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Lagrangian flows: The dynamics of
globally minimizing orbits - II
Gonzalo Contreras’, Jorge Delgado and

Renato [turriaga?

— To the memory of Ricardo Mané.

Abstract. Define the critical level ¢(L) of a convex superlinear Lagragian L as the in-
fimum of the k € R such that the Lagragian L+k has minimizers with fixed endpoints
and free time interval. We provide proofs for Mafié’s statements [7] characterizing
¢(L) in termos of minimizing measures of L, and also giving graph, recurrence cov-
ering and cohomology properties for minimizers of L 4+ ¢(L). It is also proven that
¢(L) is the infimum of the energy levels k such that the following for of Tonelli’s
theorem holds: There exists minimizers of the L + k-action joining any two points in
the projection of E = k among curves with energy k.

Introduction
In this work we prove most of the theorems of Mané’s unfinished work
“Lagrangian Flows the dynamics of Globally Minimizing Orbits”, [7].
Exceptions are theorem III, whose proof is divided in [6] and [3] and
theorem IV which was proved in [7]. Also, we provide proofs for slightly
different statements of theorems VII, XI and XIV. We would like to
emphasize that all the theorems in this paper are due to Mafié and all
the responsibility of the proofs is ours.

We encourage the reader to use Maié’s original paper [7] as the
introduction of this work. In section 1 we prove theorems I and II, in
section 2 we prove theorem V, in section 3 we prove theorems VI, VII,
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VIII and IX, in section 4 we prove theorems X and XI, and in section 5
we prove theorems XII, XIII and XTV.

The first and second authors want to thank the hospitality of
CIMAT.

We want to use this space to say how much we admired Ricardo’s
clearness and brightness and how grateful we are to his enormous gen-
erosity. This paper is to his memory. ’

1. Basic properties of the critical value

Let M be a smooth closed manifold. We say that a smooth function

L:TM — R is a Lagrangian if it satisfies the following conditions:

(a) Convezity: For all x € M, v € T, M, the Hessian matrix 6—1‘1279%(53, )
(calculated with respect to linear coordinates on T, M) is pf)sitive
definite.

(b) Superlinearity: l lim

[v]|l=+oo
Given an absolutely continuous curve z : [0,7] — M define its L-

L(z,v)
1]

= 400, uniformly on (z,v) € TM.

action by
b
Sp(x) = / L (a(b), #(1)) dt.

Fixing p,q € M and T > 0, the critical points of the action functional
on the set
z(0) = p, z(T) = g, }

AC(p,q,T) := {x 10,7 - M
x absolutely continuous

are solutions of the Euler-Lagrange equation, which in local coordinates

is given by

d
—Ly,=1L,. E-L
dt™"’ (E-L)

Because of the convexity of the Lagrangian this equation can be
thought as a first order differential equation on T'M. The Lagrangian
flow fr on T M is defined by fi(z,v) = (y(t),4(t)), where ~ is the solution
of (E-L) with v(0) = = and 4(0) = v. Define the energy function E :
TM — R as

oL

E(z,v) = %(ac,v)-v - L.
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It can be seen that the value of E(x,v) is constant along the orbits of
ft. The superlinearity condition implies that the level sets of the energy
function have bounded velocities and hence that are compact. This, in
turn, implies that the solutions of (E-L) are defined for all values ¢t € R,
i.e., that the flow f; is complete.
Finally, for p,q € M, let
AC(p,q) = |J AC(p,q,T),
>0

and define the action potential as

®(p1,p2) = inf {Spr(x) |z € AC(p1,p2)}, k €R.

Theorem 1. There exists ¢(L) € R such that
(a) k <c(L) = @k(p1,p2) = ~00, Vp1,p2 € M.
(b) k> ¢(L) = ®x(p1,p2) > —00, Vp1,p2 € M and O is Lipschitz.
(c) k> (L) =
Pk (p1,p3) < ®k(p1,p2) + Pk(P2,P3) VP1,p2,P3€M
@ (p1,p2) + Pk(p2,p1) 20 Vp1,p2 €M

(d) k> c(Ly = ®(p1,p2) + ®(p2,p1) >0 Vb1 # p2.

1.1. Remark. This theorem, with the same proof, holds for coverings
7w : M — M of a compact manifold M, with the lifted Lagrangian
L=Lon.

Proof. We first prove that if for some p1, po € M, ®(p1,p2) = —0o0, then
®r(g1,92) = —o© forallq1,q0 € M. Let v, n: [0,1] = M,y € AC(q1,p1),
n € AC(p2,q2). Let x, € AC(p1,p2) be such that nh_)néo Sp4x(zn) = —o0.
Then

Jim Spyp(y* ook 0) = Spk(7) + Spk() + lim Spx(zn) = —oo.
Thus the number

e(L) :=inf {k € R|®x(p,q) > —o0 }

does not depend on (p, ¢). We have to see that —oco < ¢(L) < +oo. Since
the function k — ®(p, q) is nondecreasing, it is enough to see that there
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exist k1, k2 € R such that ®,(p,q) = —oco and ®,(p,q) > —oo. We
first prove the existence of k. Since L is bounded on

{z,v) eTM |veT,M, v|<2},
there exists B > 0 such that
|L(z,v)] < B if |v|<2. (1)
Let z, : [0,n] — M, 2z, € AC(p,q) be such that |z,] < 2. Then
S1(zyn) < Bn and hence, for k; = —B — 1, we have that
@k, (p,q) < limint S;_p_1(zn) < limint < /0 " L@ i) dt — (B + 1)n>
< 1imi%f(Bn — (B + 1)n) = —o0.

Now we prove the existence of ky. The superlinearity hypothesis
implies that L is bounded below. Let A be a lower bound for L on TM.
We claim that it is enough to take k3 > —A + 1. Indeed

T
Spany () > /0 (A+ko)dt >0 for all z € AC(p,q).

hence @, (p, q) > 0.

It remains to prove that ®.(p,q) > —oc for all p, ¢ € M, where ¢ =
c(L). Suppose not. Take p € M, then ®.(p,p) = —oco. Let v € AC(p,p)
be such that Sri.(v) < —a < 0. Then there exists € > 0 such that
Sttete() < -—%a < 0. Let

On =y x Noxn,
then
Qete(p,p) < li]{]nSL-Fc—%-a(éN) < li]{[n—% alN =-00.

This contradicts the definition of ¢(L). In particular, we have also
proven that ®.(p,p) > 0 for all p € M. By taking v € AC(p,p) with
bounded velocities and arbitrarily small parameter intervals, we have
that

D.(p,p)=0 forallpe M. (2)

Similarly
&u(p,p) =0 forallpe M forall k > ¢(L). (3)
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We now prove (c). Let k > ¢(L) and pi, p2, p3 € M. Let z¥ :
0,T,] — M, z% € AC(p;, p;), be such that
liTngHk(ﬂEif) = ®(pi,pj) 0,5 €11,2,3}
Then 5'37112 * x?f’ € AC(p1,p3) and
Ok (p1,03) < SLin(Tht % 700) = Spk(@h’) + SLk(zy))-

Taking the limit when n — oo we get that

@y (p1,p3) < Tr(p1,p2) + Pr(P2,p3) - (4)
Finally, using (3) and (4), we obtain that

0 = ®(p1,p1) < ®k(p1,p2) + Pr(p2, P1) (5)

when k > c(L).
We prove that @y, is Lipschitz when k > c(L). Let v : [0,d(p,q)] —» M
be a geodesic joining p and ¢, using (1) we obtain

d(p,q)
e < [ (LOO50)+ k) dt
Pr(p,q) < (B+k) d(p,q) for k=>c(L). (6)
Therefore if k > ¢(L),

P (p1,p2) — @k(q1,92) < Pr(p1, @1) + Prlqr, p2) — Pilg1, G2)
< ®x(p1, q1) + Pr(q1, 92) + Prlg2, p2) — Pr(g1, ¢2)
< @x(p1, q1) + @x(g2, P2)
< (B + k){(d(p1,q1) + d(p2; 92))-

Changing the roles of p; and ¢;, i = 1,2 we get that

|®1(p1,D2) — Br(q1,92)] < (B + k) (d(p1, q1) + d(p2, 42)) -

We now prove that if k¥ > ¢(L) and p # ¢, then the function k£ —
®r(p,q) is strictly increasing. By (5) this implies (d). Let p # ¢ and
¢ >k > ). Let z, : [0,T,] — M, z, € AC(p,q) be such that
Hmy, Spie(2n) = ®p(p, q). We have that

Spt0(xn) = Sp4k(Tn) + (€ — k)T
2e(p, @) = Pu(p, @) + (£ — k) liminf T,
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It is enough to prove that liminf, T, > 0, because then ®,(p,q) >
®1(p,q). Suppose that liminf, 7, = 0. By the superlinearity of L, for
all B > 0 there exists A > 0 such that

|L(z,v)| > B |lv| - A.
Then
Tn
®(p, q) = lim Spe(zy) > limi%f [ A B |i&y| dt + (k— A) T,
> Bd(p,q) +0,

for all B > 0. Therefore &1, 4(p,q) = +00, which contradicts (6). a
Through the rest of the paper we shall neeed the following results:

1.2. Theorem. (Mather [8].) For all C' > 0 there exists A; = A1{C) such
that if T' > 0, p, g € M and z € AC(p, q,T) satisfy

(8) Si(@) =min{ S(y) |y € AC(p,q,T) }.

