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Abstract. The differential equation of the lines of curvature for immersions of 
surfaces into ~4 is established. It is shown that, for a class of generic immersions 
of a surface into R 4 in the cr-topology, r > 4, all of the umbilic points are locally 
topologically stable. This type of umbilic points is described. 

1. Introduction 
This article is devoted to the s tudy of the possible configurations of 

the lines of principal curvature around umbilic points on surfaces which 

are immersed in ~4. We classify the locally topologically stable umbilic 

points and show tha t  they appear generically. 

The notion of principal direction for a smooth immersion f : M --~ 

IR 4 which we use and introduce is due to J.A. Little ([Lit]), and is an ex- 

tension of the classical three-dimensional concept (see [R-S] for another 

possible extension). A principal direction at p is a line in TpM generated 

by a uni tary  vector which makes extremal the length of a (X,  X), where 

a is the second fundamental form of the immersion f at p and X varies 

on the unitary circle in TpM. The set $ of values of c~(X, X) is an ellipse, 

called ellipse of curvature, which can degenerate into a line segment, a 

circle or a point. Also, it is easily seen that as X goes once around 
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the circle, a (X,  X) goes twice around around g. Therefore, when g is 

either an ellipse or a line segment, there are four principal direcctions 

at p ; when g is either a circle or a point, we say p is a umbilic point of 

f .  The principal lines of curvature of a are those curves in M, disjoint 

from umbilic points, which are tangent  to principal lines. 

The differential equation of the principal lines of curvature is estab- 

lished in paragraph two. In paragraph three we s tudy a class of generic 

ulnbilic points called simple. Assuming tha t  all umbilies of M are sim- 

ple and tha t  P : P M  --~ M is the projective bundle, in paragraph four 

we show that  the set of points (p, L), where p E M and L C TpM is a 

principal direction, constitutes a smooth two-submanifold L M  of P M  

which carries information that is needed in paragraph five to prove our 

chief result: 

Theorem 1.1. Under generic conditions and if f : M -~ R 4 is a smooth 

immersion of a surface M and p E M is a umbilic point of f ,  then 

there are isothermic coordinates (u,v) : (M,p) --~ (R2,0) such that the 

differential equation of the principal lines of f in these coordinates is of 

the form 

4( Au+ Bv+ S(u, v) )(du2-dv2)dudv+(v+ R(u, v) )(du4-6du2 dv2 +dv 4) = 0 

where A r 0 and B are real numbers, and S(u,v) and R(u, v) are real 

valued functions which satisfy 

os  a s  oR an(o,o) = o  s(o,o) = R(o,o)= (o, o)= (o,o)= av 

Moreover, under any one of the following conditions, the umbilic point 

p is locally topologically stable and its phase portrait is obtained by mak- 

ing into one (by a rigid translation) the pair of pictures (nets) of the 

indicated figure: 

(a) Condition H3 (Fig. l ) :  A < O, 

(b) Condition H4 (Fig.2): A > O, A < 0 and A r - 1 / 4 ,  

(c) Condition H5 (Fig.3): A > O, A > 0 ,  
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where 
A = 1614(1 +/32) 3 + 24(1 + B2)2A + 8(5 - B2)(1 + B2)A2+ 

+ 4(9 + B2)A 3 + (17 + B2)A 4 + 4A5]. 

\ 

Figure 1. 

\ 

J 
J 

/ 

Figure 2. 

Figure 3. 

Concerning Theorem 1.1 we may remark: 

(a) A r 0 is a transversality (generic) condition which characterizes a 

simple umbilic point; 

(b) Within  the considered coordinates, the umbilic point p of type Hi, 

i = 3, 4, 5, has i separatrices whose slopes at the origin are the roots 

of a polynomial having A as its discriminant; 
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(c) It will be shown that  the principal lines around the umbilic p of 

Theorem 1.1 (which satisfies either of the conditions H3 or H4 or 

else Hh) make up two pairwise transversal nets 5~1 and 5v2. We say 

that  p is locally topologically stable when both U1 and 5v2 are locally 

topologically stable, around p. This definition for nets is similar to 

tha t  for the case of principal lines of surfaces immersed in ]R 3, around 

an isolated umbilic point, which can be seen in [G-S]. 

