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Abstract .  Define the critical level c(L) of a convex superlinear Lagragian L as the in- 
fimum of the k C ~ such that the Lagragian L + k  has minimizers with fixed endpoints 
and free time interval. We provide proofs for Mafi6's statements [7] characterizing 
c(L) in termos of minimizing measures of L, and also giving graph, recurrence cov- 
ering and cohomology properties for minimizers of L + c(L). It is also proven that 
c(L) is the infimum of the energy levels k such that the following for of Tonelli's 
theorem holds: There exists minimizers of the L + k-action joining any two points in 
the projection of E = k among curves with energy k. 

Introduction 

In this work we prove most of the theorems of Mafi6's unfinished work 

"Lagrangian Flows the dynamics of Globally Minimizing Orbits", [7]. 

Exceptions are theorem III, whose proof is divided in [6] and [3] and 

theorem IV which was proved in [7]. Also, we provide proofs for slightly 

different statements of theorems VII, XI and XIV. We would like to 

emphasize that all the theorems in this paper are due to Mafi~ and all 

the responsibility of the proofs is ours. 

We encourage the reader to use Mafi~'s original paper [7] as the 

introduction of this work. In section 1 we prove theorems I and II, in 

section 2 we prove theorem V, in section 3 we prove theorems VI, VII, 
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VIII and IX, in section 4 we prove theorems X and XI, and in section 5 

we prove theorems XII, XIII and XIV. 

The first and second authors want to thank  the hospitali ty of 

CIMAT. 

We want to use this space to say how much we admired Ricardo's 

clearness and brightness and how grateful we are to his enormous gen- 

erosity. This paper is to his memory. 

1. Basic properties of the critical value 
Let M be a smooth closed manifold. We say tha t  a smooth function 

L : T M  --+ R is a Lagrangian if it satisfies the following conditions: 

(a) Convexity: For all z E M,  v E T~:M, the Hessian matr ix  ~ rx v~ 
OviOv  j \ , J 

(calculated with respect to linear coordinates on TxM)  is positive 

definite. 

(b) Superlinearity: lim L(x,v) Llvll~+oo I[vll -- +oc, uniformly on (x,v) E T M .  

Given an absolutely continuous curve x : [0, T] --+ M define its L- 

action by 
b g 

SL(X) : :  /a L (x(t), it(t)) dr. 

Fixing p, q E M and T > 0, the critical points of the action functional 

on the set 

AC(p, q, T) : :  ~ x : [ O , T ] ~ M  x(O) : p, x(T) = q, ~. 
[ x absolutely continuous J 

are solutions of the Euler-Lagrange equation, which in local coordinates 

is given by 
d 

jiL  = Lx .  (E-L) 
Because of the convexity of the Lagrangian this equation can be 

thought  as a first order differential equation on T M .  The Lagrangian 

flow ft on T M  is defined by f t (z ,  v) = (7(t), ~(t)), where 7 is the solution 

of (E-L) with 7(0) = z and ")(0) = v. Define the energy function E : 

T M  --+ R as 
OL 

E(z ,  v) := ~ - ( z ,  v) . v - L .  
(TV 
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It can be seen that  the value of E(x ,  v) is constant  along the orbits of 

.ft- The superlinearity condition implies that  the level sets of the energy 

function have bounded velocities and hence that  are compact.  This, in 

turn, implies tha t  the solutions of (E-L) are defined for all values t E R, 

i.e., tha t  the flow f t  is complete. 

Finally, for p, q E M, let 

AC(p,  q) := U AC(p,  q, T ) ,  
T>0 

and define the action potential as 

(I)k(pl,P2) := inf { SL+k(X) Ix E AC(pl ,P2)  } , k E l~. 

T h e o r e m  I. There exists c( L ) E IR such that 

(a) k < c(L) ~ ~k(Pl,P2) = - o o ,  'v'pl, P2 E M.  

(b) k >_ c(L) ~ ~bk(Pl,P2) > --eo, Vpl , P2 E M and ~k is Lipschitz. 

(c) k > c(L) 

~)k(Pl,P3) -< ~)k(Pl,P2) + (I)k(P2,P3) Vpl, P2, P3 E M 

q)k0ol,P2) + ~k(P2,Pl) >- 0 Vpl, P2 ~ M 

(d) k > c(L) ~ '~k(Pl,P2) + 4)k(P2,Pl) > 0 Vpl ~ P2. 

1.1. Remark.  This theorem, with the same proof, holds for coverings 

7r : M --~ M of a compact  manifold M, with the lifted Lagrangian 

Z = L o ~ .  

Proof .  We first prove that  if for somepl ,  P2 E M, ~k:(Pl,P2) = - c ~ ,  then 

~)k(ql, q2) = - c o  for all ql, q2 c M. Let 7, ~: [0, 1] ~ M,  7 E A C ( q l , p l ) ,  

7l E AC(p2,  q2). Let xn E AC(p l ,p2 )  be such tha t  l i n a  SL+k(x~) = --oc. 

Then 

lira SL+k(7 * Xn * ~l) = SL+k( '7)  + SL+k(?]) + lim S L + k ( X n )  = --00. 
n ---+ O0 n--+ O0 

Thus the number  

c(n) := inf { k E R I ~'~(p, q) > - oc  } 

does not depend on (50, q). We have to see that  - o c  < c(L) < +oc. Since 

the function k ~-+ (I)k (p, q) is nondecreasing, it is enough to see tha t  there 
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exist kl, k2 E R such that  ~k~(P,q) = - ~  and ~k2(P,q) > --(x~. We 

first prove the existence of kl. Since L is bounded on 

{(x,v)~TMIv~TxM, Ivl<_2}, 

there exists B > 0 such that  

IL(x,v)l < B if Ivl < 2. (1) 

Let Xn : [0, n] ---+ M,  xn E AC(p,q) be such tha t  12~I < 2. Then 

SL(Xn) <_ B n and hence, for kl = - B  - 1, we have that  

(/: ) ~kz (P, q) <- lim innf SL_B_ l(xn) ~ lim innf L(xn, Xn) dt - (B + 1)n 

< l iminf(Bn - (B + 1)n) = -cx~. 
n 

Now we prove the existence of k2. The superlinearity hypothesis 

implies that  L is bounded below. Let A be a lower bound  for L on T M .  

We claim that  it is enough to take k2 > - A  + 1. Indeed 

T F 

So+k2 (x) > Jo (A + k2) dt > O for a l l x E A C ( p ,  q). 

hence r (P, q) >- 0. 

It remains to prove that  ~bc(p, q) > - o c  for all p, q E M,  where c = 

c(L). Suppose not. Take p E M,  then ~(p ,p )  = - o c .  Let 7 E AC(p,p) 

be such that  SL+~(7) < - a  < 0. Then there exists e > 0 such that  

SL+c+E('Y) < - - l a  < 0. Let 

then 

6 N  : = ~ ,  ..N. , ~ ,  

q~c+e(P,P) <_ li~SL+c+e(~Sr) <_ lim--�89 a N  = -oo .  
N 

This contradicts the definition of c(L). In particular, we have also 

proven that  Oc(P,P) >_ 0 for all p E M.  By taking 7 E AC(p,p) with 

bounded velocities and arbitrarily small parameter  intervals, we have 

that  

~c(p,p) = 0 for all p E M .  (2) 

Similarly 

~k(P,P) = 0 for all p e M for all k >_ c(L). (3) 

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997 



LAGRANGIAN FLOWS 159 

We now prove (c). Let k > c(L) a n d p l ,  P2, P3 E M.  Let x~ : 

[0, Tn] --+ M,  x~ E AC(pi ,Pj) ,  be such that  

linmSL+k(xinJ) = ~k(Pi,Pj) i , j  E {1,2,3}. 

12 X23 Then x n �9 C AC(pl ,p3)  and 

23 �9 k(p~,p3) <_ SL+k(x~ 2 * x~ 3) = SL+k(x~ 2) + SL+k(xn ). 

Taking the limit when n --+ oc we get that  

':I)/~(pl,P3 ) < (I)k(pl,P2) + (I)k(p2,p3) . (4) 

Finally, using (3) and (4), we obtain that  

0 = apk(pl,Pl) < ~k(Pl,P2) + (I)k(P2,Pl) (5) 

when h >_ c(L). 
We prove that  ~k is Lipschitz when k _> c(L). Let "y : [0, d(p, q)] --+ M 

be a geodesic joining p and q, using (1) we obtain 

fd(p,q) ~k(P, q) < [L (?(t), +(t)) + k] dt 
yo 

~k(P, q) < (B + k) d(p, q) for k >_ c(L).  (6) 

Therefore if k >_ e(L), 

~k(Pl,P2) - ~Sk(ql, q2) _< ~k(Pl, ql) + Ok(ql,P2) -- ~k(ql, q2) 

<-- ~k(Pl, ql) + r q2) + ~k(q2,P2) -- (I)/~ (ql, q2) 

<_ O)k(Pl, ql) + ~k(q2,P2) 

< (/3 + k)(d(pl, ql) + d(p2, q2)). 

Changing the roles of Pi and qi, i = 1, 2 we get that  

]~Sk(Pl,P2) -- ~'k(ql, q2)l --< (B + k) (d(pl, ql) + d(p2, q2)). 

We now prove that  if k >_ c(L) and p r q, then the function k 

~k(P, q) is strictly increasing. By (5) this implies (d). Let p r q and 

g > k >_ c(L). Let xn : [0, Tn] ---, M ,  x~ E AC(p,q)  be such that  

limn SL+e(Xn) = 'I'e(p, q). We have that  

S L + e ( x n )  = S L + k ( x n )  + (e -- k )T~  

r >_ ~k(P,q) + ( g -  k) liminfTn 
n 
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It is enough to prove tha t  liminfnTn > 0, because then  Oe(P,q) > 

q~k(P,q). Suppose tha t  l iminfnTn = 0. By the superl ineari ty of L, for 

all B > 0 there exists A > 0 such tha t  

IL(x,v)l > B Ivl - A .  

