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Abstract. Let M be a C k, k > 4, compact surface of genus greater than two 
whose curvature is negative in all points but  along a simple closed geodesic 7(t) 
where the curvature is zero at every point. We show that  the area of ideal triangles 
having a lifting of 7 as an edge is infinite. This provides a family of surfaces having 
ideal triangles of infinite area whose geodesic flows are equivalent to Anosov flows, 
in contrast with the well-known examples of surfaces with flat strips which also have 
ideal triangles of infinite area. By the CAT-comparison theory we can deduce, using 
these surfaces as models, that a C ~ compact surface of non-positive curvature having 
one geodesic along which the curvature is zero has ideal triangles of infinite area. 

Introduction 
In the present work we investigate the area of ideal triangles of non- 

hyperbolic metrics in the disk having non-positive curvature. We con- 

sider a compact  surface M of non-positive curvature and genus greater 

than  two, so the universal covering ~ /  is the disk endowed with the 

pull-back of the metric. It is well known tha t  M admits a compactifica- 

tion ~ / ( ~ )  where 0_/V/(ce) corresponds to the collection of asymptot ic  

directions of geodesics in ~/.  Given a, b, c E 0~/ (ce)  an ideal triangle 

with vertices a, b, c is the region of ~ / b o u n d e d  by the geodesics joining 

a with b, b to c and c to a. A very nice result by Barges and Ghys [3] 

tells us that  if the area of ideal triangles is finite and constant then  the 

curvature of M is constant  and negative. In [5] this result is shown to 

be false for C 3 surfaces if we simply ask the existence of an upper bound 

for the area of ideal triangles. There  are counterexamples constructed 
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74 R. RUGGIERO 

by gluing annulus of revolution, having negative curvature at all points 

but  along a simple closed geodesic, and a piece of surface of constant 

negative curvature. In fact, given any c~ > 0 this construction provides a 

2 having C 2+~ Riemannian metric of non-positive curvature, where e = 

a non-hyperbolic geodesic 7(t) such tha t  every asymptot ic  geodesic/3(t) 

of 7(t) satisfies 
1 

<_ C - -  
t a 

In particular, when c~ = 3 we get a C 3 surface with finite integral 

behavior of the function f ( t )  = d(7(t),/3(t)). In this construction appears 

an explicit connection between a, the finiteness (or not) of the area of 

ideal triangles and the way the curvature goes to zero near 7(t). More 

precisely, the curvature K(p) at points p close to 7(t) along geodesics 

normal to ~/(t) satisfies the following formula: 

K (p) = -y(p)~ f (y(p) ) 

where y(p) is the distance to the geodesic 7(t), f (y )  is an analytic func- 

tion with f(0) r 0. So for instance, if c~ = 3, then c = 4 and in general, 

since c~ must  be greater than  1 in order to obtain finite area of ideal 

triangles we have e < 2. This is why the counterexamples are but  C 3. 

The main result of this paper is to show that  for C k metrics, k _> 4, the 

conjecture holds: 

T h e o r e m  1. Let M be a C 3 compact surface having negative curvature 

at all points but along a simple closed geodesic 7(t), where the curvature 

is zero for  every t. Let N be a normal neighborhood of 7 and let y : 

N ~ R be the distance y(p) from every point of N to 7. Suppose that 

the Gaussian curvature K restricted to N satisfies 

K (p) = -y(p)~ f (y(p) ) 

where e >_ 2 and f (y)  is an analytic function with f(O) = 1. Then the 

area of ideal triangles having 7 as an edge is infinite. 