2. Differential  equation o f  the lines o f  curvature 
Let f : M --~ ~4 be a smooth immersion of a surface M. Let U C M be 

an open neighborhood with isothermic coordinates (u, v). Let z = u+iv ,  
0 9 

and let A = 10ul = 10.1 where 0~ = Ouu and Ov - 9v" 

We introduce the two Wirt ingen operators 

1 1 
O~ = - ~ ( 0 ~  - ion) and 0~ = ~ ( O u  + ion), (1) 

and denote 
=  (Oz, Oz), =  (Oz, 6 )  

(2) 
a = Re((cr, c~)), b = 2Im((cr, a}) 

where ( , ) is a bilinear complex extension of the inner product  of T •  

to T I M  | C, with T •  denoting the normal bundle. 

This paragraph is devoted to the proof of the following result: 

Theorem 2.1. Let f : M --+ ]R 4 be a smooth immersion of a surface 

M.  In isothermic coordinates (u,v) : (M,p) -+ (R 2, 0), the differential 

equation of the lines of curvature of f is given by 

4a(u, v)(du 2 - dv2)dudv + b(u, v)(du 4 - 6du2dv 2 + dv 4) = 0 (3) 

where a = a(u, v) and b = b(u, v) are the real valued functions of (2). 

Moreover, p is a umbilic point i f  and only if  a(0, 0) = b(0, 0) = 0. 

Conversely, for any given analytic functions a, b : U --+ R defined on 

an open neighborhood U C R 2 of a point p, there exists an immersion 

f : V --+ ~4 where V C U is some small open neighborhood of p such 

that the differential equation of the lines of curvature of f is given by 

(3) and that the coordinates (u, v) are isothermic. 
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To prove  t h e  t h e o r e m  we need  the  n e x t  resul t .  

L e m m a  2.2. Suppose the assumptions of above. Let {e3, e4} be a normal 

frame. Let r / =  rl(u, v) be a smooth function such that 

I f  we denote 

Vo~e3 = ~]e4, V~u e4 = -tie3 
(4) 

• V~ve 4 0. VOve 3 = O, = 

cr~l = Re((cr, e~}), o-82 = Ira(@, e~}), 7-~ = (% e~), /3 = 3, 4, (5) 

then the Gauss, Ricci and Codazzi equations may be written, respectively, 

a s  

Proof .  

e q u a t i o n  

~ v  = X(-~3,1 2 _ ~ - d ~  - ~ 2  + ~ + ~g + ~ + a~ - a a ~ )  

2 
(~)v = ~T (~176 - ~176 

(6) 

(7) 
2 

({r32)v = (cr31)u -- (TS)u -- tier41 + ~]T4+ ~AuT3 

2 
((731 -H T3)v = -- (O-32)u -H r]O-42 + TAvT8 

A (8) 
2 

(cr42)v = (cr41)u -- (T4)u + flora1 -- r/7a+ ~AuT4 

2 
(or41 + T4)v = -- (Crn2)u -- r/era2 + ~,~vT4 

We use n o t a t i o n s  (1) a n d  (2). Le t  us first  cons ider  t he  G a u s s  

(R(Oz,OTz)Oz, c%zz) = {a(Oz, Oz),a(Oez, Oez)}- la(0z,  Oez)l 2. (9) 

N o t e  t h a t  

=-V~ \ Oz )0~ 
= --A log AOz 

(R(Oz, ~ ) o z ,  6 )  = - ) ,  2A log),. 
which  impl ies  
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Hence the Gauss equation has the form 

-A2/ ' ,  log ), = 1o-I 2 - [-rl 2 

and may be rewritten as (6). 

We now consider the Ricci equation 

R •  ( Oz , Oez )V = c~0-~Oez , Oz ) - c~( ~rvOz , O~z ), v E T •  M .  

Note that  

R• &)e3 = c ~ ( % ~ ,  0~) - ~(0.~30z, ~ )  

1 
= ~ ( ~ 3 0 .  - 0-3~) 

i 
= 2 ~  Im(~30-), 

hence 
i 

( R •  02z)e3, e4} = 2 V Im(~30.4)- 

We also obtain that  

R• Wzz)~3 = v~vs -~'•177 ~3 

_ 1 { 0 r /  Or/ 
v ~ \ N  5/)  ~4 

.Or/ 

and thus 
.071 

<R'(o~, ~)~3,  ~4> = - ~ .  
This implies that  the Ricci equation has the form 

0r/ 2 
O V  - -  )~2 Im(~3a4) 

which may be rewritten as (7). 