Then  

Is? ] ~e(P,q) = linmSL+g(Xn) ~ liminnf B Ixnl dr+ (k - A) Tn 

>_ B d(p, q) + 0 , 

for all B > 0. Therefore q~L+~(P, q) = +oc,  which contradicts  (6). [] 

Th rough  the  rest of the paper  we shall neeed the  following results: 

1.2. T h e o r e m .  (Mather [8].) For all C > 0 there exists A1 = AI(C)  such 

that if T > O, p, q E M and x E AC(p, q, T) satisfy 

(a) SL(X) = rain{ SL(Y) I Y E AC(p, q, T) }. 

(b) Sz(x) < C T .  

Then 

(c) [12(t)[ I < A1 for all t  E [0, T]. 

(d) Xi[O,T] is a solution of (E-L). 

1.3. Corollary. There exists A > 0 such that if T > 1, p, q E M and 

x E AC(p, q, T) satisfy 

SL(X) = min{ SL(Y) iy E AC(p, q,T) } ,  

then II (t)ll < A for all t E [0,r].  

P r o o f .  Let 

C := sup{ IL(x,v)llllvll  < diam (M) }. 

There  exists a geodesic 7 E AC(p, q, T) with 

I+l = d(p, q) 
T < d iam(M)  and SL(~) < C T .  

Then  the corollary follows from theorem 1.2. [] 

1.4. Corollary. There exists A > 0 such that if p, q C M and x E 

AC(p, q, T) satisfy 

(a) SL(X) = min{ SL(Y) IY E AC(p,q ,T)  }. 
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(b) EL(X) < CPc(p, q) + dM(p, q). 
Then 

(e) T > �89 dM(p, q). 
(d) II~(t)ll < A for al l t  E [0, T]. 

Proof .  Let B be from (1) and let 2/ : [0, riM(p, q)] --+ M be a min imal  

geodesic with ]')i - 1 joining p and q. By the superl ineari ty of L, for 

D = 2 B + 1 > 0 there exists E > 0 such tha t  

iL(x,v)] > D ivl - E for all (x,v) E TM.  

We have tha t  

13 dM(p, q) > SL(~/) >_ ~c(P, q) >_ SL(X) -- dM(p, q) 
T I "  

> ./a (D I~(t)l - E) dt - dM(p, q) 

> DdM(p,q)  - E T -  dM(p,q). 

Hence 

Now let 

( D - B - l )  / B \  
dM(p,q)= ( - ~ }  dM(p,q). (7) T >  E k m /  

C := max{ IL(x, ~)1 I I~1 _< ~- }. 
Let r /E AC(p, q,T) be a minimal  geodesic. Then,  by (7), 

E dM(p, q) < _ 

and hence SLO7) <_ C T .  Let A1 = AI(C)  be from theorem 1.2, then  it 

is enough to use 

A = max { Al(C),  ~- } .  [] 

Let At  (L) be the set of invariant Borel probabil i ty measures for the 

Lagrangian flow. 

Theorem II. 

Proof .  Let # E At(L)  be ergodic. Let (p, v) E T M  be such tha t  

/ lim L ( f t ( p , v ) ) d t =  Ldt  z . 
T--*  oc 
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Let  B > 0 be  such t ha t  

I L ( x , v ) l < B  if I v l < 2 .  

For N > 0 let qN : =  7r(fN(p,v)) and  let "YN : [O,d(p, qN)] --+ M be  a 

geodesic  joining qN to  p. Let  xg  : [0, N] -+ M be  defined by  xN(t) = 

7r(ft(p, v)). T h e n  ft(P, v) = (XN(t), ioN(t)). For k E R, we have tha t  

SL+k(~N) = [ d(p'qN) L(~/N(t), ~/N(t)) dt < (B + k)diam(M).  
J0 

1 1 limN ~SL+k(XN * ~YN) ---- liNm ~SL+k(XN) + 0 = SL+k(p) = SL(It) -}- k.  

If k < --SL(#), t hen  

~k(P,P) <_ li~SL+k(XN * ~N) = --co. 

Hence  k < c( L ). Therefore  

c(L) > sup {--SL(#)  I P E .A/terg(L) } 

_> - m i n { S L ( # )  I # E A/ t (L)}  . 

Now let k < c(L) a n d p ,  q E M .  T h e n  ~k(P,q)  = - o c  and  there  

exists  a sequence  of pa ths  x~ : [0, Tn] --* M, Xn E AC(p, q) such tha t  

lim ~gL+k(Xn) = --C~. (8) 

Since L is b o u n d e d  below, we have t ha t  

limT~ = + c ~ .  (9) 
n 

Let  Yn : [0, Tn] -+ M, y~ E AC(p, q) be  a minimizer  of the  act ion among  

the  curves in AC(p, q, Tn). T h e n  (yn(t), ign(t)) is an orbi t  segment  of ft  

and  by  1.3, ]?)1 is bounded .  Let  un be  the  p robabi l i ty  measure  defined 

by  

h dun = ~ h(yn(t), y~(t)) dt 

for ~ - h(ft(y (O), d t ,  

for all h : T M  ~ IR cont inuous.  There  exists  a subsequence  u~ i which 

converges weakly* to  a p robab i l i ty  measure  #. B y  (9), # is invariant  
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under the flow ft. Since the velocities are bounded we have tha t  

1 
linm ~ S L + k ( Y n  i) = SL+k(#) = SL(#) + k.  

Since limn SL+k(Yn) = ~k(P, q) = --co and Tn > 0 for all n, then SL(#) + 
k < O. For any k < c(L) we found an invariant measure p such tha t  

k < -SL(p).  Therefore 

c(L) _< sup {--EL(#) 1 # E A4(L) } 

< - m i n { S L ( # ) ] # C M ( L ) }  . [] 

We state now theorem III. The proof of theorem III is split in Mafi6 

[6] and [3]. We say tha t  a property  holds for a generic Lagrangian if 

given any Lagrangian L, there exists a residual set O C_ C~~ R) such 

that  the property  holds for all the Lagrangians L+~b with ~b c O. We say 

tha t  an invariant measure is uniquely ergodic if it is the only invariant 

measure on its support.  A periodic orbit for the Lagrangian flow is said 

hyperbolic if it is a hyperbolic periodic orbit of the flow restricted to its 

energy level. 

Definition. We say that  # ~ M(L)  is a minimizing measure if 

f L d~ = -c(L). 
A 

Denote by A//(L) the set of minimizing measures in J~(L).  

Theorem III. 
A 

(a) For generic L, Ad(L) contains a single measure and this measure is 

uniquely ergodic. 

(b) When this measure is supported on a periodic orbit, this orbit is 

hyperbolic. 
I tem (a) is proved in Marl4 [6] and i tem (b) is proved in [3]. 

Conjecture. (Marl&) For a generic L, M(L)  consists on a single mea- 

sure supported in a periodic orbit. 

2. Recurrence  propert ies  

The prerequisite of the following definition is this remark: since dk >_ 0 
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for h > c(L), t hen  for any  absolute ly  cont inuous  curve x : [a, b] --+ M 

and  k > c(L) we have t h a t  

SL+k(x) >_ q~k(x(a), x(b)) >_ -Ok(x(b), x(a)). (lo) 

Definition. Set c = c(L). We say tha t  x : [a, b] --+ M is a semistatic 
curve if it is absolute ly  cont inuous  and: 

S L - t - c  (Xl [ t0 , t l ] )  : (I) c ( X ( t o ) , X ( t l ) )  , (11) 

for all a < t o _< t l  < b; and  tha t  it is a static curve  if 

SL-Fe (xl[to,tl]) = --~c(X(tl),X(tO)) (12) 

for a l l a < t 0 _ < t l  < b .  

By (10), equal i ty  (12) implies (11). Hence s ta t ic  curves are semi- 

static.  Semis ta t ic  curves are  solutions of (E-L) because  t h e y  minimize  

the  ac t ion  of L+c  in AC(x(to), X(tl), t l  - t o ) .  If p, q c M are on a static 
curve  t h e n  de(p, q) = 0. 

If w E TM,  denote  by x~ : IR ~ M the  solut ion of (E-L) wi th  

 w(O) : w.  

Definition. 

E(L) := {w  e T M l x w :  R---+ M is semis ta t ic  }, 

E(L) := { w E T M I x ~  : IR --~ M is s tat ic  }, 

E+(L)  := { w  E M I xwl[o,~[ is semis ta t ic  }. 

Remark. Replacing e by any other real number in the definition of 

semis ta t ic  solution, the  set E+(L)  (and then  E(L) C E(L) C E+(L) )  

becomes  empty.  

For k > c(L) this  r e m a r k  follows f rom the  following est imates:  

+00 > maxp,qE M Ok(p, q) >_ SL+k(XI[O,T] ) = Ok(x(O), x(T) ) 

_> x ( T ) )  + (k - c) T 

maXp,qEM (~c(P, q) + (k - c) T. 

The  following t he o r e m is proven in Marl6 [7]. 
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Theorem IV. (Characterization of minimizing measures.) A measure 

# E fl4(L) is minimizing if  and only if  supp(#) c E(L). 

We include a proof below, using theorem V(c). 

Given an fi  invariant subset A C T M ,  and c > O, T > O, an (5, T)- 
N chain joining ~a E A and ~b E A is a finite sequence {(fi, ti)}i=l C A • R 

such that  

s = ~a, fN+l  = ~b, ti > T and d(fti(Ci),~i+l) < c, 

for i = 1 , . . .  , N. We say that  a set A C T M  is chain transitive if for all 

~a, ~b E A, and all e > 0, T > 0 there exists an (e, T)-ehain in A joining 
~a and ~b. When this condition holds only for all ~a = ~b ~ A we say 

tha t  A is chain recurrent. 

Theorem V. (Recurrence Properties.) 
a) E(L) is chain transitive. 

b) E(L) is chain recurrent. 

c) The a and w-limit sets of a semistatic orbit are contained in E(L). 

