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Abstract. We construct examples of C 3 compact surfaces of non-positive curvature 
having non-Anosov geodesic flows and satisfying the following property: there exists 
L > 0 such that the area of every ideal triangle in the universal covering of the surface 
is bounded above by L. 

Introduct ion  

The  subject  of this paper  is mot iva ted  by the following result due to J. 

Barge and E. Ghys [2] : 

Let M be a compact  surface of negative curvature.  The  area of ideal 

triangles in the  universal  covering 2~/of M is constant  if and  only the  

curvature  of M is constant .  

Recall t ha t  an ideal triangle in _~/is formed by the geodesics joining 

3 points  a, b, c E 02V/(c~) = S 1, where _~/(+oc) is the  usual compactifica- 

t ion of _~/. Since the  pull-back of any metr ic  wi thout  conjugate  points  in 

M admits  a compactif icat ion of 2~/, it is na tura l  to ask if the  finiteness 

of the  area of ideal triangles in 2V/with no conjugate  points  implies, for 

instance, t ha t  the  geodesic flow of M is Anosov. The  main result of this 

work tells us tha t  the answer to this question is negative, even in the  

category of surfaces of non-posit ive curvature: 

Theorem 1. Given /3 > I there exist c~ > O, C , D  > 0 and a C 2+a 

compact surface M having negative curvature at all points but along a 

simple closed geodesic ~(t)-where the curvature is zero at every point- 

Received 4 March 1996. 
Partially supported by CNPq of Brazilian Government 



44 G. CONTRERAS AND R. RUGGIERO 

such that: 
1. The geodesic flow of M is expansive. 
2. The stable geodesics 7s(t) ofT(t) satisfy 

d(7(t), ~/s(t)) <_ t~-d(7(0), 7s(0)) 

for every t >_ O. 
3. The area of every ideal triangle in M is bounded above by D. 

The equation relating a and /3  in Theorem 1 is a = ~, so if/3 = 3 

the corresponding surface is of class C 3, and thus we obtain the desired 

counter example. Notice that  i tem 1 of Theorem 1 is a direct conse- 

quence of the fact that  the surface does not have flat strips. So, in 

particular, the geodesic flow of such surfaces is equivalent to an Anosov 

flow (notice tha t  this is a necessary condition for the existence of these 

surfaces since the presence of fiat strips obviously implies that  the area 

of ideal triangles is not bounded).  

Theorem 1 gives us curious examples of objects of interest in the 

areas of dynamical  systems and Riemannian geometry. For, on the one 

hand, the geodesic flow of the C 3 example of Theorem 1 is a C 2 expan- 

sire, non-Anosov flow having almost every Lyapunov exponent different 

from zero (and thus the asymptotic  behavior of almost every tangent  

vector is exponential).  However, the asymptot ic  behavior of orbits in 

the center ' stable submanifold of the geodesic 7(t) of the s ta tement  of 

Theorem 1 is of the order of ~ ,  still granting the finiteness of the area 

of ideal triangles having liftings of 7(t) as edges which is of the order of 

fo +~ ~dt.  A priori, the non-vanishing of Lyapunov exponents of almost 

every tangent  vector does not ensure the finiteness of the area of posi- 

tively sa turated pieces of center stable submanifolds. Recall tha t  in the 

Anosov case, the area of ideal triangles is of the order of f + ~  e-atdt for 

some a > 0. 

On the other hand, there are no C ~ examples of such surfaces. 

Namely, a non-positively curved C 4 surface satisfying the hypotheses in 

the s ta tement  of Theorem 1 has the property that  the area of every ideal 

triangle having a lifting of 7(t) as an edge has infinite area, as proved 

in [10]. So al though the answer to our initial question is negative, to 
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NON-HYPERBOLIC SURFACES AND FINITE AREA IDEAL TRIANGLES 45 

get a counter example we had to break down the differentiability of the 

surface, and C 3 is the best possible class of differentiability of these 

family of examples. 

The paper has four sections. In section 1 we construct a family 

of examples of surfaces of non-positive curvature having a closed, non- 

hyperbolic geodesic with certain special properties. The idea is to de- 

form an annulus of revolution of curvature -1 near the systole of the an- 

nulus to obtain a another systole with some prescribed non-hyperbolic, 

expansive, asymptotic behaviour of the stable manifold. To determine 

this new metric in the annulus, we use the well-known differential equa- 

tions for the geodesics in surfaces of revolution. The key step at this 

stage is that we can solve the differential equation for the geodesics by 

prescribing the rate at which asymptotic geodesics approach the systole. 

This is done without any previous data on the Riemannian metric on the 

annulus. Then, from the solutions of the equations we shall construct 

a metric whose geodesics have the required non-hyperbolic dynamics, 

and finally we glue this new annulus with a surface of curvature -1. The 

remainder of the paper is devoted to the proof of the finiteness of the 

area of ideal triangles of such surfaces. In section 2 we show that the 

problem reduces to analyze the area of thin ends of ideal triangles. In 

section 3 we estimate the area of the intersections of these ends with 

a tubular neighborhood containing the zero curvature geodesic, and fi- 

nally in section 4 we estimate the area of the pieces of the ends in a 

"good" region of negative curvature. Putting together the estimates of 

sections 3 and 4 we conclude the proof of Theorem 1. 

1. The  construction o f  the metrics 
Let us fix some notations. If M is a Riemannian manifold,/~/will denote 

its universal covering endowed with the pull-back of the metric of M. 

The Gaussian curvature at a point p E M will be K(p). All geodesics 

will be parameterized by arc length throughout the paper. The main 

result of the section is the following: 

Proposition 1.1. Given/3 > 1 there exists an annulus A of revolution in 
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c2+  R 3 with a Riemannian metric satisfying the following conditions: 

1. The curvature of the annulus is negative in all points but along a 

simple, closed geodesic 70(t) where the curvature is zero Vt. 

2. The annulus A is symmetric with respect to 70(t). 

3. On every point p c A there exists a unique geodesic ~lp(t) asymptotic 

to 70(t) such that 
D 

d(7o(t),  p(t + b)) <_ 

for some b and D independent of p. 

4. There exists Q depending on/3 such that if zy(t) and ~lp(t) are two 

liftings of 70 and ~lp with 

�9 lim d(5'(t), ~?p(t)) = O. 
~---+ao 

�9 de5'(0), ~/p(0)) < 1 then the area of the region in M bounded by 

~([0, + ~ ) ) ,  ~Tp([0, +c~)) and the geodesic segment joining ~(0) and 

~?p(O) is less or equal than Q. 