Finally, we consider the Codazzi equation 

( v o z ) ( ~ ,  oz) = ( v ~ ) ( O z ,  o~). 

(lO) 

(11) 
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We have 
v L o .  = - 201~ - 

Oz " 

Also, we find tha t  

= ( 0o .4  o.37]) e4 V~zo- ( 0(73 _ o.4r/) e3 + + 
\ 0-2 \ 0-2 

and tha t  

Hence 
\ Oz \ Oz 

0(7 3 0~- 3 ~ 0 log/~ 
0-2 o.4fl = O z  --  ~-4 f / - -  z O ~ - z  ~-3 

0o- 4 0T 4 ~ 0 log A 
+ o.3  = + - 

which may  be rewri t ten  as (8) [] 

Proof of  Theorem 2.1 
The  differential equat ion of the  lines of curvature of f is given by 

Im(@,o.}dz 4) = 0 ( [GGST, Prop.  5.1, pp.103]) which is equivalent 

to (3) and thus we have the  first s ta tement .  

For the  second, we need to prove tha t ,  for any given local analytic 

functions a, b : (U,p) ~ ]R as in the  assumptions,  there exists a local 

analytic immersion f such tha t  the differential equat ion of the  lines 

of curvature  of f is given by (3) and tha t  the coordinates (u, v) are 

isothermic. 

If we find a solution A > 0, ~7, o-31, o-32, o-41, ~ T3, 7-4 of  system 

(6) (8) of L e m m a  2.2 such tha t  each one of these funct ions is defined 

in an open neighborhood V C U of p, then  the  theorem of existence 

and unicity of immersions [ Jac] guarantees  the  existence of a local 

immersion f : V --~ R 4 which has A 2 = E = G and F = 0 as coefficients 

of its first fundamenta l  form. On the  other hand,  if this solution satisfies 

the sys tem 

a = o.~l - o.~2 + o.21 - 0-22, b = 2(O-310"32 -~- o.41o.42) , (13) 

then  the  differential equat ion of the principal lines of curvature  is given 

by (3) and thus the  proof  of the theorem will follow. 
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For this  we first define Ai = Ai(u, v, o-32 , o-42), i = 3, 4, by 

5(732 + (742 e 5o-42 - o-32 c 
A3 - 2(o-82 2 + o.~2)' A 4 -  2(o-~2 + o.422) ' 

where  

-- v/4(o-~2 + o-~2/(4a + o.~2 + o-~2/-  b2. 

We next  in t roduce  the  following sys tem of l inear PDE's :  

ou1 
= u2 

Ov 
OU3 OU2 
Ov Ou ( ov3~ OU20v - ull C 2 - 2A3C3 - 21eC4 - o-~2 + U~ + U 2 - U1 ~ - u  ] 

0r/ 2 
OV -- U 2 (A4O-32 - A3O-42) 

0o-32 _ 20A3 0C3 ~--~ 
Ov cgu Ou 2r/A4 + r/C4 + U2(C3 -- A3) 

0C3 0o32 ~_~ 
Ov 0 ~ -  + r/o-42 -t- U2(C3 - A3) 

0o-42 _ 2 0A4 0C4 2 
- 0~- + 2r/A3 -- r/C8 + ~ (U3(C4  - A4) Ov Ou 

0C4 0o-42 2 
- r/o.32 + ~ u 2 ( c 4  - A4), 

Ov Ou Ul 

with  initial condi t ions  

g l ( u ,  0) = 1 

u 2 ( u ,  0) - 0 

u 3 ( ~ ,  o) - o 

a32(u, 0) - 0 

(14) 

(15)  

(16) 

o-32(u, 0) = 16(a(u, 0)) 2 + (b(u, 0)) 2 + 2. 

For this sys t em to be well defined, we assume t h a t  U1 > 0 and  tha t  

4(o-22 + A22)(4a + A322 + A12 ) - (b (u , v ) )  2 > O. 