Proof .  Lets first prove (c). Let w E E and let u c w(w). We prove that  

w(w) C E(L), the proof that  a(w) C_ E(L) is similar. It is enough to 

prove that  for all T > 0, x~l[0,T] is static. Let p := x~(0), q := x~(T). 

Let Pn = xw(Sn), qn = x~(t~) be sequences of points in M with 

and 

We have that  

Sn ~ Sn + T = ~n ~ 8 n + l ,  s n ,  tn --+ + o o  
n 

n n 

C 1 
X [[sn,tn] ' x l[0x], 

= lira ~c(Pn, qn) 
n 

= (be(p, q). 
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Moreover, by the continuity of r we have tha t  

~ ( P ,  q) + q%(q,P) : linm{~(P~, q~) + q~c(q~,Pn+l)} 

= lim ~c(Pn, Pn+l) 
n 

= 'I)c(q, q) = O. 

P r o o f  of  t h e o r e m  IV. Suppose tha t  # E AA(L) and supp(p)  C E(L). Let 0 

be a generic point  for p and L+c.  Then  0 is static and ifxo(t) = rcoqot(O), 
we have 

f ( L + c ) d # =  lira 1 l o t  T-~+~ ~ [L(xo, xo) + c] d~ 

1 
= lim a2c(xo(O),xo(T)) 

T-~+oo 
1 

< lira sup 'I'c(p, q) = 0. 
- -  T ~ + c c  T p , q c M  

where the second equality is because 0 is (semi)static. Hence # is mini- 

mizing. 

Now suppose tha t  /t E A/I(L) is minimizing. Applying lemma 2.2 

in Marl6 [6], we get tha t  for #-almost  every 0 there is a sequence Tj = 
Tj (0) --+ + ~  such tha t  

lim j--++cr 

lira 
j-~+oo 

dTM (0, ~Tj (0)) = O, 

fO rt [L(xo, xo) + c] dt= o. 

(13) 

(14) 

By theorem V(c), it is enough to prove tha t  supp(#)  C E(L). Since 4)c 

is continuous,  it is enough to prove t h a t / t - a l m o s t  every 0 is semistatic.  

Now let 0 satisfy (13), (14) and define 

Co(T) : :  SL+c (x0110,Tl) - ~c(xo(O),xo(T)) . 

Then  6o(t) is non-derecasing and 6o(t) > O. 
By the continuity of @c and (13) we have tha t  

lim ~c(x0(0),x0(Tj)) -: 0. (15) 
j-+-}-oo 
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From (15) and (14) we have that  limj_~+oo 5o(Tj) = 0. Since ~Se(t) is 

non-decerasing, then So(t) - 0 for all t > O. Hence 0 is semistatic. [] 

P r o o f  o f  theo rem V(a). Given c > 0, S > 0, u, v E E(L), we have to 

find an (c, S)-chain in E(L) joining u to v. It is easy to see that  such 

(c, S)-chain exists if w(u) (~ a(v) ~ ~. Let 

A : :  a(v)  , 9 : :co(u)  (16) 

and suppose that  A A ~  = ;~. Let p C rc(~), q E re(A). Let r/~ := [0, T~] --+ 

M be such that  

p := r/n(0) E rc(f~) , q := rl~(Tn) C re(A) 
l 

& + d f l n )  -< ~c(P, q) + - .  (17) 
TL 

By corollary 1.4, we can assume that  r/n is a solution of (E-L) and 

satisfies 

]r < A for all o < t < T,.~. (18) 

Given ~ > 50 > 0 there exists 0 < (5 < 50 such that  if [v[~ Iw[ < A 

and dTM(v, w) < 8 then 

dTM(ft(v), ft(w)) < (50 for all Itl _< s.  (19) 

Let AJ be the union of A, Q and the set of accumulation points of 

the tangent vectors of the rln'S: 

{ 3(nk) C-N O<--tnk<--T% } 
M := A U ~ U v E T M  3 (t%) c_ ]R v = ]i~niTnk(tnk) " 

Then 

M c { v T M  I Ilvll A } .  (20) 
We shall need the following lemmas 

2.1. Lemma. 
(a) M c E(L). 

(b) jUl is invariant. 
Let IN be the set of vectors which are on the coqimit of vectors of A//. 

:= U [co(*')]. 
vc2,/l 
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Since 3d is closed and foward invariant, then  the closure [4 c_ M C E(L). 

Moreover, the vectors in IN are chain recurrent.  By (20) K is compact .  

Given 5 > 0 let 

IK~ := { v E T M  [ dTM (v, K) < 5 } .  

Since K is compact ,  the number  of connected components  of Ke is finite. 

L e t  Ai = Ai(5),  i = 0, 1 , . . .  , N, ft C_C_ h0, be the  connected components  

of K~. 

2.2. Lemma.  Each component Ai is (25, T)-ehain transitive for any 

T > 0 .  

If A C A0 the proposi t ion is proved. Suppose tha t  A A A 0 = ~.  

Consider the oriented graph r with  vertices Ai, i = 0, 1 , . . .  , N and an 

edge Ai --~ Aj if there exists v E 3d and ti < tj such tha t  ft i (v) E Ai 

and f t j  (v) E Aj. 

2.3. Lemma.  There exists a path in the graph joining A0 _D ~2 to Aj D A. 

We need tha t  the  connect ing orbits between the  A j ' s  have t ime in- 

tervals greater t han  S. Let Ai ~ Aj be an edge of the  graph. Take a 

connect ing orbit  ft(v), ti < tj,  v E M ,  from Ai(5) to Aj(5). Since f t j(v)  

is in a 5-neighbourhood of N N @(5) and K is invariant, (19) implies 

tha t  f t j+s(v)  is in a 50-neighbourhood of K N Ai(5). 

Now we can construct  an (e, S)-chain joining u E A to v E f t  by using 

the connecting orbits between the Ai ' s  and joining t h e m  by (e, S)-chains 

inside each Ai. This  completes the proof  of theorem V(a). [] 

Now we prove the lemmas 

P r o o f  of  l e m m a  2.1(a). Equat ion  (17) implies tha t  

1 
SL+c(VnI%,~]) _< ec(Vn(a), Vm(/~)) + -- 

k 
for all 0 < a < t3 < Tn. If 0 < an k < Tnk,/Ink (a~k) _.k v, 5% - a% --+ % 
then  

(~%(t) , / /%) --~ (z~(t),2v(t)) = fi(v) for 0 _< t < bn - an 

and by the continuity of ~c we have tha t  

sL+ (xv I [O,T]) --< 
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Hence xv [[0,T] is semistatic. [] 

P roof  o f  2.1(b). Since the set A U ft C 2t4 is invariant, we only have to 

prove that  AA \ (A U ft) is invariant. Let aJ EAd \ (A U f~) and (k) C_ N, 

�9 ~ w. It is enough to show that  ( t % )  C_ R + be such that  r/%(t%) k 

liminf tnk = +oc (21) 
k 

liminf T %  - tnk = +oc .  (22) 
k 

We need the folowing claim 

C l a i m . T h e  l imit  points  of {/1~(0) I n ~ N }  and { il(T~) I n E N} are in ft 

and A respectively. 

Proof.  We prove it only for limit points i]n(O) --+ u C T M .  Since 

r/n(0) E 7r(ft), then 7r(u) E 7r(t2). Since ft C P,(L) and 2td c E+(L), then 

the claim follows from part  (b) of theorem VI. [] 

We only prove (21). Suppose that  

liminf t n k =  a < +oo.  
k 

Then there exists a convergent subsequence (r/he I[0,a]} in the C 1 topology, 

to a semistatic solution 7 such that  

X/(a) = li~n/]n e (a) = w. 

Then by the claim we have that  

•(0) = f - a ( W )  = litm/]ng(0 ) E ft. 

and hence w E ft. This contradicts our previous assumption that  

w ~ M \ (A u a). [] 

Proof  o f l e m m a  2.2. Let T > 0. Since Ai = Ai(5) is open and connected, 

it is pathwise connected. Let ~, ~ E Ai and let P : [0, S] --+ T M  be 

a continuous path  such that  F(0) = ~, F(s) = 4. Let 0 = so < Sl < 

�9 ." < Sn = S be such tha t  dTM(F(s i ) ,F (S i+l ) )  < ~. For each si let 

vi E &(5) N K be such that  d(r (s i ) ,  vi) < 5. Since the orbits of K are 

recurrent,  there exist ~-i > T such tha t  d(f~i(vi),  vi) < ~. We have that  

d(f~ i (vi), vi+l) < d(f~ i (vd, r(sd)  + d(r(sd, r(Si+l)) + d(r(si+l), vi+l) 

< 2 5 .  
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The orbit segments {ft(vi) 10 <_ t < ri, i = 0 , . . . , n -  1} give the 

required (2 (5, T)-ehain. [] 

In order to prove lemma 2.3 we need first 

2.4. Lemma.  For all 5 > 0 there exists N = N(5 )  > 0 and S = S(5)  > 0 

such ~hat i f  n > N ,  then f o r  all c E [0, T - n] we have that 

K5 N {(r/~(t), iTn(t) ) l t E [c - S, c + S] N [0, Tn] } r ~ . 

Proof .  Suppose it is not true. Then  there exists 5 > 0 and sequences 

nk --+ oo and ck E [0, T%], such that  0 < ck - k < ck + k < Tn k and 

K6 n { (w~ (t), % (t)) t t ~ [~k - k, c~ + k] } = z .  

Let {v ~ TMI Ilvll _< A, v ~ Ke} = B, then (V,~k (t), //% (t)) E B for all 
k E N and t E [ck - k, ck + k]. Consider the measures #k defined by 

j; 'L := r (t), i7% (t) ) dt . r ~ ck-k 

'S Since the r/% are solutions of (E-L), B is compact and k --~ +c~, then  

there exists a convergent subsequence vk -+ t, in the weak* topology 

to an invariant measure zJ of the Lagrangian flow, with supp(zJ) c B. 

