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Prevalence of hyperbolicity for complex
singular cycles

R. Labarca and B. San Martin

— Dedicated to the memory of Professor R. Mafié.

Abstract. In this article we consider two kinds of complex singular cycles arising
for vector fields defined on three-dimensional manifolds. We prove that, under some
generic conditions, any one parameter family of vector fields passing through these
cycles has the following property : Hyperbolicity is a prevalent phenomena.

1. Introduction
Let M be a C*°, n-dimensional, compact, connected, boundaryless, rie-
mannian manifold. Let X € X"(M) be a C"-vector field on M.

Definition. A cycle for the vector field X is a compact, invariant set
I' C M formed by:
(i) a finite number of singularities and periodic orbits
To = {00, - on};
(i) the complement I'y = (T'\I'g) is a set of regular trajectories of the
vector field X that satisfies:
(cc)y for any trajectory Y C 'y, there exists 0 < ¢ < n such that
w(Y) C 9 (i+1)mod(n+1) and a(Y) C oy;
(cc)g given 0 < i < n there exists a trajectory T C I'; such that
w(T) C U(H—l)mod(n—i—l) and Q(T) C o;.
Here w(Y) (respectively a(Y)) denotes the w-limit set (respectively
the a-limit set) of the trajectory Y.
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344 R. LABARCA AND B. SAN MARTIN

A cycle will be called singular if it contains a singularity; hyperbolic
if all critical elements in I' are hyperbolic.

In this article we will deal with two kind of 3-dimensional, hyperbolic,
singular cycle, I' € M3, defined in the following way :

The first one contains a unique singularity, og(X), a periodic orbit

01(X) and trajectories (see figure 1):

T(X) C W¥(oo(X)) N W?(01(X)), 0(X) C W¥(01(X)) N W?(g0(X)).

0(X)

Figure 1.

Figure 2.

The second one contains a unique singularity, og(X), and a trajec-
tory (see figure 2)

T(X) C W¥(op(X)) N W?(op(X)) -

Let Ux CX"(M?) be a small neighborhood of X in X"(M?), with the
usual C"-topology, r > 3. In the first case we will assume the following
regularity conditions :
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PREVALENCE OF HYPERBOLICITY FOR COMPLEX SINGULAR CYCLES 345

L. T'={09(X), T(X), 01(X),0(X)} where W}* = W' (01(X)) intersects
transversally W§ = W?#(og(X)) along the orbit 6(X);
2. The eigenvalues of

DX (00(X)) : Ty () (M®) = T, 50y (M)

0
are a £ ib, and ¢ where ¢ < 0, b # 0 and ¢ > 0, and satisfy a
k-Sternberg condition, k& big enough to guarantee that we have C?-
linearizing coordinates at og(Y), all Y € Ux, which depends C? on
Y.

3. Let P(Y) denote the Poincaré map associated to o7 at
g1(Y) € o1(Y). We suppose that the eigenvalues of DPj(q1(Y))
are real numbers and satisfy a k-Sternberg condition, & big enough
to guarantee that we have C2- linearizing coordinates which depends
C2 on Y € Uy, in a neighborhood of g1 (V).

In the second case we will assume condition 2 above. In this situation
interesting dynamics occurs only for
a(X)

e(X)

In the sequel we will assume that we have this condition. A cycle as

<1.

above is called a complex expanding singular cycle.
Given a neighborhood U D I'in M 3 let us I(Y,U) denote the set
{z € NY2(U) : z is a chain recurrent point }, for ¥ € Ux.

Comment. It is clear that these cycles persists in a codimension-1 sub-
manifold N CX7(M3).

Let {X,} C Ux be a one-parameter family of vector fields such that
X =X € N and {X,} is transversal to A at u = 0. We can assume ,

for p <0, that T(X,) is a wandering orbit.

' Now we define a relative neighborhood, U, associated to the cy-
cle. In the first case U, is formed by: a linearizing neighborhood, Up,
of the singularity; a neighborhood, Uy, of the periodic orbit generated
by a transversal section where there are linearizing coordinates for the
Poincaré map; a neighborhood of a compact part of the orbit 6(X)
joining Uy with Uy, and a neighborhood of a compact part of T(X), V,,
whose points are located at a distance at most Ky, K > 0, from the
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346 R.LABARCA AND B. SAN MARTIN

stable manifold of the periodic orbit. In the second case we choose a
linearizing neighborhood Uy of the singularity, and a neighborhood of
a compact part of T, V, ,formed by the points that are located at a
distance at most Kpu from the stable manifold of the singularity.