Theorem 1 tells us tha t  if the curvature near 7(t) is suitably fiat then 

the area of ideal triangles is not finite. Notice that ,  if the surface were 

of class C k with k > 4, the number  e in Theorem 1 has to be at least 
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2, so Theorem 1 holds for C k surfaces where k > 4. We present here a 

short, general argument connecting the flatness of the curvature and the 

convergence of the area of the saturation by the geodesic flow of pieces of 

the stable manifold of 7(t). It uses some estimates of the solutions of the 

Ricatti equation along non-hyperbolic geodesics that  measure the rate of 

decay of stable Jacobi fields near to a zero curvature geodesic. We would 

like to point out that  Theorem 1 implies that  there is a family of surfaces 

having ideal triangles of infinite area in the universal covering whose 

geodesics flows are equivalent to Anosov flows, in contrast with the 

classical examples of metrics having flat strips which clearly posses ideal 

triangles of infinite area. Besides, these surfaces have ergodic geodesic 

flows and Pesin's sets of total measure (i.e., the set of orbits in the unit 

tangent bundle having non-zero Lyapunov exponents) so their ergodic 

metric properties are very similar to those of Anosov geodesic flows. 

Two final remarks before ending the introduction. The existence 

of the above mentioned C 3 counterexamples (thus having C 2 geodesic 

flows) indicates that  something more than soft arguments is needed 

to show Theorem 1. On the other hand, by the triangle comparison 

theory of Caftan, Alexandrov, Toponogov we can deduce that  every 

Coo compact surface of non-positive curvature having one geodesic along 

which the curvature is zero has ideal triangles of infinite area. We shall 

prove this fact in the last section (section 4) using as a comparison 

model an annulus of nonpositive curvature satisfying the hypothesis of 

Theorem 1 and having minimal exponent e = 2. So we can conclude 

that  

Theo rem 2. In the category of C ~ compact surfaces of non-positive 

curvature, the geodesic flow is Anosov if and only if every ideal triangle 

in the universal covering of the surface has finite area. 
Indeed, since by Theorem I the existence of a zero curvature geodesic 

implies the existence of ideal triangles of infinite area, we can easily show 

that  the finiteness of the area of every ideal triangle grants the existence 

of T > 0, e > 0 and 5 > 0 such that  the following holds: 

Given any geodesic ~(t) parameterized by arclength each subseg- 
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ment of ~/(t) of the form ~/[a, a + T] passes through a region of negative 

curvature K < - 5  during an interval of t ime of length at least e. 

Now, it is not hard to see that  under these conditions the geodesic 

flow is Anosov. 

1. Preliminaries of  the geometry of  non-positive curvature 
In this section we shall state some notations and elementary asymp- 

totic properties of geodesics in non-positive curvature manifolds. All 

geodesics will be parameterized by arc length. ~ / w i l l  denote the uni- 

versal covering of M endowed with the lifting of the metric of M. 

Definition 1.. Let M be a Riemannian manifold of non-positive curva- 

ture. Two geodesics 7(t),/3(t) in lf/[ are called asymptotic  if there exists 

C > 0 such that  

d(7(t),/3(t)) <_ C 

for every t _> 0. 

The geodesics 7 and/3  are called bi-asymptotic if there exists C > 0 

such that  

d(7(t),/3(t)) <_ C 

for every t E R. 

Due to the convexity of the metric, given a geodesic 7 in J~/ and 

p E JV/there is a geodesic asymptotic  to 7 containing p. Two different 

bi-asymptotic geodesics bound a flat strip in/~/ ,  so we deduce that  in 

the hypotheses of the main theorem the universal covering ~r  of our 

surface M does not contain bi-asymptotic geodesics. Moreover, we have 

tha t  the distance between two asymptot ic  geodesics decreases to 0 as 

t -+ +c~. In fact, the distance between asymptot ic  geodesics decreases 

uniformly on compact sets in the sense of [5]. 

The horosphere H(7(t))  of a given geodesic " / C / ~ / a t  the point 7(t) 

is constructed as follows: 

Let Sr_t(7(r)) for r > t be the sphere of radius r -  t centered at 

7(r). It contains t h e  point 7(t) for every r and letting r --~ +c~ we 

obtain a limit submanifold, the horosphere H(7(t))  , characterized by 
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the fact tha t  a geodesic is asymptot ic  to 7 if and only if it is orthogonal 

somewhere to a horosphere of 7 (and then to every horosphere). 