Moreover, supp(~) CAd.  Let v E supp(z~). Since B is compact,  we have 

that  the co-limit 2~ ~r co(v) C K and 

2~ r w(v) c supp( , )  c B r ~ K  C_ B ~ K a  = 2~. 

This is a contradiction. [] 

P roo f  o f  l emma 2.3. Suppose tha t  AAA0 = 2~, otherwise there is nothing 

to prove. For each n E N let 

an := sup{ t E [0, T~] I (~ ( t ) ,  #~(t)) ~ A0 }, 

an + sn := inf{ t Elan, Tn] ] (77n(t), iTn(t)) E K6 } .  

By lemma 2.4, for n > N(5) we have tha t  0 < s,~ < S(5) .  Choose 

a sequence 77~ such tha t  (r/~(a~),/11(a~)) converges. Renumbering the 

Ai's if necessary, we can assume that  Sn -+ s 1 C [0, S(5)] and (r/l(a~ + 

sl),/7~(an + sl)) E h l .  By lemma 2.1(a), the sequence 

(71,-~ 
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converges to a semistatic solution of (E-L) (@,@)1[0,,1], whose points 

are in 2~t and such that  @(0) ff A0, @(s 1) E A1 -r h0. Hence there is 

and edge A0 > A1 in the graph F. 

Suppose tha t  h l  C~ A = Z, otherwise the lemma is proved. Let 

bn := sup{t ~ [O, Tn]l(@(t),i l l(t))  E A 0 fB A 1 }. 

The same arguments  show that  there exists 0 < s 2 < S(8) and a subse- 

q u e n c e  7]21[bn,bn+s2]  such  that  ~12(bn + s 2) ff A2, A2 5r hi, i = 0, 1, and an 

edge A1 ~ A2 or AO ~ A2. We can repeat this argument  each t ime 

tha t  the final hj does not contain A. Since the number of the Aj's is 

finite, we obtain a path in the graph r from A 0 to Aj with A c_ Aj. [] 

Proof of theoremV(b). Let w E ~(L) and let A = c~(w), ~ = w(w). It is 

easy to see that  if A N ~2 r ~ then w is chain recurrent in E(L). Suppose 

tha t  A N f ~ = 2 ~ .  For a l l s  < r a n d  a l l e  > 0 t h e r e e x i s t  T = T ( 7  ) > 0  

and 7 = %,~,t : [0, T] -+ M such tha t  ~(0) = x~,(t), 7(T) = x~(s) and 

&+~(:) < -e~(z~(t) ,  z~(s)) + e 

Let 

~ := z~ _~,~, T~ := :r(~_ _~,~) (23) 
We can assume that  I/~(t)l < A for all 0 < t < T~. 

The rest of the proof is similar to i tem (a), but  now the corresponding 

3,t c E(L). E] 

3. Graph, covering and coboundary properties 

Theorem VI. (Graph Properties.) 
(a) I f  5(t), t > 0 is an orbit in E+(L),  then, denoting ~v : T M  --+ M 

the canonical projection, the map ~l{+lt>o} is injective with Lipschitz 

inverse. 

(b) Denoting E0(L ) C M ,  the projection of E(L), for every p E E0(L) 

there exists a unique ~(p) C TpM such that 

(p,~(p)) ~ ~+(L) .  

Moreover 

(p, ~(p)) ~ ~(L), 
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and the vector field ~ is Lipschitz .  Obviously 

'E(L) : graph(~). 

For a proof  of the following lemma see Mather  [8] or Mafi4 [4]. 

3.1. Lemma.  ([81.) Given A > 0 there exists K > 0 Cl > 0 and 5 > 0 

with the fol lowing property: i f  Ivil < A,  (pi, vi) E T M ,  i = 1, 2 satisfy 

d(pl ,P2)  < 5 and d ( (p l ,V l ) ,  (p2,v2)) _> K - l d ( p l , p 2 )  then, i f  a E N and 

xi : R --+ M ,  i = 1, 2, are the solut ions of  L with xi(a)  = Pi, ici(pi) = vi, 

there exist solut ions 7i : [ a -  e.,a + c] --+ M of  L with 0 < e < cl ,  

sat is fying 

~ l ( a  - ~) = z l ( a  - e) , ~ / l (a  + c) = x 2 ( a  + e ) ,  

"/2(a - c) = x 2 ( a  - e) , "/2(a + e) = x l ( a  + e ) ,  

5 ' c ( x l  I[~-~,a+~]) + SL(z21[a_~,~+~])  > Sr(~ /1)  + SL(~2)  

Proof  o f  theorem VI. 

(a). Since the curve 7 is semistatic,  corollary 1.4 implies tha t  there exists 

A > 0 such tha t  I+(t)l < A. Let K > 0, Cl = 1, (5 > 0 be from lemma 

3.1. We prove tha t  if (p,v), (q,w) E {a/(t) lt  > 0} and dM(p ,q )  < 5, 

then  

drM((p, ~), (q, w)) < K riM(p, q). 

This implies i tem(a).  Suppose it is false. Then  there exist 0 < t l  < t2 

such tha t  

dM(~/(tl) ,~/(t2)) < 

dTM (~/(tl), "}(t2)) > K dM ('y(tl), 7(t2)) 

By lemma 3.1 there exist 0 < c < t l ,  and solutions a , / 3  : [ -e ,  el -+ M,  

of (E-L) such tha t  

/ 3 ( - r  = "~(t2 - r =:  s /3(e) = "/(tl  + c) =:  r 

6'L(a) + SL(/3) < SL("/l[tll~,tl+~]) + SL('~I[t2-~,t2+~]) 
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Since 71]0,+oo[ is semistatic, we have that  

(bc(P, q) + (bc(S, r) < SL+c(a) + SL+c(/3) 

< SL+e(7][q-~,tl+e]) + SL+c(Tl[t2-e,t~+~]) 

< (be(P, r) + (be(s, q) 

Since 0 < (be(s, r) + (be(r, s), 

(be(p, q) < (be(p, r) - (bc(s, r) + (be(s, q) 

~c(P, q) < ~c(P, r) + (be(r, s) + (be(s, q) (24) 

Since 71]0,+oo[ is semistatic, we have that  

(b~ (p, q) = & + c  ('r I Its-~, t l +~]) + & + c  ('71 [~1 +~, t~-~]) + & + c  ('rl [~_ ~, t2 +~]), 
(bc(P, q)= (be(P, r) + (be(r, s) + (be(s, q). 

This contradicts (24). 

(b). Now we prove item (b). We prove that  if p, q C E0(L), (p, v) E Z(L), 

(q, w) E E+(L), and d(p, q) < 5, then 

dTM((p, V), (q, W)) < K dM(p ,  q). 

Observe that  this implies i tem (b). Suppose it is false. Then by lemma 

3.1 there exist a , /3  : [-e,  e] --+ M such that  

0~(--s = f-e(q,  w) = :  q - E  a(e) = re(P, v) =: P-e 

/3(-~) = f_e(p~ v) =: Pe /3(s) = re(q, w) =: qe 

and 

So 

&(a) + &(/3) < &(z~,l[_~,~]) + &(xv[[_~,4) 

(bc(q-e,Pe) + (be(P-e, qe) < (bc(q-e, qe) + (bc(P-e,Pe) 

= (bc(q-e, qe) -- (be(Pc,P-e) 
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% %e I 
A 

z 

Theorem VI B. 

Thus 

~c(q-c, qc) <_ ~c(q-e,Pe) + r + (I)c(p-e, @) < (I)c(q_e, @) 

which is a contradiction. [] 

Denote by s the set of equivalence classes of the equivalence relation 

de(a, b) = 0 lifted to E(L) by the vectorfield ~ of theorem VI. Denote by 

~(v) the :z-limit of v E T M  by the flow ft.  If F ~ /2  set 

F + := {w E E+(L) I~ (w)  C r } .  

Clearly F + is foward invariant. Let 

r~- := U ~ f t P + "  
t>0 

Theorem VII. 
(a) ~E+(L)  = M.  

(b) For all p e r0 +, 

(Covering ProperW.) 

there exists a unique ~F(P) E TpM such that 

(p, @(p)) E r + . 

Moreover, ~r is Lipschitz. 

Observe tha t  7r : E+(L) --+ M is not necessarily injective. We recall 

tha t  Marl6 stated i tem (a) in a stronger form: 7oF = M for every equiva- 

lence class F. This may not be true as the following example shows. Let 

M = S 1 = • /Z  be the unit circle and L = �89 2 - c o s  6~vx. Then  the three 

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997 



LAGI~a2~GIAN FLOWS 175 

maximums  of the potent ia l  A = 0 = 27c, 13 = ~ and C = ~ are singu- 

lar (hyperbolic saddle) points  of the Lagrangian flow. For mechanical 
Lagrangians L = lv2  - r we have tha t  

c(L) = e 0 = --minx~ML(x,O),  

and the  static points  are the  critical points  (x,0) of the Lagrangian 

flow such tha t  L(x,O) = - co .  In this example c(L) = 1 and 2(L) = 

{(A, 0), (B, 0), (C, 0)}. We shall prove below tha t  dl(A, B) = ~I(A,  B) + 

~51(B , A) > 0. Hence (A, 0) and (B, 0) are not in the same equivalence 

class. By (30), E+(L) C E-I{c(L)} ,  hence if I" is the  equivalence class 
of (A,0), then  7rP + C [0, 2~rru127r 27c] r S l. 

- 3 ~ ; 3 ' This  example can easily 

generalized to higher dimensions.  

We show now tha t  in the example above dl(A, t3) > 0. By theorem 

V, the set E(L) is chain transit ive and contains 

E(L) = {(A, 0), (B, 0), (C, 0)}. 

