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Abstract. In this paper, the desingularization problem for an absolutely isolated
singularity of a n-dimensional holomorphic vector field is solved. Also, we exhibit
final forms under blowing-up for this type of singularities.

0. Introduction

In this paper we solve the desingularization problem for an absolutely
isolated singularity of a n-dimensional holomorphic vector field. More-
over, we exhibit final forms under blowing-up for this type of singulari-
ties with algebraic multiplicity one.

Let us give the precise statement of these results. Let M™ be a
n-dimensional complex manifold. Let us consider a singular analytic
foliation by curves on M™. By this we mean that at any point p € M"
the foliation is generated by the holomorphic vector field

& 0
7= ZAZ-E—_, A €EOnp; 1<i<n ged(Ay,...,An) =1
i=1 Z
where O, , is the ring of germs in p of analytic functions. In what
follows we denote such a foliation by Fz and the functions A; are called
components of Z.

The algebraic multiplicity my(Fz) (or my(Z)), of Fz at the point
p € M™, is the minimum of the orders ordy(4;) (i.e., the order of the zero
of A; at p). We shall say that p is a singular point of Fz if m,(Z) > 1.

Received 9 December 1996.



212 RENATO MARIO BENAZIC TOME

The set of such points will be called Sing(Fz). A singular point p € M™
is called reduced if my(Z) =1 and the linear part of Z at p has at least
one nonzero eigenvalue.

Let F: M™ — M" be the blowing-up with center at the point p €
Sing(Fz). Then there exists a unique way of extending E*(Fz — {p})
to a singular ahalytic foliation Fz on a neighborhood of the projective
space CP(n—1) = E~1(p) € M", with singular set of codimension > 2.
In this case we say that Fy is the strict transform of Fz by E. We shall
say that p is a non-dicritical singularity of Fz, when E~1(p) is invariant
for Fz, i.e., it is the union of leaves and singularities of F. Otherwise
p is called a dicritical singularity.

The desingularization problem for an isolated singularity p € M™
(dicritical or not) of Fyz consists of proving the existence of a proper
holomorphic map ¢: M* — M" of a n-dimensional complex manifold
M* such that:

a) ¢~ Hp) = U Ds; is a union of codimension one compact complex

submanifoias with normal crossings.

b) The pull-back foliation ¢*(Fz|  mn_ (p)) extends to a singular foliation
of M* with singular set of codimension > 2 and such that all singular
points are reduced.

A first step towards the solution of the desingularization problem is
to assume that the codimension of the singular set of the lifted foliation
is n. This motivates the following:

Definition 1. Let Fz be an analytic foliation by curves on the n-dimen-

stonal complex manifold M™. We say that p € Sing(F7z) is a absolutely

isolated singularity (A.1.5.) of Fz if and only if the following properties

are verified:

a) p is an isolated singularity of Fz,

b) let us denote p = py, M™ = M, Fz = Fo, M = M7, Fz = F1,
Ey = E. If we consider an arbitrary sequence of blowing-up’s

E
M EL pn B2 N pqn
where the center of each E; is a point p;_1 € Sing(F;_1) (here F;
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denotes the strict transform of F;_1 by E;, 1 <4, j < N), then

# Sing(Fn) < oo.

Observe that our definition of an absolutely isolated singularity is
more general than the one given in [C-C-S] (this last will be called non-
dicritical absolutely isolated singularity), in the sense that we are not
excluding the case of dicritical singularities appearing in some step of
the blowing-up process.

In this paper we prove the following desingularization result:

Theorem A. Assume p € M™ is an absolutely isoloted singularity of F.
Denote p = pg, M" = M{, Fz = Fy, E1 = E. Then there exists a
finite sequence of blowing-up’s:

E E. E
MR M My

satisfying the following properties:
i) The center of each E; is a point p; 1 € Sing(F;_1), where F; is the

strict transform of the foliation F;_1 by F;, (1 <1i,7 < N),

i) z'fq € Sing(Fn), then q is reduced.

The main tool for proving this theorem is to use a formula relat-
ing the algebraic multiplicity of the original singularity to the Milnor
numbers of the singularities which appear after a blowing-up. Observe
that this program works at least when the set of the singularities at the
projective space is isolated.