Remark.  We actually give the rate at which the curvature approaches 

to zero near the geodesic 7(t). Indeed, we show that  

o(h2+  r(h)= l + C(/3)h ~ + ), 

where r(h) is the generating function of the annulus A of revolution, 

and f (x)  = o(x) means that  lira f-~)- -- 0. 
x---+0 

Proof .  Let r(h) be the generating function of an annulus of revolution. 

Recall tha t  r(h) gives the radii of the parallels of A. Let us chose the z 

axis to be the axis of revolution. In this way, if uo = (cos(0), sin(0)) then 

the surface is given in coordinates by 

f(r, O) = (ruo, her)). 

We are interested in determining r(h) in a neighborhood I h I< c 

satisfying the following conditions: 

1. r(h) is at least of class C 2. 

2. re0) = 1 is a strict minimum of r and r(h) is convex in I h I< c. 

With  these conditions it is easy to see tha t  the parallel 70(0) = 

(r(O)uo, 0) is the only parallel which is a geodesic in I h I< e. Moreover, 
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the curvature of A is negative at every point close to 70 and through ev- 

ery point in this neighborhood exists an asymptote  of 70, i.e., a geodesic 

~(t) satisfying 

lim d(7o(t),rl(t)) = O. 
t - - .+oc 

To start  with the construction of r(h) we shall impose the fact tha t  7o 

is a geodesic having asymptotes  (notice tha t  parallels are not geodesics 

in general) in the differential equations of the geodesics of surfaces of 

revolution. So from now on r/(t) will be asymptotic  to 70 and r/(t) = 

(r(t)Uo(t), h(t)) will be its expression in coordinates, where r(t) = r(h(t)) .  

We briefly recall how to deduce the equations of geodesics in surfaces of 

revolution. We have tha t  

v'(t) = (r'uo + rO'u~, h') 

~"(t)  = ((r" - r(O')2)uo + (2r'O' + rO")u$,  h"),  

I d r  U 1) where u~- = Uo+ ~ and f f  _ dfdt. Ifh~(t) ~ 0 then the vector ~ 0, 

tangent  to the annulus is parallel to (r~uo, h'), hence the tangent  space 

at ~(t) is 

Tv(~)A : span{ (u$, 0), (r'uo, h')}. 

The fact tha t  ~(t) is a geodesic is equivalent to r/ '(t) is perpendicular  to 

Tv(t)A. Therefore we get 

2r'O' + rO" = 0 (1) 

and 

r 'r"  - rr'(O') 2 + h'h" = 0. (2) 

The first of them implies tha t  0' = ~ for some constant k (this is a 

version of the well-known Clairaut equation). We want tha t  k = 1 for 

70, and since we want 77 to be asymptot ic  to 70 then k = 1 for rj also. 

Notice that  this also implies tha t  "7o = {h = 0} is a geodesic. Put t ing  

together  these two equations we obtain 

d 12= d d~ I ~'(t) ~/((~,)2 + ~2(0,)2 + (h,)2) = o 
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i.e., (as we should expect) [ ~/'(t) [ is  constant.  We take this constant 

equal to 1, and replacing (0~) 2 = ~ in this equation we obtain 

1 
(r') 2 + ~ + (h') 2 = 1. (3) 

Let us look at the  blowing up of this equation at +oc. Let s = 1, so 

dr dr ds 
- -  S 2 r s ,  

dt ds dt 

dr Then the above equation becomes where rs - ds" 

4 2  1 4 2  
s r s + ~ + s  h s = l  

and hence we get 
r 2 --  1 

h~ - 2 
r 2 8 4  r s "  

The key step of the proof is the following: 

Claim: Assume that  r(s)  = 1 + s ~ for some a ___ 4. Then  there exists h 

of the form 

h(s) = A ( / 3 ) J  + o ( J ) ,  

where/3  = a-2 satisfying the  equation h 2 ~2_1 r 2. 
~ - ~  - -  r 2 s 4  

Indeed, replacing r(s)  in the equation we get 

h 2 --  28 a + S 2a 
(1 + s~)2s 4 a2s2~-2 

= 28a-4 + 82a-4 _ O~2S 2a-2, 
(1 + s a )  2 

which is positive and finite if a _> 4 and s small enough, and this is 

enough to grant  the existence of hs. We can write the  above equation 

aS 

so we obtain 

8~-2  

2 

(2 + s ~ - a2s~+2(1 + s~) 2) 

(2 + 8 a - -  OZ28a+2(1 + Sa )2 ) �89  
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Since we want  ~/(t) to be a sympto t i c  to the  parallel  h = 0 we use the  

condi t ion  h(s  = 0) = 0 and  we get 

~00 s X 2 h(s)  = ~ (1 + x ~ - ~2x~+2(1 + x~)2) �89  

This  integral  is finite for every c~ > 4, and  from it we can deduce t h a t  

h(s)  = A(/3)s ~ + o ( J ) ,  

where /3  = ~ - 2 + 1 = ~ and  lira o(sZ) = 0. This  concludes the  proof  
s--~0 s~ 

of the  claim. 

Going back to t, we replace s = 1 and  get 

1 
f i t )  = 1 + - -  

t~ 
1 1 

h(t)  = A( /3 )~  + o( t~)  (4) 

 j01 o(t) = O(To) + ~(~(~ d~ 

for t _> TO and TO su i tab ly  large. By  const ruct ion,  the  above funct ions  

sat isfy  the  differential  equat ions  for the  geodesics of the  surface. If  s 

is small  enough we have t h a t  dh dh > 0 hence 2{ < 0 for t large. In 

par t icular ,  the  m a p  t ~-+ h(t)  is a d i f feomorphism from [To, +oc)  to 

[0, h(To))  for T O large. We can invert  it to  get r (h)  = r ( t (h ) )  = 1 + s(h)  ~, 

wi th  r ( h  = 0) = 1. E x t e n d  r to  h < 0 by r(h)  = r ( - h ) .  For h > 0 we 

have t h a t  
! 2 

s = C( /3)hZ + o ( h Z )  

and  

r(h)  = 1 + D( /3)hZ + o ( h ~ )  

= 1 + D(/3)h2+~ + o(h2+~) .  

