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of minimal 2-trees in terms of twisting numbers of the trees and the convexity levels 
number of the trees boundaries. 

Introduction 
The main aim of this paper is to get some effective restrictions for the 

possible topologies of nondegenerate (full) planar local minimal networks 

spanning a fixed finite set M of points of the plane. We obtained such 

restriction in terms of the number of convexity levels of the set M. 

This result could be used for optimization of well-known algorithms 

enumerating such networks to find the Steiner minimal tree. 

This work is a part of the great branch of modern mathematics 

which is devoted to investigation of Steiner Minimal Networks which are 

solutions of the Steiner Problem or One-Dimensional Plateau Problem. 

A lot of papers devoted to this problem in its various forms [1]-[21], 

[34] [42], see also [22]-[33]. 
There are different opinions regarding who is the author of the 

problem. However, the most versions are wrong, and there are very 

simple reasons explaining these mistakes. We decided to enclose a 

short historical review on the Steiner Problem based on the works of 

M. Zacharias [30] and H. W. Kuhn [31] which we have found in the 

book [16] of F. K. Hwang, D. Richards and P. Winter. See also [34]. 

The first version of the Steiner problem appeared long before Steiner 
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104 A.O. 1VANOV and A,A. TUZHILIN 

in the works of Fermat (1601 1665): find in the plane a point S, the 

sum of whose distances from three given points A, B and C is minimal. 

Before 1640, Torricelli had proposed the following geometrical solution 

to this problem. Let us construct on the sides of the triangle A B C  

three equilateral triangles ABC' ,  B C A  t, and C A B  ~, lying completely 

outside ABC.  Circumscribe the circles around each triangle. Then, 

Torricelli asserted, these three circles intersect at the single point that  

is the solution S of the Fermat Problem. This intersection point is called 

Torricelli point. 

In 1647, Cavalieri found an important  property of the Torricelli 

point. It turns out that  the angles between the segments joining the 

Torricelli point with the vertices of the triangle A B C  are equal to each 

other and, hence, equal to 120 ~ . 

In 1750, Simpson found another way to construct the Torricelli point. 

Let us draw equilateral triangles on the sides of the triangle A B C  as 

before. Then, the three segments AA',  B B  ~, and CC ~ pass through 

one point, which is just the Torricelli one. These segments are called 

Simpson lines. 

In 1834 Heinen, and also in 1853 Bertrand, observed that  the solu- 

tions of the Fermat problem which we described above are not correct 

in general. Really, the approaches of Torricelli and Cavalieri work if 

and only if all angles of the triangle A B C  are at most 120 ~ If one of 

these angles, say A, is greater than 120 ~ then the Torricelli point lies 

outside the triangle A B C  and cannot be the solution of the Fermat 

Problem. In this case the solution is the point A. Also, in the same 

1834, Heinen observed that  if the angles of the A B C  are at most 120 ~ 

then the lengths of the three Simpson lines are equal to each other and 

equal to the sum of distances from the Torricelli point to the vertices of 

the triangle ABC.  

Besides the solution of the Fermat Problem mentioned above, Simp- 

son stated some generalization of that  problem: find in the plane (in d- 

dimensional Euclidean space) a point~ the sum of whose distances from n 

given points is minimal. This problem appeared as an exercise in Simp- 

son's book "Fluzions" and attracted the attention of many well-known 

BoL Soc. Bras. Mat., VoL 28, N~ 1, 1997 



GEOMETRYAND TOPOLOGYOF LOCAL MINIMAL 2-TREES 105 

mathematic ians  including Steiner. 

Another  important  generalization of the Fermat  Problem was pro- 

posed by Jarnik and KSssler [32] in 1934, namely, find a shortest net- 

work spanning n points in the plane. Jarnik and KSssler found a shortest  

network spanning the vertices of a regular n-gon for n = 3, 4, 5, and, 

besides that ,  they  proved that  for n > 13 such shortest networks consist 

of n - 1 sides of the polygon. Jarnik and KSssler made no reference to 

the Fermat  Problem since their own problem seemed quite different. 

In the book "What is Mathematics 7", published in 1941, R. Courant  

and H. Robbins  discussed the problem of Jarnik and KSssler, but  called 

it the Steiner Problem. The authors did not refer to either Fermat  for 

the case n = 3 or to Jarnik and KSssler for the general n case. Due 

to the popular i ty  of tha t  book, the terminology "Steiner Problem" has 

been generally adopted.  The classic work by Courant  and Robbins  has 

originated not only a mistake in the a t t r ibut ion of priority but,  more 

importantly,  a great deal of interest in this problem. 

Now, let us formulate the main result of the present work. To do 

that ,  recall the well-known notion of convexity levels of a finite subset  

of the plane [33], and the important  geometrical characteristic of a pla- 

nat  binary tree, the twisting number,  which we have introduced in our 

previous papers [34,35,36,37,38,39]. 

Let M be a finite set of points in the plane. Pu t  into the first 

convexity level M 1 all points from M lying on the boundary  of the 

convex hull of the set M.  Note that  the set M 1 is not empty. Throw 

M 1 out  of the set M.  If the obtained set is not empty, use the same 

procedure to reconstruct  this new set. Namely, consider the convex hull 

of the set M \ M 1 and put  all points lying on the boundary  of this 

convex hull into the second convexity level M 2. Continue this process 

until the set M will be exhausted.  The obtained part i t ion M = U M  i is 

called the partition into convexity levels, and the set M i itself is called 

k ~ then we say that  the ith convexity level for the set M.  If M = U i = l M  

M has k convexity levels. Note that  the set M lying on the boundary  

of its convex hull has just  one convexity level M 1 = M.  
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Further,  let r be a planar binary tree (in what  follows we shall refer 

such trees as 2-trees), tha t  F is a planar tree and the degrees of its 

vertices are supposed to be either one or three. Let a and b be arbi t rary 

edges of F, and 7[a, b] be the unique path  in F joining a and b. Then, 

during the "motion" along 7[a, b] from a to b, at each inner vertex of 

7[a, b] we "turn" either to the left or to the right. The difference between 

the total  numbers of the left and the right turns is called the twisting 

number tw(a, b) of the ordered pair (a, b). We put tw(a, a) = 0 for any 

edge a of F. 

Definition. The twisting number tw F of a planar 2-tree F is the maxi- 

mum of the twisting numbers over all ordered pairs of its edges: 

t w  F = m a x ( a , b  ) t w  F (a, b). 

Now we can formulate the main result of this work. 

The  Main Theorem.  I f  a planar local minimal 2-tree F spans a finite 

subset M of the plane, and M has k convexity levels, then the twisting 

number tw F does not exceed 12(k - 1) + 5. Moreover, this estimation is 

exact: for  any k there exists a minimal 2-tree F, tw F = 12(k - 1) + 5, 

spanning a set M with exactly k convexity levels. 

Note tha t  The Main Theorem restricts strongly the set of possible 

topologies of local minimal 2-trees in terms of the convexity levels num- 

ber of the boundary  set. 

The Main Theorem generalizes the following result of the authors 

[34,35,36]. 

Coronary. The twisting number of a planar minimal 2-tree with convex 

boundary does not exceed 5. 

Note that  in the case of convex boundaries the converse result is 

true: if  the twisting number of a planar 2-tree F does not exceed five, 

then there exists a minimal 2-tree planar equivalent to F and with a 

convex boundary, see [34]-[39]. Unfortunately,  we don' t  know if the 
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converse s ta tement  of The Main Theorem true in general situation. 

1. P o l y g o n a l  l i n e s  

To start  with, we need to prove some special properties of polygonal 

lines. First, recall the definition of a polygonal line. 

Definition. A finite set of nondegenerate  segments Ai = [Ai, Ai+l], 

i = 0 , . . .  , n, is called an unclosed polygonal line if Ai n Aj ~ ~,  0 <_ 

i < j < n, implies j = i + 1  and A i N A j  = {Ai+l}. A finite set 

of nondegenerate  segments Ai = [Ai, A(i+I ) modn], i = 0 , . . .  ,n  - 1, 

is called a closed polygonal line if Ai N Aj modn @ ~,  0 < i < j < rt, 

i r j modn,  implies j = ( i+1) modn  and Ai•Aj modn = {A(i+l) modn}" 

The segments Ai are called the edges of L, and the points Ai are 

called the vertices of L. If L is unclosed, then  the vertices A0 and An+l  

are called ending vertices, and all other vertices are called inner ones. 

Also, if L is unclosed, then  the edges A0 and A n are called the ending 

edges, and all other Ai are called the inner edges. 