In dimension n = 2, it is well known that after finitely many 0 of
blowing-ups at singular points, the foliation F; is transformed into a
foliation F} with a finite number of singularities, all of them simple or
irreducible and lying in the divisor (see [C-L-S], [S]). This means that if
p* € Sing(F%) then F is locally generated by a vector field Z* having
a linear part with eigenvalues 1 and A, where A ¢ Q1 (Q4: strictly
positive rational numbers).

The simple singularities may be thought of a final forms in the sense
that they are persistent under new blowing-ups. The local topological
structure of these singularities has been studied by several authors (see
[C]v [M’N]) .
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In [C-C-8], the authors extend the concept of simple singularity (or
irreducible singularity) to n-dimensional case, provided that the singu-
larity is absolutely isolated non-dicritical (i.e., do not appear dicritical
singularities in the blowing-up process). Here, we will prove that if p is
a reduced non-dicritical singularity of the foliation Fz such that p is an
A.LS. then p is an absolutely isolated non-dicritical singularity, and so
we can apply the results in [C-C-S].

It must be mentioned that final forms for a three-dimensional vector
field were given by Cano in [Cal].

The desingularization problem, when n = 2, was studied by I. Ben-
dixson [B] and by H. Dulac [D] at the beginning of this century. It was
solved by A. Seidenberg [S] in the sixties. Another proof was given by
A. Ven Den Essen [V], his arguments use the concept of multiplicity of
intersection between analytic curves. A strategy for the general three-
dimensional case was developed by F. Cano [Ca2]; however a definite
result is still missing.

We have to mention that, in the n-dimensional case, the unique
known result was obtained by C. Camacho, F. Cano and P. Sad [C-C-S].
In this reference, the authors assume that p is a non-dicritical absolutely
isolated singularity generalizing the methods given by C. Camacho and
P. Sad in [C-S] when n = 2.

This paper is organized as follows: In section 1, we recall some ele-
mentary properties about blowing-up’s and we prove a formula relating
the Milnor number of a dicritical singularity with the algebraic multi-
plicity of the singularity and the Milnor numbers of the singularities of
the strict transform. The section 2 is devoted to solve the desingulariza-
tion problem for an A.I.S. Finally, in section 3 we study the final forms
for reduced and absolutely isolated singularity of a foliation by curves.

I would like to thank Cesar Camacho, Manuel Carnicer, Alcides Lins
Neto and Paulo Sad for the helpful conversation about this work.

1. The Milnor Number of an Isolated Dicritical Singularity
Let Oy, , be the ring of germs at p € U C C™ of holomorphic functions
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ARESOLUTION THEOREM FOR ABSOLUTELY ISOLATED SINGULARITIES 215

and let I[Aj,...,A,] C Ony be the ideal generated by the components
of a holomorphic vector field Z. We define the Milnor number u,(Z) of
Z at p, as

O,
tip(Z) = dimg (m) ' (1.1)

This number is finite if and only if p is an isolated singularity of Z,
and pp(Z) = 0 if and only if p is a regular point of Z (see [G-H]).

The Milnor number again can be geometrically interpreted as the
intersection index i,(Ay,...,An) at p of the n analytic hypersurface
generated by the components of Z (see [Ch]):

1p(Z) = ip(A1, ... , Ap) (1.2)

Let p € U be an isolated singularity of the vector field Z, such that
myp(Z) = v and Fz the foliation generated by Z. Let Fz be the strict
transform of Fz, which is generated by Z. When n = 2, there exists
a formula relating v to the Milnor number of Z at p and the Milnor
numbers of the singularities of Z (see [M-M]): 11,(Z) is given by

Vev—1+ Y 2,
g€E~1(p)
if P is a non-dicritical singularity,
() =1 , i Biary (13)
virv =14 > pe(4),
geE~1(p)
if p is a dicritical singularity.

Since # Sing(Z) < 00, the sums in (1.3) are finite. There exists a
n-dimensional generalization of (1.3) in the case that p is an isolated
non-dicritical singularity of Z, provided that #Sing(j-"z) < oo (see [C-
C-S]):

Np(Z)ZVn_Vn_l_"'—V_I‘f' Z 119(%) (1.4)
geE~1(p)

This section is devoted to the proof of an analogous formula to (1.4)
in the case that p is an isolated dicritical singularity of Z such that
#Sing(Fz) < oo. Before proving this formula, let us recall some ele-
mentary facts about blowing-up’s.

