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Abstract. We consider the strong stable foliation of the geodesic flow for a noncom- 
pact, connected abelian cover of a closed negatively curved manifold. We show that 
there exists proper leaves, and that non-proper leaves are dense. 

0. Introduction 
Let (M, g) be a closed Riemannian manifold, with negative sectional 

curvature and infinite first homology group, e.g. a hyperbolic closed 

Riemann surface. We consider rc : 37I H M a regular connected cover of 

M such tha t  the covering group is abelian and infinite, and a>t : TlkT/~-+ 

T137/, t E [R, the geodesic flow on the unit tangent  bundle of aT/. We are 

interested in the strong stable foliation of ~t- Leaves of this foliation are 

defined by 

WSS(2) = {,2: d((}eg, } t 2 )  ---+ 0 as  t ---+ +oo}. 

These leaves are smoothly  embedded  euclidean spaces, and depend con- 

t inuously on the point 2 [Anosov 69]. This foliation was particularly 

studied in the case of surfaces of constant  negative curvature, when the 

foliation is given by the orbits of the horocycle flow. In this case, it is 

known that  the strong stable foliation is transitive [Hedlund 36], ergodic 

for the Haar measure [Babillot-Ledrappier 96]. In general, it is known 

that  the strong stable foliation is never uniquely ergodic [BL96]. Here 

we show that  the strong stable foliation is not minimal, in the sense that  

there exist leaves which are proper submanifolds in T12~ r, but  almost, 
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in the  sense tha t  a leaf which is not proper  is dense. More precisely, we 

have: 

T h e o r e m  A. Let TI~(/I be the unit tangent bundle of a noncompact con- 

nected abelian cover of M.  Then there exist points 2 in T 1 M  such that 

the strong stable leaf of 2 is proper. 

T h e o r e m  B. Let TI_~/I be the unit tangent bundle of a connected Z d cover 

of M .  Then a strong stable leaf is either dense or proper. 

Observe tha t  for a general Riemann  surface, there are examples 

where the  horocycle flow is transit ive on the  uni t  tangent  bundle  to 

the  surface, bu t  where there exist horocycles which are neither dense 

nor proper ([Starkov 95]). 

We obtain equivalent results when considering the action of f~ = 

7c 1(37f) on the space of horospheres. Namely let ~ : 2Pf ~-+ 217f be the 

universal cover of 7~f (and therefore of M), and fix a point o in 7P/. 

Then the Busemann function B : 7~/• 02~f ~-+ R is defined by: 

B(p,~) = lira d(p,q~(t)) - t, 
t--+ § c~ 

where q~(t), t E ]R is the geodesic in M such tha t  q~(0) = o, q~(+cc) = ~. 

The  space of s t rong stable leaves is homeomorphic  to the  space 0-$I • 

and the  action of F is given by 7(~, t) = ('y~, t - B(7-1o,  ~)) ( see e.g. 

[Babillot 96]); propert ies of this action reflect propert ies of the s trong 

stable foliation in the  quotient  space F \ T12~/= TI_~/. In order to state 

the corresponding results, we say tha t  a group F of isometries of 2~/ 

is an abelian cover group (respectively a Z d cover group),  if there is a 

torsionless group F of isometries of _~/with compact  quot ient  such tha t  

I~ is a normal  subgroup of F, with  abelian infinite quotient  (respectively 

wi th  quotient  zd).  We then  have: 

T h e o r e m  A'. Let F be an abelian cover group of isometrics of ]VI. Then 

there are points ~ in OM such that the set { ( 7 ~ , - B ( 7  -1~ ~)),'Y E F} is 

discrete in O~i • ]~. 

T h e o r e m  B'. Let F be a Z d cover group of isometrics of )l/I, ~ in OJ~/I. 

Then, the set { ( 7 ~ , - B ( 7 - 1 o , ~ ) ) ,  7 E F} is either discrete or dense in 

O M •  
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In order to prove Theorems A' and B', recall that a point ~ in OJ~/is 

called horospherical for F if inf~/~/3('7o, ~) = -ce. For an abelian cover 

group, this definition does not depend of the reference point o. We then 

have: 

Proposition 1'. Let F be an abelian cover group of isometrics of M .  

Then there exist points which are not horosphericaI. 

