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Abst rac t .  We consider the rotat ion set R of a homeomorphism f ,  isotopic to the 
identity, of a closed surface E of genus g > 2. We show if Int(R) is nonempty and 
contains an element which is realized by an asymptotic measure, then all the rational 
points of Int(R) are realized by periodic orbits. We raise an example to show that  
the second condition above is indispensable if g > 2. We also show that  if R contains 
a (g + 1)-simplex whose vertices are realizable by periodic orbits, then the topological 
entropy of f is positive. 

1. In t roduc t ion  

The concept of rotation vector is first introduced by M. Misiurevicz 

and K. Ziemian ([9]) for a mapping of the torus and is extended to 

a homeomorphism of a general manifold by M. Pollicott ([10]). We 

will give a definition applicable to an arbitrary mapping of the space, 

homotopic to the identity. However our definition differs from that of 

Pollicott in the point that we include all the vectors which correspond 

to invariant probabilities. 

More precisely consider a continuous map f of a compact metrizable 

space X and a specified homotopy F joining f to the identity. Given an 

f-invariant probability measure #, we shall define the rotation vector 

pF(#) E HI(X;IR). The homology class PF(#) is said to be realized by 
the probability #. If # is the probability supported on a periodic orbit 

of f ,  pF(#) is said to be realized by a periodic orbit. The image of PF 

is called the rotation set and denoted by Rp. 

Although we define the rotation vector in full generMity, the rest of 

the paper is concentrated on the case of a homeomorphism f,  homotopic 
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to the identity, of a closed oriented surface E of genus _> 2. In this case 

it is Shown that  PF depends only on f (not on the homotopy F).  Thus 

we denote p = PF and R = RF. 

The problems we treat in this paper are: 

1 What  is the actual figure of the set R? 

2 Which points of R are realized by orbits? 

3 Does R being big enough imply the complexity of f ?  

As for 1, we only consider the case where f is a generalized pseudo- 
Anosov homeomorphism (GPAH). GPAH is defined following the usual 

definition of pseudo-Anosov homeomorphism, except we allow the 

(un)stable foliation to admit singularities of one-prong. There are many 

examples of GPAH's which are homotopic to the identity. The dynam- 

ical properties of GPAH are similar to those of pseudo-Anosov home- 

omorphisms. Especially they admit Markov partitions. Using this the 

set R is shown to be a compact polyhedron (Theorem 3). 

We also prove that  in the case of a GPAH, any rational point in the 

interior of R is realized by a periodic orbit. The proof strongly depends 

upon the argument of S. Alpern and V. S. Prasad [5]. 

More generally, if the limit 

lira 1 ~ ~i_15 #(x) 
~-l"z 

exists for some x ~ E, where (Sz denotes the Dirac probability at x, 

the f-invariant probability p(x) is called the asymptotic probability at 

x. Thus an asymptotic probability is closely connected with an orbit. 

For example an ergodic probability is asymptotic. Any periodic point 

admits the asymptotic probability. We show that  as for a GPAH, any 

point in the interior of R is realized by an asymptotic probability. 

For a homeomorphism of the 2-torus T 2 isotopic to the identity, 

J. Franks ([4]) showed that  if RF has a nonempty interior, then any 

rational point in the interior is realized by a periodic orbit. For a home- 

omorphism of a surface of genus g _> 2, E. Hayakawa [7] proved that  if 

there exists a simplex C of dimension 2 9 in R which is either disjoint 

from the origin or contains the origin as a vertex, and a point a in Int(C) 

BoL Soc. Bras, Mat., Vol. 28, N. 1, 1997 



ROTATION SETS OF SURFACE HOMEOMORPHISMS 91 

such that  the vertices of C, as well as a, are realized by periodic orbits, 

then points realizable by periodic orbits are dense in C. In this paper 

we generalize this result as follows. Let f be a homeomorphism of a 

closed oriented surface E of genus g _> 2, isotopic to the identity. 

Theorem 1. If  R contains 0 as an extremal point and Int(R) is nonempty 

and admits a point realizable by an asymptotic probability, then any 

rational point of Int(R) is realizable by a periodic orbit. 

By the Nielsen fixed point theorem [8], 0 is always realized by a fixed 

point. 

