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Abstract. The differential equation of the lines of curvature for immersions of
surfaces into R* is established. It is shown that, for a class of generic immersions
of a surface into R* in the C"-topology, r > 4, all of the umbilic points are locally
topologically stable. This type of umbilic points is described.

1. Introduction
This article is devoted to the study of the possible configurations of
the lines of principal curvature around umbilic points on surfaces which
are immersed in R, We classify the locally topologically stable umbilic
points and show that they appear generically.

The notion of principal direction for a smooth immersion f : M —
R* which we use and introduce is due to J.A. Little ([Lit]), and is an ex-
tension of the classical three-dimensional concept (see [R-S] for another
possible extension). A principal direction at p is a line in T, M generated
by a unitary vector which makes extremal the length of a(X, X), where
« is the second fundamental form of the immersion f at p and X varies
on the unitary circle in T, M. The set £ of values of a(X, X) is an ellipse,
called ellipse of curvature, which can degenerate into a line segment, a
circle or a point. Also, it is easily seen that as X goes once around
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the circle, (X, X) goes twice around around £. Therefore, when £ is
either an ellipse or a line segment, there are four principal direcctions
at p; when £ is either a circle or a point, we say p is a umbilic point of
f. The principal lines of curvature of o are those curves in M, disjoint
from umbilic points, which are tangent to principal lines.

The differential equation of the principal lines of curvature is estab-
lished in paragraph two. In paragraph three we study a class of generic
umbilic points called simple. Assuming that all umbilics of M are sim-
ple and that P : PM — M is the projective bundle, in paragraph four
we show that the set of points (p, L), where p € M and L € T,M is a
principal direction, constitutes a smooth two-submanifold LM of PM
which carries information that is needed in paragraph five to prove our
chief result:

Theorem 1.1. Under generic conditions and if f : M — R* is a smooth
immersion of a surface M and p € M is a umbilic point of f, then
there are isothermic coordinates (u,v) : (M,p) — (R2,0) such that the
differential equation of the principal lines of f in these coordinates is of
the form

4(Au+Bu+S(u, v))(du?—dv?)dudv+(v+R(u, v)) (du* —6du?dv’+dv?) = 0

where A # 0 and B are real numbers, and S(u,v) and R(u,v) are real
valued functions which satisfy

oS as OR OR
5(0,0) = R(0,0) = 5?:(0, 0) = %(0,0) = %(0,0) = %(0,0) =0.

Moreover, under any one of the following conditions, the umbilic point
p 48 locally topologically stable and its phase portrait is obtained by mak-
ing into one (by a rigid translation) the pair of pictures (nets) of the
indicated figure:
(a) Condition H3 (Fig.1): A <0,
(b) Condition H4 (Fig.2): A >0, A<0and A# —1/4,
(c) Condition H5 (Fig.83): A>0,A>0,
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where
A = 16[4(1 + B%)3 + 24(1 +B?2A +8(5 — BY)(1+ B)A%+
+4(9 4+ B A% + (17 + B?)A* + 147,

£
e
e

Concerning Theorem 1.1 we may remark:
(a) A # 0 is a transversality (generic) condition which characterizes a

Figure 1.

Figure 2.

%%?@?

Figure 3.

simple umbilic point;

(b) Within the considered coordinates, the umbilic point p of type Hi,
i = 3,4,5, has ¢ separatrices whose slopes at the origin are the roots
of a polynomial having A as its discriminant;
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(c¢) Tt will be shown that the principal lines around the umbilic p of
Theorem 1.1 (which satisfies either of the conditions H3 or H4 or
else H5) make up two pairwise transversal nets 7y and F2. We say
that p is locally topologically stable when both F and F3 are locally
topologically stable, around p. This definition for nets is similar to
that for the case of principal lines of surfaces immersed in R3, around
an isolated umbilic point, which can be seen in [G-S].