Proposition 2'. Let I" be a Z ~ cover group of isometrics of M.  Then a 

point ~ is horospherical if, and only if, the set {(7~, - B ( 7  -lo,  ~)), 7 E F} 

is dense in OM x •. 

Proposition 3'. Let F be a group of isometrics of M such that 

inf{d(p, Tp);p E /~ / ,7  E F} _> d 

for some positive d, ~ a non-horospherieal point. Then, 

is a discrete subset in 01f/i x I~. 

Theorems A' and B' follow immediately from propositions 1', 2' and 

3'. In the case of surfaces of constant curvature -I, the action of F on 

the space of horospheres can also be identified with the linear action on 

]R 2 \ 0 of the corresponding group of (2 x 2) matrices. Observe that 0 is 

a fixed point for the linear action of matrices, and that a direction in 

]~2 correspond to a horospherical point if and only if 0 is adherent to 

the orbit of a vector in that direction. Our arguments also yield: 

Theorems A" ~ B". Let I' be an abelian cover group of (2 x 2) matrices, 

acting linearly on ~2. The orbit of a vector in R 2 is either dense or 

discrete. There are infinite discrete orbits. 

In the following sections, we state and prove the counterpart of 

Propositions 1', 2' and 3' pertaining to the strong stable foliation. We 
also state the corresponding Propositions 1" and 2". Proposition 1 fol- 
lows from properties of ~-minimizing geodesics ([Bangert 90], [Mather 

91]). Proposition 2' for Fuchsian groups of the first kind is due to Hed- 

lund [H36]. Once we know that the strong stable foliation is transitive 

(and this follows from [BL96], see below Proposition 2), Hedlund's proof 

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997 



366 FRANCOIS LEDRAPPIER 

can be extended to our case. Finally, Proposition 3 rests on a simple ge- 

ometric argument.  The properties s tated above for abelian cover groups 

are in fact stable by finite quotient. Therefore we may (and will in the 

rest of the paper) assume tha t  the covering group F \ F is isomorphic to 

Z a, for some positive d. 

Acknowledgements. I thank M. Babillot, S. G. Dani and J.-P. Oral for 

fruitful discussions. 

1. Minimizing geodesics 
In this section, we consider ~ : 2 ~ / ~  M and 7c : f / ~  M, where M is a 

closed manifold, _~/the universal cover of M, 2~/a regular cover of M. 

Denote F, F the covering groups associated respectively to # and 7r o #; 

we assume tha t  P \ F is isomorphic to Z ~, for some positive d. Denote 

7{ the Hurewicz homomorphism ~ : 7rl(M) ~-+ H I ( M , Z ) ,  / t l  = 7-t(F), 

a n d / / 1  the subspace of H I(M, I~) which annih i la tes / /1  in the duality 

between real homology and cohomology. Then, d im//1  = d. 

Fix a Riemannian metric on M, and consider the geodesic flow Ct 

(respectively Ct, Ct), t E IR on the unit tangent  bundle T12~/ (respec- 

tively TI_~/, TIM). Let 34 be the set of r  Borel probability 

measures on T1M. For 

w : TM ~ R associates 

on the vector v of TpM. 

k(co) 

a smooth closed 1-form co on M, the function 

to a point x = (p, v), the value of the form cop 

Define: 

= max{ f cod#;# C 34}. 
J T I M  

Observe that ,  if c~ is a smooth function, k(w + dc~) = k(co), so that  k 

defines a functional on HI(M, R). This functional is a norm, dual to 

the stable norm (see e.g. [GLP, chapter 4] for the definition of the stable 

norm and [Massart] for its expression in terms of invariant probability 

measures). In particular there exists r / E / / 1  such tha t  k(r/) = 1. In the 

rest of this section we choose and fix such an r/. By compactness of Ad, 

the set Adv of measures # satisfying f wd# = 1 = max{fT~ M wd#; # E 
2t4}, for some w representing r/, is a closed convex set and a face in 34; 

in particular, there exist ergodic probability measures in 34v. We also 
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choose and fix # c M~.  