T h e n  the  Cauchy-Kowalewsky  t he o r e m [Spi] implies the  existence of an 

analyt ic  solut ion a round  (0, 0) for the  ent ire  sys tem (15). Note  t ha t  the  

chosen initial condi t ions  guaran tee  tha t  U1 > 0 and  tha t  the  expression 
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inside the square root which defines c = c(u, v) is positive and analytic 

in a small neighborhood of (0, 0). If we define A = U1, then the first two 

equations of (15) together with the chosen initial conditions imply that  

U2 = A~ and that  U3 = Au. Also, if we rewrite system (15) by making 

the following substitutions 

0.31 (~t, V) : =  A3(zt , v ,  o-32(u , v ) ,  o-42(u , v ) )  

0.41(u, v) := A4(u, v, 0.3~(u, v), 0.42(u, v)) 
(17) 

7-3 : =  C3 - - 0 3 1  

7-4 : =  C4 - cr41 , 

then system (15) implies that  the structural  equations (6) - (8) are 

satisfied. Moreover by (14) and (17), we have tha t  (13) is satisfied. [] 

3. Simple umbilic points 
Let f : M --+ R 4 be a smooth immersion of a surface M, and let p E M 

be a umbilic point of f .  The point p is called a simple umbilic point of 

f if there are isothermic coordinates (u, v) : (M,p) --~ (R 2, 0) such tha t  

the differential equation of the principal lines of f in these coordinates 

is of the form 

4a(u, v)(du 2 - dv2)dudv + b(u, v)(du 4 - 6du2dv 2 + dv 4) = 0, (18) 

with a = a(u, v) and b(u, v) real valued functions which are transversal 

at the origin. 

The proposition and lemma of this paragraph state properties of 

simple umbilic points which will be necessary later on. 

Proposition 3.1. Any smooth immersion f : M --+ I~ 4 of a surface M 

can be arbitrarily approximated, in the smooth topology, by an immersion 

9 : M --* R 4 such that all of its umbilic points are simple. 

Proof .  Up to a small perturbat ion,  f can be assumed to be analytic. 

Around any given point of M, in local coordinates and by Theorem 2.1, 

the condition tha t  {a = 0} and {b = 0} are made up of regular curves 

which meet each other transversally is open and dense in the smooth 

topology. Under these conditions, each element of {a = 0} O {b = 0} is 
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a simple umbilic point. From this local fact, by standard arguments of 

transversality ([M-P]), the result now follows. [] 

Lemma 3.2. Let f : M --~ IR 4 be a smooth immersion of a surface M ,  

and let p E M be a simple umbilic point of f .  There are isothermic 

coordinates (u, v) : (M,p) --+ (R 2, 0) such that the differential equation 

of the principal lines of f in these coordinates is of the form 

4(An + Bv  + S)(du 2 - dv2)dudv + (v + R)(du 4 - 6du 2 dv 2 + dv 4) = 0 (19) 

where A r 0 and B are real numbers, S = S(u, v) and R = R(u, v) are 

real valued functions satisfying 

OS OS OR OR 
s(o,o)  = R(o ,o ) =  ~ ( o , o ) =  ~ v  (o, o ) =  b-~ (o, o) = ~v  (o ,o )=  o. 

Proof. Let (s, t) : (M,p) -~ (R 2, 0) be isothermic coordinates, and let 

w = 4~(s, t)(ds 2 - dt2)dsdt + b(s, t)(ds 4 - 6ds2dt 2 + dt 4) (20) 

be the corresponding differential equation of the principal lines of f (see 
Theorem 2.1). 

Assume that  the first jet 

J l(g,  8)(0, 0) = (A10s + Jl01t,/)10s +/)01t). 

For a,/3 E R, with a 2 +/32 r 0, we consider 

(s, t) = r v) = (o~u - /3v , /3u  + c~v). 