2. Differential equation of the lines of curvature
Let f: M — R? be a smooth immersion of a surface M. Let U C M be
an open neighborhood with isothermic coordinates (u,v). Let z = u+iv,

and let A\ = |0,| = |0y where §, = g and 0, =

. ... Ou ov’
We introduce the two Wirtingen operators
9, = "\;—5(8" —i8,) and O %(au +id,), (1)
and denote
0 = a(0;,0,), 7 = (0, 0%) @)
a= Re(<07 0>)7 b= 2Im(<a, U>)

where ( ,) is a bilinear complex extension of the inner product of T+ M
to T*M ® C, with T+ M denoting the normal bundle.
This paragraph is devoted to the proof of the following result:

Theorem 2.1. Let f : M — R* be a smooth immersion of a surface
M. In isothermic coordinates (u,v) : (M,p) — (R2,0), the differential
equation of the lines of curvature of f is given by

da(u, v)(du? — dv?)dudv + b(u, v)(du* — 6du’dv® + dvh) =0 (3)

where a = a(u,v) and b = b(u,v) are the real valued functions of (2).
Moreover, p is a umbilic point if and only if a(0,0) = b(0,0) = 0.

Conversely, for any given analytic functions a,b: U — R defined on
an open neighborhood U C R? of a point p, there exists an immersion
f:V — R where V C U is some small open neighborhood of p such
that the differential equation of the lines of curvature of f is given by
(8) and that the coordinates (u,v) are isothermic.
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To prove the theorem we need the next result.

Lemma 2.2. Suppose the assumptions of above. Let {e3,e4} be a normal
frame. Let n = n(u,v) be a smooth function such that

vé—ueg = 7764? véue4 = _7763 (4>
Vé‘veg =0, V§v64 =0.

If we denote

gp1 = Re(<07 65>)> 032 = Im(<07 €ﬁ>), 83 = <T’ 6,3>7 /8 = 3,4, (5)

then the Gauss, Ricci and Codazzi equations may be written, respectively,
as
1 2
Apo = X(—U?%l — 08y — 01 — G+ T HTEH AL+ AL~ M) (6)

2

(Mv = p(muagg — 031042) (7)
2
(032)v = (031)u — (T3)u — NO41 + NT4-+ XMT:%
2
(031 + 73)y = — (032)u +NT42 + XAUT?, -
8
2
(042)v = (041)u — (T4)u +M031 — NT3+ X)‘u7'4
2
(041 + Ta)o = — (042)u — NO32 + X/\”M
Proof. We use notations (1) and (2). Let us first consider the Gauss
equation
(R(D:,02)0.,05) = (00, 02), a0z, 02)) — (@, 02) 2. (9)
Note that
R(0;,05)0, = Vo,V 0, — Va_Vp,0,
2 O\
Y, <2810g)\)az
z 0z
= —Alog A0,

which implies
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Hence the Gauss equation has the form
—MAlogh = o2 —|7)?

and may be rewritten as (6).
We now consider the Ricci equation

RJ_(aza 8;)1) = aUUaEa az) - a(UUaZa 83)7 v E T+ M. (10)

Note that
Rl<azy 82)63 = a(063657 82) - a(0-63aza &Z>

1
-2 a(T30, + 1307, 0,) + (0305 + 130, 0,)

1
= 5(030 — 030)

hence )
2
(RM(8.,05)e3, e4) = 23z

We also obtain that
RL(az, Or)es = VézVéeg — V%Vﬁzeg

-9 Je1) -V o)
1 /on On
- vilor 52

on

=—izl ey,

ov

Im(o30y4).

and thus

<R_L(8Z7 83)637 64> = _Zgg

This implies that the Ricci equation has the form

an 2 _
- 2 Im(G304)

which may be rewritten as (7).
Finally, we consider the Codazzi equation

(V3,0)(0, 02) = (V4,0)(0:, 8). (11)
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We have Hloe A
0og
Vio=VirT—2 T.
a-z— 0z oz

Also, we find that

do do
L, (99 _ vo4
Vaza = < 5z J4n> es + ( 5z + 0377) eq

and that 5 9
L _ (973 74
V5,7 = ( 5% 7477) e3 + ( 5y -+ 7'377) eq.

Hence

ooy 0m o Dlgh

bz YT, T T A, B

0oy 0y Olog A

E +o3n = 92 + 2 P T4
which may be rewritten as (8) O
Proof of Theorem 2.1

The differential equation of the lines of curvature of f is given by
Im((0,0)dz*) = 0 ( [GGST, Prop. 5.1, pp.103]) which is equivalent
to (3) and thus we have the first statement.