Let H, = {—p <v <p, I'(X,,U,) is a hyperbolic set}, under the
previous conditions we have the following

Theorem.

H
lim LL( /'l')
w0 p

=1

that is: prevalence of hyperbolicity in a relative neighborhood of a com-
plex singular cycle.

We remark that this is a surprising result since all the evidence
(see [PRV],[CL},|G]) indicated that, in this situation, the non-hyperbolic
systems were prevalent. The important point here is that we restrict the
dynamic to a relative neighborhood of the cycle.

We point out that San Martin in [SM] introduces some basic tech-

niques that we use here.

Acknowledgements. We are grateful to the kind hospitality of the
Iustituto de Matemadtica Pura e Aplicada (IMPA), while preparing part
of this paper.

2. Proof of the Theorem

2.1. Geometry of the first return map
In the sequel we will give a proof of the Theorem in the first case. The
second case follows in a similar way.

Let X € X"(M 3) be a C"-vector field having a complex singular cycle
and Ux C X"(M3) be a small neighborhood of X.

Note. After a linear change of coordinates, we obtain b(Y") > 0.
Let (z1, z2,23) be Cz—linearizing coordinates, for the vector field Y €
Ux, in a neighborhood of the singularity og(Y"). In these coordinates Y
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PREVALENCE OF HYPERBOLICITY FOR COMPLEX SINGULAR CYCLES 347

has the following form:

(Y):=9 32 =bY)zy +aY)z2 V|(z1,22,23)] < 2.

&3 = c(Y)z3
Let us consider the Poincaré maps defined by the Y-flow on the
sections
To = {(0, 29, 23);0 < xg < 1, ]3| < 1}
and

1 = {(z1,29,1); |z1] < L5 |2o| <11
TLY - HO = {(Oa $27$3) € Xg; 0 < xzg <1, liL‘3| < U(Y)ﬁl} - E0
and
moy + Hy = {(0,29,23) € £; 0< 232 < 1, oY) ' <3 <1} - 54

given by the equations:

7Ly (T2, 23) = (A(Y)z2,0(Y)x3)

and
a(Y) bY) a(Y) b(Y)
o) xg sin(In(z4 ¥) ))s T3 o) xg cos(In(z4 &g N

70,y (T2, 23) = (—23

where

27ra(Y ot
AMY)=¢e ) and o(Y)=e Y.

[

3
.2
=

Let Q1 C M3 be a transversal section at @ (X) € 01(X), and let
(2,9); |z] < 2,]y] < 2 be C?-linearizing coordinates for the Poincaré
map P(Y) associated to the periodic orbit, i.e.

PY)(xz,y) = (p(Y)z,£(Y)y).
We may suppose that 0 < p(Y) < 1 and £(Y) > 1. We will define
p(Y) = (2(1),y(1)) € TY) N1
(resp. ¢(Y) =(0,4(©)) € 6(Y)N Q1 ),
the first (resp. the last) intersection such that z(T) < 1 (resp. y(0) < 1).

Clearly we have defined a Poincaré map my : %1 — @1 which
is a C2-diffeomorphism. Obviously 71(0,0) = p(Y¥). Moreover, we
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348 R. LABARCA AND B. SAN MARTIN

have defined a C? Poincaré map moy : R(Y) C Q1 — Xp; my =
(C{Y,z,y), D(Y,z,y)), where R(Y) is an horizontal strip containing the
connected component of W?(op(Y)) N @1 that contains ¢(Y). Here a
horizontal strip is a closed set, R C @1, bounded (in Q1) by two dis-
joint continuous curves connecting the vertical lines {(—1,y);|y| < 1}
and {(1,y);[y| < 1}.