In Theorem 1 the condition of the existence of a realizable point in 

Int(R) is indispensable if g > 2. An example will be given in Sect. 3. 

As for 3, M. Pollicott ([10]) showed that  if there exists 2g + 1 points 

in R, realized by periodic points, whose convex hull has a nonempty 

interior, then  the topological entropy of the mapping is positive. Here 

is an optimal result in this direction. 

Theorem 2. Let f be a C 1 diffeomorphism orE, isotopic to the identity. 

Suppose there exist points a~ (0 <_ u < g + 1) in R, realized by periodic 

orbits, which form a nondegenerate (g+ l )  simplex. Then the topological 

entropy of f is positive. 

2. Rotat ion sets 

Let X be a compact  metric space and let F = {ft} be a homotopy 

joining some mapping f = f l  to the identity idx  = fo. Denote by 

A/If(X) the space of f- invariant  probability measures. 

To any probability # E f / I f (X) ,  let us assign a homology class 

PF(#) E H I ( X ; R ) ,  called the rotation vector of # w. r. t. F .  First 

of all, recall tha t  

HI (X;  R) ~ Hom([X, S1], I[~). 

For any h : X --+ S 1 = R / Z  and x E X,  consider a continuous lift 

hx;[0,1] --+ R of the function [0,1] ~ t ~ h(ft(z)) E S 1. Denote 

AF(X, h) = hx(1) - hx(0). Clearly it is independent  of the choice of 

the lift and is continuous in z. Define PF(#) by 
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f 
(pF(u), [hi) = J r  zXF(x, h)du(x). 

This is independent of the choice of h from its class, as will be shown 

below. Suppose h is homotopic to M. Then the function M - h  : X -+ S 1 

has a continuous lift, say k : X ~ ~. Then we have 

fxAF(x,h')d#(x) - fxAF(x,h)d.(x) = fx(k(f(x))-  k(x))dp(x) =O. 

The last equality follows of course from the f- invariance of #. 

Notice that  the function PF : AJ/ (X)  --~ H](X; ~) depends only on 

the homotopy class of F leaving the end points (the identity and f)  

fixed. (AF(x, h) is just the same for any F in the same class.) But in 

general it depends on the homotopy class of F.  However if we define 

p f  : J ~ f ( X )  ----+ HI(X;]R/~ ) in the natural way, then this depends only 

on f ,  For, if F and F' are two homotopies joining f to the identity, then 

the difference AF,(X, h) - AF(X, h) is an integer. Since it is continuous, 

it is constant on X. Thus pf,(#) -PF(#)  takes an integral value on each 

element of [S 1, X], and is an integral point of Hi (X;  R). 

The proof of the following proposition is left to the reader. 

Proposition 2.1. The mapping PF is continuous and affine. The image 

RF is convex and compact. 

In this paper the set RE is called the rotation set of F.  This is 

slightly different from the definition in [10]. 

3. Surface homeomorphisms 
Let f be a homeomorphism, homotopic to the identity, of an oriented 

compact surface E of genus g _> 2. 

Proposition 3.1. The rotation vector py(#) E HI(E,R)  (# E A/If(E)) 

does not depend on the choice of the homotopy F joining f to the iden- 

tity. 

Proof.According to Epstein ([2]), two homotopic homeomorphisms of 

the surface E are isotopic by an isotopy in the right class. Therefore 

there is an isotopy joining f and the identity in the homotopy class of 
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F.  On the other hand, it is known by Hamst rom ([6]) tha t  the identity 

component  of the group of homeomorphisms of E is contractible. (See 

Earle-Eells [1] for analogous results for diffeomorphisms.) In particu- 

lar any two isotopies joining f and the identity are homotopic. The  

proposition follows from this. [] 

Henceforth we will denote p = pF and R = RF. If there is need to 

indicate the homeomorphism f ,  we denote p = pf and R = Rf.  
The following proposition shows the necessity of the extra  condition 

in Theorem 1. 

Proposition 3.2. There exists a homeomorphism of the surface of genus 

two, isotopic to the identity, for which Int(R) is nonempty and contains 

no rotation vectors of asymptotic probabilities. 