Moreover, by (30), E+(L) C E-I{c(L)} .  In our example this is only 

possible if E(L) contains complete  components  of the  saddle connections 

(so tha t  IrE+(L) = M).  From the symmet ry  of this Lagrangian we get 

tha t  E(L) contains all the saddle connections. Hence E(L) = E-I{c(L)} .  
Let (x, J c) be the  orbit  on E-I{e(L)}  with a- l imit  (A, 0) and w-limit 

(/3, 0). Then  it is semistat ie  and hence 

L(x,2) + c(L) = ic Lv(x, ic) = 1212 , 

~51(A,B ) = lim SC+c(XI[_T,+T]) = 12(t)12 dt > O. 
T--+-foo oo 

The  same argument  gives tha t  ~ I (B ,  A) > 0 and thus dl(A, B) > O. 
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P r o o f  o f  theorem VII. We prove (a). We may assume that  7rE(L) r M 

otherwise the proof  is trivial. Let p E M \ ~rE(L) and q C 7rE(L) ~ ~.  

For each n E N let fin : [0, Tn] ~ M be such that  

1. fin(O) = P, fn(Tn) = q. 
1 2. <_  c(p, q) + 

3. fn  minimizes L + c in AC(p, q, T~). 

Then 

(i) fn  is a solution of (E-L). 

(ii) [,%[ < A for all t C [0, Tn]. 

Since E(L) is invariant under the Lagrangian flow, i tem (b) of theo- 

rem VI implies that  

(iii) Tn --+ +co. 

Let T/(t) := 7rf~(p, v). By (i) and (iii), for any fixed T > 0 we have 

that  fn[[0,T] --+ ~/I[0,T] in the C 1 topology, and hence 

SLq-c(?7][O,T]) "~ lim SL-[-c(fn[[O,T]) . 

Clearly 7(0) = p. It is enough to show that  ~[[0,+oo[ is semistatic. For, 

we have that  

S L - [ - c ( ~ n )  = SL+c("/nl[O,T]) q- SL-[-c("/nI[T, Tn]) 
1 

<_ ~c(P, q) + 
1 <_ ~c(P, 7n(T)) + ~c("/n(T), q) + n 

_< 'Po(p, f~(T))  + SL+c(fn][T, Tn]) + nl-" 

Hence 
1 SL+c(',/n[[O,T] ) ( , l ~ ( p , % ( T ) )  + ~ . 

Taking the limit when n --+ +oo we obtain that  ~ is semistatic. 

We now prove i tem (b). Let A > 0 be from corollary 1.4 and K = 

K(A)  > 0, cl  = el(A) > 0, 8 = 8(A) > 0 be from Mather 's  lemma 3.1. 

It is enough to prove that  i fp l ,  P2 C F +, vl, v2 G F +, 7r(vi) = Pi, i = 1,2 

and dM(pl,P2) < 5, then dTM(Vl, V2) <_ K dm(Pl,P2). 
Suppose it is false. Then there exists p~ E F +, vi E F +, ~r(vi) = 

Pi such that  dM(Pl,P2) < 5 and dTM(Vl,V2) > KdM(pl ,P2) .  Since 

pi E F +, there exists 0 < c < c1 such that  ft(vi) E F + for t > --c. 
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Let qi := 7~f_~(vi), ri := f+E(vd. By Mather ' s  l emma 3.1, there exist 

~/i : [ -c ,  e] --+ M such tha t  ~/i(-c) = qi, ~i(+c) = ri and 

SL+c( l) + SL+c( 2) < ]) + 

Thus  

~c(ql, r2) + ~c(q2, r l )  < ~c(ql, r l )  + ~c(q2, r2). (25) 

Let ui E w(vi) and zi := 7v(ui). I fTn i n + ~  is such tha t  fT~(vi) 
ui, we have tha t  

q~c(qi, Zi) = linm ~c(qi, xv i (T~n)) = linm SL+c(Xvi][_z,Ti ]) 
= SL+ (xv  + linm 5L+c(X   
>_ ~c(qi, ri) + (~c(ri, zi) . 

By the triangle inequali ty for ~c we get tha t  

�9 ~(qi, zi) = qac(qi, ri) + ~c(ri, zi) (26) 

From (26) and (25) we have tha t  

~c(ql, Zl) + ~c(q2, z2) = ~c(ql, r l )  + ~c(rl,  Zl) + (~c(q2, r2) + ~c(r2, z2) 

> ~c(ql, r2) + a2c(q2, r l )  + a2c(rl, Zl) + ~2c(r2, z2) 

>_ ~c(ql, z2) + ~c(q2, Zl).  (27) 

Since ui E F, then  dc(zl,z2) = ~c(Zl ,Z2)+ ~ ( z 2 , z l )  = 0. Adding 

de(z1, z2) = 0 to the  right of inequali ty (27), we obtain tha t  

~c(ql, Zl) + ~c(q2, z2) > ~c(ql, z2) + ~c(z2, Zl) + ~c(Zl, z2) + ~c(q2, zl) 

>_ ~2c(ql, Zl) + 62c(q2, z2). 

This  is a contradict ion.  [] 

T h e o r e m  VIII. (Generic Structure of E(L).) For a generic Lagrangian 

L, E(L) is a uniquely ergodic set. I f  it is a periodic orbit then it is a 

hyperbolic periodic orbit. 

Proof .  This  should be though t  as a corollary of theorems II1 and IV. 

Take the generic set given by theorem III of Lagrangians L tha t  satisfy 

4PAd(L) = 1 and call this unique minimizing measure #(L). Then  if # is 
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an invariant measure of L and it is supported in E(L) then by theorem 

IV it is minimizing. Thus # = #(L). This proves the theorem. [] 

Th eorem  IX. (CoboundaryProperty.) If  c = e(L), then (L + c)]~(L) is a 

Lipschitz coboundary. More precisely, taking any p E M and defining 
G: E(L) -+ IR by 

c ( ~ )  = '~c(p, ~(~)) 

Then 

where 

dG 
(L + c)I~(L) -- df ' 

dG 1 
~ - ( w )  := h-~01im ~ [ G ( f h ( w ) ) - G ( w ) ] .  

Proof .  Let w E E(L) and define Fw(v) := (Pc(Tr(w), 7r(v)). We have that  

dFw w = lim 1 
df h~o~ 

1 
= lim 

h~O h 

[F~(A w) - F~(w) ] 

[ ~c(~w, ~A  w) - ~c(uw, ~w)] 

lira [ SL+c 
h~O h 

lim [L(xw(s),~w(S)) + c Ids 

L(w) + c. 

m 

We claim that  for any p E M and any w E E(L), h E ~,  

G(fh w) = ~c(P, 7c(fh W)) = ~c(P, 7r(W)) + ~c(7C(W), rc(fh w)) 
G(fh ~) = ec(p, ~(w)) + Fw(/h(~)) �9 

This is enough to prove the theorem because then 

dfdG ~ = ~Fh(fhd w) h=0 -- FWdf ~ = L(w) + c, 

and G is Lipschitz by theorem I. 

(2s) 

We now prove (28). Let q := ~(w), x := 7c(fh w). We have to prove 

tha t  

{Pc(P, x) = ~c(P, q) + ~c(q, x) .  (29) 
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Since the points q and x can be joined by the static curve x~ol[0,h], then 

qac(x, q) = --q) c(q, x) . 

Using twice the triangle inequality for ~5c we get that  

Oc(P, q) <_ ~c(P, x) + ~c(x, q) : ~c(P, x) - ~c(q, x) <_ ~c(P, q). 

This implies (29). 

4. Connecting orbits inside fixed energy levels 
We quote a paragraph from Marl6 [7]: 

"Exploiting that  the energy, E : T M  --* IR, defined as usual by 
E ( x ,  v)  = or  v - L, is a first integral of the flow generated by L, leads 

to information on the position of E + (L). First observe that  it is easy to 

check that  a semistatic curve x : [a, b] -~ M satisfies: 

E(x(t),  2(t)) = c(L) . (30) 

This follows from calculating the derivative at A = 1 of the function 

F : R --+ R given by: 

b 

= --]ax (L + c)(xa(t), ~ca(t)) F(A) dr, 

where xa : [a, b] ~ M is given by xa(t) = x(M). From (30) follows that:  

E+(L) C E - l ( c ) ,  

that  together  with ~r E+(L) = M implies: 

Hence, 

rc E - l ( e )  = M .  

C > m a x q  E(q, 0). 

Moreover E(L) C E-l(c) implies:" 

4.1. Corollary. E M ( L )  is minimizing if and only if 

/<) Ov v d p  = O, supp(#) C E- I (c (L) ) .  
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T h e o r e m  X. f f  k > c(L) then for  all p, q E M ,  p ~ q there exists a 

solution x(t)  of  (E-L)  such that x E AC(p ,  q) and 

~k(P, q) = SL+k (x) 

Moreover the solution ( x ( t ), ~ ( t ) ) is contained in the energy level E - l ( k } . |  

4.2.  Remark.  If p = q and  k > c(L) ,  then the infimum 

�9 ~(p,p) = inf{SL+k(7) t 7 ~ A C ~ ,  q ) )  = 0 

can not be realized by a pa th  defined on an interval with nonzero length. 

For otherwise if 7 : [0, T] ~ M,  T > 0 is a minimum, then 

~c(P,P) _< SL+c(?/) = q~k(P,P) -- (k - c(L)) T < ~k(p,p)  = O. 

Cor~tradicting theorem I. 

4.3. Remark.  This theorem, with the same proof, holds for coverings 

7r : M --~ M of a compact  manifold M,  with the lifted Lagrangian 

Z=LoTr. 
Proof .  Suppose that  p, q E M and p ~ q. For each T > 0 there exists a 

minimizer XT of SL on AC(p ,  q, T).  Then 

~k(P, q) = inf SL(Xr)  + k T .  
T>O 

Observe that  

lira ( sL(xf )  + k T )  = lira ( S L + c e f )  + (k - c)T)  
T--++oc 

_> (k- 

---- +CX:). 