(b) Sp(z) < CT.

Then

(¢) llz@®)| < Ay for all t € ]0,T.

(d) 2|z is a solution of (E-L).

1.3. Corollary. There exists A > 0 such that if T > 1, p,q € M and
z € AC(p,q,T) satisfy

Sp(x) = min{ Sr.(y) |y € AC(p,q,T) },
then ||z(t)|| < A for all t € [0,T].

Proof. Let
C = sup{ |L(z,v)| | ||v|| < diam (M) }.

There exists a geodesic v € AC(p, q,T) with
d
4] = —(1;-;1) <diam(M) and Sp(y) < CT.
Then the corollary follows from theorem 1.2. O

1.4. Corollary. There exists A > 0 such that if p,q € M and z €
AC(p,q,T) satisfy
(a) Sp(z)=min{SL(y) |y € AC(p,q,T)}.
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(b) SL(z) < ®c(p,q) + dar(p,q).
Then

() T > 4 du(p,q).

(d) ||lz@®)| < A for all t € [0,T].

Proof. Let B be from (1) and let v : [0,dp(p,q)] — M be a minimal
geodesic with || = 1 joining p and ¢. By the superlinearity of L, for
D =2B+1 > 0 there exists F > 0 such that

|L(z,v)| > D |v| — E for all (x,v) € TM.
We have that

Bduy(p,q) > Sc{v) > @:(p,q9) > Si.(z) — dm(p, q)

T
> /0 (D |2(t)] — E) dt ~ dar(p, )
>Ddpy(p,q) — ET —dpy(p,q) -

Hence (D-B-1 B
T > —E*—)dM(p, q) = (E) dp(p,q) - (7)

Now let
C = max{|L(z,v)| | [v] < § }.
Let n € AC(p,q,T) be a minimal geodesic. Then, by (7),
dup(p, E
bl = m(p.9) _

and hence Sp(n) < CT. Let A; = A1(C) be from theorem 1.2, then it

is enough to use

Azmax{Al(C),%}. O

Let M(L) be the set of invariant Borel probability measures for the
Lagrangian flow.

Theorem I1.
c(L) = —min{/Ldu‘ u EM(L)}.
Proof. Let y € M(L) be ergodic. Let (p,v) € TM be such that

T
lim %/O L(ft(p,v))dt:/Ldu.

T—)OO
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Let B > 0 be such that
|L(z,v)] < B if |v] <2.

For N > 0 let gv == 7(fn(p,v)) and let vy : [0,d(p,qn)] — M be a
geodesic joining gy to p. Let zn : [0, N] — M be defined by zn(t) =
7(fe(p,v)). Then fi(p,v) = (zn(t),Zn(t)). For k € R, we have that

d(P#IN)
Spelm) = [ Llaw(®), (D) dt < (B + k) diam(01).

1 1
i = Sp4p(@n * ) = lim = Sr4r(@n) +0 = Sppu(p) = Srp) + k.
If £ < —Sp(p), then
®1(p, p) < lim Spip(zn * V) = —00.
Hence k£ < ¢(L). Therefore

(L) > sup {—Sp(u) | € Merg(L) }
> —min{Sr(u) | pe ML)} .

Now let k < ¢(L) and p,q € M. Then ®(p,q) = —o0 and there
exists a sequence of paths z,, : [0,T,,] — M, z, € AC(p, q) such that

li?gn SL+k(93n) = —0. (8)
Since L is bounded below, we have that
1171111 T, =+00. 9)

Let y, : [0,T5) — M, yn, € AC(p, q) be a minimizer of the action among
the curves in AC(p,q,Ty). Then (yn(t), ¥(t)) is an orbit segment of f;
and by 1.3, |§| is bounded. Let v, be the probability measure defined
by

/ hduy, = — h(yn( ), §n () di

Tn
- [0 B (£ (Yn(0), #m(0))) dt |

for all h: TM — R continuous. There exists a subsequence Vp, Which
converges weakly™ to a probability measure y. By (9), p is invariant
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under the flow f;. Since the velocities are bounded we have that
1
T,

(3

Stk(Un;) = Sp+x(p) = SL(p) + k.

lim
g

Since limy, Sp+k(yn) = Pr(p,¢) = —oo and T, > 0 for all n, then S () +
k < 0. For any k < ¢(L) we found an invariant measure y such that
k < —Sr(). Therefore

c(L) < sup {—Sp(u) |p € M(L)}
< -—min{Sp(u)|pe ML)} . O

We state now theorem III. The proof of theorem III is split in Mané
[6] and [3]. We say that a property holds for a generic Lagrangian if
given any Lagrangian L, there exists a residual set O C C*°(M,R) such
that the property holds for all the Lagrangians L+ with ¢ € 0. We say
that an invariant measure is uniquely ergodic if it is the only invariant
measure on its support. A periodic orbit for the Lagrangian flow is said
hyperbolic if it is a hyperbolic periodic orbit of the flow restricted to its
energy level.

Definition. We say that p € M(L) is a minimizing measure if
/ Ldy=—c(L).
Denote by M(L) the set of minimizing measures in M(L).

Theorem III.

(a) For generic L, .//\\/l(L) contains a single measure and this measure is
uniquely ergodic.

(b) When this measure is supported on a periodic orbit, this orbit is
hyperbolic.
Item (a) is proved in Mafié [6] and item (b) is proved in [3].

Conjecture. (Maié.) For a generic L, .//\\/I(L) consists on a single mea-

sure supported in a periodic orbit.

2. Recurrence properties
The prerequisite of the following definition is this remark: since dy > 0
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for k > ¢(L), then for any absolutely continuous curve x : [a,b] — M
and k£ > ¢(L) we have that

Srvk(x) 2 Bp(z(a), 2(b) 2 —2k(2(b), z(a)) - (10)

Definition. Set ¢ = ¢(L). We say that = : [a,b] — M is a semistatic

curve if it is absolutely continuous and:

SLte ($|[t0,t1]) = @ (z(to), x(t1)) , (11)
for all a < tg < tj < b; and that it is a static curve if
Site (g ) = —Cel@(tr), 2(t0)) (12)

foralla < tg <ty <b.

By (10), equality (12) implies (11). Hence static curves are semi-
static. Semistatic curves are solutions of (E-L) because they minimize
the action of L+cin AC(z(ty), z(t1),t1—1tg). If p, ¢ € M are on a static
curve then d.(p,q) = 0.

If w € TM, denote by z,, : R — M the solution of (E-L) with
T (0) = w.

Definition.
(L) :={weTM|zy: R — M is semistatic },
S(L) =={w € TM|zy: R — M is static },
s = {we M| Tw|[n,c0[ 18 Semistatic }.

Remark. Replacing ¢ by any other real number in the definition of
semistatic solution, the set £1(L) (and then $(L) C %(L) ¢ (L))
becomes empty.

For k > ¢(L) this remark follows from the following estimates:

+00 > maxp genr Pu(p, ) > Sp+x(@ljo77) = Cr(2(0), 2(T))
2 ®c(2(0),2(1) + (k — )T
2 maxy geM Pe(p, @) + (K — )T

The following theorem is proven in Marié [7].
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Theorem IV. (Characterization of minimizing measures.) A measure
u € M(L) is minimizing if and only if supp(p) € S(L).

We include a proof below, using theorem V(c).

Given an f; invariant subset A C TM, and € > 0, T > 0, an (e, T)-
chain joining &, € A and & € A is a finite sequence {(;, t,—)}fil CAxR
such that

Q=% CN+1=%&, t>T and d(f;(G),G+1) <&,

fori=1,...,N. We say that a set A CTM is chain transitive if for all
€a, & € A, and all € > 0, T > 0 there exists an (¢, T)-chain in A joining
& and &. When this condition holds only for all &, = & € A we say
that A is chain recurrent.