Proof .Let  n be a simple closed curve which cuts the surface E of genus 

2 into two copies of punctured  torus E 1 and E2. Let l~ and mi be the 

meridian and the longitude of Ei and let Li and M~ be their tubular  

neighbourhoods. They  are chosen to be very thin so tha t  they  do not 

meet  n. Define a diffeomorphism )~i of E to be the identity outside Li, 

and on Li the isotopy joining 0 ~ rotation on OLi to 360 ~ rotation on l~ . 

Define a diffeomorphism #i likewise w. r. t. Mi. Let f = A1 o )~2 o ~t 1 o/z 2 . 

Consider the decomposition 

HI(E; JR) m HI(E1; IR) �9 HI(E2; ~). 

Isotoping the identity to f in a natural  way, one can show from the def- 

inition tha t  R N H1 (Ei;]R) coincides with the quadrilateral Qi of vertices 

o, [li], [rail and [li]+ [rail. 
Also it is easy to show that  the rotat ion vector of any asymptot ic  

probability must  lie in HI(E1; ~)  U HI(E2; R). On the other hand, R is 

the convex hull of Q1 u Q2. This shows the proposition. [] 

4. Generalized pseudo-Anosov homeomorphisms 
Let f : E -~ E be a GPAH. Just  like a usual Anosov homeomorphism, f 

admits a Markov part i t ion {P~i I i = 1 , . . .  , n}. By adding the vertices 

and the edges to one of the  neighbouring rectangles in a suitable way, 
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we may get tha t  {Ri}  is a disjoint measurable part i t ion of E. Denote 

Rij = R i N f - I ( R j ) .  Given an invariant probabil i ty p E AA, form an n by 

n matr ix A(p) = (aij(p)) by aij(P) = p(Rij) .  It is called the transition 

matrix. The entries aij = aij(P) satisfies (1) E i j  aij = 1, (2) aii >_ 0 and 

(a) = Ek  ajk. 

The set of matrices A = (aij) which satisfy these three conditions 

consti tutes a polyhedron in an affine subspace of the n2-dimensional 

Euclidian space. Its vertices are cycle matrices described as follows. 

Given a cyclic permuta t ion  a of distinct [(71 letters from 1, 2 , . . .  , n, the 

cycle matrix C(cr) is defined by letting the entry cij(~r) to be 1/1(71 if i 

and j occur consecutively in this order in the cyclic permuta t ion  (7 and 

zero otherwise. 

A cyclic permuta t ion  (7 is called admissible if Int(Rij) ~ ~ for any 

i , j  occurring successively in (7. As is well known, to an admissible 

permuta t ion  (7 is associated a periodic orbit of f .  It then gives birth 

to an invariant probability, and hence a rotat ion vector, denoted by 

p((7) c HI( ; R). 
Our results are the followings. 

Theorem 3. The rotation set R of  f is the convex hull of p(a) 's for  

admissible (7. 

Proof .Al l  tha t  need proof  is that  for any p E fl4f(E),  p(#) is contained 

in the convex hull of p(a)'s. Choose a test  function h : E -~ S 1. For 

an isotopy F joining f and the identity, define the function AF(X, h) 

as before. Let hi : Ri --~ I~ be a lift of the restriction of h to Ri. 

Choose a base point xi E Ri. Define a function k : E --+ ~ by setting 

k(x) = hi(xi) - hi(x) for x E Ri. Define a number  

A(i, j ;  h) = k( f (x) )  + AF(x, h) - k(x), 

where x is an arbi t rary point of -t~ij. Clearly this is independent  of the 

choice of x. Let us show that  

(p(#), [h]) = ~ A(i, j; h)aij(#). 
i j  
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First of all we have 

(p(#), [h])= fE AF(x, h)dp(x) = ~ij fnij /kF(X' h)dp(x) 