For the second, we need to prove that, for any given local analytic
functions a,b : (U,p) — R as in the assumptions, there exists a local
analytic immersion f such that the differential equation of the lines
of curvature of f is given by (3) and that the coordinates (u,v) are
isothermic.

If we find a solution A > 0, 0, 031, 032, 041, 049,73, T4 Of system
(6) — (8) of Lemma 2.2 such that each one of these functions is defined
in an open neighborhood V' C U of p, then the theorem of existence
and unicity of immersions | Jac] guarantees the existence of a local
immersion f : V — R* which has \?> = E = G and F = 0 as coefficients
of its first fundamental form. On the other hand, if this solution satisfies
the system

2 2 2 )
a = 03] — 032 + 041 — 049, b =2(031032 +041042) , (13)

then the differential equation of the principal lines of curvature is given
by (3) and thus the proof of the theorem will follow.
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For this we first define A; = Aj(u, v, 039,042), @ = 3,4, by

bosg + g4oC boys — o39¢
2(0'32 +0'42) 2(0'32 +0'42)
where
c= \/4((7%2 + 022)(4@ + 032)2 + 022) — b2,
We next introduce the following system of linear PDE’s:
ol
To 2
oUy _ oy
v 8&
6U2 9 U3
re U1 <C3 — 2A3C3 — 2A4Cy — 049 + U22 + U3 U —= Fu )
on
— A A
o = U2 —5(A4032 — A3042) .
doszo OAg Cy 2
=2 — — 2nA — — A
5o 5w 5y Mt nCy + 0 Ua(C3 — A3)
oCy do30 2
—_— = —— —Us(C3 — A
50 5, 042t 0 2(C3 — A3)
0049 OAy  0Cy 2
=2 — 2nAgy — nCs + — —A
E® 5u  ou T2 773+UU3(C'4 4)
0Cy 0049
it SN~ SN —U Cy —
9 5y o2t 0 2(Cy — Ag),
with initial conditions
Uy(u,0) =
Us(u,0) =0
Us(u,0) =0 (16)
o32(u,0) =0

o32(u,0) = 16(a(u, 0))2 + (b(u, 0))2 + 2
For this system to be well defined, we assume that U7 > 0 and that
403z + Afg)(da + Ay + Alg) — (b(u, v))? > 0.

Then the Cauchy-Kowalewsky theorem [Spi] implies the existence of an
analytic solution around (0, 0) for the entire system (15). Note that the
chosen initial conditions guarantee that Uy > 0 and that the expression
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inside the square root which defines ¢ = c(u,v) is positive and analytic
in a small neighborhood of (0,0). If we define A\ = Uy, then the first two
equations of (15) together with the chosen initial conditions imply that
Uy = A, and that Us = A,. Also, if we rewrite system (15) by making
the following substitutions
031(u, v) := A3(u, v, 032(u, v), 042(u, v))
aa1(u, v) := Ag(u, v, 033(u, v), 042(u, V)
(17)
73 :=C3 — 031
74 = Cy — 041,

then system (15) implies that the structural equations (6) — (8) are
satisfied. Moreover by (14) and (17), we have that (13) is satisfied. O

3. Simple umbilic points

Let f: M — R* be a smooth immersion of a surface M, and let p € M
be a umbilic point of f. The point p is called a simple umbilic point of
f if there are isothermic coordinates (u,v) : (M, p) — (R?,0) such that
the differential equation of the principal lines of f in these coordinates
is of the form

da(u, v)(du® — dv®)dudv + b(u, v)(du* — 6du’dv® + dv*) =0, (18)

with a = a(u,v) and b(u, v) real valued functions which are transversal
at the origin.

The proposition and lemma of this paragraph state properties of
simple umbilic points which will be necessary later on.

Proposition 3.1. Any smooth immersion f : M — R* of a surface M
can be arbitrarily approximated, in the smooth topology, by an immersion
g: M — R?* such that all of its umbilic points are simple.