Theorem V. (Recurrence Properties.)

a) L(L) is chain transitive.

b) (L) is chain recurrent.

¢) The o and w-limil sets of a semistatic orbit are contained in S(L).

Proof. Lets first prove (c¢). Let w € ¥ and let v € w(w). We prove that
wlw) C EAD(L), the proof that a(w) C E(L) is similar. It is enough to
prove that for all T > 0, xu‘[O,T] is static. Let p := x4,(0), q := z,(T).
Let pp, = x4(Sn), ¢n = Ty (ts) be sequences of points in M with

Sp < Sp+ 1T =t, < 8p41, Snsln — 400
and
j';w(sn) 7;’ J?u(O), jjw(tn) _77 xu(T)
We have that

Sr+te (xw'[sn,tn]> = Oc(Pn, gn) 5

Cl
Twl[sp tn] — Tullo,7] 5

Stte (Z'ul[o,T]) = lim Stte (%I[Snvtn])
= IiTan @ (P, qn)
= 0¢(p, q) -
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Moreover, by the continuity of ®., we have that
®.(p,q) + ®c(q,p) = hﬁn{@c(pm Gn) + q)c(Qnaanrl)}
= liTan {SL+C (xw'[m,tn]) + ST4c (mw([tn,sn+1])}

= hTrzn {SL+C (xwl[sn,smtﬂ)}
= lim ®c(pn, Prt1)

= ‘%(%CI) =0.

Proof of theorem IV. Suppose that z € M(L) and supp(p) € 2(L). Let 0
be a generic point for g and L+c. Then 6 is static and if zg(t) = mop(0),
we have

/(L+c)du= El}rlooT/ [L(zg,5g) + c| dt

=Tl{moof‘1) (6(0), zo(T))

1
< lim — sup @ =0
=00 p,qu])\/I c( 7Q)

where the second equality is because 6 is (semi)static. Hence p is mini-
mizing.

Now suppose that 1 € M(L) is minimizing. Applying lemma 2.2
in Mafié [6], we get that for p-almost every @ there is a sequence T =
T;(0) — o0 such that

i dra (9, e1,(0)) =0, (13)
5
i /O (L (6, t9) + €] dt = 0. (14)

By theorem V(c), it is enough to prove that supp(z) C (L). Since &,
is continuous, it is enough to prove that p-almost every 6 is semistatic.
Now let 6 satisfy (13), (14) and define

86(T) := Sp+c (309\ ) ‘I’c(ﬂﬂe( ), z9(T)) .

7]

Then 64(t) is non-derecasing and g(t) >
3
)

By the continuity of ®. and (13) we have that

jlim e (26(0), zo(T3) = 0. (15)
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From (15) and (14) we have that lim;_, 1. 6¢(T;) = 0. Since 6g(t) is
non-decerasing, then 6g(t) = 0 for all ¢ > 0. Hence 6 is semistatic. O

Proof of theorem V(a). Given ¢ > 0, S > 0, u, v € £(L), we have to
find an (g, S)-chain in (L) joining u to v. It is easy to see that such
(g, S)-chain exists if w(u) N a(v) # @. Let

A=al) , Q:=wu) (16)

and suppose that ANQ = @. Let p € 7(Q), ¢ € 7(A). Let n, :=[0,T,,] —
M be such that

pi=1m(0) €m(Q) , q:=mn(Tn) € T(A)

Sttelii) < elp ) + - a7)

By corollary 1.4, we can assume that 7, is a solution of (E-L) and
satisfies
()| <A forall 0 <t¢<T,. (18)

Given § > &g > 0 there exists 0 < § < &g such that if |v[, [w| < A
and drps (v, w) < 6 then

dra(fe(v), fe(w)) < &g for all |t] < S. (19)

Let M be the union of A, Q and the set of accumulation points of
the tangent vectors of the n,,’s:

M:zAUQU{UGTM

Then
MC {veTM||v] <A}, (20)
We shall need the following lemmas

2.1. Lemma.
(a) M C E(L).
(b) M 1is invariant.
Let K be the set of vectors which are on the w-limit of vectors of M.

K:= J [w)].

veEM
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Since M is closed and foward invariant, then the closure K € M C %(L).

Moreover, the vectors in K are chain recurrent. By (20) K is compact.
Given ¢ > 0 let

Ks := {’U ETMIdTM(T),K) < (5}.

Since K is compact, the number of connected components of Kg is finite.
Let A; = Ay(6), 1 =0,1,... ,N, Q C Ag, be the connected components
of Ké.

2.2. Lemma. FEach component A; is (26,1)-chain transitive for any
T >0.

If A C Ag the proposition is proved. Suppose that AN Ay = @.
Consider the oriented graph T with vertices A;, 4 = 0,1,... ,N and an
edge A; — A; if there exists v € M and #; < ¢; such that fi.(v) € A;
and ftj (v) € Aj.

2.3. Lemma. There exists a path in the graph joining Ag 2 Q to A; 2 A.

We need that the connecting orbits between the A;’s have time in-
tervals greater than S. Let A; — A; be an edge of the graph. Take a
connecting orbit fi(v), t; <t;, v € M, from A;(6) to A;(6). Since ftj (v)
is in a é-neighbourhood of K N A;(6) and K is invariant, (19) implies
that ftj+s(v) is in a p-neighbourhood of K N A;(6).

Now we can construct an (g, S)-chain joining u € A to v € Q by using
the connecting orbits between the A;’s and joining them by (e, S)-chains
inside each A;. This completes the proof of theorem V(a). O

Now we prove the lemmas

Proof of lemma 2.1(a). Equation (17) implies that

St teliinlag) < Belin(@),1m(B) + ~

. k k
foral0<a<fB<T, Ifo< an, < T”k’ nnk(ank) -, bnk —an, T,
then
(nnk(t)v'f]nk) - (xv(t)ajj'u(t)) = ft(U) for 0 <t < b, —an
and by the continuity of ®. we have that

SL—I—c(va‘[O,T]) < 'I)c(.’Ev(O), xv(T)) .

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997



LAGRANGIAN FLOWS 169

Hence 2y 7} is semistatic. O

Proof of 2.1(b). Since the set AU Q C M is invariant, we only have to
prove that M\ (AU Q) is invariant. Let w € M\ (AUQ) and (k) CN,
(tnk) C R be such that Ty, (tn,) 2w It is enough to show that

lim il}clf bny, = +00, (21)
lim inf [Ty, =ty | = +00. (22)
We need the folowing claim
Claim. The limit points of { 1, (0) |n € N } and {#(T,)|n € N} are in Q

and A respectively.

Proof. We prove it only for limit points 9,(0) — w € TM. Since

nn(0) € m(Q), then m(u) € 7(R). Since Q C £(L) and M C 1 (L), then

the claim follows from part (b) of theorem VI. O
We only prove (21). Suppose that

hmn,;ft"k =a < +00.

Then there exists a convergent subsequence (7y, | 0, a]> in the C'! topology,
to a semistatic solution y such that

$(a) = i, (a) = w.
Then by the claim we have that
3(0) = f-alw) = lim i, (0) € Q.
and hence w € Q. This contradicts our previous assumption that

we M\ (AUQ). O

Proof of lemma 2.2. Let 7 > 0. Since A; = A;(6) is open and connected,
it is pathwise connected. Let &, ¢ € A; and let T : [0,5] — TM be
a continuous path such that T'(0) = &, T'(s) = (. Let 0 = 59 < 81 <

- < $p = S be such that drar(T(s:), T(si41)) < %. For each s; let
v; € A;(8) NK be such that d(I'(s;),v;) < 8. Since the orbits of K are
recurrent, there exist 7; > T' such that d(f7, (v), vi) < %. We have that

d(fr, (vi), vi1) < d(fr; (05), T(80)) + d(T(s3), D(8i41)) + AT (Si41), Vig1)
< 26.
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The orbit segments { fy(v)|0 < ¢t < 7,7 = 0,...,n — 1} give the
required (26, T')-chain. a
In order to prove lemma 2.3 we need first

2.4. Lemma. For all § > 0 there exists N = N(6) > 0 and S = S(6) >0
such that if n > N, then for all c € [0,T — n] we have that

Ks N {(nn(@), @) |t €lc—S,ce+ SN0, T,] } # 2.