Choose a sequence {Ti} such that  limi SL(XT i +k  Ti) = ~k(P, q). Then 

{Ti} must be bounded and we may assume that  it has a limit To. Since 

p ~ q, by Corollary 1.4 we have that  ]lkfi][ < A and then To > 0. 

By  Theorem 1.2, xTi is a solution of (E-L). Write w~ = 2Ti(0), then 

xT~(s) = ~r o fs(wi), where f s  is the Euler-Lagrange flow. Choose a 

convergent subsequence wi --+ w ,  then xTi --+ xw in the C 1 topology, 

where x~o(s) = 7c o fs(w),  s E [0, To]. Hence 

SL+k(Xw) = lira SL+k(xTi ) = ~k(P, q). 
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We now prove that  minimizers of S L + k  a r e  in the energy level E = k. 

Suppose that  x E AC(p,  q, T) is such that  

SL+k (X) = minycAC(p,q) SL+k(Y) . 

Define 
i T  

F(A)= ~o (L+k)(xA,~A) 
where xA(t) : [0, AT] --* M is defined as x~(t) = x(~). By the minimizing 

condition F'(1) = O. On the other hand 

~ .,kT OL 
F ' ( / )  = T L ( x ~ ( A T ) ,  5h(AT)) + ~ dt + k T  

nOW 

OL 

OA 

OL Ox~ OL 02~ 

Ox Ol Ov OA 

= - 0--~ ~2A t + 

O = T L(x (T) ,  2(T) ) + T k - -~xie + ~ v  2 t dt - ~v  2 dt 

= T L ( x ( T ) , s  + T k -  ~vvk, dt - ~ t d t  

foT OL ~0 T = T L ( x ( T ) , ~ ( T ) ) + T k -  ~ v ~ d t +  L d t - L t [ ~  

T 

= T k  - fo E dt 

So 

= T(k - E). 

This proves that the energy ]eve] of the solution x is k. 

Observe that 

[] 

(35) L + k = (OL/Ov)v on E - l { k } .  

4.5. Corollary. 
(a) I f  k > c(L) and a, b E M ,  there exists a solution x(t) of (E-L) such 

that x(O) = a, x(T)  = b for  some T > O, E(x(t),ie(t)) = k for  all 
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t E R, and: 

foT OL fo TI OL Ovv (x, 2) 2 dt = rain O~v (y' 9) 9 dr, (36) 

where the min imum is taken over all the absolutely continuous y : 

[0, T1] --+ M ,  T1 >_ O, with y(O) = a, y(T1) = b and E(y(t),  if(t)) = k 

for a.e. t e [0, T1]. 

(b) Conversely, if given k > c(L) and a, b E M ,  there exists an absolutely 

continuous x : [0, T] -+ M with x(O) = a, x(T) = b, E(x(t) ,  2(t)) = k 

for a.e. t E [0, T] and satisfying the minimization property (36), then 

x(t) is' a solution of (E-L). 

If p, q E rcE- l{k} ,  define 

ACE(p ,  q; k) := {x E AC(p, q) lE(x ,  2) = k a.e. }. 

I tem (a) of corollary 4.5 follows from (35) and i tem (b) follows from 

the fact tha t  since minimizers of SL+k have energy k, then  minimizing 

SL+k on AC(p, q) is equivalent to minimize it on ACE(p ,  q; k). 

Given p E Ad(L) define its homology or asymptotic cycle in M (cf. 

Schwartzman [10]), by p(p) ~ H I ( M ,  R) = H I ( M ,  JR)* such tha t  

, V[0] H I(M,R),  
J T  M 

where 0 is a closed l - form and [0] its homology class. Define the Mather's 

beta function/3 : H1 (M, IR) --, JR, by 

/3(h) := rain{ SL(#) ]# E AA(L), p(#) = h } .  

Since, for any h E H I ( M , R )  the  set K ( h ) : =  { p  E M ( L ) I P ( # )  = h}  is 

convex, it follows tha t  /3 is a convex function. Let /3* be its Legendre 

transform: /3* : H 1 (M, R) --+ ]~, 

/3*(w) := m xh Hl(M, ){ w(h) -/3(h) }. 

The  reader can check tha t  

/3*([0]) = - c ( L -  0), V[0] E H I ( M , R ) .  

Define the strict critical value co(L ) by 

c0(L) = min0 c(L - 0). 
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Then 

co(L) = -fl*(0) = - m i n {  SL(#) I# E AA(L), p(#) = 0 } .  

Observe that  

d 
d5 E(x ,  tv)]t= 1 = v .  L w ( x , v ) .  v > 0,  (37) 

Therefore if (x, v) is a critical point of the energy function E then v = 0 

and OL (x, O)= O. Let 

e 0 := maxpe M E(p, 0). 

By (37), we have that  

E(p, O) = minvcTpM E(p, v) . (38) 

In particular 

e 0 = min{k E I~ I 7r(E-l{k}) = M } .  

Let 00 be a closed 1-form such that  co(L) = c(L - 00). Then the energy 

function and the Euler-Lagrange equations for L-Oo and L are the same. 

Theorem X implies that  7r(E-l{k}) = M for all k > e(L - 00) = co(L). 

Hence 

eo <_ co(L). 

As observed in Mafid [7], for mechanical Lagrangians 

1 v L ( x ,  v )  = < , v>x - r 

with ( , )x a riemannian metric, we have that  do = eo = co(L) = c(L). 

There is an example in [7] of a Lagrangian L with e0 < co(L). It uses 

the following corollary to the proof  of theorem X: 

4.6. Corollary. I l k  > co(L), for  every free homotopy class H ~ 0 of  M ,  

there exists a periodic orbit in E - l { k }  such that its projection on M 

belongs to that free homotopy class. 

Proof .  Fix h > co(L). By adding a closed 1-form we can assume that  

e(L) = co(L). Let A C ( H )  be the set of absolutely continuous closed 

curves in M with free homotopy class H.  Let xn C A C ( H )  with xn : 
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[0, Tn] --* M and 

lira S L + k ( X n ) =  iA~f ( SL+k(X) .  
n~eo x~ H) 

Let 2% be a lift of xn to the  universal cover M of M.  We can assume tha t  

xn is a minimizer of SZ+ k on AC(~n(0), xn(Tn); Tn) and in particular,  

tha t  it is a solution of (E-L). Then  the same arguments  as in the  proof  

theorem X yield tha t  {Tn} must  be bounded  and Ilxnll < A. We can 

assume tha t  limn Tn = TO. Moreover 

1 
To > ~ rain{ length(7) 1 7 E AC(H) ) > O. 

The  same arguments  as in theorem X give a closed curve 7 : [0, To] ---, M 

which is a uniform timit of a subsequence of Xn and hence 7 E AC(H). 
Moreover 

SL+k (7) = minx6AC(H) SL+k(X)  , (39) 

and (% +) is in the  energy level E - l { k } .  

It  remains to prove tha t  a/(0) = a/(Tn). Suppose tha t  +(0) r ":g(Tn). 
Let M be the  universal cover of M and I, the lift of L. Let ~ be a lift of 

7. Consider the pa th  ~/l[-~,e] = 71[To-~,T0] * 71[0,el" We have tha t  r~ is not 
C 1 and hence it is not  a solution of (E-L). Since k > c0(L) > e0, t hen  k 

is a regular value of the  energy E of I,. By the Mauper t ius  principle (see 

theorem 3.8.5 of Abraham L= Marsden [1]), ~/l[-e,e] is not a minimizer  

of the (~, + k)-action on E - l { k } .  Then  there exists ~ E (~?(-e), r/(e)), 

wi th  energy E(~,~) -- h and SZ+k(~) < SL+k(r]). Moreover, since ~r  

is simply connected,  the  paths  ~ and ~ are homotopic  by a homotopy  

which fixes their  endpoints .  Hence 7r(~ �9 ~I[_e,T0_E] ) and "~[[0,T0] are in 

the  same free homotopy  class of M.  We have tha t  

= 

= sZ+k( ) + 

< 

This contradicts  the minimizing proper ty  (39) of 7 .  [] 

"An interest ing characterizat ion of the  critical value c(L), in te rms 

of an analogous to Tonelli 's theorem (Mather  [8]) in a prescribed energy 
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level is given by the following result:" - -  M a d d  [7] 

Theorem XI. Assume that k is a regular value of E and dim M > 1. 

Suppose that k has the following property: for all a, b in 1rE-l(k)  there 

exists an absolutely continuous curve x : [0, T] --+ M such that: 

(i) x(O) = a and x(T)  = b. 

(ii) E(x(t) ,  ic(t)) = k a.e. in [0, T]. 

~0 T OL ~0 TI OL (iii) O~v (x(t), ~(t)) ~(t) dt = rain ~v-v (y(t), y(t)) ~](t) dt, 

where the min imum is taken over all absolutely continuous y : 

[0, T1] --+ M, with y(O) = a, y(T]) = b and E(x(t) ,  ic(t)) = k a.e. 

in [0, T1]. 
Then k > c(L) and x(t) is a solution of the Euler Lagrange equation. 

The hypothesis dim M > 1 is necessary as the example of a simple 

pendulum shows. Indeed, for L(x ,v )  1 iv[2 = - cos x and any regular 

value k < eo = -minpcs~ L(p, O) = c(L) = 1 there are such minimiz- 

ers. This is because a non-empty energy level E - l ( k )  with k < e 0 is 

a topological circle and given a, b E 7c(E-l(k)) there are two injective 

paths on E - ] ( k )  from 7r-l{a} to 7c-l{b}. One of them must minimize 

the (L + k)-action because L + k = v �9 Lv = 1 iv]2 _> 0 on E - l ( k ) .  In 

fact, the minimizer is the one whose projection on S 1 is injective. 