We shall always parametrize an asymptote  3(t) of 7(t) in a way tha t  

3(t) = 3 rn H(7(t).  

Definit ion2.  Given 0 = (p, v) E T1/~/-the unit tangent  bundle o l a f - t h e  

Buseman function bo :IVI: ~ R associated to 0 is defined by 

bo(x) = lira (d(x,7(t)) - t) 

where 7(t) the geodesic whose initial conditions are 7(0) = P, 7'(0) = v. 

Bnsemann functions are C 2 [7], its gradient Vbo is always tangent  

to the asymptotes  of 7(t) and its level hypersurfaces are precisely the 

horospheres of 7. We denote by r  :/V/ > _~/the flow of this gradient 

vector field. Then  we have that  

= H ( 7 ( s  + t)) 

for every s, t. For more details and a good exposition of the basic theory 

of manifolds of non-positive curvature see [2]. 

2. The Ricatti equation 
The purpose of this section is to investigate the solutions of the well- 

known Ricatti  equation associated to the Jacobi equation near the zero- 

curvature geodesic 7. Recall tha t  given a geodesic t3(t), the Jacobi 

equation 

J"(t) + K(t )J( t )  = 0 

has two special kinds of solutions without  zeros: 

�9 The "stable" solutions J~(t) where v E T3(o)M is orthogonal to/3(t)  

and J~(0) = v. These solutions are characterized by the fact tha t  

] J~(t) ]<] v J 

for every t _> O. 

�9 The "unstable" solutions J~(t) where v is as before, J~(0) = v and 

1 93(t)I_<1 v [ 

for every t <__ O. 
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The functions 

uS(t  ) _ 
J (t) ' 

u (t) - 
J~(t) 

satisfy the differential equation 

u' ( t )  + u2 ( t )  + K ( t )  = o 

(it is not hard to see that  u s and u ~ do not depend on the vector v). 

These functions are the geodesic curvatures of the stable (resp. unstable) 

horospheres of/3(t) and notice tha t  

d 
d-t log(J~(t)) = uS(t) 

so their means provide the Lyapunov exponents of the geodesic flow 

of M. We are interested in the behavior of these functions near a non- 

hyperbolic geodesic of M. To simplify the notation, let us denote uS(t) = 

u(t). First we need to obtain a sharper version of the usual comparison 

theorems (see [6] for instance) for the Ricatti  equation applicable to our 

c a s e :  

Lemma 2.1. Let M be a surface of non-positive curvature. Let 8(t) be a 
geodesic of M and suppose that 

l im t -~+~  fOtK(x)dx = O 

Then the following assertion holds: 
I f  there exists to such that u2(to) > -K( to )  then there exists tl > to 

with u2(tl) < - K ( t l ) .  

Proof .  First, notice tha t  the set of points where u2(t) > -IV(t) is just  

the set of points where u'(t) = -u2(t)  - K(t) is negative. Therefore, if 

there exists to such that  u2(t0) > -K( to)  there exists an interval (a, b) 

where the same holds, and we can assume without  loss of generality 

that  (a, b) is a maximal connected component  of R with the proper ty  

tha t  Vt E (a,b), u2(t) ~ --K(t). Then we have tha t  u2(a) = -K(a ) ,  
u2(b) = -K(b)  and thus a ,b are a critical points of u(t). Moreover, 
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from the choice of a, b we deduce that  a is a local maximum of u(t) 

and b is a local minimum of u(t). Now, by contradiction, assume that  b 

is infinite. Then u(t) would be a strictly decreasing function for every 

t > a, and since u(t) <_ 0 for every t E R ( this is because the curvature 

is non-positive ) we would get some c > 0 such that  

lira u ( t ) = - c  

so we would have 

and therefore 

1/0  lira - u(s)ds < - c  
t - - .+oo  t 

1/0  lira - K(s)ds  = limt_~+~ -u2(s)ds  < - c  2 
t-++~ t 

contradicting the hypotheses on the decay of the curvature. [] 

Coronary 2.1. In the hypotheses of Lemma 2.1, if  there exists x E R 

such that K(t)  is also non-decreasing and non-zero for every t >_ x then 
1 

l u(t) l< (-K(t))~ 

for every t >_ x. 