Let L be a polygonal line. By definition, its vertices are canonically 

enumerated.  Clearly, we can enumerate  the vertices in the converse 

way, and we also obtain a polygonal line. Each of the corresponding 

two orderings of the polygonal line vertices is called the orientation of 

L. If L is unclosed oriented polygonal line then we call its first ending 

vertex the beginning one and the last ending vertex the ending one. If 

an orientation of a polygonal line L is chosen, then we can consider each 

edge Ai as vector AiAi+l for unclosed L, and as vector AiA(i+l ) modn 

for closed L. 

Let (a, b) be an ordered pair of non-zero vectors on the plane. Sup- 

pose that  these vectors have nonopposite directions. Thus, we can define 

an oriented angle c~(a, b) from a to b as follows. The absolute value of 

a(a ,  b) is equal to the least angle between a and b, and if a and b are 

linear independent  then the sign of c~(a, b) equals the sign of the oriented 

frame (a, b). In what  follows, it will be more useful to consider the nor- 

realized oriented angles, namely, we shall call the value a(a, b)/(Tr/3) the 

twisting from the vector a to the vector b and denote it by tw(a, b). 
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Let L be an oriented unclosed polygonal line whose consecutive edges 

are ai = [Ai,Ai+l], i = 0 , . . .  ,n. 

Definition. The twisting tw(ai_l,  a 0 is called the twisting at the vertex 

A~ and is denoted by tw Ai.  The sum of twistings over all inner vertices 

of L is called the turning along L and is denoted by tn L: 

n 

tn L = ~ tw Ai. 
i = 1  

Notice the following properties of the turning: 

�9 if we change the orientation of the polygonal line L then the turning 

changes the sign (skew-symmetry);  

�9 if P is an arbi trary point lying inside an edge of an unclosed polygo- 

hal line L, and L1 and L2 are the polygonal lines which P parti t ions 

L into, and if the orientations of the both  Li are induced from L, 

then tn L = tn L1 + tn L2 (additivity along a path).  

Let L be an oriented closed polygonal line with vertices A~, i = 

0 , . . .  , n - 1. We define the twistings at its vertices just  in the same way. 

Definition. The sum of twistings over all vertices of a closed polygonal 

line L is called the turning along L and is denoted by tn L: 

n - 1  

t n L =  Z t w A ~ "  
i=0 

The following proposit ion is well-known. 

Proposi t ion  1.1. I f  L is a closed polygonal line oriented anticlockwise 

then tn L = 6. I f  L is oriented clockwise then tn L = -6 .  

Let L be a polygonal line. Suppose that  L' is an other polygonal 

line coinciding with L as subset  of the plane, but  having some additional 

vertices. Such polygonal line U is called a subdivision of L. Clearly, the 

turning of an arbi t rary subdivision of a polygonal line L equals the 

turning of L. 

In what  follows, we shall need the notion of deformation of a polyg- 

onal line. 
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Definition. A family L t, t E [0, 1], of polygonal lines is called a deforma- 

tion of the polygonal line L = L 0 if the vertices A~ of U form continuous 

curves A~ parameterized by t. 

The following proposition is evident. 

Proposi t ion 1.2. Let L ~ be a deformation of a polygonal line L. If L is 

unclosed, then suppose that during this deformation the directions of the 

ending edges of L remain fixed. Then the turning also remains fixed: 

t n L  t = const = tnL,  t E [0, 1]. 

Let L 1 and L 2 be two polygonal lines. 

Definition. We say tha t  L 1 and L 2 are in general position if they  inter- 

sect each other by at most finite number of points, and no one of the 

intersection points is a vertex of L ] or L 2. If we are given that  some 

vertices of L 1 and L 2 are fixed, then we say tha t  these L i are in general 

position if, again, they  intersect each other by at most finite number  

of points all of which, except the fixed ones, are not the vertices of L i, 

i =  1,2. 

Let L 1 and L 2 be two oriented polygonal lines being in general posi- 

tion. Consider the set L 2 \ (L 1 N L 2) and denote the closures of the  con- 

2 is a polygonal line which nected components of this set by L 2. Each Lj 

we orient in correspondence with the orientation of L 2. Let 2 2 Ao, A1 , . . .  
be the consecutive vertices of the polygonal line L 2. Let us suppose 

tha t  the polygonal lines L 2 are enumerated in correspondence with the 

orientation of L 2 and such tha t  L12 contains A 2. Moreover, if Ao 2 is an 

ending point of L2, then  we suppose tha t  A 2 is the beginning vertex of 

the oriented polygonal line L 2. 

Definition. The part i t ion L 2 -- OL 2 is called the canonical partition of 

L 2 with respect to L 1. 

Now, let L 1 and L 2 be unclosed polygonal lines being in general po- 

sition and joining the same ending vertices A and B which are supposed 

to be fixed. Orient L 1 and L 2 from A to /3 .  Let L 2 = Oj=ILjN 2 be the 

canonical part i t ion of L 2 with respect to L 1. The elements L 2 and L2N 
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are called the first and the last elements, respectively, or the ending ele- 
ments of the partition, and all other L 2 are called inner elements. The 

orientation of L 2 defines the positive direction of motion along L 2 and, 

thus, along each L~. 

Note that each L~ and L 1 bound an open domain s More precisely, 

if Aj and Bj are the ending vertices of L 2, then denote by by the part 

of L 1 between Aj and Bj. The domain ~2j is the one bounded by closed 

polygonal line L~ 0 by. The polygoilal line bj is called the base of ~j. 

Sometimes we will refer to the domains ~j as ~-domains. We call the 

first and the last ~j the ending ~2-domains, and the other ~j the inner 

f~-domains. 

Definition. Define the sign sign(L~) of L~ to be equal +1 if the anticlock- 

wise motion along the boundary Of~j of ~j induces the motion along L 2 

in the positive direction. Otherwise, we put sign(L 2) = -1.  The sum of 

sign(L~) over all j = 1 , . . .  , N is called the index of L 2 with respect to 
L 1 and is denoted by Ind(L 2, L1). 

Consider the ending domains ~1 and ~N, and orient their boundaries 

0~1 and O~N with respect to the orientation of L 2. Denote by a(L 2, L 1) 

the twisting of 0s at A, and by/3(L 2, L 1) the twisting of O~N at /3. 

We call these twistings the first and the last twistings of L 2 with respect 
to L 1. 

Now we can formulate the main theorem of this section. 

Theorem 1.1. Let L 1 and L 2 be two unclosed polygonal lines joining 

some points A and B and oriented from A to 13. Suppose that A and 

B are fixed and these polygonal lines are in general position. Then we 

have: 

tnL 2 = t n L  1 + 6  Ind(L 2,L 1 ) - a ( L  2,L 1) - /3 (L  2,L1). 

Before proving the theorem, let us discuss some other geometrical 

definition of the index defined above. 

Let L 1 and L 2 be as above. Let us partition the set of the inner 

domains and the set of the corresponding parts of L 2 in the following 

way. 
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2 Definition. An inner domain ~t 9 and the corresponding Lj are called 

A-domain and A-element, respectively, if Qj contains A and does not 

contain B. If it contains /3  but does not contain A, then ~tj and L 2 are 

called B-domain and B-element. If Qj contains the both A and B, then 

it and L 2 are called full, or F-dornain and F-element, respectively, and 

if A and B lie outside Qj, then it and L 2 are called empty, or E-domain 

and E-element. 

Now, we expand the parti t ion constructed above to the ending do- 

mains and the corresponding ending elements of L 2. 

Definition. If there exist at least two ~2-domains, then the first one is 

called A-domain, and the last one B-domain. If there exists just one 

~-domain,  then we call it A-domain. 

Define the sign of ~2j to be the sign(L 2) and denote it by sign(~tj). 

Now, assign to each A-domain ~2 9 the letter Asign(~J ), to each /3- 

domain ~tj the letter Bsign(~J ), to each full domain ~tj the letter 

Fsign(~2J ) , and to each empty domain ~tj the letter Esign(~tJ ) . Generate 

the word W(L 2, L 1) by writing consequently the letters corresponding 

to consecutive domains. We define the weight weight(L 2, L 1) of the word 

W(L 2, L 1) to be equal to the sum of powers over all letters of the word 

W(L 2, L1). From the definition we immediately obtain the following 

corollary. 

Corollary 1.1. Under the above notations, we have 

Ind(L 2, L 1) = weight (L 2, L1). 

Now, let us prove Theorem I.i. 