~ f_ (A(i,j;h) - k(f(x)) + k(x))dp(x) 
ij J~ij 

= ~ fR A(i,j;h)dp(x) + 
i j  i j  

Now since # is f- invariant,  the last te rm vanishes and we have the 

desired equality. Likewise for an admissible permuta t ion  a, we have 

(p(a), [hD = ~ A(i, j; h)ciy(r 
i j  

Now it suffices to show that  p(#) is contained in the convex hull 

of p(a) 's only for an ergodic probability #. Since the matrices C(cr) 

form vertices, we have tha t  A(#) = ~ t,(cr)C(a) for some coefficients 

tu(a ) > 0 with ~ t,(a) = 1. Suppose for a while tha t  ~i #(ORi) = O, 
where ORi denotes the point set topological boundary  of Ri. Then  

clearly the coefficient tu(cr) vanishes for a non admissible permuta t ion  

~. Now we have 

(~(~), [hi) = ~ a(i, j; h)aij(~) = ~ A(i, j; h ) ~  t.(~)cij(~) 
i j  i j  cr 

= ~ t .  (~) ~ zx(i, j; h)e~j (~) = ~ t .  (~)(~(~), [hi). 
cr i j  c~ 

Thus we have 

p(#) = ~ t . ( ~ ) p ( ~ ) ,  

where the sum is over the admissible permutations.  

Now consider the case where # is an ergodic probability such tha t  

~i #(ORi) > 0. Suppose #(L) > 0 for some edge L in ORi. Assume 

also tha t  L lies in a stable manifold. Thus for k > 0, fk(Int(L)) is either 

contained in Int(L) or disjoint from it. At first consider the case #(0L) = 

0. Then  Int(L), f(Int(L)),  f2 ( In t (L) ) , . . ,  are not mutual ly  disjoint. For, 

if they  were disjoint, then  the total  mass must be infinite. Then  by the 
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property  of the Markov partition, we have 

Int(L) D fk(Int(L)) D f2k(Int(L)) D . . . .  

for some k > O. The intersection is a singleton, say p. Since #(p) = 

#(L) > O, the point p must be a periodic point of f .  Now since # is 

ergodic, # must  be the probability supported on the orbit of p. Also in 

the case #(OL) > 0, we get the same conclusion. Let R/ be a rectangle 

containing p in its closure. Then  for some m > 0, we have fm(Int(Ri)) C3 
Int(R/) ~ 2~. (m may be a multiple of the period of p.) Choose a small 

open set U c R/ containing p in its closure. For 0 < k < m, define 

u(k) by fk(U) N Int(R,(k) ) ~ ~.  Define aij to be l /m,  where l is the 

number of distinct k's such tha t  i = u(k) and j = u(k + 1). Then clearly 

the matr ix  (aij) can be represented as a linear combination of the cycle 

matrices for admissible permutations.  Also we have 

(p(p), [hi) = ~ A(i, j; h)aij. 
ij 

Now by the same calculation as before, the proof is complete. [] 

By Theorem 3 R is a polyhedron lying on an affine subspace. By 

the affine interior of R we mean the interior in the affine subspace of 

the minimal dimension containing R. 

Theo rem 4. Any point of the affine interior of R is realizable by an 
asymptotic probability. Furthermore any rational point of the interior is 
realizable by a periodic orbit. 

Proof.Firs t  consider the case where v is a rational point of the interior. 

Then we have that  v = ~ t(cr)p(cr) for some t(cr) _> 0 with ~ t(cr) = 

1. The expression is not unique in general. But one can choose the 

coefficients so tha t  for each admissible permuta t ion  or, t(cr) is positive 

and rational. Consider the matr ix  ~ t(cr)C(cr). Multiply by an integer 

to get an integral matr ix  E = (eij). The existence of dense orbits of f 

and the positiveness of the coefficients t(cr) imply tha t  the matr ix  E is 

irreducible, i. e. some positive power of E has all the entries > 0. Also 

E satisfies ~ i  eij = ~ k  ejk. 
Now consider the directed multi-graph g associated to E.  (There 
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exist eij oriented edges from the vertex Ri to the vertex Rj.) Since E 

is irreducible, g is directly connected, i. e. given any two vertices, there 

exists a directed path  joining the one to the other. Also C is Eulerian, i. 

e. at each vertex the number  of the edges coming in is the same as tha t  

of the edges going out. Therefore there exists an Eulerian circuit, i. e. 

a loop which passes through each edge exactly once. It gives birth to a 

periodic point of f .  A routine computat ion as in the proof of Theorem 3 

shows tha t  the corresponding probability realizes the prescribed element 

73. 

Next consider the case where v is an irrational point in the interior. 