The  funct ion  r(h)  defines an  annulus  of revolut ion which is C2+~  

i f /3  > 1. Observe t h a t  d2r d 2r r r (h)  is > 0 if h ~ 0 and  d-~WJ = 0, so 

in fact a convex funct ion  wi th  an isolated m i n i m u m  at h = 0. Since 

O' = 1, r ( t )  = 1, h(t)  = 0 sat isfy  equat ions  (2) and  (3), we have t h a t  
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70 = {h = 0} is a geodesic. The solution given in (4) determines a 

geodesic rl(t) = (r(t)uo(t) , h(t)) which is asymptotic  to 70- Actually, by 

rotational symmet ry  of the annulus we see tha t  through every point of 

the annulus there exists a (unique) geodesic which is asymptotic  to 70, 

and this geodesic is isometric to r/(t). The symmet ry  with respect to 

h = 0 is a consequence of the construction of the function r(h). 

We now proceed to est imate the rate at which the asymptotes of 70 

approach 70. Let r(t), h(t) and O(t) he as before, and let %(t) = (at+b, 0), 

where b is a constant to be determined later. Let a > 0 be such tha t  

I r l< 2, I rh I< 2 for every I h I< a. Then  we have 

j/0 h(t) dQl(t), (Uo(t) , 0)) _< (1 + r2h)�89 

~ h(t) ~dh _< (1 + 4) 1 

_< 3h(t) 
1 

< 3(1 + 

and 

/T0 1 d(%(t), (Uo(t) , 0)) <_ t + b - r ~ d t  

We will show that  b can be chosen such that  

+ b - r ~ d t  < E •  

for some constant E > 0. Since 

d(rl(t), %(t) ) <_ d(r](t), (Uo(t) , 0)) + d( (uo(t), 0), %(t) ) 

this will provide the  est imate required in the s ta tement  of the proposi- 

tion. Indeed, there is a constant H(To) such tha t  
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t + - ~ ( ) 2 d x b  b J/n 1 t x2~ ] 
1 + 1  = +TO+s dx 

b .f~ 2 1 _< +To+ ~ + ~ d x  

b - 4  ~o <_ +To+ (c~_~ta_ 1 

- 4  
= b + H(To) + (a - 1)t ~-1 

so taking b = -H(To)  we obtain the estimate. 

Finally, we estimate the area between any two asymptotic liftings 

~o(b+t) and f/(t) in ]t of r/(t) and v0(b+t). Consider the parameterization 

F :  R • [-a, a] ~ A given by F(O, h) = (r(h)uo, h). Then 

OF 
OO - (ru~, o) 
OF 
O h  = (rhuo, 1) 

and its Jacobian is 

Jac(F) = r + rrh, 

which is less than 6 if [ h [< a where a w a s  chosen before. If/3 > 1 

the area of the region bounded by 70, f7 for and the geodesic joining 

F(O(T), h(T)) with F(O(T), 0) is bounded above by 

<_ 6h(t)O'(t)dt 
(T) 

frO +~ 6 = (T) r2(t) h(t)dt 

fo <_ 6h(t)dt 
(T) 

t ~  + o( )dr 
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which is finite for/3 > 1. The difference between this region and the re- 

gion bounded by ~0(t + b), @(t) for t _> T and the stable-horospheric 

segment joining q0(T) with ~](T) is a compact  region whose area is 

bounded by some constant  (not depending on ~7) times the distance 

d(70(T) rl(T)) < E ! which completes the proof  of the proposition. [] 
' - -  T f l  

Coronary  1.1. Given/3 > 1 there exists a compact surface of negative 

curvature at all points but at the points of a simple closed geodesic 7o, 

where the curvature is zero, satisfying the conclusions of Proposition 1.1 

in a tubular neighborhood N of 3'0. 

Proof .  The argument is quite standard,  so we just  give an idea of the 

proof. Given L > 0 there exists an annulus of revolution of negative 

curvature -1 in R 3 having a simple closed geodesic of length L which 

minimizes the length of closed path  in the annulus. This annulus is 

symmetric  with respect to this geodesic. Let R = R(L) be the radius 

of the closed geodesic, let us assume that  the axis of the annulus is the 

z-axis and that  this geodesic is in the horizontal plane. So the annulus 

in coordinates will be (s(z)uo, z) for some convex function s(z) and the 

closed geodesic will be given by z = 0. Recall that  r(z) is the function we 

found in Proposi t ion 1.1 generating an annulus of revolution with some 

special properties. To find r(z) we gave r(0) = 1 as an initial condition 

for the problem, but  in fact it is possible to find such a function with 

r(0) = r0 > 0. If R < r0 (i.e., L < 27rr0) it is possible to deform 

the generating curve s(z) to a convex curve ~(z) which coincides with 

r(z) in a neighborhood of z = 0. Now, if S is a compact  surface of 

constant  negative curvature -1 it is possible to embed isometrically in 

R 3 an annulus A contained in S symmetric  with respect to some closed 

geodesic. Hence, we "cut" A from S, we deform it in R 3 to obtain a copy 

of the annulus A of Proposi t ion 1.1 glued with a piece of A, and then 

we glue this new annulus with S - Jt to obtain the required surface. [] 

2. Reduct ion to thin ends o f  ideal  Mangles  
Let M = (M, g) be a compact  surface and let M be its universal covering 

endowed with the pullback of the metric g by the covering map. By 
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NON-HYPERBOLIC SURFACES AND FINITE AREA IDEAL TRIANGLES 5 3  

an end i n / ~ / w e  shall mean a subset of ~r bounded by two asymptotic 

geodesics and a segment of stable horosphere connecting these geodesics. 

The width of an end will be the Hausdorff distance between the geodesics 

in its boundary. The purpose of this section is to show the following 

result: 

Proposi t ion 2.1. Let M be a compact surface of non-positive curvature 

having no fiat strips. Then for a given p > 0 there ezists r > 0 such 

that every ideal triangle A in M satisfies the following: 

There exists a ball B in M of radius r such that the complement of 

A A B consists of three disjoint strips bounded by asymptotic geodesics 

having widths less than p. 

To begin with the proof let us first fix some notations. A complete 

metric space (X, d) is said to be geodesic if every two points p, q in 

the space are joined by an isometric immersion of the interval [0, d(p, q)] 

endowed with the Euclidean metric. In general, we shall refer to a 

geodesic segment as [p, q]. The geodesics in the surface will be always 

parameterized by arclength. Now, let us recall the notion of a Gromov- 

hyperbolic space [7]: 

Definition 1. Let (X,d) be a complete, geodesic metric space. A geodesic 

triangle with vertices a0, al,  a2 is said to be 5-thin if for every p E 

[ai, ai+l] we have that  

d(p, [ai+l, ai+2] U [ai+2, ai]) <_ 5, 

where the indices above are taken rood 3. The space (X, d) is called 

5-hyperbolic or Gromov-hyperbolic if every geodesic triangle is 5-thin 

for some 5. 