Let M™ be a n-dimensional complex manifold and let us consider
an analytic foliation by curves Fz on M™. Suppose that p € M" is
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an isolated singularity of Fz. Let z = (21,... , z,) be local coordinates
of a neighborhood U of p in M™ such that p = (0,...,0) € C". In
these coordinates, Fz is generated by the holomorphic vector field Z =

Z Ala , and if mg(Z) = v(v € Z™T), then the components A; of Z have
a Taylor development at 0 € C™
A= A}, 1<i<n (1.5)
k>v

where each A}, are homogeneous polynomials of degree k.

For each j =1,... ,n we define U; = {(21,... ,2,) € C™: 2; # 0} and
U; = E-'[U;], where E is the blowing-up with center at 0 € C*. In
Uj we introduce coordinates y = (y1,...,yn) and E has the following

expression:

E(y1,... ,yn) = (21,... ,2n); Wherey; = zj and y; = 2;/2; if i # j (1.6)

and
EY0)NT; = {1, ,yn) € Tjy; = 0} (1.7)
In this chart, the pull-back of Z by F is generated by:
5} " (Ao E—yA;oE\ 0
E*Z=A;0E-—+ - Y — 1.8
Ty, gi ( v ) o Y
1#]

From (1.5) and (1.8):

; 0
E*Z(y) = kAT () | ==
(y) (gzyyj k(y)) By,

Ny, )
+ Z (kz v AL yiAi(@)]) 5
1753

The following result shows that the condition of Fz has a dicritical
singularity in 0 € C" can be characterized in terms of the polynomials
A (1 <i<n), ie., of JG(Z): the jet of order v of Z at the origin.

Proposition 1. With the above notations, the following assertions are
equivalent:
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a) 0 € C" is a dicritical singularity of F.

b) 2 AL — 2 AL =0, V1 <i<j<n.

c) J§(Z) = P,_1R, where R = zi% is the radial vector field and
o 10z

1=
P,_1 is a homogeneous polynomial of degree v — 1.

The proof of Proposition 1 is not difficult and it is left to the reader.

Remark. If p is a dicritical singularity of Fz and P,_1 is the polynomial
of Proposition 1, then we can define the following algebraic hypersurface
on CP(n —1)

S=A{lz1;...;2,) € CP(n —1): P,_1(#1,... ,2n) = 0}

It is not difficult to see that Sing(Fyz) C S and if p € S — Sing(Fy) then
the leaf of F through p is tangent to the projective space E‘l(O).
Returning to the initial problem, we have the following result:

Theorem 1. Let Z be a holomorphic vector field with isolated singularity
at 0 € C™ such that Z has isolated singularities. If 0 € C™ is a dicritical
singularity and my(Z) = v, then

po(Z)=gv+1+ > pu2),
ge E-1(0)

1

where gw) =v®* —v" " — .- —v — 1.

Proof. Let Z = > Zy where Z, = P,_1 Y ziﬁ. We consider the
i=1 v

k>v

vector field 7,11 + R (with R= Y. Z;) and we suppose that:
k>v+42
a) Z,11 + R has isolated singularity at 0 € C" and

b) the strict transform Z,,| 1 + R has isolated singularities at the divisor
E~Y0).
It is easy to see that 0 € C" is a non-dicritical isolated singularity of
the vector field Z, 41 + R, thus from (1.4) we have that:

po(Zyr1+R) =g+ 1)+ Y pg(Zyr1+R) (1.10)
geE-1(0)

where g(v) =" — vl — .. v — 1.
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From the hypothesis b) we can suppose, without loss of generality,
that the singularities of Z,_1 + R are in the chart Uy of €". Therefore

0
E*(Z,+1+ Rl(y (Z yEAR@) )~

k>v+1 O
- 0
+2( > oy yzAk<y>1) o
i=2 \k>v+1 Yi
where y = (y1,...,yn) and § = (L,y2,... ,yn). Thus, E*[Z, 11 + R] is
divisible by y{ and we have that:

_ - 0
Zy11(y) + Rly) = AL @ )ay

+ Z ( 1/—1—1 V—I—l ) + yz

We conclude that the smgularltles of Zl,+1 + R are the points q; =

(1.11)

(0, yz, .,13), 1< § < N, where Yo ,y). satisfies the following con-
ditions: ‘ ' ' ' .
A (L ¥ — Y AL (L, ) (1.12)
=0,2<i<n, i<j<N '
For € > 0, we consider the perturbation Z, = €Z,+ 2,11+ R. Clearly
0 € C™ is a dicritical isolated singularity of Z. and E*(Z.) is divisible

by y{. We have that

i o - .
Ze(y) = EPV_1(37)8—y1 + Zu+1(y) + R(y) (1.13)
or equivalently:
. 0
Ziy) = [ePoa @)+ dsa @) 5 -
5 (1.14)
+ Z (AL 41(®) - wAL @) 5y, T W RW)

Then, we have two kinds of singularities of Z,:
e Singularities inside the divisor;
e Singularities outside the divisor.
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Singularities inside the divisor are the points
pi=01,...,¥)
where y%, ...,y satisfy the conditions (1.12) and
Pyt (L4 ) = 0.

Then there exists 0 < N; < N such that p; = g;, V1 < j < Nj. Observe
that these points are also singularities of Z.
Singularities outside the divisor are the points

Bi(e) = (Wb (e), -, yn(e)
with y¥(¢) # 0. From (1.13), it follows that
lll’I(l)i)k(E):Z]], \V/kEIja V1§]§Na

where I; is a finite set of indices.
For each singularity pg = pr(€) of Z. outside the divisor, we denote
pr = E(pr) and so:
oy (Ze) = i, (Z) (1.15)

If € is small enough, it follows that:

s (Ze+ S pp (Z), f1<j<N;

2 (Zyr1+ R) = ) 1.16
SRR I 3) v 1<jen 0
kel
and
po(Zy41 + R) = ) + Z > (2 (1.17)
j= 1k€[

From (1.10), (1.15), (1.16) and (1.17), we have that:

z/+1)+2uq (Zy41+R) = +Zzupk2

=1 j= lkEI
N B ~ Ny ~
)+ Z .uc}j (Zu—i-l +R) — Z /szj (Ze)
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Thus:
po(Ze) = gv+ 1)+ D ug(Z) (1.18)
geE-1(0)
Now, we assert that ug(Z2) = ug(Z¢) and ,LLI”,J_(Z) =k, (Z),1<j <
Nj. In fact, since Z,(0) = 0, there exists r > 0 such that

NZ]] <7 = 112(2) = Ze(2)]| = (1 = &)l Z,(2)]] < 2.

Let 0 < 71 < r and consider the homotopy G: [0, 1] x 5’31”_1 — §2n-1

given by
tZ(2 ) ( )Z(Z)

|t Ze(= HZ(2)|]’
then G(0, 2) = Z(2)/||Z(z HandGl z) = Z(2)/||Ze(2)||, hence pg(2) =
po(Ze)- ‘ )

Let p; = (0,43,...,4)) (1 < j < Np) a singularity of Z. (it is also
singularity of Z), then P,,Al(l,y%, .oy yl) = 0. It follows that there
exists 7 > 0 such that

G(t,z) =

w2, sum) = W I <7 = 1Pca (L, o)l < T

Thus from (1.14), we have that
ly = Bill <= [12@) = ZW)ll = (1 = )| Prcr(L g2, ym)| < 2.
Let 0 < fl < 7 and consider the homotopy G: [0, 1] x 52” 1(p]) S§2n-1

(52” Y5;) = {|ly — pj|l = 71}) given by
Gty - 2 =020
[tZe(y) + 1 = 1) Z(v)]|

then then G(0,y) = Z(y)/||Z()|| and G(1,2) = Z.(2)/||Zc(z)||, hence
15 (Z) = J(Z ), V1 <7 < Ny, and so the assertion is proved.
From (1.18) it follows that
po(Z) =g+ + > p5(2) (1.19)
geE-1(0)
In the case that 0 € C" is not isolated singularity of Z,+1 + R, we