Then 

r = 4a(u, v)(du 2 - dv2)dudv + b(u, v)(du 4 - 6du2dv 2 + dv 4) 

where 
a(u, v) = Au + B v  + R l  (u, v), 

b(u, v) = Blou + Bol v +/~2(u, v) 
and 

B l o  = 4a42tlO/3 + 4o~3-4Ol/32 - 4a22t lo /33  - 4o~2tol/34+ 

o~4/3/)Ol - 6o~2Z3/)ol +/3~/)Ol + a5/)1o - 6a3/32/)1o + c~/34/)1o 

B01 = 4a4~t01/3 - 4a3-~[10/32 - 4a2A01/33 + 4aA10/34+ 

a5/)01 - 6a3/32/)01 + ct/34/)01 - oz4/3/)10 + 6a2/33/)10 -/35/)10. 
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I f / ) 1 0  = 0 ( thus /)01 r 0), we set /3 = 0 and  c~ = 1 to ob ta in  

B10 = 0 and  B01 = 1 .  

I f / )10  r 0, we set c~ = rn/3 wi th  rn a real root  of the  equa t ion  

/~10 x5 + 2(2~t01 -- 3/~10)x 4 + 2(2J101 -- 3/)10)X 3 -- 2(2~t10+ 

+aB01)*  2 + (/)10 - 4Aoa)x + B01 = 0 

to  ob ta in  B10 = 0 and  hence we are under  the  condi t ion of the  first case. 
[] 

4. T h e  m a n i f o l d  LM and  the semi- local  vector  f ie ld  L;' 

We now consider the  project ive lille bundle  P M  over M:  it is defined by 

the  t angen t  bundle  wi th  the  zero section 0 removed ( T M  \ O) modulo  

the  ident if icat ion of two elements  (Pl, vl) and  (P2, v2), if their  first com- 

ponents  coincide and  thei r  second ones are collinear. We let P denote  

the  projec t ion  of P M  onto M.  In te rms  of the  char t  (u, v) wi th  d o ma i n  

U in M ,  the  charts  (u, v; t = du/dv) and  (u, v, s = dv/du) are defined on 

P - I ( u )  and  their  domains  cover this  open set. 

Consider  the  surface L M  in P M  defined by the  solutions of equa t ion  

(3) of Theorem 2.1: 

w = 4a(u, v)(du 2 - dv2)dudv + b(u, v)(du 4 - 6du2dv 2 + dv 4) = O. 

In the  char t  (u, v; s = dv/du) of above, L M  is wr i t t en  as 

s v; s) = 4a(u, v)(1 - s2)s + b(u, v)(1 - 6 s  2 + s 4) = 0, 

whereas  in the  char t  (u, v; t = du/dv) it is expressed as 

/Z(u, v; t) = 4a(u, v)(t 2 - 1)t + b(u, v)(t 4 - 6t 2 + 1) = 0. 

I t  is clear t h a t  the  surface L M  is de te rmined  by the  principal  direc- 

t ions and  does not  depend  on the  par t icu lar  chart  used. 

Let  Srn be the  set of umbilic points  of the  immers ion  f : M --+ 

IR 4. Outs ide  P- l (Srn )  we have t h a t  L M  is a regular  submani fo ld  of 

P - I ( M ) ;  there  it is a 4-fold regular  covering of M \ Srn. In local (u, v) 

coordinates  a round  p E Srn, as in Theo rem 2.1, Srn corresponds to the  

set a - l (0 )  N b-l(0) .  
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Lemma 4.1. Let p E Srn. The point p is simple if  and only i f  L M  is 

regular around p - 1  (p). 

Proof .  Assume the notations and conditions of Lemma 3.2. If for some 

s and u = 0, v = 0 we have that  

s  s  2 + s  4 = 0 ,  

then we necessarily have tha t  A = 0. 

Conversely, if A = 0, then  s = 0, for all s. Since s = 1 and 

/2~(1) = -4 ,  there exists s such that  s = 0. A similar argument  

works for the t - coo rd ina t e  which is needed to analyze the point t = 0. 
[] 

On local u, v and s coordinates (i.e., t ~ 0) for a point of P M ,  we 

consider the vector field 

s  u' 0 v' 0 s' 0 

whose components are given by: 

u ~ = ~t(u, v, s) = 4a(u, v)(1 - 3s 2) + 4b(u, v) s ( -3  + s 2) 

v' = s~(u, v, s) 

s' = - [  Z;~(~, v; s) + ss  v; s)]. 