Changing, if necessary, linearizing coordinates we can assume that:

L my(z1,72) = (A(Y, 71, 22), B(Y, 21,%2)); where

OB OB
—=(Y,0,0) = == .
a$2( ,0,00)=0 and By (Y,0,0) <0
Therefore,
A
—(Y,0,0 .
8%2( ? 3 ) # 0

ii. A(Y,0,0) = 2(T) = cg,p(Y) < ¢g < 1, ¢(Y) = (0,4(8)) = (0,1) and

Ty (q(Y)) = (CY,q(Y)), DY, q(Y))) = (c1,0), \(Y) <1 < 1.

iii. The transversality condition implies that
%—ly)(Y;x,y) #0,(z,y) € RY),Y € Ux.

Without loss we will assume that %—5(1/, z,y) > 0 and that, if

necessary changing mg y by a composition g y ow%’y some j > 0,the

image of the connected component of W*(o1(Y)) N @y that contains
g(Y)is a nearly vertical line.
iv. We can take the curves that define the vertical strip ,R(Y) ,by the

implicit equations D(Y,z,y) = 0 and D(Y, z,y) = d.

The Implicit Function Theorem on Banach spaces implies that the
condition () = 0 defines a C? codimension-one submanifold, which is
just N C Ux.

We observe that Y € Ux implies that o1(Y) has homoclinic orbits
and therefore Y does not have simple dynamics.

Let U D T' be a neighborhood of the complex singular cycle T'. Since
['(Y,U) is the saturation of T'(Y, U)N Q1 by the flow Yy, and T(Y, U)N Q1
is the chain recurrent set of the first return map Fy associated to the
section (1, it is necessary to describe the dynamics of Fy to understand
the dynamics of Y on I'(Y, U) (see figure 3 ).
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PREVALENCE OF HYPERBOLICITY FOR COMPLEX SINGULAR CYCLES 349

Figure 3: The geometry of the first return map.

Let define
V ={(z,y) € Qi;lz —co| < D}
and
Rj(Y) = PY)(R(Y))NV.
Let pp > 0 be a small number and. V,; C Q1 be the relative neighbor-
hood given by:
Vg ={lz,y) €Q1 : lz—col < b3]yl <o }.
Let mg € N be the greatest integer such that £7™0(Y) > pug.
It is clear that a first return map is defined on ;5 , o R;(Y). In fact,
given (z,y) € R;(Y) we have
P(Y)(x,y) € R(Y); 2y (P(Y) (z,y)) € Zo,
there exist n € N such that
77y (ray (P(YY (2,9))) € Hi;
o,y (7 y (m2y (P(Y) (z,9)))) € %1;
1y (mo,y (7F y (v (P(Y) (2, 9))))) € Q1.
That is : for (x,y) € R;(Y) the first return map, Fy , is given by :

Fy(z,y) = myyomy oy y omay o P(Y) (z,y) .
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In the sequel we will deal with a C* one-parameter family of vector
fields {X,} C Ux such that X = X and {X,} is transversal to N
at X. We change the Y- dependence notations for p. After a new
parameterization we have that 71 ,(0,0) = p(u) = (A4(0,0), B,(0,0)) =

(o, 14)-

2.2. Bounds for the locus of the chain recurrent set
Let z be a parameter value such that |u| < pg ,po fixed. Denote by
Vulo (1) the preimage . }L(V#O). Without loss we will assume that

mu({(0,2); x| <1} C{(z,p)0<z <1}
Denote by Vy(u) the image mo ,(R(u)) . It is clear that :
Va(p) € {(0,22,23) : |zo—c1| < K;0<23 <d.}

Let ny € Nbe the first integer such that: a;l <op'd < 1. An easy
computation will show the following result.

Lemma 1. The set Dy (p) = {(\}; z2,73) € Hy} such that

|zg —c1| < K ;and
_a(p) b(u

—2Cup < —x4 C_(”T)\Z xg sin(In(zg C(“))) < 2Cug

e

18 contained in

Nj—

{(A\zg,x3) ;23 € [0;1,0;1 +Cud] U [a;% — Cpd,ou? + Cpdlu
Ull— Oﬂgjll},
for n1 < n < ng—1. Here ng is the greatest integer which satisfies
/\,InMO < ,U,g,‘ C is some positive constant and 0 < v < 1. For n > ny

we have
Dn(p) C{(Nia2,73) ;|29 — c1] < K ,0,' < z3 <1},
Now, let
Cr(t) = 77" (Da(w)) N e — K, e1 + K] x [0, d]
for n1 <n <ng — 1 and