consider the perturbation Zs = Z, + Z,41 + 6Y,+1 + R where Y, 1 is a
homogeneous vector field of degree v + 1 such that 0 € C™ is an isolated
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singularity of Z,41 4+ 6Y,4+1. Observe that if 6 > 0 is small enough then
0 € C" is an isolated singularity of Zs. In fact, since that ¥,,1(0) = 0,
there exists r > 0 such that |[z]| < r = ||Y,11(2)]| < 1. As0 & C"is
an isolated singularity of Z, then we define m = inf{||Z(2)|:||z| = '},
where 0 < v < r. Thus [|Zs(2)|]| > ||Z(2)| — é||Ysr1(2)]] > m — 6.
Therefore, if § < m then || Zs(2)|| > 0, ¥||z| = ', hence 0 € C" is
isolated singularity of Zs. Therefore, the vector field Zs has dicritical
isolated singularity in 0 € C”, and satisfies the conditions a), b) above.
From (1.19):

po(Zs) =g+ D)+ > palZs) (1.20)

7eE-1(0)

As before, we can to prove that ug(Z) = po(Zs) and ,uf,(Z) = uz(Zs).
This finishes the proof of Theorem 1.

2. The Theorem of Desingularization

This section is devoted to the proof of Theorem A. Notice that, by
Theorem 1 and the formula (1.4), for p singularity of the vector field Z
with m,(Z) = v, we can write

pp(2) =g(o)+ > pel2) (2.1)
peE-1(p)

where g(o) = o™ — o1

— -+ ~¢g—1, with o0 = v if p is a non-dicritical
singularity of Z and ¢ = v + 1, otherwise. It is not difficult to see that

the function g is an increasing function for all o > 2.

Theorem A. Assume p € M™ is an absolutely isolated singularity of Fz.
Denote p = pg, M™ = My, Fz = Fo, B1 = E. Then there exists a
finite sequence of blowing-up’s:

E E. Epn
My EL My B2 N

satisfying the following properties:

i) The center of each E; is a point p;_1 € Sing(F;_1), where F; is the
strict transform of the foliation F;_1 by E;, (1 <4,j < N);

it) if g € Sing(Fn), then q is reduced.
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Proof. Suppose that m,(Z) = v > 1. Since p is an A.LS. of Fz, from
(2.1), we obtain that

up(2) < pp(2); ¥ b € E7N(p).

Since pp(Z) > my(Z), Vp; after a finite number of successive blowing-
up’s E1 = E, Eg, ..., Ex with centers at singular points, we will obtain
only points with algebraic multiplicity < 1.

We define ¢ = Ey o Exy_10---0 E, it follows that ¢: MY — MG is
a proper holomorphic map and the pull-back ¢*(Fo|smn_(p}) extends to
a singular foliation Fx on MY, with singular set of codimension n.

Thus, if ¢ € Sing(Fy) then my(Fn) = 1. The Theorem A is a
consequence of the following:

Lemma 1. Let p € M™(n > 3) be a singular point of Fz such that
my(Z) =1 and p is not reduced. Then p is not an A.LS.

Proof of Lemma 1. Let z = (21, ..., 2,) be local coordinates of a neigh-
borhood of p in M™ such that p = (0,...,0) € C". In these coordinates,

Fz is generated by the holomorphlc vector field Z = Z Aig- ” where
=1
A= > Al and A% are homogeneous polynomials of degree k:. Since p
k>v
is not a reduced singular point, by the Jordan canonical form we have

that

Z(z) = (z2+ZAk(z —;—(eZzZH—i—E:AZ —+ <Z Af(z ) 0

k>2 k>2 Zi k>2

where €; € {0,1}, V j = . n— 1. In the chart of the blowing-up
Y1 = 21, Y% = 2i/212 < i _é ) we have that the strict transform Fy is

generated by Z = Z A; 55'— where:

Aly) =y + > Ap@)wh

k>2
Ai(y) = eyip1 — voyi + O _[ALD) — wAL@E Y 2 <i<n—1
k>2
Ap(y) = —yayn + D _IAR(D) — yn AL@))YE
k>2
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with 4 = (1,¥2,... ,Yn). Thus

n—1
. 0 0
Z00,y2, ... ,yn) = Y] — YoUi) —— — .
(0,92 Yn) ;IQ(EZ%H Y2Ys) o Y2Yn o0,

Now, we consider two cases:
Case 1: There exists ig € {2,... ,n — 1} such that ¢, = 0. In this case:

2(0 )= 3 et ) — vt 5 =
sY2s oo v 3 Yn) = < iYi+1 — Y2 8:% Y2Yi, 8:(/10 Y2Yn ayn
iy

It is easy to see that Z(O, oo 30, Yi541,0,. .. ,0) =0, Vy; 41 € C, there-
fore # Sing(Fz) = o0, and so p is not an A.LS.