Proof. Up to a small perturbation, f can be assumed to be analytic.
Around any given point of M, in local coordinates and by Theorem 2.1,
the condition that {a = 0} and {b = 0} are made up of regular curves
which meet each other transversally is open and dense in the smooth
topology. Under these conditions, each element of {a = 0} N {b =0} is
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a simple umbilic point. From this local fact, by standard arguments of
transversality ( [M-P]), the result now follows. a

Lemma 3.2. Let f: M — R* be a smooth immersion of a surface M,
and let p € M be a simple umbilic point of f. There are isothermic
coordinates (u,v) : (M,p) — (RQ,O) such that the differential equation
of the principal lines of f in these coordinates is of the form

4(Au+ Bu + S)(du? — dv?)dudv + (v + R)(du* — 6du?dv?® + dv*) = 0 (19)

where A # 0 and B are real numbers, S = S(u,v) and R = R(u,v) are
real valued functions satisfying

08 08 OR OR
5(070) = R(an) = "8_u(070) = —a;(oao) = -32(0’0) = %(070) =0.

Proof. Let (s,t) : (M, p) — (R2,0) be isothermic coordinates, and let
w = 4a(s, t)(ds? — dt®)dsdt + b(s, t)(ds* — 6ds’dt? + dth) (20)

be the corresponding differential equation of the principal lines of f (see
Theorem 2.1).

Assume that the first jet

J1(@,)(0,0) = (A19s + Ap1t, Bios + Boit).
For o, B € R, with a? + 8% # 0, we consider
(s,t) = ¢(u,v) = (au — Pv, Bu + aw).
Then
¢*w = da(u, v){du?® — dv®)dudv + b(u, v)(du* — 6du’dv® + dv)

where
a(u,v) = Au + Bv + Ry(u,v),

b(u,v) = Biou + B v + Ra(u,v)
and
Bio = 4a*A108 + 403 401 8% — 402 A18° — dadg B+
a*BBo1 — 6023 Byt + 8° By + a° Big — 6032 B1g + o84 B1g
By = 4a*4018 — 40> A108% — 402 A1 B3 + dadioft+
a®By1 — 6024280y + af* Boy — o8B + 66252 Byg — 5° Bag.
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If Big = 0 (thus By # 0), we set 3 = 0 and o = % to obtain
B35
01
Big=0and Byj1 =1.
If By £ 0, we set o = mf3 with m a real root of the equation

Bioz® + 22401 — 3B1g)z* + 2241 — 3B1g)z® — 2(2A10+
+3B01)$2 + (Blo — 4A01)$ + B()l =0

to obtain Big = 0 and hence we are under the condition of the first case.
O

4. The manifold LM and the semi-local vector field £’
We now consider the projective line bundle PM over M: it is defined by
the tangent bundle with the zero section 0 removed (T'M \ O) modulo
the identification of two elements (p1,v1) and (pa, vg), if their first com-
ponents coincide and their second ones are collinear. We let P denote
the projection of PM onto M. In terms of the chart (u,v) with domain
U in M, the charts (u,v;t = du/dv) and (u, v, s = dv/du) are defined on
P~1(U7) and their domains cover this open set.

Consider the surface LM in PM defined by the solutions of equation
(3) of Theorem 2.1:

w = da(u, v)(du? — dv?)dudv + b(u, v)(du* — 6du’dv® + dv?) = 0.
In the chart (u,v; s = dv/du) of above, LM is written as
L(u,v;s) = da(u, v)(1 — s2)s + b(u, v)(1 — 6s% + 84) =0,
whereas in the chart (u,v;t = du/dv) it is expressed as
L(u,v;t) = da(u, v)(t> — 1)t + bu, v)(t* — 62 + 1) = 0.

It is clear that the surface LM is determined by the principal direc-
tions and does not depend on the particular chart used.

Let Sm be the set of umbilic points of the immersion f : M —
R*. Outside P~1(Sm) we have that LM is a regular submanifold of
P‘l(M ); there it is a 4-fold regular covering of M \ Sm. In local (u,v)
coordinates around p € Sm, as in Theorem 2.1, Sm corresponds to the
§et a~10) N b=1(0).