Proof. The idea of the proof is as follows. First, we prove that some 

subdivision of the polygonal line L 2 can be deformed to a polygonal line 

with the same ending edges and such that the resulting polygonal line 

has no empty domains (with respect to LI). By Proposition 1.2, the 

turning along the obtained polygonal line equals the turning along L 2. 

Further, we show that this deformation can be represented as a conse- 

quence of so-called elementary transformations, and each the elementary 
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transformation does not change the index Ind(L 2, LI). At last, we prove 

Theorem I.i for polygonal lines L 2 which have no empty domains. 

To start with, consider an arbitrary empty domain f~i, and suppose 

that there exists a point P E L 2 in the interior of the base bg of f~i. Since 
L 2 and L 1 are in general position, L 2 should come inside f~i, and, since 

f2i is empty, L 2 should also come out of f~i through some other point 

P~ lying in the interior of the base bi. Thus, in this case there exists 

another empty domain f~j such that ~j C f~i. 

Consider a maximal chain of f~-domains of the following form: 

f~i D~il D... D~i k. 

It is clear that inside the base of ~2i k and, thus, inside f~i k there are no 

other points of L 2. 

Definition. An empty f~-domain which does not contain any other point 

of L 2 inside it and, thus, inside its base, is called pure empty domain 

and such bases are called pure bases. 

Thus, we have proven the following lemma. 

L e m m a  1.1. I f  the set of empty f~-domains is not empty, then among 

such domains there exists a pure empty f~-domain. 

The next evident lemma will be useful. 

Lemma  1.2. Let W be a closed polygonal line, A and B are some its 

vertices, and 1 and b are two parts of W lying between A and B.  Then 

there exist a deformation l t of some subdivision of I to some subdivision 

of b such that the points A and B remain fixed and all polygonal lines l t 

lie in the closed domain bounded by W.  

Let ~ti be a pure empty  domain. Construct  a deformation of some 

subdivision of L 2 to some subdivision of bi described in Lemma 1.2. This 

deformation generates deformation of the corresponding subdivision of 

L 2 and will be used as the first part  of the elementary transformation. 

We denote by ~,2 the resulting polygonal line. 

To obtain the last part  of the transformation, let us construct  at each 

vertex of the subdivision of the base bi C f~i described in Lemma 1.2, a 

unit vector directed out  of the fti. Then, the last part  of the elementary 
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t ransformation is the following deformation of b~ extended to the defor- 

mat ion of j%2. Let the vertices of the constructed subdivision of bi go 

along these unit vectors. This motion of the vertices can be extended 

evidently to a deformation of L 2. If the vertices go not far from the 

previous position of bi, new intersections with L 1 do not occur, but  the 

intersection along bi disappeares. 

Thus, combining these two deformations described above we recon- 

struct the  polygonal line L 2 in such a way tha t  the number  of intersection 

points with L 1 is decreased by 2. 

Definition. The composition of two deformations described above is 

called an elementary transformation of the polygonal line L 2. 

It is clear tha t  after a few elementary transformations the recon- 

s tructed polygonal line L 2 won't  have empty  domains. The recon- 

s tructed polygonal line L 2 obtained in such a way is said to be reduced. 

It is clear tha t  the elementary transformations preserve the property  

of the polygonal line L 2 to be in general position with respect to the 

polygonal line L 1. Thus, the reduced polygonal line L 2 is also in general 

position with respect to L 1. 

Now, let us prove the following lemma. 

Lemma  1.3. An elementary transformation does not change the index 

of L 2 with respect to L 1. 

Proof .  Consider an elementary t ransformation which deletes an empty  

pure domain ft~. As a result, we reconstruct  the three consecutive do- 

mains f~i-], ~i, and ~i+1 and obtain a new domain f~'. 

Consider the inverse t ransformation to this elementary one. The 

first part  of the inverse t ransformation is the inverse t ransformation to 

last part  of the elementary one. We have two different cases for the first 

part  of the inverse transformation.  

1. During this deformation the domain ft / splits into two domains. It 

can be if a part  of the boundary  of ft' touches from inside of ~' either 

itself, or a part  of L 1 lying inside ~'. 

2. Some domain f~,/outside f~' appears, and the deformed f~' is recon- 

s tructed to a domain by adding to it the domain ft". It happens 
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when a part of boundary of f~' touches from outside of ~/ either 

another part of the boundary, or a part  of L 1 lying outside ~/. 

In the first case the both domains onto which ~2 ~ splits have the same 

signs as f~' has. The empty domain which appears during the last part  

of the inverse transformation has, evidently, the opposite sign. Thus, 

the index is preserved in this case. 

In the second case the outer domain ~" has the opposite sign to the 

sign of ~ ,  but the reconstructed ~ ,  of course, has the same sign as ~' 

has. The empty domain, evidently, also has the same sign as the f~/has. 

Thus, again, we have that  the index is preserved. Lemma 1.3 is proven. 

Now, it remains to show that  Theorem 1.1 holds for polygonal lines 

without empty domains. Consider an arbitrary inner intersection point 

P of L 1 and L 2. Let L~ and Li2+l be the consecutive parts of the 

canonical partition, the first of which finishes at P,  and the second one 

starts at P.  Let Q and R be the other boundary points of the parts L~ 

and L 2 respectively. i + 1  ' 

Definition. The point P is called the point of monotoniei ty  if the points 

Q, P ,  and R are consecutive ones in the order induced by the orientation 

of the polygonal line L 1. 

Now we formulate some properties of the points of monotonicity. 

Let fti_ 1 and ~i be two consecutive domains, and suppose that  the 
2 ending point of Li_ 1 coinciding with the beginning point of L~ is point 

of monotonicity. 

Lemma 1.4. Under the above assumptions, we have 

�9 i f  gti is A-domain,  then [ti_ 1 is either A-domain,  or E-domain ,  and 

~ i - 1  C 

�9 i f  ~2i is 

fti_ 1 C 

�9 i f ~ i - 1  

~i-1 
�9 gOi-1 

fti_ l 

Lemma 1.5. Suppose that L 2 has no empty domains. 

[2i; 

F-domain~ then ~2i_ 1 is either A-domain,  or E-domain,  and 

is F-domain,  then ~i is either B-domain,  or E-domain,  and 

is B-domain ,  then ~2i is either B-domain,  or E-domain,  and 

~i. 

Then all its inner 
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intersection points with L 1 are points of monotonicity. 

Proof.  Suppose otherwise, and consider the first domain f4 such that  

one of the ending points of the corresponding element Li, say P,  is not 

the point of monotonicity. 

Let fti be A-domain. Then, by Lemma 1.4, we have 

f~l  C f~2 C " ' "  C f~i, 

and all these t2j are A-domains. 

This implies that  the element L 2 should come to the base of t2i i + 1  

from outside of f~i, thus the polygonal line L 2 comes into f4 through 

some po in t /5  belonging to the interior of the base of t~i. Since f~i does 

not contain the point B, the polygonal line L 2 should return back to 

some point 0 of the interior of the base. Denote the part  of L 2 between 

P and Q by L. 

Recall that  all domains before f~i are A-domains. Let f~' be the A- 

domain with the least number into which the path  [, comes. Let L' be 

the element of the canonical parti t ion of L 2 corresponding to f~'. Denote 

by L" a connected part of L inside t2', by A" and B" the ending points 

of L", and by A' and B'  the ending points of L'. To be definite, suppose 

that  the point A' is closer to A than the point B' ill the order along L 1. 

In what  follows, let us write L[A, B] for the part of a nonclosed 

polygonal line L lying between its points A and B. If we throw out a 

point A or B, we indicate it by writing the corresponding "(" or ")" 

instead of "[" or "]", for example, L(A, B) denote the part  of L between 

A and B excluding the both A and B. 

Now, note that  LI[A '', B"] C LI[A ', B']. 
The path  L", together with LI[A",B'], bounds an f t doma in  fU. 

The domain fU can not contain the point A. Suppose otherwise. Since 

the point A' E Oft' does not belong to LI[A",B ''] = Of~'N Of~", and 

f~" C f~', then the point A' lies outside fU. Thus, the LI[A,A '] should 

intersect the boundary of fU. But LI[A,A '] F? LI[A",B "] = 2~, and 

L" N LI[A,B] = {A", B"}, that  is L" N LI[A, A'] = 25, contradiction. 

Thus, we have constructed an empty domain, contradiction. 
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Let f~i be an F-domain .  By L e m m a  1.4, 

Q1 C f~2 C . .-  C f~i, 

and all these flj, j < i, are A-domains.  

Let Ai and Bi be the  first and the last points  of L 2. I f  Li2q_l comes to 

L 1 (Ai, Bi), then  we obtain E -domain  by the  similar reasons as before. If 

it comes to L 1 (A, Ai), then  it comes to the boundary  of some A-domain  

from outside of it, and we can apply just  the  same reasoning as above. 