Let v = ~ t(r Choose a positive coefficient for each admissible 

permutat ion.  Approximate the vector t = (t(a))~ by a sequence of 

rational positive vectors f(k). Associated with the vector t(k) one gets 

an Eulerian circuit 7k. We agree that  all the circuits "/k start  and end 

at the same vertex, say R1. Consider an infinite sequence formed by 

~/1, Y2, . . . .  There  exists a point x in R1 which realizes this sequence. If 

the sequence are chosen appropriately, the asymptotic  probability #(x) 

exists and satisfies p(#(x)) = v Details are left to the reader. [] 

5. Proof of Theorem 1 
First of all, let us s tudy an equivalent condition for a rational class 

C/n  to be realized by a periodic orbit, where C E HI (E ;Z)  and n E 

Z. Let E be the maximal abelian covering of E, tha t  is, the covering 

associated with the abelinearization 7vl(E ) -+ H1 (E; Z). The homology 

group H1 (E; Z) acts on E as the deck transformation.  

Let f~ be the lift of the isotopy ft; id ~ f to E such that  f0 is the 

identity. Denote f = f l  and call it the canonical lift of f .  The proof of 

the following proposition is left to the reader. 

Proposition 5.1. The class C /n  is realizable by a periodic orbit if and 

only if the homeomorphism ( -C)  o ~n ; ~ __+ ~ has a fixed point. [] 

Suppose tha t  there exists a class p(#(x)) c Ira(R), i. e. realized by an 

asymptot ic  probability. We shall prove Theorem 1 by contradiction. So 

assume tha t  a rational class C/n  in Int(R) is not realized by a periodic 
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in f{d( ( -C)  o jen(2), 2) I 2 E E} > 0. 

This shows tha t  there exists c > 0 such tha t  if inf{d(g(x), f(x)) ] x e 

E} < e for some homeomorphism g; E -+ E, then ( - C )  o/)n does not 

have a fixed point, where t~ is the canonical lift of g. Tha t  is, C/n is not 

realized by a periodic orbit of g. 

Now there exist finite extremal points #i of the convex set A//f(E) 

such tha t  p(p(x)) and C/n lie in the interior of the convex hull of P(#i). 
The origin is not contained in the convex hull or else is a vertex. Since 

the extremal point #i is an ergodic probability, there exists a recur- 

rent point xi such tha t  the asymptot ic  probability #(xi) exists and 

#(xi) = >i. In fact such points are #/ -a lmost  everywhere. Now choose 

Ni > 0 so large tha t  (1/Ni) n=0 f*~ xi is arbitrari ly near #i and that  

d(fNi(xi),xi) < e/2. Also for the asymptot ic  probability #(x), there 
N - 1  ~ e n + M  ,~ exist N, M > 0 such tha t  ( l / N ) ~ n = 0  a. ~z is arbitrarily near #(x) 

and d(fN+M(x), fM(X)) < C/2. 
For any i, let 6i : [0, 1] -+ E be the minimal geodesic such tha t  

6i(0) = fNi(xi) and 6i(1) = xi. Consider the product  E x [0,1] and 

the curve 6i defined by 6i(t) = (6i(t), t). Also let 6 : [0, 1] --+ E be the 

minimal geodesic such that  6(0) = fN+M(xi) and 6(1) = fM(xi), and 

define a curve 8 by 6(t) = (6(t),t). By modifying slightly the curves 

6i and 6i if necessary, one may assume that  they  are mutual ly  disjoint 

and also disjoint from fn(xi) x [0, 1] (0 < n < Ni) and fn(x) • [0, 1] 

(M < n < N + M).  Choose a small tubular  neighbourhood of 8i and 

6. Define a vector field X = (Yt, O/Ot) such that  X = (0, O/Ot) outside 

the union of the tubular  neighbourhoods and X is tangent  to 6i and 

6. Define a homeomorphism ~ of E by mapping the initial point of the 

orbit of X to its terminal  point. Then  ~ maps the point fNi(xi) to xi 

and fX+M(x) to fM(x). If the modification of 7i and ~ is small and if 

the flow X is chosen appropriately, then one has d(x, ~(x)) < e. 
Let g = ~ f .  Then the points xi and fN(x) becomes periodic points 
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of g. Since 

is arbitrarily near #i and 

3/{-1 

(1/Ni) Z n6 f ,  x i 

n = O  

N-1 

n:O 

is arbitrarily near #(x), one may assume that pg(p(x)) and C/n also lie 

in the interior of the convex hull of p(p(xi)), where #(x) e. t. c. is of 

course w, r. t. the homeomorphism g. If some vertex is the origin, we 

make no modification for it. 