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997



244 C. GUTIERREZ, . GUADALUPE, R. TRIBUZY AND V. GUINEZ

Lemma 4.1. Let p € Sm. The point p is simple if and only if LM is
regular around P~1(p).

Proof. Assume the notations and conditions of Lemma 3.2. If for some
s and u = 0,v = 0 we have that

Lo =4A01—s%)s =0, L,=4B(1—5))s+1—6s>+s*=0,

then we necessarily have that A = 0.

Conversely, if A = 0, then £,(s) =0, for all s. Since £,(0) =1 and
L,(1) = —4, there exists s such that £,(s) = 0. A similar argument
works for the t—coordinate which is needed to analyze the point ¢ = 0.

O

On local u, v and s coordinates (i.e., t # 0) for a point of PM, we

consider the vector field

ﬁ/_ /_?__l_ I_a_ /3
I R P

whose components are given by:
v = a(u,v,s) = da(u,v)(1 — 382) + 4b(u, v)s(—3 + 52)
v’ = st(u,v, s)

/

s' = —[ Ly(u,v;8) + sLy(u,v; s)].

A simple calculation shows that £’ is tangent to LM; in the sequel,
we only deal with its restriction to LM whence we shall maintain the
same notation £'. Its projection P, L’ only vanishes at the umbilic points
Sm. In the complement of Sm, it generates the principal line fields of
M: that is, for each non-umbilic (u,v), the four P-preimages (u,v,r1),
(u,v,79), (u,v,r3) and (u,v,ry) verify that P,L'(u,v,r;) generates the
principal line with direction r;.

If (u,v) are the coordinates of Lemma 3.2, then (0,0) is umbilic and
the singularities of £’ are the zeros of s’ on the s-axis given by the
equation

g(s) = —sQ(s) =0
where

Q(s) = s* —4Bs® —2(3 + 24)s% + 4Bs + 1 + 4A.
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Lemma 4.2. Consider

A = 16[4(1 + B33 + 241 + B2 A + 8(5 — B2)(1 + B) A%+

409+ B2 A3 + (17 + BY) A + 1447,

as in Theorem 1.1, and the degree-5- polynomial g(s) = —sQ(s). Then
(a) A <0 implies that g(s) has three simple roots;
(b) A >0 and A# —1/4 imply that g(s) has five simple roots.
Proof. To find the roots of a quartic polynomial and following [B-P],
the principal quantities associated to Q(s) are:

A =A(4, B),
H = H(A,B) = (—3—3B% —24)/3,
N = N(A,B) = —4(2 4+ 5B + 3B* + 24 + 4B%A + A?).

When A < 0, the real roots of Q(s) are exactly two; this proves
statement (a), since Q(0) # 0. In fact, if 0 = Q(0), then A = —1/4
andA(—1/4, B) = B2(125 + 32582 + 256 B) > 0, for all B, which is not
possible.

Statement (b) follows from
(b’){A >0} C {H <0} N{N < 0},
since this implies that () has four real roots ([B-P|) all of which are
nonzero by the assumption A # —1/4. The proof of (b’) is done in 1-8
below:

1. The curve {H = 0} is the parabola A = (=3 — 3B%)/2, hence H is
negative (resp. positive) on the A-axis, for all A < —3/2 {resp. A >
—3/2). See Figure 4.

2. The curve {N = 0} is symmetric with respect to the A-axis and has
two connected components. Each component looks like a parabola, with
one of them contained in the cone {(4,B): A < —2—+/15/2 and B >
0}. The complement of {N = 0} in the (A, B)-plane is made up of three
connected components; N is negative-in the one containning the origin
(see Figure 4). To see this note that if

ry) =1+ (1+ A2 + (5 +4A)y + 3y =0,
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then
{N=0}={(4,B):y=B> and r(y)=0}.

Therefore when A < —2—+/15/2 (resp. A > —2 —+/15/2), we have that
r(y) = 0 has two positive roots (resp. has no positive roots).