So, it remains to consider the last case, namely, when f~i is a B- 

domain.  If again we denote  by Ai and Bi = P the  first and the  last 

points  of L 2, then  it is easy to see that  Li21 should come back to 

L l(Ai, Bi), and we obtain E-domain .  The  last contradict ion completes 

the proof. [] 

Lemmas 1.4 and 1.5 give us the following important Corollary. 

Corollary 1.2. I f  L 1 and L 2 are two polygonal lines joining the same 

points A and B, being in general position, and such that L 2 does not 

have empty elements, then the word W(L 2, L 1) can be only of one of the 

following forms: 
�9 APFqB r, where p, q, and r are simultaneously either positive, or 

negative, and q = -t-1, or 

�9 APB q, where pq <_ O, p r O. 

Now, consider an arbi t rary domain  fti. Let us move a round it in the 

direction induced by the orientat ion of L 2, and use Proposi t ion 1.1. Let 

Ai and Bi be the first and the last points  of L 2, then  we have 

tnL2 - t n L  1 +ozi(L2, Lli)+/3i(L2, L l i )=6  sign~i, ((*i)) 

L 2 1 where ai(L2i,L~) and/3i( i ,Li ) are the first and the  last twistings of L/2 

wi th  respect to L~. 

Now, observe tha t  the  monotony  of inner intersection points  implies 

tha t  

/3i(L2, L 1) = _ a i + l  (L/2+l, L/+I).I 

Then,  summing  the equations (*i) over all admissible i, we obtain 

t n L  2 - t n L  l + o z ( L  2 ,L 1 )+ /3 (L  2 ,L 1) = 6  Ind(L 2,L1). 
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Theorem 1.1 is proven. [] 

Theorem 1.1, Corollary 1.1, Corollary 1.2, and the ideas of the proof 

of Lemma 1.3 gives us some useful estimation of the turning along the 

polygonal line L 2 in terms of the number of the A- and B-domains. 

Definition. The number of all A- and B-elements of the canonical 

partition of the polygonal line L 2 with respect to the polygonal line 

L 1 is called AB-module of L 2 with respect to L 1 and is denoted by 

ABMod(L 2, L1). The number ABMod(L 2, L 1) + 1 is called the module of 

L 2 with respect to L 1 and is denoted by Mod(L 2, L1). 

Corollary 1.3. Under the above notations and the assumptions of Theo- 

rein 1.1, we have 

I Ind(L 2, L1)I 

thus 

= [ weight(L 2, L1)] _< Mod(L 2, L1), 

[tnL2l < I tnLll  +6  Mod(L2, L1) + 6. 

Proof. Suppose that for the transformation corresponding to the inverse 

of an elementary one, some ft-domain f~' splits into consecutive domains 

fti_l, fti, and f~i+l, where, by definition, the middle domain, fti, is pure 

empty. 

As in the proof of Lemma 1.3, let us consider two possibilities: either 

during the elementary transformation the domains fti_ 1 and ~+1  are 

glued together and fti disappears, or the domains f~i-1 and fli disappear. 

Note that in the both cases, if the domains fti_l and fti+l are empty, 

then the domain ~' is also empty, and, thus, the elementary transfor- 

mation does not change the AB-module. Now, suppose that one of the 

domains f~i-1 and f~i+l is not empty. 

The three domains fti_l, fti, and fti+ 1 are transformed to the one 

domain ft'. Note that either ft / contains the both fti-1 and ~i+l  (the 

first case), or fY is contained in one of fti_l or fti+l (the second case). 

In the both cases the number of A -  and B-domains does not increase. 

Now, suppose that a polygonal line L2 is a reduced polygonal line 

obtained from L 2. The above observations imply the following lemma. 
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Lemma 1.6. Under the above notations, we have 

ABMod(L 2, L 1) < ABMod(L 2, L1). 

By Corollary 1.2, the reduced polygonal line /2  has at most one 
F-domain, thus, according to Lemma 1.3 and Corollary 1.1, we have 

I Ind(L 2, L1)[ = [Ind(/" 2, L1)] < ABMod(/" 2, L 1) + 1 

_< ABMod(L 2, L 1) + 1 = Mod(L 2, L1). 

it remains to apply Theorem 1.1 and the following evident NOW, 

estimations: 

J (L 2, L1)] < 3 

Corollary 1.3 is proven. 

and ]/3(L2, L1)[ < 3. 

[] 

Slightly more deep reasoning than in the proof of Corollary 1.3 pro- 
rides the following results. 

Coronary 1.4. Let two polygonal lines L 1 and L 2 be in general position 

and join the same points A and B. Let L 2 be a reduced polygonal line 

obtained from L 2. Consider the canonical partitions of L 2 and/"2 with 

respect to L 1. Let p be the number of A-elements, and q be the number 

of B-elements of the partition of L 2. Then 

�9 if in the partition of L 2 there exists an F-element, then 

[Ind(L 2,L1)[ < p + q + 1; 

�9 if in the both partitions of L 2 and L 2 there is no an F-element, then 

[ Ind(L 2, L1)] _< max(p, q); 

�9 if in the partition of L 2 there is no an F-element, but there is an 

F-element in the partition of L 2  then 

[lnd(L 2,L1)[ _< p + q -  1. [] 

Proof. The first item of the corollary is just the first statement of 
Corollary 1.3, and we present it here for reasons of completeness. 

To prove the second item, it suffices to note that for elementary 
transformations of the both types described in the proof of Corollary 1.3, 

Bol. Soc. Bras. Mat., Vol. 28, N. 1, 1997 



GEOMETRYAND TOPOLOGY OF LOCAL MINIMAL 2-TREES 119 

either a domain of A or B type disappears, or it t ransforms into an F-  

domain (for the t ransformation of the first type, when two domains 

of A and B types are glued into one F-domain) ,  or it t ransforms into 

domain of the same type. Thus, the numbers of A- and B-domains in 

the part i t ion of L 2 do not exceed p and q, respectively. By Corollary 1.1 

and 1.2, the word W(L 2, L 1) is of the  form AXB y, where xy <_ O, Ix[ < p, 
and IY] <- q. So, we have proven this i tem also. 

To complete the proof, note that  if for an elementary t ransformation 

a new F-domain  appears, then  this t ransformation is of the first type, 

and as a result, two domains, one of A type and another  of B type, 

have been glued into this F-domain.  Thus, at this step the number  

of A-domains decreased by 1, and the same is t rue for the number  of 

B-domains.  Thus, in L 2 the numbers of A- and B-domains are at most 

p - 1 and q - 1. Now, it remains to use the first i tem of the corollary, 

which completes the proof. [] 

To conclude this section, we introduce some notions appearing in 

the case when one of L 1 and L 2 is closed, and another  one is unclosed. 

Let L 1 and L 2 be closed and unclosed polygonal lines, respectively, 

being in general position. Let L 2 = UL 2 be the canonical part i t ion 

of L 2 with respect to L 1. Denote by W the domain bounded by L 1. 

Then,  each of the inner elements L/2 lying outside W is called a hat. 
If we are also given tha t  an ending point of L 2 belongs to L 1, and the 

corresponding ending element L 2 lies outside the W, then this ending 

2 is also called a hat. element Lj 
2 Let Lj 2 be a hat, and let Aj and Bj be the ending vertices of Lj 

The points Aj and Bj part i t ion the closed polygonal line L 1 into two 

components,  say L / and L". Denote by W ~ and W" the corresponding 

domains bounded by the following pairs of the polygonal lines: (L~, U),  

and (L 2, L"). It is clear tha t  one of the constructed domains is contained 

into another  one. To be definite, suppose that  W' C W". 

Definition. The interior of the domain W' is called the hat corresponding 
to L 2, or, the H-domain for L 2, and is denoted by H(L2). The polygonal 

line L' is called the base of the both  L 2 and H(L 2) and is denoted 
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by 
It is clear that 0U(L ) = U b(L ) 
Consider a special case when the polygonal line L 1 is generated by 

a convexity level. Namely, let M be a finite set of points of the plane, 

and M t be its t th  convexity level. Denote by a t the convex hull of M t, 
and by W t the boundary  of o -t, tha t  is W t = Oa t. We put ~r = a 1, and 

W =  W 1. 

Let L 2 C (r be an unclosed polygonal line being in general position 

with each W t. Just  tha t  case we will consider in the proof of The Main 

Theorem. 

Definition. A hat  that  the L 2 forms with respect to W t will be called a 

t-hat. 