Another  example in M = S 1 is L = L + 0 where 0x (v) is a (closed) 

l - form such tha t  c(L) = c(L + O) > c(L) = e0. The energy functions 

and the  Lagrangian flows for L and L are the  same. For eo < k < c(L) 

the energy levels E - l ( k )  support  two periodic orbits. Lemma 4.8 below 

shows tha t  these orbits have negative (L+ k)-action, and hence there are 

no minimizers on these levels. On the other hand, a regular energy level 

k < eo consists of one periodic orbit (% +). By the symmet ry  of E - l ( k ) ,  

we have tha t  f.y v Lv = fz �89 Iv] 2 + 0 > 0. Then the same arguments  as 

for L show that  there exists minimizers for k < c(L). 

We comment  now the hypothesis of the regularity of the energy value 

k. Recall tha t  all the critical points of E are in the zero section of T M .  

The following lemma shows tha t  if (Po, 0) is a critical point of E,  then 

it is a singularity of the Lagrangian flow and that  the point Po can not 

be joined to other points by a path  with energy k which is differentiable 
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at P0. Thus completing the picture of theorem XI: If we require the 

differentiability of the minimizers x(t) at the endpoints, then the same 

s tatement  holds for critical values k of E if E - l { k }  consists of more 

than one point, and if # E - l { k }  = 1 the (unique) minimizing curve is 

a (singular) solution of (E-L). Conversely, if (q0,0) E E - l { k }  is not a 

critical point, then it is necessarily reached on finite t ime by curves on 
E - I { ] ~ } .  

Define 

do := minpEM E(p, 0) = - maxpc M L(p, O) 

If k < do then E - l ( k )  = ~.  Given do < k < e0 define 

0(k) := {p E M [ E(p,0) = k } ,  

then O(k) ~ ~. The proof of the following lemma is delayed to the end 

of the section. 

4.7. Lemma. 

(a) I f  POE O(k) and DpE(po, O) = O, then the only curve p : [0, 5] --+ M 

with E(p(t),p(t)) = k and p(O) = Po is the constant curve p(t) = PO. 

(b) I f  p :  [0, t0[--~ M is such that E(p,~b) -- k, limt~toP(t ) = qo E O(k) 

and DpE(qo, O) ~ O, then to is finite. 

Proof  o f  theorem XI. For k < c(L) we have to show that  there are 

points in E - l { k }  which can not be joined by a curve which minimizes 

the action of SL+k on ACE(p,  q; k). 

Observe that  do is necessarily a critical value of E.  Suppose first 

that  do < k < e0. Since k is a regular value of E,  by the Maupert ius 

principle (see theorem 3.8.5 of Abraham & Marsden [1]), the critical 

points of the functional SL+k on ACE(p,  q, k) are solutions of (E-L). 

Let p C O(k) ~ ~. Then {(p, 0)} = TpM • E - l { k } .  Hence there is 

only one solution x of (E-L) with E(x,:~) - k and x(0) = p. The 

set { x(t) 12 = 0 } = { x(t) lx(t  ) E O(k) } has at most countably many 

points. But since k is a regular value of E then O(k) is a submanifold 

of M of codimension 1 and dim0(k) > 0. Hence there are points in 

O(k) = 07cE-l(k) which can not be joined to p by (L + k)-minimizers 

with E(x,  2) = k. 
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Suppose now that  k = c(L) =: c. The arguments of equation (30) 

show that  minimizers of SL+c in AC(p, q) are in the energy level E = 

c(L). Thus minimizers of SL+c on ACE(p, q; c(L)) are also minimizers on 

AC(p, q) and hence semistatic curves. Let (q, ~(q)) E ~, C_ E - I { k } .  Let 

p r 7r{ft(q, ~(q)) It E IR }. Suppose that  there exists a semistatic curve 

x E AC(p, q, T). Then by theorem VI (b), we have that  2(T) = ~(q). 

This contradicts the choice of p. 

Now suppose that  e0 < k < c(L). We shall prove in lemma 4.8 that  

there exists a closed curve 7(t) such that  E(7,  a/) _ k and 

T(L +/~) < 0. 

By making a large number of loops along 7 one can produce a curve 

with arbitrarily negative action. By adding two connecting segments 

this implies tha t  for any p, q E M there are not minimizers of SL+k on 

ACE(p, q; k). 
This completes the proof of theorem XI. [] 

Given an absolutely continuous closed curve r : [0, T l --+ M,  define 

the probabil i ty measure # r  on T M  by 

d u r  := dt 
T �9 

Let C(k) be the set of measures #F suppor ted  on the energy level E - l ( k )  

and let C(k) be its closure in the weak* topology. Define 

7(k) := min#E~(k) / v "  Lv d#. 

Measures realizing this minimum may not be invariant. For example 

if L(x,v) = 1 iv12 _ r is a mechanical lagrangian and k < e0 is 

a regular energy level, then any such measure will be supported on 

OE-l{k},  where v = 0 and vnv = 1 iv12 = 0. Nevertheless, OE-l{k} 

has no invariant subsets. 

In the following lemma we use ideas of Dias Carneiro [2]. 

4.8. Lemma.  For all eo < k < c(L) we have that ~/(k) < O. 

Proof .  From (38) we get that  given any k > e0 and (p, v) E TM,  there 

exists a unique A > 0 such that  E(p, A v) = k. Moreover, A = )~(p, v, k) : 
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TMx]eo, +ec[~]0 ,  +oe[ is a smooth  function. 

Let # be an invariant measure # E AA(L) such that  

f (L + d .  = (40) c ( L ) )  O. 

By theorem 4 and the fact tha t  static curves have energy level c(L) we 

have that  supp(#) C E - l (c(L)) ,  and by the Poincar6 recurrence theorem 

we have that  # E C(c(L)). 
For k > e0 define the measure uk on E - l ( k )  by 

fE fE f(p,~(p,v,k)v)  -l(k) f duk := A(k) -~(k) A(p, v, k) d#(p, v) (41) 

for any continuous function f : E - l ( k )  --+ R, where 

( f l  A(k) := )~(p, v, k) d#(p, v) 

Then uk E C(k) and Uc(L) = #. This measure uk is just  the (proba- 

bility) measure obtained by reparametrizing the solutions of (E-L) on 

7r(supp(#)) so as to have energy k. This process is reversible, i.e. we can 

recover # by reparametrizing ua. Let 

g(k) := f v.  L. duk = k + f L d.k . 

Then 9 is a differentiable function with derivative 

g'(k) = 1 + A(k) -~  )~ d# + A'(k) J -A ~ dp. 

If we change the reference energy level c(L) to hi > e0, we can use 

Ltkl instead of p on formula (41). The function 9(k) does not change but  

now/~(kl)  -= 1, A(kl) = 1 and 

/0 (1) / 
g'(kl) = 1 + ~ dukl + A'(kl) L d~'kl , 

where L(p, v) := L(p, 2~ v). We compute  this derivative: 

0 L k A ~ L A ~  
~ ( ~ ) k = k l - -  = L~ - ),k L/k=k~ , 

Lk = v �9 Lv Ak �9 
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Since E ( p ,  A v) = k, we have  t h a t  

O E  
- E v ' ( A k v ) = ( v ' L v v ' V )  l k =  l ,  

Ok 
1 v �9 Lv 

A k -  a n d  L k -  
V �9 L v v  " v v �9 L v v  �9 v 

Moreove r  

1 

Ok A 2 v �9 L ~  �9 v 

.,/~,~- 1 I0(~) I ' 
A ( k l )  0-s dp  = v .  Lvv 

T h e r e f o r e  

" V  

v .  Lv  f L g ' (k )  = 1 + duk - duk+ 
v . Lvv �9 v v . Lvv �9 v 

+(/..... 
I ~ (i ' ) ( /  g ' (k )  = 1 + duk + duk 

V �9 L v v  �9 v v �9 L v v  �9 v 

(I ) ( i  ~ ' 4  +. g' ( k ) = ( L + k) duk v . Lvv �9 v 

g ' (k )  = b(k) g(k)  + 1 ,  

& %  �9 

Ld~) 

(42) 

where  

b(k)  = f(v Lvv"  v) - I  duk > 0. 

Le t  
k 

B(k) : =  f b(s) ds 
o 

a n d  h(k )  := e -B(k) g(k) .  F r o m  (42) we get  t h a t  

h'(k)  = e -B(k)  > 0 .  

B y  (40),  h ( c ( L ) )  = 0, therefore h(k)  < 0 for all e0 < k < c(L) .  A n d  thus  

~/(k) <_ g(k)  = e B(~) h (k )  < o 

for all e0 < k < c(L) .  [] 

P r o o f  o f  l e m m a  4.7. We first p rove  (a). Using local  coo rd ina t e s  we can  

a s s u m e  t h a t  M = R n a n d  T M  = IR n • R n. For  v smal l  and  p n e a r  P0 
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such tha t  E(p,  v) = k, we have tha t  

E = v . L v - L ,  

: -  ( v  . L v ( p , o )  + ~ . L w ( p ~ O )  . v + 0 ( ~ 3 ) )  k 

- (L(p,O) + v " Lv(p,O) + ~ v" L~,~(p,O) "v + (Q(v3)) , 

1 
- v .  L w ( p , O ) .  v + O(v 3) = k + L(p,O).  
2 

Since k = - L ( p 0 ,  0), there  exists  a funct ion  F(p,  v) defined on a neigh- 

b o u r h o o d  of (P0, 0) on the  energy level E(p ,  v) = k by  

F(p ,  v) Ivl 2 := k + L ( p ,  o) 

1 
= Lp(po, O) A p  + -~ A p  Lpp(pO, 0) Ap + O ( A p  3) , 

(43) 
where  A p  = p - PO, F(p ,  v) is s m o o t h  and F(p0,  v) > 0. We have tha t  

DpE(po,  O) = - L p ( p o  , 0) = 0 .  (44) 

Since the  left hand  side of (43) is posi t ive,  using (44) we have tha t  

ApLpp(po,  0 ) A p  > 0. T h e n  there  exists  a funct ion  G(p, v) > A > 0 such 

tha t  for v small  and  p near  P0 such t ha t  E(p,  v) = k, we have 

Iv] 2 = G(p, v) 2 ]Ap] 2 , 

IV I > A [Ap[ . (45) 

Suppose  tha t  there  exists  a differentiable curve p : [0, 5] --+ M such tha t  

p(0) = P0 and  E(p(t), io(t)) = k. For s implici ty  suppose  tha t  5 = 2. Let  

x(~) := Ip(~) -P01 .  Wri t ing  v(t) = lb(t), we have t h a t  

d x ( t )  = 2 x ~ = 2 (p ( t )  - po ,  .(t)), 

~(t) = / p(~) - p o ,  \ 
\ Iv(t) ~01 ~(t)/>__ - B  I~(t)l �9 

for some B > 0, because  p(t) is differentiable at  t = 0. F rom (45), we 

have t ha t  

2(t) > - B  Iv(t)] > - A B x ( t )  , 

x(t) > x(1) e x p ( - A B  ( t -  1)) . 
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In part icular  x(0) r 0. This  contradicts  the choice of p(t). 