3. The curve {A = 0} is symmetric with respect to the A-axis and has
three connected components. Each component looks like a parabola,
with one of them tangent to {A = —1/4} at (—1/4,0) and contained
in {A < —1/4}. Along the A-axis we have that A is positive (resp.
negative) for A > —1/4 (resp. A < —1/4). Another component of
{A = 0} is tangent to {A = —27/8} and is contained in the cone {(4, B) :
A< -27/8 and B > 0}. See Figure 4.

In fact, A(A, B) = fa(B2) where, for each A, we have that fa(z) is
a cubic polynomial with discriminant

256

L A)S.
5 A%T +84)

For A > —27. the polynomial f4(z) has a unique real root which is
positive only for —% <A< —%. For A < —%Z, the polynomial fa(x)

N\

has three positive real roots.

N\ |/
N\

Figure 4.

4. We have that {H =0} C {A < 0}.
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In fact, H = 0 if and only if A = (—3 — 382%)/2. Substituting A for
this value in A, we obtain
A = —(1+ B*3(125 — 225B% + 162B%)
which is negative for all B.
5. Now {A=0}N{N =0} =02.
In effect, considering A and N as polynomials in the variable A, their
corresponding resultant is the polynomial

R =262144B*(1 + BY)*R;
where Ry = h(Bz), with
h(x) = —2000 — 776x + 1575z° — 648z°>.

We have that R vanishes only where B =0 or Ry =0. When B =0 we
have
N=—41+(1+B*»?% <o.

Therefore {A : A(A4,0) = N(A,0) = 0} = &. Moreover, since the cubic
polynomial h(z) has a unique real root which is negative, R; # 0. and
this statement is proved.
6. Next {N =0} C {A <0}.

In fact, by (5) and since

N(—2—15/2,1/1/2 +1/3/15) = 0

A(—2—+/15/2,y/1/2 + 1/3v/15) = (—10821 + 2794+/15) /9 < 0.

7. Also {A > 0} C {H < 0}. See Figure 5.
In fact, on the line A = —27/8 we have

and

A = 512(—289 + 8B2)(—125 + 64B%)?

and
H=5/4— B2

Therefore, over this line, {A > 0} C {H < 0} and the result follows
from (4).
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8. Finally, we have that {A > 0} C {N < 0}. See Figure 5.
In fact, for A = —27/8 we have

N = —(425 — 544B% + 192B%) /16

which is negative for all value of B and the result follows from (6).
The proof of Lemma 4.2 is now complete. O

A=0 and H=0 A=0 and N=0

Figure 5.

5. End of the proof of the main result

Lemma 5.1. Under the generic conditions
1. A+#£0,
2. 1+4A#0,
3. A#£0,
the field L' only has hyperbolic singularities on the s-axis. Moreover:
(a) ConditionH3 : A <0 (andso A< —1/4) implies that the field
L' has three singular points over the s-axis all of which are saddles.
(b) ConditionH4 : A >0, A<0and A+# —1/4 imply that the field
L' has five singular points over the s-axis, four of which are saddles
and the remaining one is a node.
(c) Condition H5 : A >0 (and so A > 0) implies that the field L
has five singular points over the s-axis all of which are saddles.

Proof. Under condition 1 the curves a = 0 and b = 0 meet transversally
at the origin, and under conditions 2 and 3 the polynomial g(s) only
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has simple roots. Recall that g(s) = 0 is the equation of the singular
points of the vector field £’. We observe that if (0,0, sp) is a singularity
of L', then L,(0,0,sq) # 0. To see the projection W of our vector field
L' onto the plane u, s, around a singularity of the form (0,0, sg), from
the equation £(u,v;s) = 0, we may write v = v(u, s) (in terms of u and
s) and obtain:

v = a(u,v(u, s),s) = da(u, v(u, s))(1 — 332) + 4b(u, v(u, 8))s(—3 + %)
= uh(s) + U(u, s)

s == Ly(u,v(u, 8); 8) + sLy(u, v(u, 3); s)]
=9(s)+ P(u,s),

with U(0,s) = 8¥(0,5) =0, P(0,s)=%-(0,5)=0 and

4A(1 + s%)3

h(s) = .
(5) s —4Bs3 — 652 +4Bs+1

Let J(s) be the determinant of DW (0, s); then:
J(0) = —4A(1 + 44)

and, if s # 0 is a root of the polynomial g,

2\3
79 = - g )
where ¢'(s) is the derivative of g respect to s.