Let L~ be a t-hat. Suppose that  L~ intersects W \ a s but does not 

intersect W \ ~r s-1 for some integer s. Then, evidently, t > s, and the 

polygonal line L 2 has an s-hat but  has no (s - 1)-hats. 

Definition. Under the above assumptions, each s-hat is called the top 

of the hat  L~. Also, the number s is called the index of the hat L2i and 

is denoted by ind(L2). 

Remark.  Note tha t  if L 2 is a hat, and L t is some its top, then it is 

not necessary tha t  H(L 2) D H(L'). However, the following proposition 

holds. 

Proposi t ion 1.3. Let L 2 and L~ be two t-hats, and H(L 2) C H(L~). 

Suppose also that the both hats have the same index s. Then for each 

top L~ of L~ there exists a top L} of L 2 such that H(L~) C H(L}). 

Proof.  Consider an arbi t rary top L~ of L/2. Since L~ C H(L2), there 

exists a top L) of L 2 such tha t  L~ C H(L)). This immediately implies 

that  H(L~) C H(L}). The proposition is proven. [] 

Now, suppose tha t  the polygonal line L 1 bounds a convex domain, 

and let the both ending points A and B of L 2 lie on L 1. These points 

part i t ion L 1 into two components L ~ and L". 

Corollary 1.5. Under the above assumptions, we have 

I tnL2l < 3 I Ind(L 2, L') + Ind(L 2, L")I + 6. 
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Proof. By Theorem 1.1, 

tn L 2 = tn L' + 6 Ind(L 2, L') - a (L  2, L') - / 3 ( L  2, L'), 

t n L  2 = t n L "  + 6 Ind(L 2, L") - a(L 2, L") - / 3 (L  2, L"), 

where the  bo th  L' and L" are oriented from A to B. 

Summing these two equations and observing that  since L 1 and L 2 

are in general position we have 

[~(L2, L ') + ~(L2, L")l < 3 and I/3(L2, L ') +/3(L2, L")] < 3, 

and since L 1 bounds  a convex domain we have 

[ tnL '  + t n L "  I < 6 ,  

we obtain the s ta tement  of the corollary. [] 

2. Binary trees 
Let us recall some important notions. 

Definition. A subset F of the plane is called a network if it is connected 

and can be represented as union of a finite number of piecewise smooth 

embedded curves ~i: [0, i] --+ R 2 such that the interior of any ~/i does not 

contain points from any other ~/j. 

The curves ~i are called the edges of the network F, and the points 

coinciding with ending points of the edges, that is, with points yi(O) and 

"yi(1), a r e  called the vertices of the network F. If a vertex V coincides 

with an ending point of an edge % then we say that  V is incident 

to 7 and that  7 is incident to V. If a network r does not bound  a 

compact  domain, then it is called a tree. A network which is not  a tree 

has cycles, tha t  is in such a network there exist sequences of vertices 

V0, V1, . . .  , Vk-I such that  each pair of the consecutive vertices V~ and 

V(i+I) m o d k ,  i = 0 , . . .  , k - 1, are incident to the same edge ei of the 

network F. The number  of edges incident to a vertex is called the degree 

of the vertex. A tree is called binary tree or 2-tree if all its vertices are 

of degree I or 3. For an arbi t rary network we define its boundary as an 

arbi trary subset  of its vertex set. The last definition will be useful to 

define minimal networks. 
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Now, we define a deformation of an edge 7 to be a piecewise smooth 

family 7t, t E [0, 1], of embedded piecewise smooth curves such that  

7 0 = 7 .  
Let F be a network, and {e i} be the set of its edges. Let {e~} be 

a family of deformations of the edges e i such that  for any t the family 

{e~} is the set of edges of a network Ft, and the following property  

holds: some ending points of two edges e~ and e~ either coincide or do 

not coincide simultaneously for all t E [0, 1]. We call such a family Ft a 

deformation of the network F. Really, during such deformations we do 

not change the topology of the network. 

We define the length of a network to be equal to the sum of lengths 

of all its edges. To define local minimal network or, simply minimal 

network, we proceed as follows. First, define an admissible neighborhood 

of a point P of a network F to be a closed neighborhood U c ~2 of P 

such tha t  

�9 U does not contain the vertices of F lying outside P,  

�9 the intersection F N OU consists of a finite number  of points, and 

�9 the intersection Fu = F N U is a tree. 

The network FU will be referred as the local network centered at 

P.  We define the boundary OFU of the local network to be the set 

(ou ~ F) U (U n 0V). 
A network F is called an absolute minimal network with the boundary 

OF if it has the least possible length among all networks with the same 

boundary. A network P is called a local minimal network, or, simply a 

minimal network, if for each its point there exists a local network Pa  

centered at this point which is absolute minimal one with the boundary  

0Fu. The following proposition is well-known, and is valid in much more 

general situation [39]. 

Proposition 2.1. A network F is minimal if and only if  for  some of its 

representations the following properties take place: 

�9 all edges are line segments, 

�9 any pair of edges incident to the same verte:~ form an angle of at 

least 120 ~ , and 
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�9 all vertices of degree 1 and 2 are boundary vertices. 

In the present work we pay at tent ion only to the minimal networks 

which are trees and which have no vertices of degree 2. Proposition 2.1 

implies tha t  such trees can have only the vertices of degree i or 3, thus 

they are 2-trees. Moreover, all edges of such 2-trees are line segments 

which meet at vertices of degree 3 by equal angles, and, thus, by angles 

of 120 ~ Such trees are called minimal 2-trees. Note tha t  if F is a minimal 

2-tree with the boundary  M, and P E M is a vertex of degree 3, then g 

is also minimal 2-tree with the boundary  M \ {P}. Thus, in what  follows 

we always shall suppose tha t  the boundary  of a minimal 2-tree consists 

just  of all the vertices of degree 1. Also, we always shall suppose tha t  

the boundary  of an arbi t rary 2-tree also consists just of the vertices of 

degree 1. 

For investigation of minimal 2-trees the notion of twisting number  

turned  out to be very useful. To define it, let us consider an arbi t rary 

2-tree F, choose some pair (a, b) of its edges, and consider the unique 

path  ~/ in F joining these edges. Orient the pa th  ~/ from a to b, and 

consider an arbi t rary vertex P of degree 3, if any, lying inside "y (the 

vertex P is supposed to be non ending point of "y). Choose an admissible 

neighborhood U of P,  then  U A P consists just  of 3 points A~, i = 1, 2, 3. 

Let al  be the first edge of ~/incident to P,  and a2 be the last one. Let 

Ai E ai. Consider the arc 5 of OU between A1 and A2 which contains Aa. 

Definition. If the motion from A1 to A2 along the arc (5 is clockwise, 

then we say tha t  we turn at P to the right side and assign to P the 

number  -1 .  Otherwise, we say tha t  we turn at P to the left side and 

assign to P the number  +1. The number  assigned to P is called the 

twisting at P. Now, the twisting number tw(a, b) of the ordered pair 

(a, b) is the sum of twistings over all inner vertices of the path  % We 

put tw(a, a) = 0 by definition. 

Definition. The twisting number of a 2-tree P is the max imum of twisting 

numbers tw(a, b) over all ordered pairs (a, b) of edges of P. We denote 

the twisting number  of r by tw P. 

Let us observe tha t  tw(a, b) = - tw(b, a), and tha t  tw(a, b) +tw(b, c) = 
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tw(a, c) for any edges a, b, and c lying on the same path  in F. Also, if 

tw F = tw(a, b) then both a and b are incident to vertices of degree 1 [34]. 

An edge incident to a vertex of degree 1, tha t  is, to a boundary  vertex, 

is called a boundary edge. 

3. Some properties of  minimal 2-trees 
In this section we shall prove some important  properties of minimal 

2-trees which will be useful below. 

Let F be a 2-tree, and suppose that  7 is an arbi t rary path  in F 

oriented in some way. 

Definition. The path  "y is called a net geodesic if for any inner edge e of 

7 the twistings at the vertices incident to e have opposite signs. 

Let P be a vertex of a 2-tree F, and e be an edge of F incident to P.  

Consider a maximal net geodesic start ing at P and containing the edge 

e. We call such net geodesic a net geodesic ray emitting from P in the 

direction of e. It is clear tha t  the other ending point of the net geodesic 

ray 7 is a boundary  point of F. 

Now, let F be a minimal 2-tree, P be an arbi t rary vertex of F, and 

e be an edge of F incident to P.  Consider an angle a of 120 ~ with the 

vertex at P such that  the ray g start ing at P and containing the edge 

e is the bisector of a. The ray g partitions the angle a into two angles. 