A simple calculation shows that  U is tangent  to L M ;  in the sequel, 

we only deal with its restriction to L M  whence we shall maintain the 

same notation/2 ' .  Its projection P . s  only vanishes at the umbilic points 

Sin. In the complement of Sin, it generates the principal line fields of 

M: tha t  is, for each non-umbilic (u, v), the four P-preimages (u, v, r l ) ,  

(u, v, r2), (~t, v, r3) and (u~ v, r4) verify tha t  P.s  v, ri) generates the 

principal line with direction ri. 

If (u, v) are the coordinates of Lemma 3.2, then (0, 0) is umbilic and 

the singularities of /Y are the zeros of s' on the s-axis given by the 

equation 

g(s) = - s Q ( s )  = o 

where 

Q(s) = s 4 - 4Bs  3 - 2(3 + 2A)s 2 + 4 B s + 1 + 4 A .  

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997 



LINES OF CURVATURE ON SURFACES IMMERSED IN ~4 245 

Lemma 4.2. Consider 

A = 1614(1 + B2) 3 + 24(1 + B2)2A + 8(5 - B 2 ) ( 1 +  B2)A2+ 

4(9 + B2)A 3 + (17 + B2)A 4 + 4A5], 

as in Theorem 1.1, and the degree-5- polynomial g(s) = -sQ(s) .  Then 

(a) A < 0 implies that g(s) has three simple roots; 

(b) A > 0 and A ~ - 1 / 4  imply that g(s) has five simple roots. 

Proof .  To find the roots of a quartic polynomial  and following [B-P], 

the principal quanti t ies associated to Q(s) are: 

A = A(A, B), 

H = H(A, B) = ( -3  - 3B 2 - 2A)/3, 

N = N(A,  B) = -4(2  + 5B 2 + 3B 4 + 2A + 4B2A + A2). 

When  A < 0, the real roots of Q(s) are exactly two; this proves 

s ta tement  (a), since Q(o) r o. In fact, if 0 = Q(o), then  A = - 1 / 4  

a n d A ( - 1 / 4 ,  B) = B2(125 + 325B 2 + 256B 4) _> o, for all B, which is not 

possible. 

S ta tement  (b) follows from 

(b') {zx > 0} c {H < 0} n {N < 0}, 

since this implies tha t  Q has four real roots ([B-P]) all of which are 

nonzero by the assumpt ion  d ~ - 1 / 4 .  The  proof  of (b') is done in 1-8 

below: 

1. The  curve {H = 0} is the parabola  A = ( -3  - 3B2)/2, hence H is 

negative (resp. positive) on the  A-axis, for all A < - 3 / 2  (resp. A > 

- 3 / 2 ) .  See Figure 4. 

2. The  curve {N = 0} is symmetr ic  with respect to the A-axis and has 

two connected components .  Each component  looks like a parabola,  with  

one of t h e m  contained in the cone {(A, B) : A < - 2 - v / ~ / 2  and B > 

0}. The  complement  of {N = 0} in the (A, B)-plane is made  up of three 

connected components ;  N is negative-in the  one containning the origin 

(see Figure 4). To see this note  tha t  if 

r(y) = 1 +  (1+ A) 2 + (5 + 4A)y + 3y 2 = 0, 
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then 

{ N = O } = { ( A , B ) : y = B  2 and r(y)=O}. 

Therefore when A < - 2 -  v ~ / 2  (resp. A > - 2 -  v ~ / 2 ) ,  we have that 

r(y) = 0 has two positive roots (resp. has no positive roots), 

3. The curve {A = 0} is symmetric with respect to the A-axis and has 

three connected components. Each component looks like a parabola, 

with one of them tangent to {A = -1/4} at (-1/4,0) and contained 

in {A _< -1/4}.  Along the A-axis we have that A is positive (resp. 

negative) for A > - 1 / 4  (resp. A < -1/4) .  Another component of 

{A = 0} is tangent to {A = -27/8} and is contained in the cone {(A, B) :  

A <_ -27/8 and B > 0}. See Figure 4. 

In fact, A(A, B) = fa (B  2) where, for each A, we have that fA(x) is 

a cubic polynomial with discriminant 

256A8(27 + 8A) 3. 
27 

For A > - ~ ,  the polynomial fA(x) has a Unique real root which is 

positive only for - ~  < A < _1.  For A < - ~ ,  the polynomial fA(x) 
has three positive real roots. 

/ /  / 
A = 0  N = 0  

Figure 4. 