Lemma 2.1. Let M be a compact surface of genus greater than two with 

no conjugate points. Then M is 5-hyperbolic for some 5 depending on 

the metric. 

Proof.  The proof is indeed well-known and relies in the following two 

facts: 

1. The Poincar~ plane is a 50 hyperbolic space where 50 depends on the 

Poincar6 metric. 
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2. Let M be a compact surface of genus greater than  two having no 

conjugate points. Then  there exists D > 0 such that  every geodesic 

of M is contained in a tubular  neighborhood of a geodesic of the 

Poincar5 plane. This fact is essentially due to Morse [8] but  there 

are more general and recent versions by Eberlein [5] for visibility 

manifolds and Gromov for 5-hyperbolic spaces. Now, it is not hard 

to see tha t  ~ / i s  5 hyperbolic for some 5 depending on 50 and D. 

CoroUary2.1.  Let M be a compact surface of non-positive curvature and 

genus greater than 1. Given any ideal triangle with vertices at infinity 

ao, al, a2 there exist points pi E [ai, ai+l] such that 

d(pi,pj) < 25 

for every i and j mod 3. 

Proof .  The arguments  of this proof are quite s tandard in the theory of 

6-hyperbolic spaces (see [7] for instance}. Nevertheless we shall sketch 

the proof for the sake of completeness. Since every ideal triangle in 

can be obtained as a limit of a sequence of geodesic triangles with 

vertices in M we get tha t  for every p in [ai, ai+l] the inequalities of 

definition 2.1 hold: 

d(p, [ai+l, ai+2] u [a~+2, a~]) < 5. 

So consider for instance the geodesic 7 = [ao, al] and let p E [ao, all 

be such that  d(iO, [ao, a2]) _< 5. Parametr ize 7 by arclength in a way 

that  7(0) = P and limt_++~"7(t) = a2. Let us denote [ao, a2] = /3 and 

let us parametr ize/3 in a way that /3( t )  is the intersection of the stable 

horosphere of 7(t) with/3.  Since the distance d(t) = d(7(t),/3(t)) is an 

increasing function there exists PO = 7(to) such tha t  

to = sup{~ E R,  d('y(t),/3(t)) <_ 5 Vt <_ ~0}. 

So we have that  d(p0, q) _> 5 for every q E/3 = [ao, a2] and tha t  there 

exists a point P2 E [ao, a2] such that  

d(po,P2) _< 5. 

On the other hand, by the definition of 5 hyperbolicity we deduce 

tha t  for every 7(t) with t > to there must exist p(t) E [al, a2] such tha t  
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d(7(t),p(t)) <_ 6. 

By approaching P0 = 7(t0) wi th  a sequence 7(tn), tn > to we get a 

point  Pl E [al, a2] such tha t  d(po,Pl) <_ 6. This implies tha t  

d(pl,P2) <_ d(pl,PO) + d(po,P2) <_ 25, 

which finishes the  proof  of the  s ta tement .  [] 

Next, we show a par t icular  proper ty  of expansive geodesic flows in 

manifolds wi th  no conjugate  points  (see [9] for instance): 

L e m m a  2.2. Let M be a compact manifold of non-positive curvature and 

no fiat strips. Then the distance between asymptotic geodesics contracts 

uniformly in J~, i.e., given ~ > O, 0 < rl < c there exists R > 0 such that 

if T(t),/3(t) are geodesics in 1~ satisfying: 

d(7(t),/3(t)) < D Vt Z 0 

then there exists parameterizations of 7 and/3 such that 

1. d(~y(O),/3(0)) = e. 

2. <_ 7, v t  >_ R. 

Proof .  To simplify things we adopt  the  following convention: let "y(t) 

be a geodesic in M, then  every asympto te /3( t )  of 7(t) is parameter ized 

in a way tha t  3(t) is the  point  of intersection be tween/3  and the  stable 

horosphere of y(t). Now, observe tha t  if 7(t) and/3(t)  remain at bounded  

distance D for every positive t we can define 7n(t),/3n(t) for n > I by 

so we have tha t  

= + t),  /3n(t) = / 3 ( n  + t),  

d(Tn(t),/3~(t)) <_ D 

for every - n  < t. Thus,  up to isometrics in ]~i we have a convergent 

subsequence of the 7n > 70(t),/3n ~/30(t) such tha t  

1. d(7o(t),/30(t)) _< D for every t. 

2. d('Y0(0),/30(0)) = limn~+o~ d('yn(0),/gn(0)) - - - -  limn--++o~ d(7(n),/3(0)) 

Since the  curvature  is non-positive,  the distance funct ion between 

two geodesics is a convex function,  therefore it has to be constant  in 
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this case. And if 70 and/30 are different they  have to bound a fiat strip, 

contradicting the assumptions.  This implies tha t  

lim d(7(n),/3(n)) = 0 
n ---4 -~- (2~ 

showing that  the distance between two asymptot ic  geodesics is a con- 

traction. Moreover, since the distance is decreasing it must assume the 

value c somewhere. Let us suppose that  d(7(0),/3(0)) = e. So, if i tem 2 

in the s ta tement  was not true it would exist a sequence of asymptot ic  

geodesics an (t), On (t) satisfying: 
1. = 

2. d(an(t),  On(t)) > rl V0 < t < n and by exactly the same previous 

argument we would obtain a pair of geodesics c~0(t), Oo(t) with 

d(ao(t), Oo(t)) <_ e 

and 

d(ao(O), 00(0))  _> 

contradicting again the absence of flat strips in M. [] 

Proof of Proposition 2.1 
So let ao, al ,  a2 any three points in the ideal boundary  of 1VI. Let 7o = 

[a0, all,  71 = [al, a2] and "72 = [a2, ao]. Let PO,Pl,P2 as in corollary 2.1. 

As a consequence of the previous results we have that  given any p < 25 

there exists R > 0 such that  if q E 71 is at  distance greater than R 

from Pi then either 

d(q, 7i+1) _< P 

o r  

d(q, 7i+2) _< P 

where the indices are taken mod 3. Taking (without loss of generality) 

R > 45 and letting r = 2R it is easy to check by the triangle inequality 

tha t  the complement of the ideal triangle whose vertices are ao, al ,  a2 

with respect to the ball of radius r centered at Po satisfies the assertion 
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in the statement of Proposition 2.1. 