Proposi t ion 1. Choose ?7 in [-t 1 such that k(~]) = 1, # ergodic in A4~, z 

a point in the support of # (i.e. every neighborhood of z in T I M  has 

positive #-measure) and 2 in T l  f/I such that D7c2 = x. Let p(t), t E R, 

be the geodesic in 2f/I with initial condition 2. Then, the geodesic p(t) 

minimizes distances in f/I between its points, i.e. we have, for  any s, t 

in N: 

= I s -  tl. 

Proposition 1 directly follows from [M91, Proposition 3] if, after 

having chosen a closed l-form cu for representing % we consider the 

Lagrangian L on T M  defined by: 

L(p,v) =  llvll 2 - 

The Euler-Lagrange flow of L is the geodesic flow on T M .  In particular, 

the energy E(p, v) = 1 2 2 I I vii is invariant and for any a _> 0, the energy 

level T a M  = {(p, v) : Ilvll 2 = a 2 } is invariant. The spherical bundle 

T 1 M  corresponds to the energy 1. For a probability measure # on T M  

invariant under the geodesic flow, the action A(#) is defined by A(#) = 

f Ld#, and the Aubry-Mather  constant of the Lagrangian L is defined 

as minus the infimum of the actions of invariant probability measures 

on T M .  We have: 

1 Lemma  1. For the above Lagrangian L, the Aubry-Mather constant is 2" 

The action minimizing probability measures are the measures supported 

on T 1 M  such that 1 = fT1M wd#. 

Proof .  Since # ~-~ A(#) is a linear functional, we may define the Aubry- 

Mather  constant C as minus the inflmum of the actions of ergodic mea- 

sures. But for an ergodic measure, JlvJJ 2 is constant, so that  C is given 

by: 

= inf t - la  2 - - m a x { [ w d # ;  # E 2bla}}, i C 

a>_0" 2 J 

where Ma is the set of ergodic probability measures on T M  which are 

supported on TaM.  Multiplication by the positive real a defines a nat- 
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ural bijection between J~l and Ma, so that: 

- C  = inf ~r ]-a 2 - am • Ma}} 
aZO~2 

= inf ~r-la 2 -- ale(co)} 
a_>0 ~ 2 

= inf l r la  2 - a} 1 
a>O'2  = - - 2  

Moreover, the measures for which the minimum is achieved are the er- 

godic probability measures p which satisfy # E M1  and 1 = fT1M cod#. 
By averaging over the ergodic decomposition, we see that  any invariant 

probability measure with action - �89  is supported by T1M and maxi- 

mizes f cod#. 

We now prove Proposition 1. Let i be the canonical embedding of 

TIM in TM. By lemma 1, the measure i ,(#) is an action minimizing 

ergodic probability measure on TM. The support of the measure i . (#)  

i s / ( suppor t  #). In particular, the point i(x) belongs to the support  of 

the measure i .(p).  The argument  of [M91, page 184/185] shows tha t  

the geodesic in TM with initial condition 2 minimizes the action of 

= L o Drc + �89 between any two of its points. Observe now that  since 

rl E / /1,  the l -form co o Drr is exact on 37/. This means that  when a 

curve c(t), t E [0, T] minimizes L between its endpoints, the curve has to 

minimize the integral 

T 1 1 
Jo (~ll+(t)ll 2 + dt ~) 

over curves joining its endpoints. Moreover, since the minimizing curve 

is a speed-one geodesic, it minimizes the same integral among curves 

parametr ized by arc length with the same endpoints. For such curves, 

the integral is the length of the curve. Thus, the geodesic start ing from 

2 realizes the distance between its points. 

To finish this section, we verify tha t  Proposition 1 implies Proposi- 

tion 1' of the Introduction. Choose 2 given by Proposition 1, a n d 2  such 

that  D#2  = x. The geodesic 15(t) in ~r  starting from 2 has the property  

that  for any positive t, t3(t) is closest to 15(0) than to any other point of 

the orbit of/3(0) under F. In other words, for any 7 E F, any t _> 0, we 
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have d(')73(0),]3(t)) _> t. 

Assume now that  the metric on M has nonpositive curvature and 

let { be the point at infinity of the geodesic ray 13(t), t _> 0, then for any 

"~ C P, we have: 

B(Tio(0),~) = lira (d(TiO(0),/5(t))-t) > O. 
t -~-[-~ 

The point ~ is not horospherical. 