Conditions 1, 2 and 3 determine seven open regions in the plane
AB: Zy,Zo,---,Z7 (see Fig.6). Region Zy corresponds to A < 0,
hence we have three singular points (0,0, s;), ¢ = 1,2, 3, and, since 57 <
—1 < 89 = 0 < 1 < 83, they are hyperbolic saddles. The other re-
gions correspond to A > 0 and we therefore have five singular points
(0,0,s;),i=1,---,5; the relative positions of these points with respect
to the points s = +1 and the origin as well as their topological type
are shown in Table 1, where S (resp. N) stands for saddle point (resp.
node) of the vector field W.
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region relative position topological type
A P < —1<py<p3=0<pg <1<ps SSSSS

Zo Ip1<—-1<pa<p3=0<ps<1<ps SSNSS

Z3 PL<—1<pr<p3<ps=0<1<p;s SSNSS

74 PL<—1l<pr=0<p3<pg<1l<p;s SSNSS

Zs, PL<pa<p3<—-1<ps=0<1<p;s SNSSS

Zg pr<—1<pr=0<1<p3<pg<ps SSSNS

Table 1
The proof of the lemma is now complete. O

Remark 5.2. Under conditions of previous lemma, it follows from its
proof that Condition H4 is satisfied if and only if, up to a rotation of
the u, v-plane, —1/4 < A < 0 (This condition already implies A > 0).

Zs

N ™
N
b
N
[
N

Figure 6.

Proof of Theorem 1.1. It follows from the previous lemma. O

If we denote the set of smooth immersions f : M — R* endowed
with the C*-topology by Z4(M), our results may then be summarized
in the following theorem.

Theorem 5.3. The set of smooth immersions f : M — R*, such that
every umbilic point is locally topologically stable, is open and dense in
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T4(M).

References

[B-P] Burnside W.S. and Panton A. W., The Theory of Equations
Dover Publications, Inc. New York. (1912).

[GGST] Guadalupe 1., Gutiérrez C., Sotomayor J. and Tribuzy R. Principal Lines
on Surfaces Minimally Immersed In Constantly Curved /-spaces. Dynamical
Systems and bifurcation theory, Pitman Research Notes in Mathematics Series
160 (1987), pp. 91-120.

[G-S] Gutierrez C. and Sotomayor J. Principal Lines on Surfaces Immersed with
Constant Mean Curvature. Trans. of the Ame. Math. Soc. Vol. 293, No. 2
(1986), pp. 751-766.

[Jac] Jacobowitz, H. The Gauss-Codazzi Equations. Tensor, N., S., 39 (1982), pp.
15-22.

[Lit] Little J. A. On Singularities of Submanifolds of a Higher Dimensional Fuclidean
Space. Ann. Mat. Pura App. 83 (1969), pp. 261-335.

[M-P] Palis J. and de Melo W. Geometric Theory of Dynamical Systems. Springer-
Verlag, 1982.

[R-S] Ramirez-Galarza A. and Sénchez-Bringas F. Lines of Curvature near Umbilic
Points on Surfaces Immersed in R%. Annals of Global Analysis and Geometry,
13 (1995), pp. 129-140.

[Spi] Spivak M. A Comprehensive Introduction to Differential Geometry. Vol. 5,
Publish or Perish Inc., Berkeley, 1979.

Carlos Gutierrez Irwen Guadalupe

IMPA IMECC — UNICAMP

Estrada Dona Castorina, 110 Universidade Estadual de Campinas
Jardim Boténico C.P. 6065

22460-320, Rio de Janeiro, RJ, Brazil 13083-970 Campinas, SP, Brazil
E-mail: gutp@impa.br E-mail: irwen@ime.unicamp.br
Renato Tribuzy Victor Guinez

Universidade Federal do Amazonas Universidad de Santiago de Chile
Departamento de Matematica Facultad de Ciencias I. C. E.

69000, Manaus, AM, Brazil Casilla 307, Correo 2, Santiago, Chile
E-mail: tribuzy@fua.br E-mail: vguinez@lauca.usach.cl

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997