Now we prove (b). Since DpE(qo, O) = Lp(qo, 0) r 0, then  O(k) is 

locally a codimension 1 submanifold near q0. Let q(t) E O(k) be given 

by the  condit ion 

Lp(q(t), O) (p(t) - q(t)) = O . 

Using formula (43) with Ap = p(t) - q(t), we have tha t  

F(p,  v) Iv[ 2 = Lp(q(t),O) Ap  + 0 (IApl 2) 

and then 

Ivl 2 A 

for some A > 0. Let y(t) := ]p(t) - q(t)]. Comput ing  d y(t)2, we obtain 

( p ( t ) - q ( t )  v ( t ) )  < - B  ,v(t)l < - A B  
y(t) = Ip(t)- q(t)l ' - - ' 

for some B > 0. Therefore 

< A B A 2/3 2 
_ - - -  and u(t) <_ - - -  ( t - t o )  2 .  

2y~ 2 4 

For future reference, we also note that 

I~l(t)l > b Iv(t)l > bl yV/~) , 

y(t) >_ b2 (t - t0) 2 , 

for some b, bl, b2 > 0. 

(46) 
(47) 

[] 

5. Properties of weaker global minimizers 
Definit ion.  We say tha t  a solution x(t)  of (E-L) is a min imizer  (resp. 

forward minimizer)  if 

SL(Xl[to,tl]) <_ SL(y) 

for every to _< t l  (resp. 0 < to _< t l )  and every absolutely cont inuous 

y :  [to, tl] --~ M,  wi th  y(ti) = x(ti) ,  i = 1, 2. 

Denote by A(L) (resp. A+(L)) the set of (p,v) ~ T M  such tha t  

the solution x(t)  of (E-L) with initial condit ion (x(0), 5(0)) = (p, v) is a 

minimizer  (resp. forward minimizer).  
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Let w E A+(L) for 0 < s < t define 5~(s,t)  by 

= + t ) .  

It is clear that 

(48) 

5w(s, t) > O. (49) 

The triangle inequality for ~ implies that 

5w(s, t) + 5w(t, r) _< 5w(S, r) (50) 

for a n y w E A + ( L )  a n d 0 < s < t < r .  

Claim. 5w(s,t) is uniformly bounded on w E A+(L), and 0 < s < t < oo. 

We shall prove first theorems XIV, XII and XIII and then the claim. 

Theorem XIV. 

(a) There exists C > 0 such that setting c = c(L) 

_< c 

for every w E A +(L) and all 0 < s < t. 

(b) If  w E A+(L) and p E M is such that p = l imn-~Xw(tn)  for some 

sequence tn --~ Oc then the limit 

lira 

exists and does not depend in the sequence {tn}. 

Proof. Item (a) is straightforward consequence of the claim and the 

definition of 5~. From equati-a (50) it follows that the function t 

5w(0, t) is increasing. Then the claim implies that D := limt_.+~ 5~(0, t) 
exists. Thus 

= lira ~c(x~(O),x~(t~))+ lira 5w(O,&) 

= ~c(x~(O),p) + D .  [] 

lira SL+c(Xw ][0,tn]) 
n--~OO 

Theorem XII. 

(a) The w-limit set of an orbit in A+(L) is contained in ~,(L). 

(b) The c~ and w-limit  sets of an orbit in A(L) are contained in E(L). 
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Proo f .  We only prove (a). Let  w E A+(L).  

let (nk} be a sequence in R + such t h a t  

Let  

193 

Let (p, v) E a~(w), T > 0 and  

Pk := xw(nk), qk := xw(nk + T),  

(q, u) := (xv(T),2v(T)) = likm (qk, 5Cw(nk + T)) . 

we have that 

SL+c(Xwl[nk,nk+T]) ~- (Pc(Pk, qk) + ~w(nk, nk + T),  

SL+c(Xw [[nk+T, nk+l]) = (pc(qk, Pk) + 5w (nk + T, n k + l ) ,  

SL +c (Xw I Ink ,nk+l]) = (pc (Pk, Pk + 1 ) + 6w (nk, nk + 1 ) .  

By the  claim and  equa t ion  (50) there  is a cons tan t  Q such t h a t  

~ (5~(~, n~ + T) + ~ ( ~  + T, ~+1)) _< ~ e~(~, n~+~) 
k = l  k = l  

_< lim 5w(0, t) < Q .  

Therefore  

Hence 

lim 5w(nk, nk+l )  = lim rSw(nk, nk + T) 
k--.ec k - * ~  

= lira 5w(nk + T, nk+l )  = 0. 
k~oo  

SL+c(X~J][O,T]) = lip SL+~(X~ ][~k,nk+T]) 
= lira (pc(Pk, qk) = (PC(P, q). 

k 

and  f rom (51), 

(Pc(P, q) + (Pc(q,P) = likm (pc(Pk, qk) + li~n (pc(qk,pk) 

= lim [SL+c(Xwl[nk,%+T] ) + SL+c(Xwl[nk+T, nk+l])] 
k 

= lim [(PI(Pk,Pk) + 5w(nk, n k + l ) ]  
k 

= (Pc(P,P) 

z O .  

(51) 
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This implies tha t  w(w) C__ E(L). [] 

T h e o r e m  X I I I .  ft]A(L) is chain transitive. 

Proof. Let v, w E A(L) and c > 0. It is enough to prove tha t  there exists 

an c-chain in A(L) joining w(w) to a(v). By theorem XIII, a(v)Uw(w) C 

E(L) C E(L). By theorem V there exists such c-chain contained in 

E(L) C A(L). This  completes the proof. [] 

Proof  of  the claim. Let 

A := 2 max{ L(p,v) + c(n) l IIvll < d i a m M  + 1 } 

B : :  m ~ {  I~c(;, q)l [p,q e M }  

Q := 3 m a x { A , B }  + 2. 

Suppose tha t  there exist w E A+(L), 0 < a < b such tha t  5w(a, b) > Q. 

Let 7 : [ a ,  Tb] ---+ M be in AC(xw(a),  xw(b)) and such tha t  

We have tha t  

SL+~('7) < qac(x~,j(a), xw(b)) + 1. 

SL+c(~/) < SL+c(Xw][a ,b] )  - -  (Sw(a, b) + 1, 

SL+~(~) < SL+~(x~l[a,b]) - Q + 1, (52) 

~L+c(~)  < SL+c(Xw][a ,b] )  - -  ( A  + B ) .  (53) 

Suppose tha t  Tb > b - a. Let ~ : [0, 1] --+ M be a geodesic on M such 

tha t  

7(0) = xw(b) , ~/(1) = Xw(Tb+ 1) , ]1//11 < diana(M).  

Then  

Since 

Sr+~(a) < A .  

- B  _< ~c(z~(b), x~(Tb + 1)) _< SL+c(X~I[b,Tb+I]), 

using (53) (or (54)), we have tha t  

SL+c(~/ * ~l) < SL+~(x~ol[a,b]) -- (A + B) + A 

< SL+~(x~[[a,b]) + ZL+~(x~[[b,%+l]) 

SL+o('y �9 7) < SL+c(x~][a,Tb+l]) . 
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T h i s  c o n t r a d i c t s  t h e  h y p o t h e s i s  w E A + ( L ) .  

N o w  s u p p o s e  t h a t  Tb < b - a. L e t  u C E (L )  a n d  le t  A : [0, 1] --~ M 

be  a geodes i c  on  M such  t h a t  

A(0) = xw(b) = ~(Tb), A(1) = 7ru, II~ll --< d i a m  M ,  

a n d  let  X : [0, 1] --+ M be  A(t) := A(1 - t).  T h e n  

A A 
sL+c(~) + sL+c(X) _< ~ + y = A. 

L e t  T > ( b - a ) - - T b  a n d  let  a : [0, T~] --+ M be  a c u r v e  in AC(x~(T) ,Tcu)  

such  t h a t  

L e t  ~ := 7 * A �9 x~][0,~] �9 cr �9 A. T h i s  c u r v e  is in AC( x w( a ) , x w( b ) ) ,  it  is 

de f i ned  on  a t i m e  i n t e rva l  of  l e n g t h  

Tb + I + T + T~ + I > Tb + T > b - a ,  

a n d  has  (L + c ) - ac t i on  

SL+~(~) <_ SL+~(~) + (SL+c(a) + SL+d~)) + (XL+~(x~I[0,~]) + SL+c(a)) 

<_ SL+c(~/) + A + (q)c(Zru, xu(7-)) -- q~c(TCU, Xu(T)) + 1) 

< ( X L + c ( X w [ [ a , b ] )  - -  Q + 1) -[- A + 1, 

SL+c(~) < SL+~(zwlc~,D]) -- (A + B) .  (54) 

N o w  t h e  s a m e  a r g u m e n t  as in t h e  case  TD >_ b, us ing  ~ ! n s t e a d  o f  % 

gives a c o n t r a d i c t i o n .  [] 
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