Case 2: € = -+ = €,_1 = 1. In this case it is not difficult to see
that 0 € C™ in the chart y1 = 21, y; = 2;/22(2 < ¢ < n), is the unique
singularity of Fz, moreover:

0 0 0 0 0
a 0 1 ... 0 O
DzZo)y=| :+ i : Do (2.2)
Qp1 0 0 ... 0 1
ap, 0 0 ... 0 O

where a; = A%5(1,0,...,0),2<i < n.

The characteristic polynomial of DZ(0) is A(t) = t". In order to ob-
tain the Jordan canonical form of DZ(0), we shall compute the minimum
polynomial m(t) of DZ(0). Observe that:

- 5 0 S}

M =DZ(0) = (P Rn—l(l)) (2.3)
where 0 e C*l = C,0=[0...0/ € Clx(n-1) -1 Pt = [ag...qp) €
clx(n-1) ~ 1 and R, 1(1) € C=1)x(n=1) i5 the upper triangular
matrix of order one. (Here C"*™ denotes the matrix space of n rows and
m columns). We will denote R,_1(k) = [R,_1(1)]*, V k € Z*. Under
these notations, it is not difficult to prove that:

0 )

M= (Rn_l(k — 1P Rnﬁl(k,)> Vkez" (2.4)
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Since R,_1(k) = 0 if and only if & > n — 1 we have that M* £ 0,
V1l < k <n —2. Observe that

0 0 0
o, 0 G
M-l 0 0 0
0 0 0

thus, we have two possibilities:

i) If o, = 0 then M™ 1 =0, and so m(t) = t"~1. Therefore DZ(0) has
Jordan canonical form (4.13) with e =--- =€, 9 =1and ¢,_1 = 0.
Thus 0 is not an A.LS. of F7.

ii) If ay, # 0 then we affirm that there exists a linear change of coor-
dinates ¢ such that ¢*Z satisfies the conditions in Case 2-(i). In
fact, we define the linear maps ¢ = (¢1,...,0,):C" — C™ and
Y= (Y1,...,%,):C" — C", where:

1 (o730
01(®) = —&n, p2(x) =21 and @;(z) = ;] — —
o o

Zn (3<i<m)

7

1Y) = v2, Yi(y) = a1 + Yir1 (2 <i<n—1) and Yu(y) = anyr.

It is clear that ¢ = ¢~1. Now, we define X = ¢*Z = ¢Z o p. If
we denote X = anl BZ-%, then By = Ay o, B; = ;A1 0 + Aiiq0
i= b
02 <i<n-1)and B, = apAj o p. Since DX(0) = ¥DZ(0)y; an
easy computation shows that DX(0) = R,(1), moreover, in the chart
uy = 21, w; = 2;/21(2 < i < n); we have that DX(0) is like (2.3) with
Pt = [By--- By, where 3; = Bé(l,(), ...,0), 2 <i < n. Note that:

828, %A,
. = B5(1,0,...,0) = 0,...,0) = ap——n
6 2 ( ) am%( )=« 3

(0,...,0) =0.

Thus 0 is not an A.LS. of X = ¢*Z. This finishes the proof of Lemma 1.

3. Reduction of Singularities With Multiplicity One

Let p in M™ a reduced point of the foliation F. If p is a dicritical point
then its blowing-up is non-singular, thus we shall consider the case p is
non-dicritical. Let A1,...,As be the eigenvalues of the linear part of
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DZ(p), then the characteristic polynomial of M = DZ(p) is

S
Aty = T = xom (3.1)
k=1
S
where > rp =n.
k=1
Thus, there exists z = (z1,...,2,) local coordinates of a neighbor-

hood of p in M"™ such that p = (0,...,0) € C® and M has Jordan
canonical form:
M = diag[M7 - - - M) (3.2)

where My € C"%*"k is the Jordan block belonging to the eigenvalue A

ie.:

T T
0 xn &) 0 o
Mk = . . . : . (33)
0 0 0 ... N effle
0 0 0 ... 0 A

where e(k) €e{0,1},1<i<ry—land1<k<s.

i
A necessary and sufficient condition for 7z has isolated singularities

is that egk) =1, Vi<i<ry—1and 1<k <s. Morespecifically, we
have the following result:
Proposition 2. Let p € M"™ be a non-dicritical, reduced singular point of
the foliation Fz. The following assertions are equivalent:

a)# Sing(Fz) < oo.

b)DZ(0) = diag[M (A1) ... M(As)]
where M(Ar) = Al + Rr, (1), Vk = 1,...,s. (Here I € C'*"k is the
identity matrix and R, (1) € C"c*"k is the upper triangular matriz of

(3.4)

order one).

Proof.
a) = b) In the chart z = (2(,...,z,) above, Fz is generated by the
vector field
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By (3.2) and (3.3) we have that:

Aj(x) = Nz + ey s, i +1<i<h—1, 1<I<s 5
Al(z) = Nz, 1<1<s

where fg = 0 and

l
ti=)Y m1<I1<s.
k=1

Suppose by contradiction that there exists ig € {1,... ,r; — 1} such
that egé) = 0. In the chart y1 = 21, ¥; = z;/22(2 < i < n), we have that:

20,92, ym) = D_AL(G) — A1 (B)] 5 -
i=2 Yi
'!'1—1 ) 1 a 1 a
= S 1AL @) — AT (@) =— + [AT (@) — yr, A7(F
i:ZQ[ 19—y 1(y)]’ By [A1H (D) — yr, AT(D)] S,
+Z{ > AL~ pAL@)] 5 -
1=2 Ui=t,_ +1 yi
+ 1A%(9) -y AL
L ! aytl
where § = (1,y2,... ,Yn). From (3.5):
ri—1
- 0 0
200,92, Yn) = Y [Egl)ym - egl)yzyi]? - [egl)yzyn]a
=2 y’L 1
s 41 9
3 Y - - g
1=2i=t;_;+1 Yi
0
+ Z Al — A1 — € )y2]ytl Em

It follows that Z(0,... ,0,¥;y+1,0,. .. ,0) = 0, thus # Sing(F) = oo
which is a contradiction. We conclude that egl) =1, Vi<i<r -1
and so M1 = M(\1) = M1+ R, (D).

For proving that M, = M(N) = NI + R,«l(l),(l = 2,...,8); we
consider the chart y; = 2z;,4 = z/2{¢ = 1,...,n,i # j) where j =
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t;_1 + 1 and we proceed as above.
b) = a) By hypotheses and (3.5}, we have that:

A2)=Nzi+ 241, o1 +1<i<t;—1,1<1<s
t
All(z):)\lztl, 1<1<s

In the chart y3 = 21,y = 2;/21(2 < i < n), from (3.6) we obtain:

R ’r‘lfl 8 a
Z(0,y2,---,Yn) = ) _ Wi+l — VoYl — — Y2Yr 5—
’ n Z:ZQ i+ 7 3yi 71 3yr1

s ¢ -1
9
+ Z{ > 1= A= gy + vl - (B7)
=2 i:§371+1 ?2

0
+ A=A - y2]ytl@}
l

It follows that (0, ... ,0) is the unique singularity of Fz in this chart.
Now, for ig € {2,...,r1 — 1} (respectively ig = r1), we consider the
chart yi, = 2, ¥ = 2i/%,, 1 <1 < n, i # i (respectively y,, = 2r;,
Vi =2i/2zr, 1 <1< m, i #11).

