can be also easily checked that G'j acts compatibly on S 0  x Pn  x 15n  

and K°  is invariant. Indeed, let ((v , b), x, y) E K0 . Pick c E G:`n. We 

have 

c • ((v, b), x, y) 
	( (c(1) v (c(1))-1 ,  ( b , • • • C2nbn)), X (e(1))1, y (C(1))t). 

Now x' = xv changes to 

(c (1) ) -1 )(c(1) v (c(1) ) --1 )  = xv (c (1) ) -1 = 	(c(1) ) -1 
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so that the first row x' b( 1 ) in (6) (evaluated at ((v ,b), x, y)) changes to 

x ll (1) (1 ) (c(1))2) = x' ( c(1))-1 (b(1) ( c(1))2) 	(b( 1 ) c( 1 )). 

Similarly, y' = y (v -1 ) t  changes to 

yll 	(y (c(1))t) ((C(1) v (C(1)) - 	= y (ir 1  )t (c(1))t) 	yl  C(1) .  

Therefore (6) changes to the matrix with rows x' (b( 1 ) c( 1 )) and y' c( 1 ). 

Thus evaluation of (8) at c • ((v, b), x, y) and at ((v ,b), x, y) differ only by 

nonzero multiples. 

5.1 Lemma. The orbit of (I, 0) E S0  is the unique closed orbit where I 
is the identity matrix. 

Proof. Conjugation of v E Un, by the diagonal matrix c( 1 ) replaces each 

entry vii , j < iby 

(c(1) v  (c(1)) - 1)ii = 	(v (c (1) ) -1 )ii 	vii ((c (1) ) -1 )ii 
(1) , (1) 

= vii 	/ 	= vii ci_1 • • • C. 

Thus, letting 	0, we see that (I, O) is in the orbit closure G;;. in • (v, b) . 

6. Proof of the theorem 

6.1 Lemma. Notation as in (7), the family K°  S°  is flat. 

Proof. Since K0  S°  is equiyariant for the Gmxn —action, it suffices to 

check that the Hilbert polynomial of the fiber over the representative 

(I, 0) of the unique closed orbit is right, i.e., coincides with the generic 

one (cf. Hartshorne [H], thm. 9.9, p.261). Evaluating (8) at (I, 0) yields 

the monomial ideal in 2.1. We are done by virtue of 1.1. ❑ 

6.2 Lemma. Notation as in (7) and (5), we have that K 0  is equal to the 
scheme theoretic closure of K9. 

Proof. In view of 6.1, we may apply to K° —> S°  D S2 the general 

observation that the formation of scheme theoretic closure commutes 

with flat base change (cf. [EGA], (11.10.5), p. 171, [EGA-I], p. 325). 

C1 
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6.3 Lemma. Let G be an algebraic group and let 

X °  C X 

yu c  y 

be a commutative diagram of maps of G—varieties. Let X, Y denote 

	

the closures of X ° , Y0 . /f X 	is flat over a neighborhood of a point 

in each closed orbit then X —17-  is fiat. 

Proof. Immediate. ❑ 

We may now finish the proof of the theorem. Let KC S x Pn x Pn be 

the scheme theoretic closure of K 0 . We have K n (s°xPrixÉn) = K0 

 flat over S0  by 6.1. The latter is a neighborhood of a point in the 

unique closed orbit of S. Now apply the previous lemma to G = 

X = SxPn xpn, Y =_ Y0 snd,X 0  = K. Finally, since the family 

of tangent flags is defined by the fiber square, 

	

K 	Fn  x S 

	

K 	FO,n-1 X S 

the composition ÍZ --*1(--S is flat. 

7. Final remarks and proof of the proposition 

7.1. (i) The primary decomposition of the monomial ideal in 2.1 can be 

checked to be given by 

(Xi, X2, . • . , X n) n • • • n (xi, • • • , Xi3 	• • • ,Yn+1) n • • • 

• - • n (y2, y3, • • • ) Yn+1) •  

Thus enlarging it to include the nonzero divisor x y we see that the 

special fiber F0 presents no embedded component. 