In the same way, we get: 

Proposition l".Let F be an abelian cover group of (2 • 2) matrices, acting 

linearly on ~2. Then, there exists v E R 2 such that 0 is not adherent to 

the orbit Fv. 

2. Dense horospheres 
We keep the setting and the notations of Section 1, and we furthermore 

assume that  the metric on M has negative curvature. In order to fix 

notations, we put on T I M ,  T12VI the restriction of the Sasaki metric on 

T T M ,  the one which makes horizontal and vertical projections on T M  

isometries with orthogonal kernels. We first have: 

Proposition 2. Let M be a closed Riemannian manifold with negative 

curvature, M a connected Z d cover of M. The strong stable foliation is 

transitive on Tl  f~  : there exists a point Y: with WSS(2) dense in TI ~I. 

The proof of Proposition 2 closely follows the scheme of the proof of 

ergodicity of the horocycle flow on TlkT/, given in [BL96] in the case of 

surfaces, taking care of the fact that,  since the leaves are not in general 

the trajectories of a flow, some formulations have to be slightly modified. 

Namely choose a countable family {On} of open sets in T l f / a n d  A the 

product  of the Lebesgue measure on strong stable manifolds in T l f /  

and of the lift of the Margulis measure to the transversals to the strong 

stable foliation on TlkT/. It suffices to show that  for each n, the set of 

points 2 for which WS~(x) do not intersect On has A measure 0. Fix n 

for the rest of the proof. 

We are going to apply Theorem 3 of [BL96], so we choose suitable 

parameters  in this Theorem as stated (the trusting reader can go directly 
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to next paragraph; for the more cautious reader, we follow the notations 

of [BL96], Section 2). We indeed are in the setting of [BL96], since the 

geodesic flow is a mixing Anosov flow on TIM and since, as observed 

by [Pollicott 8; Sharp], for any connected ~d cover, Assumption (A) 

is satisfied (see [PS94], Proposition 7). So we first choose a regular 

fundamental domain D of the action of Z d on TI2~/such that the closure 

of the open set On lies inside D. Then we choose w small enough that 

there exists a set ]I with closure in On which projects on TIM into a set 

A belonging to A~-, and that there is a positive measure set E of centers 

of balls of B~ disjoint from the projection of the boundary of D (A~ and 

/3r are collections of the subsets of TIM which are small disks of radius 

T on the strong unstable and strong stable leaves respectively). Finally 

choose 5 > 0 such tha t  the set A~ = U-5<t<5~tA is still contained in On 

and we shall take g = X(-5,5). Observe tha t  [BL96] Corollaries 3 and 5 

apply in the case of the Margulis measure (which is the case v = 0), so 

that ,  for A-almost every point 2, there exists a sequence {Tk(2), k >_ 0} 

of larger and larger times such tha t  for all k, 7r(r k (2)) E E and tha t  

l imk_~ bk/T~ = 0, where bk E Z d are such tha t  CTk (2) E bkD. We apply 

[BL96] Theorem 3 with these choices of D, T, g = X(-~,6), 7rA E At ,  

BSS(~r (2), T ) E B~, b = bk and times Tk(x). 

We thus obtain for ),-almost every point �9 C T l f / a n  estimate on 

some sum over the geodesic paths of length T~(2) going from A~ c (On 

to a strong stable disk of radius T around CTk2, and this est imate goes 

to infinity with Tk. This means tha t  one can find some T such tha t  

there is at least one geodesic path  of length T going from (On to a point 

in W~(r  Therefore there is at least one point in the intersection 

of (On and 62_TW~(r C W~(Yc). This proves Proposition 2. 

Corollary. Let F be an Z d cover group of isometries of ~/I. Then the 

action of F on OM • ]R is transitive. 

In fact, Proposition 2 tells tha t  there is a point 2 in T12~/such that  

O ~ T W S S ( 2 )  is dense in T I ~ / .  The conclusion follows. 

The proof of Proposition 2' from the above Corollary now follows the 

steps and the arguments of Hedlund; for the convenience of the reader, 
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we shall sketch this proof, referring to [H36] for details. Firstly, it is clear 

that if F(G, 0) is dense, then the point G is horospherical. Conversely, we 

know that there is some G0 with F(~0, 0) dense, and also with F(~0, t) 

dense for any t 6 IR (shifting by t is a homeomorphism which commutes 

with the action of I~). 