57 

[] 

3. The  behaviour o f  thin ends in the critical region 
In this section we are going to consider our examples of surfaces of non- 

positive curvature constructed in the first section. From now on the 

surface M will be such a surface. The goal of the section is to estimate 

the area of the intersections of the ends of ideal triangles with the critical 

region of the surface, i.e., the region near the liftings in 2~r of the zero 

curvature closed geodesic. We shall fix a lifting of this geodesic and let 

us denote it again by 70. Let us start by choosing a special tubular 

neighborhood of 70 in 2~/. Recall that M is constructed by gluing an 

annulus of revolution with a negatively curved surface with boundary. 

Lemma 3.1. There exists a~ > 0 smaller than the injectivity radius of M 

such that in the tubular neighborhood N of radius ~ of 70(t) we have 

1. There exists a one parameter family of rotations preserving N acting 

on 70 by translations. The rotations are isometrics of N. 

2. There exists a reflection fixing 70 preserving N which is an isometry 

of N. 
3. Every geodesic staying in N during an infinite interval of time is an 

(stable or unstable) asymptote of 70. 

Proof. Items 1 and 2 in the statement follow from the construction in 

section 1: a surface of revolution is invariant by a one parameter family 

of rotations preserving the parallels of the surface. Item 3 follows from 

the fact that the geodesic flow of the surface is expansive, so there exists 

an expansiveness constant satisfying this statement. Thus, any c~ smaller 

than both the injectivity radius of the annulus of the construction and 

the expansiveness constant of the geodesic flow satisfies the conditions 

in the statement. [] 

Remark that the rotations of the annulus preserve the stable (un- 

stable) character of geodesics with respect to 70. So stable (unstable) 

geodesics of 70 in N are obtained by the action of the rotations over 

any single stable (unstable) geodesic. In particular, the angle of first 

intersection eo of unstable geodesics of ~0 with the boundary ON of N 
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is constant, independent of the geodesic. Similarly, the angle of last in- 

tersection of stable geodesics with ON is constant along this boundary 

and from the symmetries of the annulus it is also equal to e0. From the 

uniqueness of geodesics in terms of their initial conditions, a geodesic 

is an asymptote of 70 if and only if it intersects eventually ON with an 

angle e0. Next, we state a technical lemma concerning the description 

of geodesics crossing the neighborhood N with an angle different from 

e0. Let N1, N2 be the connected components of ON. 

e < eo y /  
N1 

Figure 1 

Lemma 3.2. Given 0 < e < eo there exists k = k(e) > 0 such that every 

geodesic segment Ix, y] satisfying: 

1. The points x and y belong to ON. 

2. The segment Ix, Y] is a subset of  N. 

3. The angle between Ix, y] and ON at x is less than c has length less 

than k. Moreover, x and y belong to the same connected component of  

ON, Ix, y] remains in a region of negative curvature and lira k(e) = 0. 
e--+O 

Proof. It is straightforward from the above remarks. First of all it is 

clear that every geodesic intersecting ON with an angle different from 

e0 must leave in finite time the region N, otherwise it would be an 

asymptote of 70 contradicting the choice of e. Moreover, this exit time 

does not depend on the geodesic but on the angles of intersection with 

ON. Otherwise, we would obtain a sequence of geodesic segments of 

increasing lengths all contained in N and intersecting ON with an angle 

less than e0, from which we get a convergent subsequence whose limit 

would be an asymptote of 70 having a "wrong" intersection angle with 

ON. 

To show that x and y must belong to the same connected component 
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of ON just  remark tha t  if the angle of intersection at x is less than e0 

then Ix, y] is locally closer to ON than  the two asymptotes  of 70 through 

x crossing ON with angle e0. 

Claim:. The segment Ix, y] cannot cross 70. 

Otherwise it would cross one of the asymptotes through x at least 

twice in the region N because stable geodesics do not meet 70 after 

intersecting ON with angle co (analogously for unstable geodesics before 

first intersection with ON). But this is not allowed by the choice of N 

and the fact tha t  M has nonpositive curvature. 

Thus, since y belongs to ON it has to be in the same component  

of x. Of course this implies that  Ix, y] remains in a region of negative 

curvature by the construction of M. [] 

Now we are ready to est imate the  area of crossings of thin ends of 

triangles with the critical region. Define 

�9 A positive number  c~ 0 given by the following property: let 7(t),/3(t) 

be two asymptotic geodesics in M such tha t  d(7(0),/3(0)) < a0. 
e0 Then, if 7(t) crosses ON at 7(t0) making an angle greater than  y 

then/3(t)  also crosses ON at some/3(s0) near 7(t0). 

�9 Let a l  = min{~0, ~) ,  where aa is the constant of lemma 3.1. 

There  exists r depending on c, 1 such that  the complement of any 

ideal triangle with respect to some ball of radius r consists of three 

disjoints strips of widths less than c~l. The area of the region of any 

ideal triangle inside these balls is bounded above by the  area of the balls 

which depends only on r. So we are left with the estimates of areas 

of ends whose widths are less than  a l .  Again, we shall assume than  

given one geodesic 7(t) all the asymptotes /3  of 7 contained in a tubular  

neighborhood of radius C~l are parameterized by the stable horospheres 

of 7(t), i.e., if/3(t) is the intersection of the stable horosphere of 7(t) 

with/3.  

So let E be one of these ends bounded by two geodesics 71 and 

72. To avoid complications in the notation, we shall identify E with its 

projection in M by the covering map, and we shall suppose that  E has 

a piece of stable horosphere of 7i in its boundary.  In other words, let us 
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assume that OE has three parts: 

1. "Yl (t) for t _> 0. 

2. 0'2(t) for t _> 0. 

3. The segment of stable horosphere of 7i(0) for i=1, 2 with endpoints 

71(0) and 72 (0). 

The main result of this section is the following: 

Proposit ion 3.1. Let E be an end of an ideal triangle having the prop- 

erties stated above. Let 71(t) and 72(t) be the asymptotic geodesics in 

the boundary of  E. Let x < y be two consecutive times of intersection 

of 71(t) with ON (here y may be +oc). Then there exists a constant 

A>O depending on the metric in M such that the area of  E between 

71 :[z, y] ~ M and 72 : Ix, y] > M is bounded above by 

Ad(71 (x), 72 (x)). 

We shall subdivide the proof of Proposition 3.1 in several lemmas. 