Proof. Suppose, by contradiction, tha t  -u ( t )  > (-K(t)) �89 for some 

t _> x. Then u2(t) > - K ( t )  and from Lemma 2.1 we get tha t  there 

exist a < t < b such that  u2(a) = - K ( a ) ,  u2(b) = - K ( b )  and C(t) <_ 0 

Vt E [a, b]. Moreover, a would be a local maximum of u(t) and b a local 

minimum of u(t), and since u(t) decreases in [a, b] we would have that  

- K ( a )  = u2(a) < u2(b) = - K ( b )  

(recall tha t  u(t) is non-positive) so K(a) > K(b) contradicting the as- 

sumption on the curvature. [] 

3. The proof of the main theorem 
So let M be a surface satisfying the hypotheses of Theorem 1 and let 

7(t) be the zero-curvature closed geodesic. Let N be the normal, tubular  

neighborhood of 7(t) satisfying 

If(p) = -y(p)a f (y (p) )  
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Vp C N,  where y(p) is the distance from p to 7. We begin by stat- 

ing a technical lemma about  quasi-geodesic propert ies of curves having 

bounded curvature. 

L e m m a  3.1. Let f : ( - a ,  a) ~ M be a C 2 curve parameterized by arc 

length such that its geodesic curvature k(t) satisfies I k(t) [<_ ko. Then 

there exist 50 > 0 and kl > 0 depending on ko such that if  l ( f( t ,  s)) is 

the length of f ( t ,  s) we have 

I d(f(t) ,  f(s))  - l( f( t ,  s)) I<_ k ld( f ( t ) ,  f (s ) )  2 

for every I t - s I<_ 5o. Moreover, we have that kl --+ 0 if ko --+ O. 

For the proof it suffices to look at graphs of functions f : R ) R. 

It follows after some elementary calculus with the local form of f and 

we shall not write it down here. In few words, a curve with bounded 

second derivatives resembles locally a geodesic, in the sense that  we can 

compare (up to a factor) its length with the distance between pair of 

points in the curve. 

Lemma  3.2. Let 13(t) be asymptotic to 7(t). Then there exists c > 0 and 

T > 0 such that 

�9 The curvature K(/3(t)) is strictly increasing for t >_ T. 
�9 1 K ( 9 ( s ) ) d s  --- o .  

�9 The following estimates hold for every t > T:  

(1 - _< _< (1 + 

Proof .  We shall only sketch the proof  of this fact because the arguments 

are quite standard.  To simplify things let us argue in ]l?/. So let us 

identify 7(t) with some lifting in _~/. Notice that ,  from the remarks of 

section 1 the distance between/3(t)  and 7(t) decreases to 0 as t -+ +oc. 

So there exists T > 0 such tha t /3( t )  E N Vt > T. From the hypotheses 

in K we deduce that  there exists a tubular  neighborhood N '  C N of 7 

such that  the curvature in N '  is negative and decreasing with respect 

to the distance to 7(t). Assume for simplicity tha t  N '  = N.  Then the 

composit ion 

/((/3(t)) = - (d(/3(t), 7))~f(d(/3(t), ~/)) 
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is an increasing funct ion of t for t _> T. This  proves i tem 1. I t em 2 is a 

s t raightforward consequence of the  fact tha t /3 ( t )  is asymptot ic  to 7(t) 

where the curvature  is zero for every t. By shrinking the wid th  of N if 

necessary, we have tha t  given e > 0 small enough the  following holds: 

(1 - e)d(/3(t), 7(t)) < d(/3(t), 7) -< d(/3(t), 7(t)). 