Lemma 2. Assume G is one of the two fixed points of a hyperbolic 7 E F. 

Then F(G, 0) is dense in Of/I • R. 

In fact, we first send G arbitrarily close to G0 by some 7~ and we can 

choose integers ji such tha t  

B(7-5   1o, 4) = B(7 G) + B(Tflo, G) 

is bounded independently of i. Then there is a subsequence {7~} of group 

elements 7~ = ffi.7 ji and u in R such that  {~(~, 0)} converge towards 

(~0, u) as i -+ oc. Therefore F(G, 0) is dense in 0 ~ / x  R as well. 

If ~ is a horospherical point, there are 7i such that  {B(7~o , G)} go 

to - o c  and {ff(l~} converge to some point cJ, as i --+ oc. Choose a 

hyperbolic 7 E l?, the fixed points of which ~/-- are distinct from cJ. 

Then one can choose the powers ki, I kil --+ ec so that  

B(7 7 k o, G) = B(7 o, G) + B(@o, 7 1G) 

is bounded,  independently of i. (Observe tha t  B(@o, 7i-lG) varies from 

0 to + ~  with Ikl, with bounded increments). From this, it follows tha t  

{7-kiTi-l(G, 0)} approaches some point (74-, u), which has a dense orbit 

by Lemma 2. Thus F(~, 0) is dense, as claimed. 

For the sake of completeness, we recall (a particular case of ]Green- 

berg 63]): 

Proposition 2". Let F be an abelian cover group of (2 • 2) matrices, 

acting linearly on R2 and assume that f" acts transitively on directions. 

If, for v E IR 2, 0 is adherent to f'v, then f'v is dense in ]R 2. 

3. Proper horospheres 
In this section, we only assume that the negatively curved manifold 

M has bounded geometry, that is, there exist positive constants a, b 
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and d such that the sectional curvature K on f/ satisfies everywhere 

-b 2 _< K _< -a 2 and such that the injectivity radius of 3~ is at least 

d. We still denote P -- 7ci(3~/) and J~/ the universal cover of 3~/. We 

are interested in this Section in cases where the strong stable leaf W ss 

might be a properly immersed submanifold of TIM. This happens if, 

and only if, the set FW ss is a closed subset of TI3~, i.e. if, and only if, 

the orbit under F of W ss in the space of horospheres is a closed subset 

of 03~/x IR, i.e. if, and only if, this orbit is discrete. 

Definition. A geodesic ~ = 10(t), t E R, in 2~/ is called asymptotically 

almost minimizing if it is has speed 1 and if for any positive 5 there is T 

such tha t  for any s, t in R, s, t >_ T, we h a v e  dM(P(s),p(t)) >_ Is-t1-5. 
The s ta tements  in the Introduction all directly follow from the results 

of the previous Sections and from the two following Propositions: 

Proposit ion 3. Let 291 be a negatively curved manifold with bounded 

geometry, [9 an asymptotically almost minimizing geodesic, Y~(t) E T l  f/I 

the derivative vector at D(t). Then for each t E R, the strong stable leaf 
W88(2(t)) is proper. 

Proposit ion 4. Let f/l be a nonpositively curved manifold, # : 2f/i --+ 

2f4 its universal cover, [9 a geodesic in M .  I f  the point [9(+oc) is not 

horospherical for 7r1(2~/), then the geodesic #[~ is asymptotically almost 

mm~mzzmg. 

Proof  o f  Proposit ion 3. Observe that  if 10 is an asymptotically almost 

minimizing geodesic, if 2(t) E T 1 M  is the derivative vector at p(t) and if 

~l E WSS(yc(t)), then the geodesic with initial vector ~) is asymptotically 

almost minimizing as well. Therefore it suffices to show that  the strong 

stable leaf WS~(2(t)) do not accumulate on itself at 2(t), or in other 

words, that  there exists a positive number e such that  if the point ~) 

satisfies y E W~(2( t ) )  and dwl$z(9,2(t)) _< c, then ~ belongs to a 

relatively compact neighborhood of 2(t) for the topology of the leaf 

W~8(2(t)) defined by the induced metric. Without  loss of generality, we 

assume t = 0 and write 2 for 2(0). The proof is based on: 

Lemma  3. Let 2 be the initial condition of an asymptotically almost 
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minimizing geodesic p. For any positive % there exists a positive c such 

that if  the point ~1 satisfies y E WSS(2) and d T l ~ ( y  ,2) < s, then for 

all positive t, 

d~((7(t),[o(N+)) < ~1, 

where C~(t), t E IR, is the geodesic in ~ i  with initial condition Y. 