Each of these two angles is called a characteristic wedge of the pair (P, e) 

and is denoted by wedgei(P, e), i = 1, 2. The following proposition is an 

immediate  consequence of definition of the net geodesic ray. 

Proposition 3.1. Let P and e be a vertex and an edge of a minimal  2-tree 

F such that e is incident to P .  Each characteristic wedge wedge~(P,e) 

contains a net geodesic ray emitting from P in the direction of e, and 

each net geodesic ray emitting from P in the direction ore is contained in 

one of the characteristic wedges wedgei(P, e). In particular, each char- 

acteristic wedge wedgei(P, e) contains a boundary vertex of F distinct 

f rom P.  

Proposition 3.2. Let F be a minimal  2-tree spanning a set M ,  L be a path 
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in F, and W be a convex polygon bounded by L'. Suppose that L and L' 

are in general position. Consider the canonical partition L = OLi of L 

with respect to L', and let Lj  be a hat. I f  the corresponding H-domain 

H(Lj)  contains a point of the path L, then H(L5) also contains a point 

from M.  

Proof .  Suppose otherwise, tha t  is a point P of L belong to H(Lj)  but  

H(Lj) A M = ~ .  If P is not a vertex of F, then consider the edge e of 

r passing through P.  Since W is convex, and P r W, then one of the 

vertices of r incident to e also does not belong to W. But  the edge e 

can not cross Lj since in the opposite case we obtain a cycle in F, and 

that  is impossible. Thus, this vertex belongs to H(Lj) ,  and, therefore, 

we can always assume tha t  P is a vertex of F. Since such P does not 

belong to M, then it is Steiner point of F. 

Now, let ei, i = 1, 2, 3, be three edges of F incident to P.  Consider 

six characteristic wedges wedgeJ(P, eJ. Clear tha t  one of this wedges 

does not intersect W (it is so, since W is convex). By Proposition 3.1, 

each of these wedges contains a net  geodesic ray emit t ing from P.  Let 

wedge' be the  wedge which does not intersect W, and 7 be a net geodesic 

ray emit t ing from P which is contained in wedge'. It is clear tha t  such 

~y either finishes in H(Lj) ,  or intersects Lj. But the both  cases are 

impossible, the first one since M N H(Lj )  = 2~, and the second one since 

r has no cycles. Proposit ion 3.2 is proven. [] 

Corollary 3.1. Let F be a minimal 2-tree spanning a set M,  and L be a 

path in F. Let L' be a hat of L with respect to some convexity level of 

M,  and ]: be a top of L'. Then we have 

H(L') N L : Z. 

Corollary 3.2. Let F be a minimal 2-tree spanning a set M,  and L be a 

path in F. Suppose that L has two hats L' and L" with respect to some 

convexity level of M such that H(L') C H(L").  Then we have 

ind(L') # ind(L"). 
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In particular, i f  L 1 , . . .  ,L  m are some hats of L such that 

H(L 1) C . . .  c H(L'~), 

and L 1 is t-hat, then m < t. 

Proof.  To prove the first part of the corollary, suppose otherwise, that  

is the indices of the both U and L" are equal to each other. Let ~,t 

be a top of U. Then, by Proposition 1.3, there exists a top /5" of L" 

such that  H(L') C H(L"),  thus L' C H(L").  But the last s tatement 

contradicts Corollary 3.1. 

The second part of the corollary immediately follows from the first 

one. Corollary 3.2 is proven. [] 

We shall use this results in the proof of The Main Theorem. 

4. General  pos i t ion  o f  a minimal 2-tree 

Let F be a minimal 2-tree spanning a finite set M of points of the plane. 

Definition. We say that  F is in general position if all its edges are in 

general position with respect to each line segment connecting any pair 

of vertices of M. 

Theorem 4.1. For any minimal 2-tree F which spans a set M consist- 

ing of at least three points of the plane and for  any c > 0 there exists 

a perturbation of M such that for  the perturbed set M '  the following 

properties hold: 

�9 the distance between each perturbed vertex m' E M'  and its initial 

position m E M is less than c; 

�9 the partition of M into convexity levels is preserved during the per- 

turbation; 

�9 this perturbation of M can be extended to the perturbation of the 

network F through the class of minimal 2-trees; 

�9 the resulting minimal 2-tree F ~ is in general position. 

Proof.  The fact that  an arbitrary sufficiently small perturbation of the 

set M can be extended to the deformation of the minimal network F 

through the class of minimal networks and, of course, without change 

of the topology of F, follows from the Melzak's algorithm of minimal 2- 
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trees construction. Thus, among such perturbations there exists a per- 

turbation which preserves the partition of M into the convexity levels, 

and, moreover, in the perturbed M all the convexity levels are polygons 

without angles of 7r. 

So, it remains to show that there exist sufficiently small perturba- 

tions such that the resulting F is in general position. To prove this, note 

first that  by means of sufficiently small perturbation we can obtain from 

M a new set, which we again denote by M, such that  the angles between 

directions of an arbitrary pair of line segments joining some points of M 

do not equal to 7rk/3 for any integer k. Thus, for such set M there can 

exist at most one segment parallel to an edge of the deformed network 

F which we again denote by the same letter F. 

Suppose that such segment does exist, and denote it by a. Since the 

set M consists of at least 3 points, then there exists a point P E M 

which is not an ending point of a. Recall that any Simpson line for F 

whose direction coincides with the directions of the edges of F up to 7r/3 

has the direction of the form 

Pj  ,Pj P 

for some integer kj and k. Here we represent the points of M as the 

corresponding complex numbers. 

Since the multiplication on exp(~/~k~/3)  is an isomorphism of the 

plane, then there exist small perturbations of P changing the direction 

of the Simpson line as slightly as we want. Thus, we can perturb the set 

M in such a way that the directions of all segments joining the points 

of M (including the segment a) differ from the directions of the edges 

of the deformed F. Again, we denote the result of the deformation by 

the same letters. 

Now, it remains to show that we can remove the Steiner points of 

the network F from the segments joining the points of M. To do that, 

let us remove the Steiner vertices point-by-point. Evidently, it suffices 

to prove that we can remove one Steiner point. 

To do that, denote by P a Steiner point which turned out lie in a 
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segment a joining points of M, and denote by e an edge of F incident to 

P.  Let us cut the network F along its edge e to obtain two networks F' 

and F", and parti t ion the set M into two components,  say M '  and M",  

each of which consists of the vertices of r '  and F", respectively. To be 

definite, suppose that  M '  contains a point which is not an ending point 

o f  a .  

Recall that  for any edge of r there exists a Simpson line containing 

this edge. Denote by L such line containing e. Recall also that ,  by 

Melzak's algorithm, we can construct,  using only the points from M",  a 

regular triangle T, and, using only the points from M',  we can construct  

a point R, such that  

�9 the Simpson line L is a segment QR where Q is one of the vertices 

of the triangle T; 

�9 P E S 1 n L, where S 1 is the circle circumscribed around the regular 

triangle T. 

Since 

�9 the position of vertices of the regular triangle T depends only on 

points of M",  

�9 small deformations of any point of M can change the direction of L 

(as we have proven above), and 

�9 since a and L are not parallel, P E S 1 C~ L, and during deformations 

of a point from M t which is not ending point of a the circle S 1 and 

the segment a remain fixed, 

there exists a small per turbat ion of a vertex from M t which removes the 

point P from a. Theorem 4.1 is proven. [] 

5. P r o o f  o f  T h e  Main T h e o r e m  

Recall the main notations. Let F be a minimal 2-tree spanning a set M 

of points of the plane. Suppose that  the set M has k convexity levels. 

We should prove that  twF _< 12(k - 1) + 5. 

Let a and b be some edges of F such tha t  twF = tw(a, b). Recall 

that  such a and b have to be boundary  edges. Denote by L the path  

in P joining a and b, and orient the pa th  L from a to b. Note tha t  
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tn  L = tw F. Denote by A and B the boundary  vertices of L incident to 

a and b, respectively. Note tha t  the both  A and B belong to M. 

Let M t denote the t th  convexity level. Let A E M p, B E M q, and 

suppose tha t  p <_ q. 

Let a t be the convex hull of M t, and W t be the boundary  of a t, 

Oa t = W t. We abbreviate a = a 1, and W = W 1. 

Pu t  S t = a t \ o - t+l .  If a t + l  ~ ~ then  S t is a doubly connected set 

bounded by W t and W t+l,  and such tha t  W t C S t, but W t+l  n S  t = ;Z. 