We start by noting that 

Claim: Under our assumptions, i f  7i( t i )  E ON for  s o m e  ti > 0 and 

some i = 1, 2, then both 71(t) and 72(t) cross N at the same connected 

component of ON for  some positive t' 1 > t l  and t' 2 > t2 respectively. 

Otherwise it is not hard to see that  it would exist t > 0 such tha t  

71 (t) is at distance at least ~ from every point of 72 which contradicts 

the choice of c~]. 

Given two differentiable curves Cl, c2, let us denote by /p(Cl ,  c2) the 

angle of the intersection Cl • c2 at the point p. Assume without  loss 

of generality tha t  71 (t) crosses ON at t = 0. This claim allows us to 

consider three cases of crossings: 

1. 7i(t) remains in N for some i = 1, 2 and every positive time. 

2. The angle of crossing satisfies 0 < /za(0)(0'l, ON) <_ cO. 

3. The angle of crossing satisfies e0 < l~1(0)(71, ON) < 5" 

Although the finiteness of the area in case 1 would follow from the 

results of section 1 and some more calculus, we are going to t reat  cases 

1 and 3 together  taking advantage of the symmetries of our example. 

First, notice that  in case 1 there are again two possibilities: 
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1. The geodesic ~'i coincides with the zero curvature geodesic 70 for 

some i = 1, 2. 

2. Both 3'1,72 differ from 70. 

The proposition in the hypotheses of i tem I is already proven by the 

results of section 1. The hypotheses of i tem 2 imply tha t  the geodesics 

in the boundary  of E are both  asymptot ic  to 70. So by lemma 3.1 there 

exists an isometry T : N > N preserving ON taking V1 into V2- In 

general, every geodesic segment in N gives rise to many isometric copies 

of it, via the symmetries  of N. Remember  that  we are in 2P/, so from now 

on we shall fix the lifting of N - which we still denote by N for simplicity 

- containing the geodesic 70 C 3}/and notice tha t  the rotations of lemma 

3.1 lift to isometries of N C 2V/which act as translations. 

L e m m a 3 . 3 .  Let v : [0, a] > N and/3 : [0, a] > N be two geodesic 

segments ( a may be +ec) satisfying the following conditions: 

1. There exists a rotation T : N > N such that T(V ) =/3.  

2. Let L, L' be the segments in ON with endpoints V(0), /3(0) and 7(a), 

/3(a) respectively. The region S C N bounded by L, L', and the 

geodesics V([0, a]), /3([0, a]) is either diffeomorphic to a rectangle or 

diffeomorphic to [0, 1] • [0, +oc). 

Then the area of S is bounded above by Hlength(L)cv where H is 

some constant depending on the metric. 

Proof .  First, notice tha t  the hypotheses on V and/3  imply tha t  either 

a = +e~ and they are asymptot ic  to 70, or they  both intersect ON at its 

two boundary  components.  For, if the number  a < +ec  it is not hard 

to see tha t  if 7, /3 intersect ON in only one boundary  component  then 

S is not diffeomorphic to a rectangle. 

Now, let Q c N be the rectangle with sides L, the symmetr ic  image 

of L by the reflection of N fixing 7 and the segments I, T( I )  of stable 

horospheres of 7o in N containing the endpoints of L. Q is a fundamental  

domain for the rotat ion which sends V to /3. Let Q0 = Q and let Qi 

for i = 1, 2, .., m be the iterates of Qo by the rotation, where m is the 
u r n - l  f ) .  smallest integer with the property tha t  i=0 "~ covers S (of course, 

rn may be +oo). Let Bi = S N Q i .  Then we can fill up either Q (if 
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a < +c~) or a half of Q (if a = +cxD) with isometric images of the Bi's 

by the iterates of T in a way that  these images intersect two by two only 

at their boundaries. This implies that  the area of S is less or equal than  

the area of Q which is, up to a factor close to 1, Iength(L)~. [] 

Corollary 3.1. Let S be as in the last lemma. Then there exists a con- 

stant A1 depending on the metric such that 

Area(S) < Aid('/(0),/3(0)). 

Proof .  This is just  because the angle of intersection between 7 and ON 

at the point 7(0) is at least co by lemma 3.2. So there  exists a constant 

P depending on the metric such tha t  the length of L is bounded above 

by P times the length of the geodesic segment joining 7(0) and/3(0). Or 

in other words, length(L) <_ HPd(7(O),/3(0)) which proves the corollary 

letting A1 = PHw. [] 

This lemma completes the proof of Proposition 3.1 in case 1. Next, 

we shall show that  case 3 also reduces to this lemma. The angle 

l~l(0)(71,Ni ) is greater than  e0 and therefore, by the same reasoning 

of lemma 3.2 we deduce tha t  71(0) and 71(t0) - the first positive t ime at 

which 71 leaves N - belong to different components of ON. Notice that  

in this case the end E actually intersects 7o and therefore it has points 

of zero curvature. 

Suppose tha t  71(0) E N1 and 71(to) E N2. By lemma 2.1 there is a 

family of geodesic segments in N which are all isometric to [71 (0), 71 (to)] 

and come from the action of the rotations of the annulus over this 

geodesic segment. Let us rotate 71 in order to get a geodesic /31 : 

[0, to] ~ N isometric to 71([0, to]) and whose initial value is/31(0 ) = 

72(s0), where 72([s0, Sl]) is the  connected component  of 0/2 in the bound- 

ary of E • N. Note tha t  72(sl) E N2. 

L e m m a  3.4. Suppose the hypotheses of case 3 hold. Then the strip 

SO in N bounded by 71 : [0, to] ~ N and/31 : [0, to] ~ N contains 

72: [so, sl] ~ N.  

Proof .  Clearly, if/31 was an asymptote  of 71 then there would be nothing 

to prove. So let us suppose that/31 is not asymptot ic  to 71- Recall that  
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these geodesics are in the universal covering 1VI. The end E is a thin 

strip bounded by 3`1(t) and 3`2(t) whose width goes to zero if t --~ +oc. 