From now on, we only consider g. First  of all notice that  the class 

C/n is not realized by a periodic point. The points xi as well as y = 

fM(x) are periodic points of g. p(#(y)) and C/n lie in the interior of 

the convex hull of p(p(xi)). The relation of the origin and the convex 

hull is unchanged. 

Now let (9 be the union of orbits of xi. Assume for contradiction 

that  there exists a simple closed curve 7 in E \ (9 which is essential in 

E, such that  g(7) is isotopic to ~/by an isotopy which keeps (9 invariant. 

If 7 is nonseparating, then it is easy to show that  for any asymptot ic  

probabil i ty #(x), the intersection number of the homology class [0/] of 7 

and p(#(x)) vanishes. This is contrary to the fact tha t  the convex hull 

of p(t-t(xi)) has nonempty  interior. 

On the other hand if 7 separates E into subsurfaces E 1 and E2, then 

in the decomposit ion 

H](E;  JR) = H](E] ;  ]I{) �9 Hi(E2; ]I{), 

the rotat ion vector p(p(x)) of any asymptot ic  probabil i ty  lies either on 

HI(E1; JR) or on HI(E2; JR). This contradicts the fact tha t  p(p(y)) lies in 

the interior of the convex hull p(Iz(xi)). Recall the position of the origin. 

But  there may exist a simple closed curve ~, essential in E \ O but  

trivial in E such that  g(00 is isotopic to 7 relative to O. 

If there does not exist such a curve, then 9 is isotopic to a GPAH 

g' by an isotopy keeping O fixed. Then by the result of the previous 
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section, the class C/n is realizable by a periodic orbit O(z) of g'. Now 

O(z) is homotoped to a periodic orbit of g which also realizes C/n. A 
contradiction. 

In case there are curves 3'i (1 < i < q) mentioned above, one may 

suppose that  they  are disjoint and bound discs Di in E. Then  g is 

isotoped to g' relative to (_9 which keeps Ui'Yi invariant and is a GPAH 

on E \ tOiDi. By an analogous argument  we get also a contradiction. 

6. Proof  o f  Theorem 2 
The rotat ion set (resp. topological entropy) of the k times i terate of 

f is the k times scalar product  of the rotat ion set (resp. topological 

entropy) of f .  Therefore we are free to pass to an i terate of f in the 

proof. Now suppose on the contrary that  the topological entropy of f 

is zero. Passing to an i terate if necessary, one may assume that  any 

a .  in Theorem 2 corresponds to a fixed point x .  of f .  Blowing up f 

at all the points xu's, we get a diffeomorphism g of a surface P'0 with 

boundaries corresponding to xu's. Notice that  the topological entropy of 

g is still zero. According to W. Thurston,  there exists a system cr = {si} 

of disjoint simple closed curves of P'0, and a homeomorphism g' isotopic 

to g which keeps a tubular  neighbourhood N of a invariant, and on 

any component  Ej of E0 \ N, if (g,)nj (Ej) = Ej for some nj > 0, then 

(g,)nj IEj is either periodic or pseudo Anosov. 

Passing to an i terate if necessary, one may assume tha t  all the sub- 

surfaces Ej are kept fixed by g'. Now g'lEj must be periodic. For if not, 

the topological entropy of g', and hence by Thurs ton ([3]), of g must be 

positive. Again passing to an iterate, one may assume tha t  g'lSj is the 

identity on any Ej. Tha t  is, g' is a composite of Dehn twists along the 

c u r v e s  8 i  'S. 

Let ~/be a path  in E joining x ,  to xp. Then clearly we have 

[f('~)] - ['y] = [g'(3~)] - ['y] = au - a , .  

Therefore aa - a~ is contained in the subspace V of H1 (E; IR) spanned 

by [si]'s. Since si's are mutual ly disjoint, we have dimV _< g. A contra- 
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