Indeed, this is a consequence of l emma 3.1. The  points  7(t) and/3(t)  

belong to the  same horosphere H(7(t))  for every t. So if d(/3(t),7(t)) 

is small enough the  segment  of H(7(t)) between t h e m  approaches the  

geodesic segment  lying between 7(t) and/3( t )  since the  geodesic curva- 

ture  of H(7(t))  is close to zero in N (recall tha t  H(~/(t)) is perpendicular  

to 7(t) at every t E R). This  is due to the  fact tha t  the  geodesic curva- 

ture  of horospheres is given by the  solutions of the  Ricat t i  equation,  and 

these solutions t end  to zero as the  distance to 7(t) goes to zero accord- 

ing to Corollary 2.1. So we finally obtain tha t  the distance d(/3(t), 7) is 

"efficiently" approached by d(/3(t), 7(t)) for t > T. 

Now, i tem 3 follows from the above remark  and the hypotheses  on 

the curvature K in the region N. [] 

Let c : [0, a] ~ N be the subcurve of the connected component 

C of H(7(0)) M N which is perpendicular to 7 at 7(0) and lies between 

e(0) = 7(0) and one of the boundary points c(a) of C. Assume that 

c[0, a] is the arc length parameterization. For a given lifting ~ of 7(t) in 

J~/let ~bt : -~/ ~ 3~/be the Busemann flow of ~(t). This flow induces a 

flow ~t in N everywhere tangent to the asymptotes of 7, and it satisfies 

~t(N) C N for t _> 0. To simplify the notation we identify ~b and "5. Let 

P : C ~ C be the Poincar~ map of this flow restricted to C (notice 

that P(C) C C and P(c[0, a]) c c[0, a] because this flow is contracting). 

Let L be the period of 7(t) (notice that P = ~bL) and let %(t) be the 

asymptote of 7(t) defined by 7s(0) = c(s) for every s E [0, a]. Then we 

have the following estimate for the length of P(c[0, a]): 

L e m m a  3.3. Let l(P(c[0, a])) be the length of P(c[0, a]). Then 
1 

l(P(c[O, a])) >_ l(c[0, a])e -L(I+~)~d('y~(O)'~(O))~ 

Bol. Soc. Bras. Mat., Vol. 28, N. 1, 1997 



82 R. RUGGIERO 

Proof .  We can est imate the length of P(c[0, a]) by means of the following 

formula: 

l(P(c[O, a])) : Dr 

where Dr is the differential of the map ~t. From the construction of 

stable Jacobi fields we deduce that  

so we get 

where 

s t DCt(c'(x)) : <,(~)( ) 

f0 a 
l(P(c[O, a])) : DCL(C'(s))ds 

fO a (x) (L)dx = <, 

fo a = c'(z)efl ~x(Y)~dz 

JSI / x c,(x)(Y) 
u x ( y ) -  j~(x)(y ) 

Notice that  in the last identity we used tha t  J~,(x)(O) = e'(x). Since 

7x(t) E N for every t > 0 we can apply Lemma 3.1 and Corollary 2.1 to 

deduce that  

1 

_< (1 + e)�89 7(t)) ~ 

Vt > 0, x E [0, a] and, since Ux(t) < 0 for every x and t we have 

1 
~x(t) >_ -(1 + ~)~d(~x(t), ~(t))~. 

So we obtain 

z(P(c[0~ el)) _> [ ~  
J0 

L ! 
c' (x)efo - ( l + J  2 d(~x(y),v(y) ) ~ dY dx 

a 1 a 
f o  Ct ( X ) e - - n ( l  +e) 2 sUp{yc[O,L],xe[O,a]} d(Tx(y),7(y) ) g d x  

1 
k/(c[o, a])e -L(I+~) ~ d(za(O),~(O)) ~ 
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as we wished to prove. [] 

Proof  o f  T h eorem h 

Let pn(c[O, a]) = c[0, an] be the  n *h i terate of c[0, a] by the Poincar6 map  

P.  From L e m m a  3.1 we have tha t  there exists ~ > 0 small, depending  

on N such that 

d(%(t), ~(t)) <_ I(r 0])) _< (1 + 6)d(%(O, ~(t)) 

for every x E [O,a],t > O. Let B = L(1 + e)�89 + ~)~. From L e m m a  3.2 

we obtain 
l(c[0, an]) >_ l(c[0, an_l])e -B(l(c[O'an-1]))~ . 