Proof. Suppose it is not true. Then there exists 6 > 0 and sequences
ny — oo and ¢ € [O,Tnﬂ], suchthat 0 < ¢y —k < +k < T”k and
Ks N { 0y, (8), 0, O L € g —Kyen + K]} = @

Let {ve TM| |jv|| < A, v¢Ks} =B, then (n,, (),7n, (1)) € B for all
k€ Nand t € [cp — k,c + k]. Consider the measures uy defined by
1 ¢tk
[ ddmi= [ OOy 0)

Since the 7, s are solutions of (E-L), B is compact and k — +00, then
there exists a convergent subsequence v, — v in the weak* topology
to an invariant measure v of the Lagrangian flow, with supp(v) C B.
Moreover, supp(v) C M. Let v € supp(v). Since B is compact, we have
that the w-limit @ # w(v) C K and

@ #w(v) Csupp(v) CBNKCBNKs =g

This is a contradiction. O

Proof of lemma 2.3. Suppose that ANAg = &, otherwise there is nothing
to prove. For each n € N let

Qp 1= SUP{t € 0 T !(ﬂn t) M(l)) € AO}’
an + Sy, := Inf{ ¢ €lan, Tp| | (Mn(t), 7n(t)) € Ks }.

By lemma 2.4, for n > N(§) we have that 0 < s, < S(§). Choose
a sequence 77} such that (n}b(an),mll(an)) converges. Renumbering the
Ay’s if necessary, we can assume that s, — s € [0,5(6)] and () (an +
51),?‘7711(% +s1)) € A7. By lemma 2.1(a), the sequence

(n}u f]}b)|[an,an+sll(s — ap)
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converges to a semistatic solution of (E-L) (ﬂ/l,"yl)][o,sl], whose points
are in M and such that v1(0) € Ao, ~i(s1) € A1 # Ag. Hence there is
and edge Ag — Ay in the graph T
Suppose that A; N A = @, otherwise the lemma is proved. Let
bn = sup{t € [0, To] | (1 (1), 7 () € Ao NV A1}

The same arguments show that there exists 0 < s2 < § (6) and a subse-
quence n%i[bn,anrs?] such that nﬁ(bn + 52) €Ay, Ay £ A, i =0,1, and an
edge Ay — Ag or Ag — As. We can repeat this argument each time

that the final A; does not contain A. Since the number of the A;’s is
finite, we obtain a path in the graph I from Ag to A; with A C A;. O

Proof of theorem V(b). Let w € (L) and let A = a(w), O =w(w). It is
easy to see that if AN # @ then w is chain recurrent in 3(L). Suppose
that ANQ = @. For all s < ¢ and all € > 0 there exist 7' = T(y) > 0
and ¥ = Ye 5 1 [0, 7] — M such that v(0) = 24,(t), Y(T') = zw(s) and
Stte(y) < “‘DC(xw(t)vxw(S)) T e

Let

=YL n T, = T(’y%rmn) (23)
We can assume that |7(t)] < A for all 0 <t < T,.

The rest of the proof is similar to item (a), but now the corresponding
M C S(L). 0

3. Graph, covering and coboundary properties

Theorem VI. (Graph Properties.)

(a) If ¥(t), t > 0 is an orbit in ST (L), then, denoting w : TM — M
the canonical projection, the map «| 41i>0y 48 ingective with Lipschitz
inverse.

(b) Denoting So(L) C M, the projection of S(L), for every p € So(L)
there exists a unique &(p) € T,M such that

(p, &) e =T(L).

Moreover
(p,&(p)) € £(L),
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and the vector field £ is Lipschitz. Obviously
S(L) = graph(§) .
For a proof of the following lemma see Mather [8] or Mafié [4].
3.1. Lemma. ([8].) Given A > 0 there exists K > 0&1 >0 and § > 0
with the following property: if |vi| < A, (pi,v:) € TM, i = 1,2 salisfy
d(p1,p2) < 6 and d((p1,v1), (p2,v2)) = K~d(p1,p2) then, if a € R and
z;: R — M, i=1,2, are the solutions of L with x;(a) = p;, &:i(p;) = v,
there exist solutions v; : o —e,a+¢€] — M of L with 0 < ¢ < €1,
satisfying
ne—¢gy=z1(a—¢) , nlate)=sa+e),
Tla—e)=1x2(a—¢) , mlate)=zi1(ate),
SL@1ljg—zate]) T SL(@2a-e,ate) > Spin) + SL(72)

Proof of theorem VI.

(a). Since the curve -y is semistatic, corollary 1.4 implies that there exists
A > 0 such that |§(t)] < A. Let K >0, &7 =1, 6 > 0 be from lemma
3.1. We prove that if (p,v), (¢,w) € {¥(t)|t > 0} and dy(p,q) < 6,
then

dTM((pa U)a (Qa ’(U)) <K dM(p7 Q) .

This implies item(a). Suppose it is false. Then there exist 0 < t; < to
such that

dar (y(t1),7(t2)) < 6
drar (¥(t1), 5(t2)) > K dag (y(t1), v(t2))

By lemma 3.1 there exist 0 < ¢ < ¢1, and solutions «, 3 : [—¢,e] — M,
of (E-L) such that

(=€) =7(t1 —€)=p ale) =7(ta+¢) =g
B(—e) =~(ta —e)=:s Be) =1 +¢e) =7

Sp(a) +5p(8) < SL(’Y|[t1_a,t1+e]) + 5L (7|[t2_5,t2+a])
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Since 7|)g,4 o[ I8 semistatic, we have that

(Dc( aQ) + (I)c(57 T) < SL+c(a) + SL"—C(/B)
< SL-FC(’YI[tl—s,tl—!—s]) + SL_I_C(,YI[tQ-E,tQ'i"E])
< Oe(p, 1) + 2c(8,9)

Since 0 < ®.(s,7) + P.(1, 5),

(P, q) < Be(p,7) — Bels,7) + Pels, q)
Pe(p,q) < Oc(p, ) + (T, 8) + Pc(8, Q) (24)

Since Y[jg, 1.o] Is semistatic, we have that

e, @)= Stte(V ity e, ty4e]) T SLreV e 1g—e]) + SLte(Vity—z, ty44]) »
De(p, @) =Pc(p,7) + D1, 8) + Re(s, 9) -

This contradicts (24).

(b). Now we prove item (b). We prove that if p, ¢ € Zo(L), (p,v) € S(L),
(q,w) € (L), and d(p, q) < 8, then

dTM((p7 U)v (Q7 ’U))) < KdM<p: Q> .

Observe that this implies item (b). Suppose it is false. Then by lemma
3.1 there exist «, 3 : [—¢,€] — M such that

a(—e) = f-e(q,w) = q_¢ a(e) = fe(p,v) = p_;
B(—¢) = f-e(p,v) =:pe B(e) = felg,w) =: ge
and
Sp(e) + SL(B) < SL(@wl_cq) + Sr(@v][c )
So

DPe(Goc,Pe) + Pe(Doer Ge) < Pe(Goc, Ge) + PelpD e, Pe)
=®c(G_c,qe) — (e, p—c)
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Theorem VI B.

Thus

De(qe; @) < Pelq_c, Pe) + Pe(Pe, P—e) + Pe(P—e,qe) < Pe(g—e, )

which is a contradiction. ]

Denote by L the set of equivalence classes of the equivalence relation
de(a,b) = 0 lifted to S(L) by the vectorfield & of theorem VI. Denote by
w{v) the w-limit of v € TM by the flow f;. I ' € L set

't ={west(L)|wwerl}.
Clearly I't is foward invariant. Let

If=nrfrt.
t>0

Theorem VII. (Covering Proper‘y.) ‘
(a) 72T (L) =M.
(b) For allpe€ I‘BL, there exists a unique &r(p) € T,M such that

(p,ér(p)) €TT.

Moreover, &r is Lipschitz.

Observe that 7 : (L) — M is not necessarily injective. We recall
that Mané stated item (a) in a stronger form: «T' = M for every equiva-
lence class I'. This may not be true as the following example shows. Let
M = S' = R/Z be the unit circle and L = %UQ —cos 6mz. Then the three
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maximums of the potential A =0 =27, B = %’1 and C = —g are singu-

lar (hyperbolic saddle) points of the Lagrangian flow. For mechanical
Lagrangians L = %1)2 — ¢(x), we have that

C(L) =€) = — mingeps L(SC,O) )

and the static points are the critical points (z,0) of the Lagrangian
flow such that L(z,0) = —eg. In this example ¢(L) = 1 and $(I) =
{(A,0),(B,0),(C,0)}. We shall prove below that d; (A4, B) = ®,(4, B) +
®1(B,A) > 0. Hence (4,0) and (B,0) are not in the same equivalence
class. By (30), ©T(L) C E‘l{c(L )}, hence if T is the equivalence class
of (4,0), then 7I'" C [O ST 2r ox] # S1. This example can easily
generalized to higher dlmensmns.