Co(p) = laa — K,e1 + K] x [0,0,72].
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PREVALENCE OF HYPERBOLICITY FOR COMPLEX SINGULAR CYCLES 351

It easy to see that given € > 0, the set

g — ].
U Cn () U Co(p)
n=njy
is recovered by
( Lne n+9)
Lnaoy, !

boxes of the type [c; — K,¢1 + K] X [x3 — €,23 + €] where z3 is some

{0, 0.y 05 nmy -

Let E,(u) denote the preimage 3, }L(Cn(u)). For 7 > mg we let
EJ (1) denote the set P#‘j(En(u)) NV,,- Define y(u,n) and y%(,u, n) by

the equations D(u,0,y(u,n)) = o,™ and D(y,0, yl(u, n) = 05”1/0;1,
respectively.

point of the sequence

Now we establishes a result that we will use in the sequel :

Lemma 2. Let 7 : [—€,€e] —]0,1] be a lipchitz map. Given x €]0,1]
there exists eg > 0 and ng € N such that : For any p;lp] < €
andn € N such that n > ng we have : | 7(u)™ — 7(0)™ | < (7(0))"X |y .
Proof. See appendix.

Let mg = m(up) be defined by the relations 5;01 < 5,%0 1o < 1. Using
lemma 2 and the previous remark a straightforward computation will
show that :

Lemma 3. Given € > 0 and small pg > 0 . For any |p| < po we
have that s (Uny: B (1) U Bj(n)) is covered by (—42 — ny +

Nn=mn1 Lnoy,

2)(—LL&Z + K1) boxzes of the type [co — 6, co+ 6] X [y — epo, y + €pg], where
y €{&7y(0,n), &7y (0,m)in > na, j > mo}-

2.3. One-dimensional analysis
Let us now consider the maps fn ., fuz, [a;l, 1] = R;

1 n
fn,g,mz (333) = F[B# © ﬂO,;&()‘;;va '733) - ‘1’]
22

and
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352 R. LABARCA AND B. SAN MARTIN

- : —b
Fug(%3) = — 84, Bu(0,0)3" “zy sin(In(z3 "))
Since:
B(z1,x9) = (O 0) + Oz, B, (0,0)x1 —|— 0z, B (0,0)z2+

8961931 (0,027 + 6951962 (0, 0)z1 20+

6«’02902 (0,0)1’% +7"37#(l‘1,1’2),
where

i 73,u(T1,T2)

1m 45 =

(z1,22)—(0,0) [|(z1, z2)||

we have:

a b
By o m (Ao, 23) =By (~x3 © Y pxosin(ln(zg )) z3 ¢ Nzo cos(In(z5 ©))) =
=pu— &clBﬂ(O 0)z _a/cA"mg sin(In(z4 /))
+ amlle#(o 0)(w3 /Ay sin(in(z; */%)))2
8x1m23u(0 0) (23 “Niwn)? sm(ln(xgb/c))cos(ln(mgb/c))

1
+ 5032 Bu(0,0) (w3 Ao cos(in(wy ™ )))? + 13, (m0 4 (N2, 73)).
Hence:

ooy (23) = Alu [By o mo,u(Apz2, 3) — p] =
= 04, Bu(0,0)z3 " 22 sin(In(a; %))+
+ )\_QzaﬁlwlBu(O’ 0)(175 afe rosin(ln(zg /C))
= 2 e Bal0,0) (52 s %) cosCn "))+
n

)\ _ _
+ 5 Bmzxz B (0,0)(zq a/CmQ cos(In(w4 b/c))2—|—

)\nrg (o, “(/\ z9,23));

b/c

since o, 1<;c3<lwehave1<3: <UZ/CandoZ/c§x§a/C§1.

Thus, we obtain:

|fn,u,w2(-r3) - fﬂ:w2(x3>| < Cl)‘Za 0';1 <z <1
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In a similar way we get:

| i (£3) = frmy (23)] < CoA
and
| fn ua:Q fp,xQ 933|<03)\
any 0,11 <zg <1
So, we proved:

Lemma 4. |[fn2,() — fuz, (o2 < CyAl, any n € N; any p €
(—Ho, o), o small and any |73 — ¢| < K.