We can assume wi thout  loss of generality tha t  l(c[0, a]) < 1 (and 

therefore l(c[O, an]) < 1Vn, and since (~ > 2 by hypotheses  we get 

/(el0, a~]) >_ l(c[0, an_l])e-sl(c[~ 

>/(c[0,  %_1])(1 - Bl(c[O, %-1])) 

where in the  last inequali ty we used tha t  e x > 1 + x. Therefore, we have 

the following formula: 

n--1 

/(c[O, an]) >_/(c[O, a]) H (1 - Bl(c[O, all)). 
i=1 

So suppose by contradict ion tha t  the area of the region 

S = [ . J t > _ O ~ t ( c [ O ,  a]) i8 finite ( here, again, we identify c[O, a] wi th  one 

of its lifting by the covering map).  This  would imply tha t  

~ / ( c [ 0 ,  ad) < ~ .  
i=0  

On one hand,  by the  last inequali ty we would have tha t  

/(c[0, ai]) _> l(c[0, a]) ~ H ( 1  - Bl(c[O, ai])) 
i=0  k=0 i=1  

SO Hi=l(lk _ Bl(c[O, ai])) > 0 as k --~ +oc and this infinite p roduc t  

would "diverge to 0" (as said in the  argot of the  theory of infinite prod- 

ucts). But  on the  other  hand,  an infinite p roduc t  of the  type  I]~-0(1 + bi) 
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is convergent and non-vanishing if and only if the  series ~i~O bi is con- 

vergent, which clearly leads to a contradiction. This implies Theorem 1 

since the liftings of the region S in 2~/are included in the ideal triangles 

having the liftings of 7(t) as one of their edges. 

4. Comparison theory and the proof of  Theorem 2 
The purpose of the section is to show the  following result: 

Lemma 4.1. Let (M,g) be a C ~ compact surface of  nonpositive cur- 

vature, and suppose that there exists a geodesic 7(t) of M along which 

K(7(t))  = 0 Vt E R. Then every ideal triangle having any lifting of  7(t) 

as an edge has infinite area. 

We shall just  sketch the main steps of the proof of Lemma 4.1 since it 

follows from Theorem 1 and s tandard arguments  in comparison theory. 

Step 1: Model surface. 

Given c > 0 it is possible to construct  an annulus (Me, go) of nonposi- 

tive curvature with a zero curvature closed geodesic 7(t) such that  the 

curvature in a tubular  neighborhood of 7 has the formula 

Kc(p) = -y (p)  2fc(y(p)) 

where fc : R ) R is a positive analytic function satisfying fc(0) = c, 

and y(p) is the distance from p to 7. It is not hard to get such annulus 

using the theory of surfaces of revolution, but  we are going to use an 

example described in [1] tha t  is very simple for the calculations. Let 

A = S 1 x R endowed with the metric g(s, t) = Y2(t)ds2 + dt 2, where 

Y( t )  = 1 + a t  4. It is easy to check tha t  the lines % : R ~ A given 

by %(t) = (s,t) are geodesics with arclength parameter  t, the circle 

70@) = (s, 0) is also a geodesic of A, and the curvature of A is given by 

- Y " ( t )  -12a t  2 
K ( s ,  t )  - Y(t  - 1 + 

Since ] t ]=] t(p) ] is the distance from p = (s,t) E A to the geodesic 

70, and K(s ,  t) = 0 if and only if t = 0, the geodesic 7 o has a t ubu la r  

neighborhood N satisfying the hypothesis of Theorem 1. Now, taking 

a = ~ we obtain the metric go. 
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Step 2: The comparison with the model surface. 