We show now that in the example above di(A, B) > 0. By theorem
V, the set ¥(L) is chain transitive and contains

S(L) = {(4,0), (B,0),(C,0)}.

Moreover, by (30), £+(L) € E~1{c¢(L)}. In our example this is only
possible if 3(L) contains complete components of the saddle connections
(so that w2 (L) = M). From the symmetry of this Lagrangian we get
that ©(L) contains all the saddle connections. Hence (L) = E-1{c(L)}.
Let (z,4) be the orbit on E-1{c(L)} with a-limit (A4,0) and w-limit
(B,0). Then it is semistatic and hence

Liz,&) + o(L) = & Ly(,) = &,
+o0 9
(A, B) = I Spolelp ) = [ @) dt >0,

—0Q

The same argument gives that ®1(B, A) > 0 and thus d;(A, B) >0
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Proof of theorem VII. We prove (a). We may assume that 75(L) # M
otherwise the proof is trivial. Let p € M \ 75(L) and q € 75(L) # @.
For each n € N let 7y, : [0,T,] — M be such that
L 7(0) = p, Wm(Th) = ¢.
2. Spte(n) £ (P, @) + %
3. v, minimizes L + ¢ in AC(p, ¢,T7).
Then
(i) ~n is a solution of (E-L).
(i) [4n]| < A for all t € [0,T5,].
Since £(L) is invariant under the Lagrangian flow, item (b) of theo-
rem VI implies that
(ifi) T}, — +oo.
Let n(t) := wf:(p,v). By (i) and (iii), for any fixed T > 0 we have
that vn o) — 7ljo,r| in the C! topology, and hence

Stte(liory) = lim Sp4c(nljo ) -

Clearly n(0) = p. It is enough to show that n|[0’ oo is semistatic. For,

we have that

Stte(m) = Setelmljor)) + Se4eOnlir )
< e(p, q) + 3
< @ep, W(T)) + Bel((T), @) + 2
< 0e(p, (D)) + SLtelnlrzm)) + & -

Hence
Stte(mljp)) < Pelp, (1) + 2.

Taking the limit when n — +o0o we obtain that 7 is semistatic.

We now prove item (b). Let A > 0 be from corollary 1.4 and K =
K(A) >0,e1 =¢1(4) >0, § = §(A) > 0 be from Mather’s lemma 3.1.
It is enough to prove that if py, ps € I‘a’, v1, vg ETT, w(vy) = ps, 1 =1,2
and dps(p1,p2) < 6, then drps(vy,ve) < K duy(p1,p2)-

Suppose it is false. Then there exists p; € I‘ar , v € T, w(y;) =
p; such that dps(p1,p2) < 8 and dyp(vy,ve) > Kdpy(p1,p2). Since
p; € I‘(T, there exists 0 < € < g1 such that fi(v;) € Tt for t > —e.

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997



LAGRANGIAN FLOWS 177

Let ¢; == wf_c(vi), 1y == fie(v;). By Mather’s lemma 3.1, there exist
n : [—€,€] — M such that n;(—¢) = g;, mi(+€) = r; and
Stae(m) + Se4e(m2) < Site(@oyl|_c o) + Sitc(@uyl[_c,4e])-
Thus
Dc(q1,72) + Pelg, 1) < De(qr,71) + Pelge, T2)- (25)
Let u; € w(v;) and z; == 7(w;). If T2 " 4o is such that fi (03) ELLIN
n
u;, we have that
De(giy i) = lim Pe(gs, Lo, (TH) = lim SL-{-C(SEU,L‘“_E,TT’LJ)
= SL—I-c(l'vi |[—a,+6]) + ligl SL—l—c(iUvi |[+57Tﬁ'])
> ®(gi, i) + Pc(ri, zi) -
By the triangle inequality for ®. we get that
De(Giy 2i) = Belqin 1) + Belri, 24) (26)

From (26) and (25) we have that

De(q1,21) + Celg2; 22) = Pe(qr, T1) + (71, 21) + Pelg2, 72) + e(r2, 22)
> ®c(q1,72) + Belq2, T1) + (1, 21) + Pe(r2, 22)
> @c(q1, 22) + Pc(g2, 21) - (27)
Since u; € T, then d.(z1,22) = ®.(z1, 22) + Pc(22,21) = 0. Adding
dc(z1,22) = 0 to the right of inequality (27), we obtain that
De(q1,21) + Pelqe, 22) > Pe(q1, 22) + P22, 21) + Be(21, 22) + Pelqe, 21)
' Z @c(q1, 21) + P2, 22) -

This is a contradiction. O

Theorem VIII. (Generic Structure of $(L).) For a generic Lagrangian
L, $(L) is a uniquely ergodic set. If it is a periodic orbit then it is a
hyperbolic periodic orbit.

Proof. This should be thought as a corollary of theorems III and IV.
Take the generic set given by theorem III of Lagrangians L that satisfy
#J/\Z(L) =1 and call this unique minimizing measure u(L). Then if u is
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an invariant measure of L and it is supported in (L) then by theorem
IV it is minimizing. Thus g = p(L). This proves the theorem. 0
Theorem IX. (Coboundary Property.) If c = c¢(L), then (L + C)li(L) s a
Lipschitz coboundary. More precisely, taking any p € M and defining
G:35(L)— R by

G(w) = éc(pa 71'(’1,0))

Then
L +lgy =g
where 4G .
ﬁ(w) = lim [ G(fa(w)) — G(w) ]
Proof. Let w € (L) and define Fy,(v) := ®.(m(w), 7(v)). We have that
Tl =i (Pt = Futw)]
1

=1l 7 - ¥ 3
Jim [®:(mw, 7 fr, w) — e(Tw, Tw) |

- %1_%% [SL-I—C <$w|[07h])}

We claim that for any p € M and any w € (L), h € R,

G(frw) = @c(p, 7(fow)) = Pc(p, m(w)) + Tc(m(w), 7(frw))

G(frw) = (Pc(py W(w>) + Fy (fh('w)) . (28)
This is enough to prove the theorem because then
dG d Ey,
—| = —F =—| =1L
Fl o= mhe| =l =) e

and G is Lipschitz by theorem I.
We now prove (28). Let ¢ := m(w), 2 = w(fp, w). We have to prove
that

éc(pa .CC) = (DC(pa Q) + éc(cb 'Z') . (29)
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Since the points ¢ and z can be joined by the static curve :J:wl[o,h], then
De(z,q) = —Pe(q; ) -
Using twice the triangle inequality for ®. we get that
De(p, @) < 2e(p, %) + (2, q) = 2e(p, ) — De(q, 2) < De(p, q) -

This implies (29). a

4. Connecting orbits inside fixed energy levels
We quote a paragraph from Mané [7]:

“Exploiting that the energy, F : TM — R, defined as usual by
E(z,v) = g—ﬁ v — L, is a first integral of the flow generated by L, leads
to information on the position of ST (L). First observe that it is easy to
check that a semistatic curve x : [a,b] — M satisfies:

E(z(t),2(t)) = (L) - (30)

This follows from calculating the derivative at A = 1 of the function
F:R — R given by:
b
FO) = [F @+ oo, ae)d,
a

where z) : [a, %] — M is given by z(t) = z(At). From (30) follows that:
sT(L) c BTN,
that together with 7 ¥ (L) = M implies:
rEYe)=M.

Hence,
¢ > maxg E(q,0).

Moreover $(L) ¢ E~1(c) implies:”

4.1. Corollary. (i € M(L) is minimizing if and only if
L
[ (G vau=o0,  suppi c BNem).
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Theorem X. If k > c(L) then for all p,q € M, p # q there ezxists a
solution x(t) of (E-L) such that x € AC(p,q) and

Ok (p, q) = Sp4r(x)
Moreover the solution (x(t), &(t)) is contained in the energy level E-1{k}
4.2. Remark. If p = g and k£ > ¢(L), then the infimum

O4(p,p) = nf{Sr+x(7) |7 € AC(p,q) } =0

can not be realized by a path defined on an interval with nonzero length.
For otherwise if v:[0,7] — M, T > 0 is a minimum, then

®e(p,p) < Sp4c(y) = Pk(p,p) — (k — (L) T < @x(p,p) = 0.
Contradicting theorem I.

4.3. Remark. This theorem, with the same proof, holds for coverings
T: M — Mofa compact manifold M, with the lifted Lagrangian
L=Lon.