(ii) In the situation of 6.3, let X --+ Y = Pn  be the blowup of a point, 

acted on by the stabilizer of that point. Of course flatness fails over any 

neighborhood of the unique closed orbit. This might clarify why we had 

to show first that K 0  SI3  is flat, instead of trying to show directly that 

the closure of Krid  is flat over S. 
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(iii) For n = 2 we may write the following global equations for K. Let 

z, w be a pair of symmetric 3 x 3 matrices of independent indeterminates. 

Then K c P5 x  p5 x  p2 x  p2 is given by the 2 x 2 minors of the 2 x 3 

matrices with rows x • z, y and x, y • w, in addition to the incidence 

relation x • y together with the equation 3z•w= trace(z • w)/ for S C 

P 5  x P5 . Indeed, the equations for S are right because they are invariant, 

they are satisfied for z = /, w = / hence on the open orbit of S, therefore 

on all of S. Moreover, the solutions with z = diag(1, 1, O) and z = 

diag(1, O, O) also lie in S. Letting K' be the subscheme defined by those 

equations, one checks at once that the fiber K' (//)  over the representative 

of the open orbit of S is equal to the graph of the Gauss map. The fiber 

over the representative of the closed orbit, given by z = diag(1, 0, 0), 

w = diag(0, 0, 1), is cut out in P 2  x152  by x • y in addition to the 2x 2 

minors of the matrices 

( xi 0 0 
Yi Y2 Y3 ) 	

(xl x2 x3 
0 	O y3 

The ideal is precisely the one described in 2.1. It would be nice to give 

a similar description for higher dimension. 

(iv) Still assuming n = 2, put 

F = {(P, £, K, K') E P2  xP2  xP5  xP5  

It is easy to check that ris =K as sets. Furthermore, F may be endowed 

with a natural scheme structure such that F P 5  x155  is flat and with 

Hilbert polynomial of its fibers equal to 4t (cf. (9) below). Thus, ris S 

is a family of double structures of genus one on the fibers of K. See in 

(7.4) below a similar discussion for n = 3. 

We proceed to prove the proposition stated at the introduction. 

Before considering the general case, we describe the situation in the 

projective plane. Thus, let 

2 	2 F2CP xP 

be the incidence correspondence "point E Ene". Let fo (resp. fi) denote 

a curve in P 2  (resp. is 2 ). Set 

Ff := (fo x fi) n F2. 
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Then Ff is easily seen to be regularly embedded of codimension 2 

in F2 (cf. 7.2). Moreover, its Hilbert polynomial with respect to the 

ample sheaf Op2 (1) ® Oji 2 (1) restricted to F2 depends only on the de-

grees, say do, d1 of fo, fl. In fact, the Koszul complex that resolves the 

ideal of fo x fl in P2  x P2  restricts to a resolution of Ff in F2. One 

finds the Hilbert polynomial, 

( 9  ) X
f 

(t) = (do + d1)t — dodi(do + d1 — 4)/2. 

Therefore, as in the final argument for the proof of 6.1, the parameter 

space of pairs (fo, 	call it T (=Pno x Pn 1  for suitable no, ni), carries 

a flat family of curves on F2. Precisely, let 

Wo C P2  X P" and W1 c 152  x Pn  

denote the total spaces of the universal plane curve parametrized by 

Pni Then 

F := (Wo x "VV1) 	x 	(F2 x T) 	T 
P2 xP2 xT 

is a flat family of curves in F2, with fiber Ff. 

Recall that the dimension of the variety of complete flags F r, C 

rj Gi ,n  is 

dim 	= 1 + • • • + n. 

The proposition is an easy consequence of the following. 

7.2 Lemma. Let fo, 	, fn  be arbitrary hypersurfaces of points, lines, 

, hyperplanes in the appropriate grassmannians of subspaces of 
pn+l .  

Then the intersection 

r f := (fo x • • • x fn ) n Fn±i  

is of codimension n +1 in Fn±i. 

Proof. We shall argue by induction on n. 

We may assume all fi irreducible. For, if fo = fo,i U fo,2, say, we 

have Ff 
	

(f0 , 1  x • • • x fn ) n Fn+i U (f0,2 X • • • x fn ) n Fn+1. 
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Let n = 1. Pick a line h E fi. Set 

h(°)  = {P E P2  I P E h}. 

The fiber (rf ) h 	n fo is zero dimensional unless h( 13) = fo. This 

occurs for at most one h E fl , hence Ff is 1—dimensional (otherwise 

most of its fibers over fi would be at least 1—dimensional). 