In fact/31(t) and "~2(t) = 3`2(t + so) are two geodesic rays start ing from 

the same point and making a small angle at this point. Consider the 

region V in 1VI bounded by 3`1(t),/31(t) for t _> 0 and the small segment 

of N1 with endpoints 71(0),/31(0). Since/31 is not asymptotic  to 3'1 by 

assumption we have tha t  the region V is a part  of a non-compact  cone 

with infinite volume. So let us suppose tha t  3`2 (t) is not contained in the 

strip SO. Then  it must intersect /31(t) eventually in the future because 

it is asymptotic  to 71 and/31 diverges from 71. This means tha t  3'2 and 

/31 have two different points of intersection in iVI which is not allowed 

by the geometry of non-positively curved manifolds. This concludes the 

proof of the lemma. [] 

Therefore, we can est imate the area of the intersection E V/N in case 

3 by lemma 3.3 and corollary 3.1 taking T = to, 7 = 3`1, /3 = /31 and 

S = SO, since the strip So contains E N N in this case. This finishes the 

proof of Proposition 3.1 in case 3. 

To est imate the area in case 2 recall tha t  from lemma 3.2 we have 

tha t  3`1(t) enters and leaves N for the first t ime through the same con- 

nected component  of ON. Let 71 : [0, to] ~ N and 72 : [so, sl] ~ N 

be, as above, the connected components  of 71 and 72 in E N N. 

L e m m a  3.5. Assume that we are in the hypothesis of case 2. There 

exists a constant A2 such that the area of the connected piece of E • ON 

whose boundary contains [3`1(0), 71(t0)] is bounded above by 

d(71 (0), 72 (0))A2. 

Proof .  Let [ be the segment in the stable horosphere of 3`1(0) bounded 

by 71(0), 72(0). Notice that ,  since this horosphere is normal to 71 and 

the angle L~1(0)(71 , N1) is smaller than  e0 then the segment I is not in 

N and I is at distance at most w from 7o. So from lemma 3.1 we have 

that  every point of I is contained in an asymptote  of 70 which remains 

at distance less than  co for all t > 0. 

Consider the strip S formed by these stable asymptotes  of 70, bound- 
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ed by a segment of stable horosphere of 70. We shall prove that  the 

area of E is less or equal than the area of S. Parametrize I in [1,2] 

by arclength, let us take I(1) = 71(0) and I(2) = 72(0). Denote by 

%, r E [1, 2] the asymptotes of 71 contained in E and let /3r, r E [1, 2] 

be the asymptote of 70 containing the point I(r). Denote by J~(a(t)) 
the stable Jacobi field (it is unique up to orientation) defined along a 

geodesic c~(t) with initial condition I JS(c~(O)) [= 1. Then, the area of 

the strip S is 

2 +oc 

Now, recalling that  if 3'l(t0) is the first positive exit of 71 from N we 

have that  

d(/3r(t), 7o) < d(~/~(t), ~/o) 

z (o )  

3'2 

Figure 1 

for every t E [0, to] and r E [1, 2]. This is because the angle of intersec- 

tion of 7r with N1 is smaller than e0, the angle of intersection of the 

asymptotes of ")/0, and therefore/3~(t) remains always closer to 70 than 

%(t) (see the proof of lemma 3.2). From the construction, this implies 

that  the curvature at/3~(t) is bigger than the curvature at %(t) for such 

t's and therefore, Rauch comparison theorem tells us that  

[ JS(Tr(t))[-<I JS(/3~-(t)) [ 
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for every t E [0, t0],r  E [1,2] so we get tha t  

S /o /'-/o +- I a=(Tr(t))idtdr <_ I J=(/~r(t))ldtdr 1 
< D length(I)A1, 

where D is some constant  depending  on the  metric and A 1 is the  con- 

s tant  obta ined corollary 3.1. It is not  hard  to see tha t  we can assume, 

wi thout  loss of generality, t ha t  %(to) does not belong to N for every 

r > 1 (otherwise, take 72 instead of 71 to argue). In this way, the  re- 

gion /~ bounded  by 71([0, to]), 72([0, to]) and the  horospheric segments  

joining 71(0), 72(0) to 71(t0), 72(t0) respectively, contains E.  The  above 

two inequalities imply 

Area(E) <_ Area(E) 

< I J=(%(t) ) ld tdr  

< DA1 length(I). 

Thus,  the  area of E which is bounded  above by the  left hand  side of the  

above inequali ty satisfies the  s ta tement  of the  lemma. [] 

4. Estimates outside the critical region and the proof of the main 
Theorem 
Let 7(t) be a geodesic of M and let J(t)  be a perpendicular  Jacobi field 

defined along 7. The  norm J(t) of J(t)  satisfies the Jacobi equat ion 

J"(t) + K(t)J(t)  = O, 

where K(t) is the Gaussian curvature  at 7(t). The  function u(t) - J'(t) 
J ( t )  

satisfies the  well-known Ricat t i  equat ion 

u'(t) + u2(t) + / ( ( t )  = 0. 

Lemma4.1. Assume that K(t) < - a  < 0 for every t E [0, T]. Then every 

solution u(t) of the Rieatti equation with u(t) <_ 0 Vt C [0, T] satisfies 

u ( t ) <  m a x { - i ( T - t ) , - ~ }  
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Proof. Let t E [0, T]. If u(t) > - ~ / ~  we have that  

a a 
u'(t)  = - K ( t )  - u2(t)  > a - 

2 2" 

Thus u(s) is increasing when - V / ~  < u(s) <_ O. In particular, if u(t) > 

- ~22  then u(s) > -V /~  and u'(s) > ~ for every s E It, T]. We have that  

u(t) = u(T) + u'(s)ds 

T 

< f -u'(s)ds 
T 

-< f - a d s 2  

: - 2 ( T - t )  

from which we conclude the statement. [] 

Corollary4.1. Let K(t) < - a  < 0 for every t E [0, T]. If  u(t) <_ 0 

Vt E [0, T] where u(t) is a solution of the Ricatti equation, then for all 

< 6 < ~/2 we have that 0 

i. u(t) <_ -~(T - t) if T - 6 < t < T. 

2. u(t) <_ - ~ 6  if O < t < T - 6 .  

Proof. From lemma 4.1 we have that  

if T - t _< - ~ / ~  and 

u(t)  <_ - 2 (T  - t) 

u(t)  <_ - ~  

if T - t >  - ~ .  [] 

Lemma 4.2. Let K(t) <_ - a  < 0 for every t E [0, T]. Suppose that J(t) 

is a perpendicular Jacobi field defined along 7(t) with J'(t) <_ 0 for every 

tE [0 ,  T]. Then for all O < 6 < ~ we have that 
1. J(T) < J (0 )exp ( -~T  2) ifO < T < (5. 