Proof. Suppose that p, g € M and p # ¢q. For each T > 0 there exists a
minimizer 7 of Sy, on AC(p,q,T). Then

®x(p, g) = inf Sp(zr)+kT.
>0
Observe that
lim (Sp(zr)+ kT) = THI—E (SL—|—c(55T) +(k—o¢ T)

T—+oo

> lim (2c(p,q) + (k- )T)
= +00.

Choose a sequence {7;} such that lim; Sp(@r,+kT;) = ®4(p,q). Then
{T;} must be bounded and we may assume that it has a limit Tj. Since
p # ¢, by Corollary 1.4 we have that ||Zr,]| < A and then Tp > 0.
By Theorem 1.2, z7; is a solution of (E-L). Write w; = #7,(0), then
z7,(s) = mo fs(w;), where f; is the Euler-Lagrange flow. Choose a
convergent subsequence w; — w, then Ty, — Ty in the C1 topology,
where x,(s) = 7o fs(w), s € [0,Tp]. Hence

Sek(w) = lim Sp4x(@r,) = 2u(p, 9)-
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We now prove that minimizers of 574 are in the energy level £ = k.
Suppose that z € AC(p, q,T) is such that
Sr4k(€) = minye 40(p,q) STA£Y) -
Define
AT
R RCEIENEN

where z5(t) : [0, \T] — M is defined as x)(t) = (}) By the minimizing
condition F'(1) = 0. On the other hand

AT 5L
F'(A) = T L(zA(AT), 2A(AT)) + x dt + kT
0
now
oL oL (9x)\ L oL oL &T,\
O\ 9z O\ | dv OX
O (1) 2 (L (e D
T\ A2 \ 3T 32
So
T
0=TL{z(T),z(T))+ Tk — / <8L +~—x>tdt— a—Lazdt
0 Ov
T
=T L(z(T), & +Tk— / oL, dt—/ (dL>tdt
dt
=T L(x(T),z(T)+Tk— / —~:’vdt+/ Ldt - Lt[g
0 Ov 0
T
~ Tk —/ Edt
0
=T(k—FE).
This proves that the energy level of the solution z is k. ]

Observe that

L+k=(OL/dvyv on E-Mk}. (35)

4.5. Corollary.
(a) If k> c(L) and a,b € M, there exists a solution x(t) of (E-L) such
that ©(0) = a, z(T) = b for some T > 0, E(z(t),z(t)) = k for all
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t R, and:
T T
/0 Z—i(x,:bmdtzmm 0 1%%(y,y)ydt, (36)
where the minimum is taken over all the absolutely continuous y :
[0,T1] = M, T1 > 0, with y(0) = a, y(T1) = b and E(y(t),y(t)) =k
for a.e. t €[0,T7].

(b) Conversely, if given k > c¢(L) and a, b € M, there exists an absolutely
continuous z : [0, 1] — M with z(0) = a, z(T') = b, E(z(t),z(t)) =k
for a.e. t € [0,T)] and satisfying the minimization property (36), then
z(t) is a solution of (E-L).

If p,qg € nE-1{k}, define
ACE(p,q; k) :={z € AC(p,q) | E(z,2) = k a.e. }.

Item (a) of corollary 4.5 follows from (35) and item (b) follows from
the fact that since minimizers of Sy 4 have energy k, then minimizing
Sr+x on AC(p, q) is equivalent to minimize it on ACE(p, q; k).

Given p € M(L) define its homology or asymptotic cycle in M (cf.
Schwartzman [10]), by p(i) € Hi(M,R) = HY(M,R)* such that

=/ Odu , Vo€ H'(M,R),
T™

where 6 is a closed 1-form and [} its homology class. Define the Mather’s
beta function 8 : Hi(M,R) — R, by

B(h) := min{ S(u) | p € M(L), p(u) =h}.

Since, for any h € Hyi(M,R) the set K(h) := {p € M(L)|p(p) = h} is
convex, it follows that 3 is a convex function. Let 8* be its Legendre
transform: 3* : H1(M,R) — R,

B (w) = maxpe gy, (army{ w(h) — B(R) }
The reader can check that

F(6) = —c(L —0), V€ H'(M,R).
Define the strict critical value co(L) by

co(L) = ming ¢(L — 6) .
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Then

co(L) = —B"(0) = —min{ Sz(p) [ € M(L), p(u) =0}.
Observe that

d
g7 E(z,tv)],1 = v Lyo(z,v) - v >0, (37)

Therefore if (z,v) is a critical point of the energy function E then v =0
and g—i(:::,o) =0. Let

ep = maxpep E(p, 0).
By (37), we have that
E(p,0) = minyer,m E(p,v). (38)
In particular
eg =min{k € R|m(E-{k})=M}.

Let 6 be a closed 1-form such that cg(L) = ¢(L — p). Then the energy
function and the Euler-Lagrange equations for .—0g and L are the same.
Theorem X implies that 7(E~k}) = M for all k > ¢(L — fg) = co(L).
Hence

eg < co(L).

As observed in Mané [7], for mechanical Lagrangians

L@, v) = 2 (0,0} = 6(z),

with ( , ), a riemannian metric, we have that dg = eg = co(L) = c(L).
There is an example in [7] of a Lagrangian L with eg < cg(L). It uses
the following corollary to the proof of theorem X:

4.6. Corollary. If k > co(L), for every free homotopy class H #0 of M,
there exists a periodic orbit in E~'{k} such that its projection on M
belongs to that free homotopy class.

Proof. Fix k > co(L). By adding a closed 1-form we can assume that
(L) = ¢p(L). Let AC(H) be the set of absolutely continuous closed
curves in M with free homotopy class H. Let z,, € AC(H) with z, :
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[0,T,] — M and

At SL4k(Tn) = ceAt(H) S4k(@)-

Let Z,, be a lift of z,, to the universal cover M of M. We can assume that
Ty is a minimizer of Sf 4 0D AC(z,(0),2,(T3); Ty) and in particular,
that it is a solution of (E-L). Then the same arguments as in the proof

theorem X yield that {I,} must be bounded and ||&,| < A. We can
assume that lim, T,, = T3. Moreover

Ty > % min{ length(v) |y € AC(H)} > 0.

The same arguments as in theorem X give a closed curve v : [0, Tp} - M
which is a uniform limit of a subsequence of z,, and hence v € AC(H).
Moreover

Sr+.(7) = witge ao(a) S+4(2) (39)
and (v,%) is in the energy level E~1{k}.

It remains to prove that 4(0) = 4(T},). Suppose that ¥(0) # Y(Ty).
Let M be the universal cover of M and L the lift of L. Let v be a lift of
7. Consider the path n||_. j = VI, - 1) * Vljo,¢]- We have that 7 is not
C! and hence it is not a solution of (E-L). Since k > cy(L) > e, then k
is a regular value of the energy Eof L. By the Maupertius principle (see
theorem 3.8.5 of Abraham & Marsden [1]), 7|[_. ] is not a minimizer
of the (fj + k)-action on E‘l{k:}. Then there exists & € (n(—e),n(e)),
with energy E(&,é) = k and Sf+k(§) < Sr+k(n). Moreover, since M
is simply connected, the paths £ and 1 are homotopic by a homotopy
which fixes their endpoints. Hence m(§ * ¥|[_ 1, _¢]) and ¥|jp ;) are in
the same free homotopy class of M. We have that

Sk (71'(5 * ;ﬂ[s,TO—E])) = Sﬁ+k(§ * ﬁI[E,To—é‘])
= Z'{"k(f) + SL+]G(§][5,T(}—6})
< Sp+x(y) -

This contradicts the minimizing property (39) of . O
“An interesting characterization of the critical value c(L), in terms
of an analogous to Tonelli’s theorem (Mather [8]) in a prescribed energy
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level is given by the following result:” — Maiié [7]

Theorem XI. Assume that k is o regular value of E and dim M > 1.
Suppose that k has the following property: for all a,b in nE~1(k) there
exists an absolutely continuous curve z : [0,T) — M such that:

(i) z(0) =a and z(T) = b.

(ii) E(a;t), ) =k a.e. in[0,T7].