Remark 3.
1. The critical points of the map fy (), :l% (1) and x%(,u) respectively,
do not depends on the zo- variable and satisfy 1/0—1 < :c%(u) <1

and m%(u) = :U%(,U,) a;l. Moreover f” ’( ) # 0,7 : 1,2 (see
figure 4).
2. For the critical values we have:
] i ~a . i _b .
Fruiay (@ (1)) = — 0, Bu(0,0)(zh () €z sin(In((zh (1) "¢)); i = 1,2.

Figure 4: Critical points of the map f,liwz ().

2.4. Relative neighborhoods and critical points
Let us now compute the critical points of the maps B, o mq ,(A};22, 23);
ol <23 <1, z9 fixed.

Since Byomg ,(AjT2, T3) = A} fr, e, (€3) 411, We have that the critical
points of the map B, omy(\j;z2, ) are the same as for the map Tz ()
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Let zé(n, 1), i = 1,2 be the critical points of the map fn ,¢,(-) (they
are independent of x3).
Since

[ s (35 1)) = £y (@B (1 )] < CuX],
we have that [f}, ;, (h(n, p))| < CyA.
From the other side, the equality :

| F}, i (51, 1)) = f, o (B5()] = | fit o, (@5)] 25 (0, 1) — 5 ()],
implies :

|F1 oy @] 5 (n, 1) — ()| = |1, (@h(m, )] < CuN,

that is:
|z5(n, 1) — 25(1)] < C5Ap-
Since
| Frpg (5(n 1)) = fiumy (@h(n, 1)) < CaAy,
we get:

| Frounes (@51 1)) = Frug (@3] < [ Frpua (10 1) = Frzp (1, )|
+ [ faa (M 1) = fuey ()]
< KX+ | f}, 0, @3)| |75 (0, 1) — 2 (u)]
< Gy + Ce Xl
= C7 AL
that is:
| P (@51 19) = fumy (@(1)] < CrAg.

From the equality:
Bu © WO,#(AZ-TQ, xé(n, ,LL)) =+ )‘an,u,xQ (xé(n, M)a

we obtain:

lB,u OWO,M(/\Z:I"Q’:B%(” :u)) H— A% fu Zg -T3 | <
< N Fropusg (@5 (0, 1)) = Froy (T5(0) |<&Wl

Let % (1, z2) = By, oo, (A x2, azg(n, 1)}, we have proved.
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Lemma 5. There are constants Cs,C7 > 0 such that
[ (n, ) — w5 (w)] < C5Ay, 3)
and
Y (1 22) = (14 A fruy (B ()] < oA (4).

fori=1,2.
Let us now define: x% (u,z2) = B+ Ay fuzs (z4(p)). Since A = A, and

Fuary (5(1)) = —0iy B (0, 0) (x5 (1))~ sin(In(z (1)) ™)) 22 = ti(1)7a,

we have: x4 (4, T2) = p+ Ximaty(p), t1(p) > 0 and to(p) < 0.
Applying lemma 2 to the map 7(u) = A, we obtain:

— A%l < W)™ < AR+ AGK el

therefore, using lemma 5

Iyt (1, 22) — (1 + ABts(p)x2)] < CPAE™ 4+ A5¥|ul Csa.

Lemma 6. Given 1 > x > 0, there are ng € N and constants Cy, Cg,
C1o > 0 such that for all small pg > 0,

e (1, T2) — (1 + A5E:(0)er)| < OTAE™ + AF¥Coptp + CroNG |22 — ci

anyn >ng, i =1,2, and |p| < pg. That is: the critical values y!, (1, 72)
are in the (C7A2”+AOXC'9M0+C'10>\O |zo —c1])-neighborhood of the points
B+ Apti(0)er

2.5. Proof of the Theorem
Let po > 0 be a small parameter value and V,; C @ be the relative
neighborhood given by

VHO :{(l‘,y) EQ; |LE—CO| §67 |y| SMO}

Let |p| < pg be a parameter value.
Let (zg,y0) € Vi ﬁI‘(X,“UuO) and (z,y) € V, NT(X,,Uy)
be two points related by the equation :

(20, y0) = Fu(z,y) =muomouony, om0 Pz, y);
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where n > ny, m > mg.