2. J(T) _< J ( 0 ) e x p ( - ~ 6 ( T -  2))5 i f6  < T. 
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d'(*) = u(t) < 0 for a l l t  E [0, T]. Proof .  We have tha t  d log(J(t)) = j(,) 

Since u(t) satisfies the Ricatt i  equation, corollary 4.1 proceeds and then 

for 0 < T < (5 we get 

This implies tha t  

~ J ( T ) ,  fo T og[ j ~ )  = u(s)ds 

f f  a <_ - ~ ( T  - s)ds 

fO T ax dx 
- 2 

= _a_T2 
4 

J(T) <_ J(O)exp(-4T2 ) 

if 0 < T < (5. Moreover, if T > (5 then 

J(T) ,  l T 
l og[ j ~ - ~ )  = J ,  u(s)ds 

T T - 6  

= fT-e  u(s)ds+ fo u(s)ds 

?~ < - ( T -  s ) d s  + T - 5  f a(s d s  
- -  - 5  2 J o  2 

fO - dx T 
ax a(5 

<_ _ (5) 
2 Y (  - 

< _a(52 + a(52 _ a(5 T 
- 4 2 2 

a(5 T -  (5 - 5 (  5)  

which implies that  

as we wanted to show. [] 

Coronary  4.2. Let K(t) and J(t) be as in lemma 4.2. Then for every 

0 < (5 < ~/2 there exists 0 < #((5) < 1, Q((5) > 0 such that i f T  > (5 then 

J(T)  < ~((5)d(0) 
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and 

Proof.  

follows from lemma 4.2. Moreover, 

(4 /o 
2 [1-- 

_< Q(5)J(0)  

where Q(5) = 2 exp(~(52). 

T 

o J(s)ds < Q(5)J(o). 

Let #(5) = exp(-~52).  The first inequality in the s ta tement  

[] 

5s) ds 

We shall preserve the notations of the previous section. So let E be 

a thin end having (horospheric) width less than the constant o~ 1 defined 

in section 3. Let 71(t), 72(t) be the pair of asymptotic  geodesics in the 

boundary  of E parameterized by arclength in a way tha t  the segments 

of stable horospheres of 71(t) in E intersect 72 at 72(t)- We are going to 

est imate the area of the pieces of E in the complement of the region of 

M containing the closed geodesic of zero curvature. Again we identify 

E with its projection in M by the covering map. As before, let N = N~ 

be the tubular  neighborhood of the closed geodesic 70 of radius the 

constant a~ defined at the beginning of section 3. Let us make some 

choices: 

let a > 0 be such tha t  if p, q are any two points 1. Recalling that  o~ 1 < ~- 

in the same stable horosphere, p E M - N and their horospheric 

distance dS~(p, q) < c~1, then the curvature at q is K(q) < -a .  

2. Fix 5 > 0 such tha t  if 7(t) is a geodesic of M with 7(0) E 0(N) and 

7'(0) points outwards N, then 7(t) does not belong to N for every 

0 < t < 2 5 .  

3. Fix # = #(5) < 1 and Q = Q(5) from corollary 4.2. 

Lemma4.3 .  Assume that 71(t) does not belong to N for every 0 < t < T, 
with T > 5. Then 

d ~ (Wa (T), ~2 (T)) _< ud  ~ (-y~ (o), ~2 (o)) 
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and 
A(T) < Qd~S(71(0), 72(0)) 

where A(T) is the area of the region bounded by 71(t), 72(t) for 0 < t < T 
and the stable horospheric segments [71(0), 72(0)] and [71(T), 72(T)]. 

Proof.  The argument is similar to the one used in lemma 3.5. The 

Buseman flow of 71 provides a differentiable parameterizat ion f : [0, l I x 

[0, T] ~ M of the subset of E considered in the statement of the 

lemma. This parameterizat ion is such that  the curve t -~ fs(t) = f(s, t) 
is an asymptote  of 71(t) Vs E [0, 1] and s -+ f(s, t) is a parameterizat ion 

of the horospheric segment joining 71 (t) and 72(t). Moreover, the curve 

s --+ f(s, 0) is the arc length parameterizat ion of the horospheric segment 

joining 71(0) and 72(0) The function J~(t) = df(s,t) is a Jacobi field 
�9 3 ~  

perpendicular  to the geodesic fs(t) satisfying J~(t) = Js(t)e(t), where 

J~(t) =1 J~(t) ] and e(t) is a uni tary vector field tangent  to the horosphere 

containing 71(t). Since the curvature of M is non-positive the functions 

J~(t) are non-increasing for every s, t. Thus, by corollary 4.2 we get 

&(T) <_ M~(o) 
T 

fo Js(t)dt <_ QJ~(O). 

N o w ,  

Also, 

l 
dSS(71(T), 72(T)) = fo J~(T)ds 

l 

<- # fo Js(O)ds 

= ~ d s s  (71 (0), 72 (0)) .  

A(T)= ffol fo T 

=folfo T 
1 

<- fo Q&(O)ds 
= QdSS(71(O), 72(0)), 

I Jacobian(Df(s, t)) [ dt ds 

Js (t) dt ds 
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which finishes the  proof  of the  lemma. [] 

Given an interval I = [a, b] let A(I)  be the  area of the region bounded  

by 71(t), 72(t) for t E [a, b] and the  horospheric segments joining 71(a) 

to ~/2(a) and 71(b) to 72(b). The  following result completes the proof  of 

the main  theorem: 

L e m m a  4.4. There exists A > 0 such that A([0, +oc)) < A. 

Proof .  Let to = 0 and let 0 _< ti < si < t i + l , i  _> 1 be the  sequence of 

t imes where 71(ti) E ON, for every i the segment 71 : [ti, si] > M is a 

subset of the  closure of N and "71 : [8i, ti+l] ) M is a subset of the com- 

plement  of N.  Let dn = dSS(~/l(tn), ~/2(tn)) and e~ = dSS('71(sn) ,'/2(sn)). 

From section 3 we have tha t  

A([t~, sn]) _< Bd~ 

for some B > 0. By l emma 4.3, 

A([sn, t~+l]) < Qen 

dn <_ pen. 

Since distances between asymptot ic  geodesics are decreasing we have 

tha t  en < dn, and therefore en+ 1 < /~en and dn+ 1 < #d~. And since 

eo _< do _< ~1 we deduce 

A([0, +c~)) = ~ A([tn, s~]) + A([s~, tn+l]) 
n 

_< + Qen) 
n 

_< (B + Q) E 2~n~ 
n 

< 2(B + Q) 
- -  1 - - #  

which ends the proof  of the lemma. [] 
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