(i) / (w(0), 5(0) & dt-—mm/ S, 50 i) dt,

where the minimum ts taken over all absolutely continuous y :
0,71 — M, with y(0) = a,y(T1) = b and E(z(t),2(t)) = k a.e.
in [0,T1].
Then k > ¢(L) and z(t) is a solution of the Euler Lagrange equation.
The hypothesis dim M > 1 is necessary as the example of a simple
pendulum shows. Indeed, for L(z,v) = % |v|2 — cosz and any regular
value k < eg = —min,cg1 L(p,0) = ¢(L) = 1 there are such minimiz-
ers. This is because a non-empty energy level E~1(k) with k < eg is
a topological circle and given a,b € W(E_l(k)) there are two injective
paths on E~1(k) from 7=1{a} to 7~1{b}. One of them must minimize
the (L + k)-action because L+ k =v - L, = %lv]Q > 0on E-1(k). In
fact, the minimizer is the one whose projection on S L is injective.
Another example in M = S1 is L = L + 6 where 6,(v) is a (closed)
1-form such that ¢(L) = ¢(L + 6) > ¢(L) = eg. The energy functions
and the Lagrangian flows for L and L are the same. For ey < k& < ¢(L)}
the energy levels E~1(k) support two periodic orbits. Lemma 4.8 below
shows that these orbits have negative (L+k)-action, and hence there are
no minimizers on these levels. On the other hand, a regular energy level
k < eq consists of one perlodlc orblt (v,7%). By the symmetry of E~ Lk,
we have that [ v L, = f7 5 |v| +0 > 0. Then the same arguments as
for L show that there exists minimizers for k& < ¢(L).
We comment now the hypothesis of the regularity of the energy value
k. Recall that all the critical points of E are in the zero section of TM.
The following lemma shows that if (pg,0) is a critical point of E, then
it is a singularity of the Lagrangian flow and that the point pg can not
be joined to other points by a path with energy k which is differentiable
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at pp. Thus completing the picture of theorem XI: If we require the
differentiability of the minimizers z(t) at the endpoints, then the same
statement holds for critical values k of E if E~1{k} consists of more
than one point, and if #E“l{k} = 1 the (unique) minimizing curve is
a (singular) solution of (E-L). Conversely, if (¢,0) € E~1{k} is not a
critical point, then it is necessarily reached on finite time by curves on
E-Yk}.
Define
dp := minpeps E(p,0) = — maxpepr L(p, 0)

If k < do then E~1(k) = &. Given dy < k < eq define
O(k):={pe M|E(p,0)=k},

then (k) # @. The proof of the following lemma is delayed to the end
of the section.

4.7. Lemma.

(a) If po € 6(k) and D,E(pg,0) = 0, then the only curve p: [0,8] —» M
with E(p(t),p(t)) =k and p(0) = pg is the constant curve p(t) = py.

(b) If p : [0,tg[— M is such that E(p,p) = k, 1imt4>ta p(t) = qo € 0(k)
and DpE(qp,0) # 0, then ty is finite.

Proof of theorem XI. For k£ < ¢(L) we have to show that there are

points in E*l{k} which can not be joined by a curve which minimizes

the action of Sy, on ACE(p, q; k).

Observe that dy is necessarily a critical value of E. Suppose first
that dg < k& < eg. Since k is a regular value of F, by the Maupertius
principle (see theorem 3.8.5 of Abraham & Marsden [1]), the critical
points of the functional Sy on ACE(p,q, k) are solutions of (E-L).
Let p € 6(k) # @. Then {(p,0)} = T,M N E-1{k}. Hence there is
only one solution z of (E-L) with E(z,2) = k and z(0) = p. The
set {z(t)|z =0} = {z(t)|z(t) € 8(k)} has at most countably many
points. But since k is a regular value of E then 6(k) is a submanifold
of M of codimension 1 and dim#(k) > 0. Hence there are points in
6(k) = dnE~1(k) which can not be joined to p by (L + k)-minimizers
with E(z, 1) = k.
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Suppose now that £ = ¢(L) =: ¢. The arguments of equation (30)
show that minimizers of Sr4. in AC(p, q) are in the energy level F =
¢(L). Thus minimizers of Sg4. on ACE(p, ¢; ¢(L)) are also minimizers on
AC(p,q) and hence semistatic curves. Let (¢,£(q)) € & € E~1{k}. Let
p & 7{fi(¢,€(q)) |t € R}. Suppose that there exists a semistatic curve
x € AC(p,q,T). Then by theorem VI (b), we have that £(T) = &(q).
This contradicts the choice of p.

Now suppose that eg < k < ¢(L). We shall prove in lemma 4.8 that
there exists a closed curve «(t) such that E(v,%¥) =k and

L(L+k)<0.

By making a large number of loops along v one can produce a curve
with arbitrarily negative action. By adding two connecting segments
this implies that for any p,g € M there are not minimizers of Sy, on
ACE(p, g k).
This completes the proof of theorem XI. O
Given an absolutely continuous closed curve I' : [0,7] — M, define
the probability measure yp on TM by

1 T .
/TM‘Pd“F =T /O p(C(0),T()) dt.

Let C(k) be the set of measures u supported on the energy level £ )

and let C(k) be its closure in the weak™ topology. Define

v(k) == min,, z(x) /v - Ly dp .

Measures realizing this minimum may not be invariant. For example
if L(z,v) = %|v|2 — ¢(x) is a mechanical lagrangian and k < eqg is
a regular energy level, then any such measure will be supported on
OE-1{k}, where v = 0 and vL, = %|v|2 = 0. Nevertheless, dE~1{k}
has no invariant subsets.

In the following lemma we use ideas of Dias Carneiro [2].

4.8. Lemma. For all eg < k < c¢(L) we have that y(k) < 0.

Proof. From (38) we get that given any k > eg and (p,v) € TM, there
exists a unique A > 0 such that F(p, Av) = k. Moreover, A = A(p,v, k) :
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TM x]eq, +00[—]0, +00[ is a smooth function.
Let u be an invariant measure p € M(L) such that

/(L +c(L)) dp=0. (40)

By theorem 4 and the fact that static curves have energy level ¢(L) we
have that supp(u) C E~Y(¢(L)), and by the Poincaré recurrence theorem
we have that p € C(c(L)).

For k > eg define the measure v, on E~1(k) by

. f(p, Mo, v, k)v)
/E g = AK) /E e Sy ) A

for any continuous function f : E‘l(k) — R, where

)= (/mdumv))ﬁl.

Then vy € C(k) and Ve(r) = H- This measure vy is just the (proba-
bility) measure obtained by reparametrizing the solutions of (E-L) on
w(supp(u)) so as to have energy k. This process is reversible, i.e. we can
recover u by reparametrizing vy. Let

g(k‘)::/v-Lvduk:k+/Ldvk.

Then g is a differentiable function with derivative

0 (L(p,A L(p, A
g =1+ 40 [ o (FE2D) gy [HBA g

If we change the reference energy level ¢(L) to k1 > ey, we can use

vk, instead of y on formula (41). The function g(k) does not change but
now A(ky) =1, A(k1) =1 and

g' (k1) —1+/ak ( ) dvy, + A'(k1) /Ldukl ,
where L(p,v) := L(p, Av). We compute this derivative:

o (L CLpa-L)g
( )/k ky

EAGY 32 =Lk — A Lik=s, >

A
LkZ’U-Lv)\k.
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Since E(p, Av) = k, we have that

oOF

%‘:Ev'()‘kv):(v'lfvv'v) )‘k:17
1 v Ly

M= gy ad b=

Moreover
9 (1) L p—
Ok \\/ lk=ky  ANlk=k; v Ly -0

, 1 d 1 1
A(kl)_—A(kl)/a%<X) du_/'U'LUU'Udel‘

Therefore
v - Ly L
") =1 ———dvpy — | ——— d
g (k) +/v-Lm,-v vk /U-Lm,-v Vet

+(/ﬁduk> (/Ldyk>
=1+ [ L ans ([ L —an) ([ran)
g'(k) = (/(L+k:) duk> (/;_—[—/];U—_—vduk>+1

g'(k) =b(k) g(k) + 1, (42)

where

bk) = /(v + Ly - v) "  dug > 0.
Let .
B(k) = / 0 b(s) ds
and h(k) := e~ B%) g(k). From (42) we get that
Kk)=eP® > 0.
By (40), h(c(L)) = 0, therefore h(k) < 0 for all ey < k < ¢(L). And thus
(k) < g(k) = P h(k) < 0

for all eg < k < e(L). O

Proof of lemma 4.7. We first prove (a). Using local coordinates we can
assume that M = R™ and TM = R™ x R". For v small and p near pg
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such that E(p,v) = k, we have that
E=v-L,— L,
k= (v Ly(p,0) + v Lun(p,0) - v+ O
1
- (L(p, 0) +v- Ly(p,0) + 51} + Lyy(p,0) - v + O(v3)) ,

%U-Lw(p,())-erO(vS):kJrL( ,0).