Denoting
Y0 = (Y1:- - s Yig—1> 0 Yig+1+- - - »Yn)
and
=1 Yig=1, L, Yig+1, - -+ »Yn)
respectively
Yo = (Y1, 1 Yr-1,0,Ypr 415+« , Un
and

y= (y17 e 7y7'1~1717y?“1+1a s 7y’ﬂ)a
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from (1.9) and (3.7), we have that:

. , 15}
Z(yo) = S [AY(@) — yiAY @5 B

i=1 *
i#ig
7‘1—1 8
= i — Yilip+1iq
g:l [Yit+1 — Yi¥ o+ ]8%
i#ig—1
. | o 0 (3.8)
ylo—lylo-f-l 8yi0_ y20+1y‘r‘1 8yr1
f-1 3
+ Z{ >IN = AL = Yigr1)wi + yi—i—l]?
1=2 Ui= tl41+1 Yi
+ A= A — Yig+1) 9
1 17 Yig+11Yy Bytl
(respectively)
- lid o d
Z(0) = - 140) - 5T @)l
i=1 Yi
i??‘l
7‘1-1 8 8
= Yit157 -
; oy T Oy, 1
1A (39)
- 9
+ Z Z — ANy + yz—i—l]a
= 22 tl 1+1 yl

o}

+ Z ytl Ay

From (3.8) and (3.9), it follows that Fz has not singularities in these
charts.

Similarly, we can prove that Sing( f z) ={D1,... ,Ds}, where py is the

zero at the chart y; = 2, ys = zi/25, i =1,... ,n, 1 # 7,1 <1 <sand
j =t;_1 + 1. This finishes the proof of Proposition 2.

Remark. The points pq,...,Ps above are non-dicritical singularities of
Fz.
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Now, we consider the linear part of Z at each non-dicritical singular
point p1,...,Ps. In the chart y; = 21, y; = z;/21(2 < i < n), it is not
difficult to see that:

My e e S)
) PL MQOs—A) ... o
DZ(0) = : ( 2: Y : (3.10)
P, o o M= A

where M7 € C"1*", M(A\j— X)) e Cland P,y € CT*"1(1=2,...,9)
are defined as
A

o
<o

0 « 0 0
tl——l+1 e
042 O 1 - 0 atl_1+2 O . O
My = : Do P = . . | (3.11)
a1 00 ..o 1 : . -
arl 0o 0 ... 0 Oétl 0 ... 0

and M (A — A1) = (M — M)+ Ry (1). (Here o; = A5(1,0,...,0),2<i<
n.) Notice that we have three possibilities for characteristic polynomial
A(t) of M = DZ(0):

a) If A\; =0 then

Ay =t"t [T — ) (3.12)
=2
b) If Ay # 21, VI=2,...,5 then

k]

Ay =71t — M) ]t — A+ A (3.13)
=2
c¢) If there exists [y € {2, ..., s} such that A\; = 2); then we can suppose,
without loss of generality, than {p = 2 and so
INGETARI (RPN LI | [EDIEP I (3.14)
=3

Now, if we will suppose that P satisfies #Sing(]—"éz)) < 00 where
F ?) = E;j—" 7 and FEy is the blowing-up with center at Py, then Mis a
matrix of type (3.4). More specifically, denoting:

ALy 3 ATy ey 1g) = diag[M(Aq) - - - M(Ag)] (3.15)

we have the following:
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Proposition 3. Let p; € Sing(Fz) such that #Sing(fg)) < o0, then
[0, A2, ..., As;T1,72,... ,Ts],
A =0
. 0, A1, A0 — A1, ., As — Ay — L, 1o, ..., 7],
if M1 #0 and A\; # 2Mq
0, A1, A3 —A1,..., As = A —1,ro +1,r3,... , 7],
if A1 #£0 and Ay = 21

Proof. By hypotheses and Proposition 2, the minimum polynomial m(t)
of M is m(t) = A(t). Now, considering the cases a), b) and ¢) above,
the proof it follows.

Remark. A similar result is obtained for the other singular points
D2, ...Ds € Sing(Fz).

Now, we can assert that if p € M™ is a reduced, non-dicritical singu-
lar points of the foliation Fz such that p is an A.LS., then do not appear
dicritical points in the blowing-up process. In fact, by Proposition 2,
any point of Sing(F7z) is a non-dicritical point and by Proposition 3, the
linear part of Z is similar to the linear part of Z. So, the proof it follows
by induction.

In [C-C-8], the authors study the final forms of an absolutely isolated
non-dicritical singularity. Since, if p € M™ is a reduced, non-dicritical
singular point of the foliation Fz such that p is an A.LS., then p is an
absolutely isolated non-dicritical singularity of the foliation F, and so,
we can apply the results in [C-C-S].
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