Let (M, g) be a C ~ compact  surface of nonpositive curvature having a 

zero curvature geodesic 7(s). Let /3(s)  be any lifting of 7(s) in 3~/and 

consider a normal tubular  neighborhood N~(/3) in 2~/. Let us take Fermi 

coordinates in N~(/3), F :  R • ( - c ,  c) ~ N~(/3), F(s,  t) = exp;~(s)(tn(s)), 

where n(s) is a differentiable unit vector field everywhere normal to 

/3'(s). Let Ag = (R • ( - c ,  e), F'g)  be the strip R • ( - e ,  e) endowed with 

the pullback by F of the metric g. By the Taylor's formula and the 

compactness of M,  there exists e I ~ e, C > 0, such tha t  for every s E R 

the curvature of Ag can be wri t ten as 

1(g(p) = -v(p)2 fs(v(p) ) 

where fs : ( - e l ,  Q) ~ R is a C a positive function with fs(t) <_ C 

for every t E ( - e l ,  ~1) (recall the curvature of M is nonpositive).  Since 

t = t(p) is the distance from p to F(s,  0) =/3@) we have that  

1((s, t) > - t 2 C  

where 1((s, t) is the curvature of A 9. Let (Mc, ge) be the family of 

annulus of s tep 1. The claim is tha t  there exist c = c(C) > 0 and 5 _< el 

such that  

K(s, t) > 1( e(s, t) 

C+a Then we get for every (s, t)  E R • ( -5 ,  5). Indeed, if a ~ 0 let c = 12 �9 

Kge(s , t) = - ( C  + a)t 2 1 
1 + ~2a t  4 

= - ( C  + a)t2(1 C + at4 + o(tS))  _~ _Ct2  
12 

for every (s, t)  E R •  (-5~,5~), where 6a > 0 depends on a. So we 

conclude that  

t((8, t) ~ - t 2 C  ~ Kgc(8 , t) 

for every (s, t) E R • (-5~, 5a), thus proving the claim for c = C + a. 

Chose any a > 0, let c = C + a and denote by Ag e the strip R • ( -5 ,  6) 

endowed by the metric ge. 
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Step 3: Comparison Theory. 

A classical reference for this subject is [4]. Using the ideas of the CAT- 

comparison theory we get the following: 

L e m m a 4 . 2 .  Let c > O, 5 = 5a > O, Ag, Agc be as in step 2. Let 

/3(s) = (s, O) be the horizontal line (which is geodesic for both Ag and 

Age). Let p, q E R • (-5, 5), let [p, q]g, ~9, q] be the geodesic segments 

joining p to q in the metrics g and 9c respectively. Let %o(t) = (so, t). 

Then 

dg([p, q]g 0 %0,/3(sO)) > dgc([p, q] N %o, 13(sO)) 

where dg is the distance with respect to the metric g. 

Lemma 4.2 follows from a standard comparison argument: the cur- 

vature Kgc is more negative than the curva ture / (g  in the strip, so dis- 

tances between geodesics in Agc are more convex than distances between 

geodesics in Ag. An immediate consequence is the following: 

CoroUary4.1. Let Ag, Agc, /3(s) be as in lemma 4.2. Let p E Ag and let 

~g,P, ~gc,P be asymptotic to ,3 starting at p. Then the areas of the ideal 

triangles 

= [Z(o),p]g o/ g,p[o, 

Ag C = [/~(0),p] U ~gc ,p[O,  +(:X:)) U fl[0, ~-OO) 

satisfy areag(Ag) >_ areagc(Agc ). 

Simply because ideal triangles having noncompact parts of/3 in one 

of their edges are limits of ordinary triangles having an edge contained 

in/3, so from the previous lemma we deduce that  Agc C Ag. This means 

that  areag(Agc) < areag(Ag). But from Rauch comparison theorems it 

is not hard to deduce that  

areagc(Agc) ~_ areag(Agc) ~ areag(Ag). 

Finally, the proof of Lemma 4.1 follows from Theorem 1 and Corollary 

4.1. 
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