Since k = —L(pg, 0), there exists a function F(p,v) defined on a neigh-
bourhood of (pg,0) on the energy level E(p,v) = k by

2
F(p,v) |v|” =k + L(p, 0)
1
= Lp(p0,0) Ap + 5 Ap Lyp(po, 0) Ap + O(Ap?)

(43)
where Ap = p — pg, F'(p,v) is smooth and F(pg,v) > 0. We have that
DpE(pg,0) = —Ly(pp,0) = 0. (44)

Since the left hand side of (43) is positive, using (44) we have that
Ap Lypp(pp,0) Ap > 0. Then there exists a function G(p,v) > A > 0 such
that for v small and p near pg such that E(p,v) = k, we have

2 2
lvl” = G(p,v)* |Ap|
lv| = A [Ap] . (45)

Suppose that there exists a differentiable curve p : [0, 8] — M such that
p(0) = pg and E(p(t),p(t)) = k. For simplicity suppose that § = 2. Let
= |p(t) — py|.- Writing v(t) = p(¢), we have that

—d——gj(t)2:2$3‘3=2< (t) Po,v ())7
0
it) = (=2 v(t)) = =B [u(t)]

for some B > 0, because p(t) is differentiable at ¢ = 0. From (45), we
have that

&(t) > —B |o(t)] = ~ABa(t),
z(t)y > 2(1) exp(—AB{t — 1)) .
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In particular z(0) # 0. This contradicts the choice of p(t).

Now we prove (b). Since D,E(gg,0) = Lp(gp,0) # 0, then (k) is
locally a codimension 1 submanifold near gg. Let g(t) € 6(k) be given
by the condition

Lyp(q(2),0) (p(t) —a(t)) = 0.
Using formula (43) with Ap = p(t) — q(¢), we have that

F(p,v) o] = Ly(a®),0) ap + O (|ap]*)

lv] = A /1Ap],

for some A > 0. Let y(t) := [p(t) — q(t)]. Computing % y(t)2, we obtain

o/ ) —q(t) _ _
i) = ( L=k o)) < ~B ()] < ~AB Vi)

for some B > 0. Therefore

and then

' AB A2 B2
o< 2 and yt) < F——(t—tp)?.
292 2 4

For future reference, we also note that

[yt > b [v@)] = b1 Vy(t) (46)
y(t) > by (¢ — t)? (47)
for some b, b1, by > 0. O

5. Properties of weaker global minimizers
Definition. We say that a solution z(¢) of (E-L) is a minimizer (resp.
forward minimizer) if

SL<$l[to,t1]) < Sp(y)

for every tg < t1 (resp. 0 < tp < t1) and every absolutely continuous
y : [to, t1] — M, with y(t;) = z(t;), ¢ = 1, 2.

Denote by A(L) (resp. AT(L)) the set of (p,v) € TM such that
the solution z(¢) of (E-L) with initial condition (z(0),(0)) = (p,v) is a
minimizer (resp. forward minimizer).
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Let w € AT(L) for 0 < s < t define 6,,(s,1) by
Spte(@ul(sg]) = Pe(Tw(s), Tw(t)) + du(s, ). (48)
It is clear that
Ow(s,t) > 0. (49)
The triangle inequality for ® implies that
Ow(8,t) + 6y (t, 1) < dy(s, 1) (50)
foranyw€A+(L) and 0 < s <t <r.

Claim. 6,(s,t) is uniformly bounded on w € AT (L), and 0 < s < t < 00.
We shall prove first theorems XIV, XII and XIIT and then the claim.

Theorem XIV.
(a) There exists C > 0 such that setting ¢ = ¢(L)

1 te(@ulisg)l < C

for every w € AT(L) and all 0 < s < t.
(b) If w € AT (L) and p € M is such that p = lim,_,.. Ty (t,) for some
sequence t, — oo then the limit

Jim S740([0,4,))
exists and does not depend in the sequence {t,}.

Proof. Item (a) is straightforward consequence of the claim and the
definition of 6,,. From equatica (50) it follows that the function ¢ —
6,,(0,t) is increasing. Then the claim implies that D := limy_, 4o 6,,(0, )
exists. Thus

nlin;o SL+c($w|[0,tn]) = nlLH;o Pe(@w(0), Toy(tn)) + nh_{go 6w (0,1,

= ®c(r(0),p)+D. DO

Theorem X1I.
(a) The w-limit set of an orbit in A (L) is contained in S(L).
(b) The a and w-limit sets of an orbit in A(L) are contained in S(L).
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Proof. We only prove (a). Let w € AT(L). Let (p,v) € w(w), T > 0 and
let (ng) be a sequence in R such that

N1 > + 17, (p,v) = ﬁ,gﬂ(%(nk), Ty (ng)) -
Let

Dk = Tow(Ng), qk = Top(ng +T),
(q,u) = (z,(T), &,(T)) = lim (g, Tw(ng +T)).

we have that

SL+C(mw|[nk,nk+T]) = (I)C(pka qk) + 611)(”/67 ng + T) )
St+e(@ul 4Ty ,,]) = Tel@rs PR) + 6w + T p11)

Srte(@ulipgny, 1)) = Per: Prr1) + 0wk, net1) -

By the claim and equation (50) there is a constant @) such that

Z (bw(ngs g + T) + by (e + T, gpy1)) < Z O (N> Mpet-1)
k=1 k=1
< Jim 60,(0,1) < Q.

Therefore
k]im Ow (N Npg 1) = klim bw(ng,ng +T)
:klim ow(ng +1,ng11) =0. (51)
Hence

SL+c($w|[O,T]) = hin SL+C(IW|[%7”1¢+T])
= Iiin @.(Pr, qk) = Pc(p, q) -
and from (51),

®e(p, @) + Pelg, p) = lim e(pi, gi) + lim Le(qr, Pr)
= lim [Spte(@ulfng pt71) + Stte(@uliy+ Ty, 1) ]
= lim [ Pk Pr) + w1k N4 1) |
= (I)C(pap)
=0.
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This implies that w(w) C S(L). O
Theorem XIIL. f;|y(;) is chain transitive.

Proof. Let v, w € A(L) and € > 0. It is enough to prove that there exists
an e-chain in A(L) joining w(w) to a(v). By theorem XIII, a(v)Uw(w) C
S(L) C E(L). By theorem V there exists such e-chain contained in
Y(L) € A(L). This completes the proof. O

Proof of the claim. Let
A :=2max{ L(p,v) + c¢(L)] ||v] < diamM +1}
B :=max{|2(p,q)| |p,q € M }
Q:=3max{A B}+2.
Suppose that there exist w € AT (L), 0 < a < b such that &,(a, b) > Q.
Let v:[a,Ty) — M be in AC(zy(a), T4, (b)) and such that
Srte(7) < Pel@w(a), 2w(b)) + 1.
We have that
S14e() < Ste(@ulfuy) — Sula D) +1,
Sr4e(Y) < Sie(Twljgy) —Q+1, (52)
Spe(7) < Site(Twljy) — (A+ B). (53)

Suppose that T, > b —a. Let n: [0,1] — M be a geodesic on M such
that

n0) =zw(®) , nl)=zu(Tp+1) , |7l < dam(lM).
Then
Spe(n) < A.

Since

—B < @(zw(b), 20Ty + 1)) < SL+C($w1[b,Tb+1])a
using (53) (or (54)), we have that

Sre(Y* 1) < Sppe(@wlpy) — (A+B)+ A

< Srte(@ulfp) + Site(@uwlpm,+1)
Sre(v* 1) < Spte(@uwliy T, 1+1)) -
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This contradicts the hypothesis w € AT(L).
Now suppose that Ty < b —a. Let u € £(L) and let X : [0,1] — M
be a geodesic on M such that
A0) = z(0) =¥(Tp), A1) =mu, [A] <diam M,

and let A :[0,1] — M be A(t) :== A(1 —t). Then

- A A
Spte(N) + 814N = o + 5 = A.

Let 7 > (b—a)—Ty and let ¢ : [0,7,] — M be a curve in AC(x(7), T u)
such that

Shte(0) < =B (T u, 2 (T)) + 1.
Let 7 := v % A x IUI[OJ] * o * A. This curve is in AC(zy,(a), Ty, (b)), it is
defined on a time interval of length

Ty+1+7+1+1>Tp+7>b—a,
and has (L + c)-action
Sr4e(7) £ S14e() + (See(N) + S4cN) + (Spe(@uljor) + Spte(@)
< Spael) + A + (e, 2u(7)) — el U, Ty (7)) + 1)
< (SL+C(xwl[a,b]) - Q+ 1) +A+1,

S1+c() < Sre(Tw|[gp) — (A+ B). (54)
Now the same argument as in the case T}, > b, using 7 instead of ~,
gives a contradiction. O
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