Note that ,  by Theorem 4.1, we can assume without  loss of generality 

tha t  the network r is in general position. In what  follows, we always 

shall suppose tha t  F possesses this property. 

Now, we consider two possible cases: p = q and p < q. Let us start  

with the first one. 

5 . 1 .  T h e  c a s e  p = q 

Since the case p = q = 1 was proven in [36], we suppose that  p >_ 2. 

Denote by W1 and W2 the parts of W p into which the points A 

and B part i t ion W p. To start  with, consider the canonical part i t ion 

L = OL i of the path  L with respect to W p. Let 7-tA and 7-@ be all 

p-hats of L whose bases contain the points A and B, respectively. Since 

the bases of the elements of each 7-tA and 7-/B are ordered by inclusion, 

the same is true for the H-domains  corresponding to these elements. 

Then, Corollary 3.2 implies the following result. 

Proposi t ion 5.1. E a c h  o f  the  co l lec t ions  7-IA and  7-tB c o n t a i n s  at  m o s t  

p - 1 e l e m e n t s .  

Note tha t  all other p-hats of L which belong neither to 7-tA, nor to 

7-tB, are empty  elements with respect to either W1 or W2. 

Also, let us remark tha t  each inner nonempty  element with respect 

to either W1 or W2 contains a t-hat lying in 7-t = 7-/A O T/B, and tha t  

different such nonempty  elements generate different hats  from 7-/. Using 

this information, we can obtain obvious estimations for Ind(L, W0, but, 

it turns  out, the direct use of the estimations gives rather  rough estima- 

tion for the sum ] Ind(L, W1) + Ind(L, W2)I as we need to complete the 
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proof in this case. So, let us make some preliminary preparations. 

Consider an arbitrary hat corresponding to an empty domain ft with 

respect to Wi. We call such hats empty hats. Now, using the same 

arguments as in the proof of Theorem 1.1, we can find a pure empty 

domain f2' c ft. Evidently, ~' is also an empty hat with respect to W~. 

Applying an elementary transformation to ft', we reconstruct L in such 

a way that  the resulting polygonal line has one less hat  and one less 

empty domain with respect to the both W1 and W2. Note that  during 

the elementary transformation we change neither the hats from 7-{, nor 

the directions of the ending edges of L. Iterating this process until all 

empty hats will be deleted, and using the fact that  the turning does not 

change during such transformations, we obtain the following result. 

Proposition 5.2. There exists a deformation of the polygonal line L fixed 

on all nonempty hats and preserving the directions of the ending edges 

of L such that the resulting polygonal line does not have empty hats. 

Clearly, the turning of L also is preserved during the deformation. 

Thus, we can suppose that  L has no empty hats. Such polygonal 

lines have the following important  property. 

Proposition 5.3. If  L has no empty hats, then for each A and 13 at least 

one of the corresponding ending domains (with respect to W1 and W2) 

contains a hat from 7{. 

Now, denote by n/A the number of ending A-elements with respect 

to W/which do not contain a hat from 7-{A, by n/B the number of ending 

B-elements with respect to Wr which do not contain a hat from 7-fB, 

and put  n / =  n n + n/B. Note that  n A < 1 and n/B < 1. Proposition 5.3 

implies the following result. 

Corollary 5.1. Under the above notations, we have nl + n2 <__ 2. 

Now, consider all possible types of partitions of the polygonal line L 

with respect to W/. 

(1) Let the partit ion of L with respect to Wi contain an F-element. 

Then, by Proposition 5.1, the total number of A- and B-elements does 

BoL Soc. Bras. Mat., VoL 28, N. 1, 1997 



GEOMETRYAND TOPOLOGY OF LOCAL MINIMAL 2-TREES ] 31 

not exceed 2(p - 2) + ni ,  thus 

I Ind(L, Wi)l ~ 2(p -- 2) + n i  + 1 = 2p - 3 + n i. 

(2) Let the parti t ion do not contain an F-element.  Then the numbers 

of A-elements and B-elements do not exceed ( p -  1) +max(n/A, n~). Here 

we have two possibilities. 

(2a) After a reduction with respect to W~ the canonical parti t ion of 

the reduced L does not contain an F-element.  Then,  by Corollary 1.4, 

IM(L, W )L _< p -  1 + max( A, < 2p-- 3 + max( A, 

for p >_ 2. 

(2b) After a reduction with respect to Wi, the canonical parti t ion of 

the reduced L contains an F-element,  then, by Corollary 1.4, 

Ilnd(L, Wi)l < _ p -  l + n  A + p -  1 + n / B -  1 _< 2 p - 3 + n i .  

Recall that,  by Corollary 5.1, n l  + n2 <_ 2. Since max(n/A, n/B) _< 1, 

then max(n A, n f ) +  max(n~, n~) < 2. Also, by Proposition 5.3, for i r j 

if max(n/A, n/B) = 1, then n j  < 1, and if max(n/A, n/B) = 0, then n j  <_ 2, 

therefore, n i  + max(n A, n~) _< 2. Thus, we obtain 

I IM(L, W1) + Ind(L, W2)] < 2(2p - 3) + 2 = 409 - 1). 

Now, by Corollary 1.5, we have 

I tn L I < 3 I Ind(L, W1) + Ind(L, W2)I + 6 _< 3 * 4(p - 1) + 6 = 12(/) - 1) + 6. 

Since the turning of a path  in a minimal 2-tree is an integer number,  we 

have proven The Main Theorem in this case. 

5.2 T h e  case  p < q 

Now, let p < q. Part i t ion the path  L into the following fragments. The 

first fragment, L1, is the smallest closed connected part  of L starting at 

the point A and such that  L \ L1 C a P .  Put  A] = A, and denote the 

other ending vertex of L1 by B1. 

The second part  of L, L2, is the smallest closed connected part  of 

L such that  L \ 2 U j = I L  j is contained in o -p+I. It is clear that  B1 is an 
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ending point of L2. We put A2 = B1, and we denote the other ending 

vertex of L 2 by B 2. 

Further, for i > 1 such that p + i - 1 _< q we define Li as the smallest 

closed connected part of L such that L i \ [Jj=ILj is contained in Cr p q - i - 1 .  

Again, Bi_ 1 is an ending vertex of Li. We put Ai = Bi_l and denote 

by Bi the other ending vertex of Li. 

The last fragment of the partition, Lq_p+2, if any, is the closure of 

the remained part of L. 

Thus, we have partition L into fragments L1, L2, . . . ,  Lq_p4-2, such 

that each Li spans the points Ai and Bi, A1,131 E W p, Ai = Bi-1 E 
W p+i-2, and Bi E W p+i-1 for 2 < i < q - p  + 1, and the both Aq_pq_ 2 

and J~q-pq-2, if any, belong to W q. For each Li denote its edge incident 

to Ai by ai, and the edge incident to Bi by bi. 
We estimate the turning of L1 using the results of the previous sub- 

section. Thus, ]tn Lll _< 12(p - 1) + 5. Further, we shall estimate tn Li 

for 2 < i < q - p + 1 in the following proposition. 

Proposition 5.4. I f 2  < i < q - p + 1, then  [tnLi I _< 9. 
At last, we shall prove 

Proposition 5.5. If the part Lq_p+ 2 is not empty, then 

I tn Lq_p+ 1 + tn Lq-p+2l _< 12. 

Clear that Propositions 5.4 and 5.5 complete the proof of The Main 

Theorem. 

Proof of Proposition 5.4. To start with, let us notice that if Li consists 

of less than 4 edges, then the proposition holds. Thus, suppose that Li 

has at least 4 edges. Orient Li from Ai to Bi, and denote the last three 

consecutive edges by b", b', and bi. Let the vertex incident to b" and b' 

be denoted by B", and the vertex incident to b ~ and bi be denoted by 

B t. Also, denote by c" and c ~ the edges of the network r incident to B" 

and B ~, respectively, and not belonging to L. 

Denote by 71 and 72 two possible net geodesic rays emitting from B' 

in the direction of c'. Of course, they can coincide with each other. Con- 

sider the first intersection point C~ of the net geodesic ray "~d with poly- 
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gons Wm. It is clear tha t  C a belongs either to  W p+i-2, or to  W p+i-1. 

If C~ belongs to W Z, we say tha t  the  net  geodesic ray "yj comes first to 
W 1 . 

There  exist two possibilities: either one of ~j, say Yl, comes first to 

W p+~-2, or the bo th  "yj come first to W p+i-1. 

Consider the  first case. Now, denote  again by ~/1 the par t  of ~/1 

between B '  and C~. Orient ~/1 f rom/3 '  to C~, and denote  by c] the  last 

edge of "Yl. 