For the inductive step, we set for h E Én+1 , 

h (r)  = {g E Gr,n+i lg Ç  h} 	Gr,n . 	 (10) 

If the intersection 

= h(r)  n fr  

were proper for all r and h E fn  then we would be done by induction. 

Indeed, we have 

(rf ) h 	(f6 x • • • x 	_1) n Fn. 

By the induction hypothesis, this is of the right dimension 

1 + • • + n — n = 1 + • • + (n — 1). 

Since h varies in the n—dimensional hypersurface f n  of Gn,n+1 
we would have 

pn+1, 

dim r f (1 + • • • (n — 1)) + n = (1+ • + (n + 1)) — (n + 1) 

as desired. 

However, just as in the case n = 1, it may well happen that the 

intersection n fr  be not proper for some h, r. Thus it remains to 

be shown that, whenever dim (Ff)h exceeds the right dimension, say 

by 6, the hyperplane h is restricted to vary in a locus of codimension at 

least S in fn . This is taken care of in (7.3) below. 

Consider the stratification of fn  by the condition of improper inter- 
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fn , n  = {h E fn  1 h(n)  Ç  fn} \U 3 <nf 

We will be done if we show 

dim (Ff)h <1+•••+n—r V h E fn,r • 

We have already seen that dim (Ff)h = 1+ • • • +n-1 for h in fn,,,. Also, 

for r = 0, the desired estimate holds because we have (rf)h c (Fn+i)h 

Fn  and dim Fn  = 1 + • • • + n. Let r > 0 and pick a hyperplane h E fn,r. 

Then the intersections, 

fí = h(i )  n fi, 

are proper for i = 0, , r — 1, whereas for the subsequent index, we 

have 

h(r)  n fr = h(r) 	Gr,n . 

Thus, we may write, 

(Ff )h c—> (A X  • • • X ff-1 X Gr,n  X • • X Gn_1 ,n ) 	Fn . 

By the induction hypothesis the intersection above is of dimension 

dim Fn  — r in view of the following easy 

Remark. The validity of 7.2 for a given n implies properness of the 

"partial" intersection 

(fo x • • • X Gr,n+i X • • x fn) n Fn+1, 

where one (or more) of the hypersurfaces f r  C Gr,n+i is replaced by the 

corresponding full grassmannian. ❑ 

7.3 Lemma. Notation as in (10), for r = O, , n we have 

dim{h E Pn+1  1 h(r)  C A.} < r. 
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Proof. Let Fr ,n  C i7-'714-1  x Gr,„,+1 be the partial flag variety. Form the 

diagram with natural projections, 

Fr,n 

For g, E Gr,n+i, set 

7rni/ 

pn+1 
\ 7Fr 

 Gr,n+1 

.94n)  = {h E Pn+1  I gr  C h}. 

( 

We have grn)  ^ Pn-r whence it hits any subvariety of Pn 4 1  of dimen-

sion > r + 1. In other words, for any subvariety Z C Pn+ 1  such that 

dim Z > r + 1, we have 

71.74r.;;1 z  13hEZs.t. hpgr} 

{gr  1 g(.71)  n z o} = Gr,n+1. 

The lemma follows by taking Z = {h E 15"1  1 h(r) C fr }. Indeed, if 
dim Z > r + 1, then for all gr  E Gr,n+i there exists h E Z s.t. h D gr , 
so g, E h(r) C fr , contradicting that fr  is a hypersurface of 
7.4 Remark. Let (fo, fi , f2) represent a nondegenerate, complete 
quadric surface K. Thus, fo C P3  is a smooth quadric surface, fi C 

G1,3 is the hypersurface parametrizing the family of lines tangent to fo 
and f2 C 1"53  is the dual quadric. We have that 

(f0x.fi xh) n  F3 C P3  XG1 ,3 XP3  

contains an extra component in addition to the fiber of K over k. In 
fact, it contains 

{(P,, 7r) E (foxfixf2)1PE£Cfon7r} 

which is of dimension 3 (= 2 for the choice of P E ,e C fo plus 1 for the 
pencil of planes containing -e). The point is that a plane 7r containing 

a ruling through a point P need not be tangent to fo at P, so that 
(P,£, 7r) need not to belong to the tangent flag. 
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