Proof .  If the points 2 and y are closed, then d51(C/(t),p(R+)) is small for 

some interval of t ime containing 0. Let to be the first positive t ime 

when dsi(q(t) ,p(R+)) reaches inf(rhd/2). We shall find e such that  

dT15~(9 , 2) < r and the finiteness of t0 lead to a contradiction. 

Fix 6(rl), consider the corresponding T in the definition of asymp- 

totical]y almost minimizing geodesic, and choose e0 so small that  if 

dTl~l(y ,2  ) < eo, then dTl~(~(T) ,p(T) )  < 6 a n d t 0  > T+t l (~?) .  

Let P be the point p(T), Q = (:/(to), P '  the point of p((T, +c~)) clos- 

est to Q, P"  = p(t2(~])) where t207) is very large. Note t~ such that  

P '  = p(t~). We shall consider the two right angle triangles P P ' Q  

and P " P ' Q  in ~i.  W'e have P'Q = inf(~,d/2), P Q  < so + to - T ,  

P"Q <<_ dM(Q, O(t2)) + dx4(P", ~(t2)) < t2 - to + 5(~1), if t2(~/) > to + tl  is 

large enough tha t  d~r(/)(t2), q(t2)) < 6(~1). On the other hand, we know 

from the minimizing property that  P P '  >_ t' 0 - T - 6, P 'P"  >_ t2 - t' 0 - 6. 

The curvature being smaller than  - a  2, the two comparaison trian- 

gles in the space of constant curvature - a  2 have larger angles. Applying 

Cosine Rule I to the comparaison triangles, we get: 

cosh aPQ > ' ' _ cosh a P P  cosh aP Q, 

cosh aP" Q > cosh aP" P'  cosh aP' Q. 

Therefore, 

cosh a(e0 + to - T).. cosh a(t2 - tO + 6) > 

> c o s h  a(t  - r - 6 ) .  o o s h  a ( t 2  - - 6 ) . ( c o s h  a(inf( , d/2))) 2. 

If t l  and t2 are large enough, we obtain: 

exp a(t2 - T + 6 + eo) _> exp a(t2 - T - 36). (cosh a(inf(r/, d/2))) 2, 

a contradiction if 5 and eo are sufficiently small. 
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We now prove Proposition 3. Take ~3 E WSS(2) such t h a t  dTl~/iig, if;) 

is very small. By Lemma 3, dM(q(t),p(R+)) is small for all positive t, 

in particular smaller than  d/2. Therefore, the function d~(o(t),iO(R+)) 

is a convex function of t, decreasing to 0 as t --+ oc. Thus the function 

dTl~(~l( t ) ,  x(ff(t))) is also small and going to 0 as ~ --~ oc, where if(t) is 

such that  p(t'(t)) is the point of p(R +) closest to C/(t). This shows that  

lies in the local stable manifold of ~. Since ~) lies in the global strong 

stable manifold of 2, ~) lies in the local strong stable manifold of 2. 

P roof  o f  Proposit ion 4. Consider a geodesic/5 in ~ / s u c h  that  the point 

= /5(+oc) is not horospherical, i.e. B(~/o,/5(+cc)) is bounded away 

from - o c ,  uniformly for ~/ E 7rl(/1)/). Given a positive f, one can find 

7 such that  setting o' = 7o, we have for the Busemann function B' 

defined with reference point o': B'(7o',/5(+o0)) _> f /4  for all ~, E 7el(M). 

In particular, the geodesic c/ defined by q = r where ~(0) = o ~ and 

0(+oc) = [ satisfies, for all positive t : 

t - ~ / 4  < df(C:/(0),C/(t)) <_ t. 

The geodesic ~/is 5/2-minimizing, and the geodesic #/5, which is asymp- 

totic to C/, is eventually f-minimizing. 
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