The  following 1emma is proven in [36]. 

L e m m a  5.1. Let W be a convex polygon, and let L be a path which joins 

two points A E W and t3 E W,  lies in the domain bounded by W,  and 

is in general position with W.  Denote by a and b the ending edges of 

L incident to A and B, respectively. Then, we have [tw(a,b)l < 6. In 

particular, i f  L is a path in a minimal 2-tree, then I tw(a, b) l < 5. 

Now, denote  by T] the  pa th  in P between Ai and C]. This  polygonal  

line lies in O -pq-i-2, i8 in general posi t ion with W p+i-2 = Oo -p+i-2, and 

joins two points  lying on W p+i-2. Thus,  by L e m m a  5.1, I tw(ai, c~)] < 5. 

By addi t ivi ty  of twist ing number  along a path,  we have 

tw(ai, c]) = tw(ai, b') + tw(b', c') + tw(c', c~) = tw(ai, b') + tw(b', c') + tn ~yl. 

But ,  since ~1 is a par t  of a net  geodesic, ] tny l l  <_ 1. Thus,  we have 

I tw(ai, b')[ = I tw(ai, c]) - tw(b',c') - tn~/1] _< 5 + 2 = 7, 

and, therefore, [tw(ai, b~)l < 8. 

Consider the second case, tha t  is when the bo th  7i come first to 

W p§ Let a ~ be the least domain  between ~/1, 52, and W p+~-]. Let 

C' be the  vertex of c' dist inct  from B'.  Prolong the  edge c' t h rough  

the  vertex C'. Clear tha t  either the  edge c' comes first to W p+~-I, 

or its prolongat ion comes first into ~', and at some instant  comes to 

Oct ~ • W p+i-1. In other words, either the  edge c ~ or its prolongat ion 

comes first to W p+i-1, and, evidently, comes there transversely. 

Thus,  we have obta ined tha t  the rays which start  at B' ,  go in the  

directions of the  edges bi and c', and form an angle, say a,  of 120 ~ come 

first to  W p+i-1. This  immedia te ly  implies tha t  the bo th  characteristics 
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wedges wedgeJ(/3 ', b') do not intersect W p+i-1, since the sides of the 

angle O2=lwedgeJ(B ', b') are the rays with the same origin B'  but of 

the opposite directions to the sides of the angle c~. Thus, both of the 

net geodesic rays emit t ing from B t in the direction of b t come first to 

W p+i-2 by the property  of characteristic wedges, see Proposition 3. i. It 

is clear tha t  one of the lat ter  net geodesic rays contains a net geodesic 

ray emit ted from B" in the direction of c". So, applying the same 

reasoning to this net geodesic ray as to 71, we obtain the new estimation 

]tw(ai, bi)l _< 9, since between the edges b" and bi there are now two 

vertices instead of one vertex between b' and bi. The Proposition 5.4 is 

proven. 

Thus, if the part  Lq_p+2 is empty, then The Main Theorem is proven. 

So, suppose that  Lq_p+ 2 is not empty. Then, the above reasoning can 

be slightly generalized to obtain the desired estimation on the sum of 

indices of the last two Lj .  

Proof  o f  P r o p o s i t i o n  5.5. Again, let us suppose that  Lq_p+ 1 consists 

of at least 4 edges. We shall use the same notations as in the proof 

of Proposition 5.4 for the fragment Lq_p+ 1. However, now we consider 

three possibilities: either the both 7i come first to W q-l ,  or one of them 

comes first to W q-i but the other one to W q, or the both  7i come first 

t o  W q. 

As above, for the part  73 of r between the points Aq_p+l and C~- we 

obtain the following estimation: 

tw( aq_p+ l , clj ) = tw( aq_p+ l , b') + tw(b', c') + tw(c', c}) 

= tw(aq_p+l, b') + tw(b', c') + tn'~j. 

Consider the first case. Observe that ,  since the both 7j are emit ted 

from the same vertex B ~ in the same direction c ~, for one of then, say for 

71, the turning either equal 0, or have opposite sign to tw(b', c'). Thus, 

we obtain 

] tw(aq_p+l, b')J = ] t w ( a q _ p + l ,  c~) - tw(b' ,  c') - tn ' /1  [ < 5 + 1 = 6, 

and, therefore, ] tw(aq_p+l ,  bq_p+l) I < 7. 
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By Lemma 5.1, I tw(aq_p+2, bq-p+2)l <__ 5, therefore, we get 

I tn Lq_p+ 1 + tn Lq-p+21 <_ 12. 

This case is proven. 

For the last two cases we need the following result. First, to be 

definite, let us suppose tha t  t n L  > 0 (if it is not so, we can make 

reflection through a line and apply the same reasoning). So, we shall 

est imate the turning of L from above. 

For the rest of the proof we need the following result. 

L e m m a  5.2. Let W be a convex polygon oriented anticlockwise, and let 

L be a path joining two points A E W and B E W.  Suppose that L lies 

in the domain bounded by W,  and that L and W are in general position 

(the points A and B are supposed to be fixed). Orient the path L from 

A to B,  and denote by a and b the first and the last edges of L. Let (~ be 

the twisting from the vector-edge of W containing A to the vector-edge 

a. Then, we have 

tw(a, b) < 6 - a.  

Proof .  The path  L partit ions the domain bounded by W into two 

domains. Denote by a that  of these two domains for which we pass L 

from A to B during the anticlockwise motion along 0or. Note that  the 

twisting at A during this motion equals a.  Let /3  be the twisting at B, 

and denote by x the turning along O~ N W. Thus, by Proposition 1.1, 

we have 

c~ + tw(a, b) + / 3 + x  = 6. 

Since W is convex polygon, we have x > 0. Also, evidently tha t /3  > 0. 

These observations complete the proof. [] 

Corollary 5.2. Under the assumptions of Lemma 5.2, suppose also that 

L is a part of a minimal 2-tree. Then 

�9 i f a  > 1 then tw(a,b) < 4; 

�9 i fc~ >_ 2 then tw(a,b) < 3. 

We use these results to finish the proof. Let us orient W q anti- 

clockwise, the fragment Lq_p+2, as before, from Aq p+2 to Bq_p+2, and 
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denote by a the twisting from the vector-edge of Wq containing the point 

Aq_p+2 to the vector-edge aq_p+2. 

Now, consider the second case. Since one of 7i, say 71, comes first 

to W q-l,  we obtain I tw(aq_p+l, b')l <_ 7. Here we consider two more 

possibilities: either tw(b',bq_p+l) = -1 ,  or tw(b',bq_p+l) = 1. In the 

first case we have tnLq_p+l < 6, thus, 

tnLq_p+l  + tnLq_p+ 2 < 6 + 5 < 12. 

In the second case we shall est imate the twisting c~ introduced above 

and apply Corollary 5.2. First, it is clear tha t  in this case we have 

tnLq_p+ 1 ~ 8. Consider the least domain a~ between bq_p+l, ~2, and 

W q. It is obvious that  the prolongation of the edge b' through the vertex 

B '  comes first to the domain a', and after to 0a  ~ N W q, therefore, this 

prolongation comes first to W q. This fact, together with the assumption 

tw(b', bq_p+l) = 1, imply that  c~ > 1 (the corresponding angle is more 

than ~v/3). Thus, by Corollary 5.2, we obtain 

tn Lq_p+l + tn Lq_p+ 2 ~ 8 + 4 = 12. 

(Recall tha t  we are estimating the turning of L from above.) Thus, this 

case is also proven. 

Consider the last case, that  is when the both  7~ come first to W q. 

In this case we have I tw(aq_p+l, b~)] ~ 8. Again, consider the following 

two possibilities: tw(b', bq_p+l) = -1 ,  or tw(b', bq_p+l) = 1. In the first 

case we obtain tn Lq_p+ 1 ~ 7, and, thus, 

tn Lq_p+ 1 § tn Lq_p+ 2 ~ 7 + 5 -- 12. 

In the second case we again shall use some estimations on the twisting a.  

First,  we have tnLq_p+ 1 ~ 9. Now, consider the edge c'~ and recall tha t  

either this edge, or its prolongation through the vertex C ~ comes first to 

W q. Evidently, this fact, together with the assumption tw(b ~, bq_p+l) = 
1, imply that  a > 2, thus, by Corollary 5.2, we have tnLq_p+2 ~ 3, and 

again, we obtain 

tn Lq_p+ 1 + tn Lq_p+ 2 ~ 9 + 3 = 12. 

Proposi t ion 5.5, and, thus, The Main Theorem, are completely proven. [] 
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