Clearly, for any n > ny such that A[ > 3ug, the angle, V, between
the images of nearly vertical lines trough (z,y) and the horizontal line
trough (zq,yg) is bigger than a constant C' >> 0 ( see figure 5 ).

A o
o

<

Figure 5: The angle V.

Let n > nq be an integer such that Aj < 3ug.

In this situation, given € > 0 we will choose parameter values in such
a way that V > C(e) > 0.

First, we give a precise bound for the locus of the critical values in
Lemma 6. In fact, we have |z — ¢i| < Cr1ug§ where
o< o <minf 2 _Lnl

iz "

1.
Hence,
|y (1, w2) — (1 + Njta(0)er)| < Crapgt™,i=0,1

and ¢t = min{a,x }.
Let

C(uo) = {(Mo)"to(0)e1 , (M) t1(0)er ; any nsuch that(Ag)™ < 3ug }
and

E(po) = {(&0)7y(0,n), (50)‘jy%(0, n);n>mny,j>mg}.
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Denote by Ce(ug) and E(ug) the eug-neighborhood of the sets C(ug)
and F/(pg), respectively.

Let Hy,(e) = {p € [—po, pol; d(Ce(uo) + 1, Ec(po)) > epo }-

Lemma 7.For any pug > 0 small enough we have

m([~po , pro] — Hygy(€)) < gl€)pio
here g(e) satisfies g(e) — 0 as € — 0.

Proof. It is easy to see that C.(ug) can be covered by

Ln(e)
Ln(Ao)

g1(e) = (

+ C12 ) — intervals

whose length is eug . From Lemma 3 we know that we can cover Fo (1g)
with
B Ln(2¢) ny +2){ - Ln(2¢)
Ln(oy) LIn(¢u)
whose length is €ugq .
Let p € (Hy,(€)). We have that d(Ce(uo) + 1, Ee(uo) ) < epo , that
is, thereare x = z+pu,2 € Ce(pg) ;¥ € Ec(pp) such that d(z,y) < ey .

Hence, z € E¢(ug)and pu € Ez.(ug) — Ce(up) - As a consequence we
obtain :

gale) = ( + K1) — intervals

m((Hyy(€))°) < g1(€) gale) Sepgp-

Taking g(e) = g1(€) g2(€) 5¢, we get the result.

Lemma 8.For any u € H, (€) the chain recurrent set (X, ,U,,) s
hyperbolic.

Proof. First we observe that the distance between the turning points of
the images of the map F), and the set E.(up) is at least epp.

Let us consider the map F),. For (zg,y0) € Vy, NT(X,,Uy, ) we
have :

(0 ,y0) = Fu(z,y) =m omgonf, oma(p™z,£™y).
Putting (z2, z3) = m2(pz, &'y) we have:

Fu(z,y) = m 0 mo(Noz2, 07@s) = 1 0 mo(Nea, 2), 2 = olas.
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Assume z9 is a fixed value and consider the curve:
E = {(Au o mo(Alxo, 2), By o mo(Apwg, 2)); ot < 2 < 1},

This curve makes an angle,p, with the horizontal line y = yg , given by:

0z (B, o mo) (N2, 2)

) = G A, o mo)(Mira, 2)

2= (o) 3.

Since:
02(Ay 0 m0)(NyT2, 2) = Oy Ap(mo(N 32, 2)) - ApTo-
0 @ _b n
15, (77 ¢ sinn(z7¢))) + Oza Ay(mo(A,z2, 2))
AT g(z_% cos(ln(z‘%))) ;
we get:

10:(Ay 0 ) (Aia, 2)] < Cg - AT

So, we obtain

19z (Bpomy) (Aiza,2)|
|tan<p| >Ch3- i ;‘)ﬁ e 2013|f7/1,u,x2(z)| .

Let us now consider the map fy, ;,(-) (see figure 6)

M
D

Figure 6.
- We observe that :

|f'r{L,/,L,:z;2 (Z)l Z 014\/m
if M — D is small and

If;z,u,xz(z” > 015 >0
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otherwise (for instance A§ > 3ug) any z € Jo1,1].
Since p € Hy,(€) our possible election ,for the z-values ,satisfies the
condition that the minimal value for M — D is A" pge. Thus we conclude

that:
| tan | > C144/ A5 pe > C15ve -

Now we are ready to construct a cone field
C}A"(xa 3}) 3 (Z, y) € V}LO ﬂ I‘(X,u ) U;x';o) 4 e& € HMD(‘E)

such that
() DE.(Cul,) C CulFulz, )
(ii) there exists Cg > 1 such that:
a. ||DFu(z,y)(v1,v2)|| > Cisll(v,v2)l| , (v1,v2) € Cu(,y);
b. |[DF,(z,y)(v1, v2)l] < Cigll(v1,v2)||, any (v1,v9) in the com-
plement of the cone DFﬂ_l(Fu(:c SIN(Cu(Fu(x,y)-
For any (z,y) € Vi, NT(X,,Uy,) let Cu(z,y) be the cone whose
angle with the vertical axis is 8y = 90 — %E—)«
For y > Othere are m > mgand n > ny such that

Fy(z,y) = T, 0moy ol 0w, 0PIz, y).

Applying P to the cone Cy(z,y) we have that the angle 0,,,, with
the vertical line, satisfy:

tan bm = (22" tan(dg), m > mg.
€u
Since 7y, is a diffeomorphism which send vertical lines (in (z,y))
into nearly vertical lines (in (z9,z3)), we have that the image of this
cone (by the map D(m ) )is included in a cone whose angle with the

vertical lines,(y ,is near the angle, o, ,that the image of this cone( by
the map D(mg 0 P[Ln)) makes with the vertical lines. Here «, satisfies:

tan vy, = Cy7tan Op,.

Therefore the angle,(3,, ,of the image D(rT, ”07'('27M0Pl;n) , with the vertical
lines satisfy

ton B, = ()" tan .
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Now it is not difficult to see that the map D(my,, 0 m,,) send this
cone into one located in the tangent space whose angle is of the or-
der of Afj(number). If A\j > 3ug then clearly DF,(z,y)Cy(z,y) C
Cu(Fy(z,y)). If Aj < 3pg then, for small py we get the same result.
This, together with the expansion of the vectors in the cone, completes
the prove of the first part of the proof of the hyperbolicity. The second
part follows in a similar way.

The Theorem in the introduction is a consequence of Lemma 7 and
Lemma 8.

3. Appendix

Here we give a proof of the following result:

Lemma 2. Let 7 : [—€, €] —]0,1[ be a Lipchitz map. Given x €]0,1] there
are €g > 0 and mg € N such thai:
For any u; |p| < € and m € N such that m > mgy we have:

(T ()™ = (T(0))™] < (7(0)™X|ua]-

Proof.
(@)™ — ()] = (r(O)™] (%) 1
K .
T 1| = () it - 7)) < ;%‘;' _ Klul.

So, we have :
=Kl < (T8 < (0 RJuly

from. this we get

- Klp)m-1< (%) —1< 1+ Klp)™ -1

Let n(v) = (1 + Kv)™ — 1. We have 7(0) = 0 and

o (V)= Km(1+ Kv)™ 1.
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By the mean value theorem we get:
nw) —n(0) = /(@) - v = Km(1 + Ko)™ v,
Hence,
1+ Kv)™ —1=Km(l+ K™y
Putting I(v) = (1 — Kv)™ — 1, we have 1(0) = 0, I'(v) = mK(1 —
Kv)y™ 1y and then:
) =10)=1U'(D) v,
that is
(1-Kv)™—1=-mK(1— K™ v
" The second part follows in a similar way. Taking v = |u| we obtain
(1= Klp)™ =1 =—mK(1 - K|)™ ul.

By choosing i or 7 we have:

—mk (1 — K| ) < (%) 1< Rm(L+ K[a)y™ Y.
That is:
o ’(ﬂy—l‘ < Km(1 = K|a)™ |l
7(0) = A
Then
oy [T 21| < Bmero)m + K™l
7(0)

since 7(0) €]0, 1], for small ||, we have T(0)(1 + K|ji|) < 1.
Now, we choose ng € N such that

Km(r(0))™(1 + K|@))™ < (r(0))™.

for any m > mg.
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