4. We have that {H = 0} C {A < 0}. 

H = 0  
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In fact, H = 0 if and only if A = ( -3  - 3B2)/2. Substituting A for 

this value in A, we obtain 

A = --(1 +/32)3(125 -- 225/32 + 162/34) 

which is negative for all B. 

5. Now {A = 0 } n { N :  0} = 

In effect, considering A and N as polynomials in the variable A, their 

corresponding resultant is the polynomial 

R = 262144/34(1 +/32)4R 1 

where R1 = h(B2), with 

h(x) = -2000 - 776x + 1575x 2 - 648x 3. 

We have that  R vanishes only whe re /3  = 0 or R1 = 0. When B = 0 we 

have 

N = - 4 1 1 + ( 1 + / 3 2 ) 2 ]  < 0 .  

Therefore {A : A(A, 0) = N ( A ,  0) = 0} = ;~. Moreover, since the cubic 

polynomial h(x) has a unique real root which is negative, R1 ~ 0. and 

this s ta tement  is proved. 

6. Next { N = 0 }  C {A < 0}. 

In fact, by (5) and since 

N ( - 2  - x /~ /2 ,  f l / 2  + 1/3v/~)  = 0 

and 

A(--2 -- V/~/2,  f l / 2  + 1/3V/~) = (--10821 + 2794V~)/9 < 0. 

7. Also {A > 0} C {H < 0}. See Figure 5. 

In fact, on the line A = -27 /8  we have 

A = 512(--289 + 8/32)(--125 + 64/32) 2 

and 

H = 5/4 - B 2. 

Therefore, over this line, {A > 0} C {H < 0} and the result follows 

from (4). 
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8. Finally, we have that  {A > 0} C {N < 0}. See Figure 5. 

In fact, for A = -27 /8  we have 

N = -(425 - 544B 2 + 192B4)/16 

which is negative for all value of B and the result follows from (6). 

The proof of Lemma 4.2 is now complete. 

i 

[] 

A=0  ar id  H = 0  A=0  a n d  N = 0  

Hgm-e 5. 

5. End of  the proof  o f  the main result 

Lemma 5.1. Under the generic conditions 

1. A ~ O ,  

2. l + 4 A  ~ o, 

3. A r  

the field ~ only has hyperbolic singularities on the s-axis. Moreover: 

(a) Condition H3 : A < 0 ( and so A < - 1 / 4 )  implies that the field 

s has three singular points over the s-axis all of which are saddles. 

(b) Condition H4 : A > 0, A < 0 and A ~ - 1 / 4  imply that the field 

s has five singular points over the s-axis, four of which are saddles 

and the remaining one is a node. 

(c) Condition H5 : A > 0 (and so A > O) implies that the field s 

has five singular points over the s-axis all of which are saddles. 

Proof. Under condition 1 the curves a = 0 and b = 0 meet transversally 

at the origin, and under conditions 2 and 3 the polynomial g(s) only 
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has simple roots. Recall tha t  g(s)  = 0 is the equation of the singular 

points of the vector field s We observe that  if (0, 0, so) is a singularity 

of/2/, then/2~(0, 0, so) r 0. To see the projection W of our vector field 

L;' onto the plane u, s, around a singularity of the form (0, 0, s0), from 

the equation/2(u,  v; s) = 0, we may write v = v(u ,  s) (in terms of u and 

s) and obtain: 

u I = ft(u,  v (u ,  s) ,  s) = 4a(u,  v (u ,  s))(1 - 3s 2) + 4b(u, v (u ,  s ) ) s ( -3  + s 2) 

= uh(s)  + U(u, s) 

s' = - [  C.u(u,v(u ,s) ;s)  + 

= g(s)  + P(u ,  s ) ,  

with U(O, s) = ~ co s) = 0 P(O,s) = OP(O,s) = 0 and 

4A(1 + s2) 3 

h(s )  = s4 _ 4 B s 3  _ 6s 2 + 4 B s + 1  

Let J ( s )  be the determinant  of D W ( O ,  s); then: 

J(0) = -4A(1 + 4A) 

and, if s r 0 is a root of the polynomial g, 

(1 + s2) 3 / 
J ( s )  -1 --  ~ g (s) 

where g ' ( s )  is the derivative of !7 respect to s. 

Conditions 1, 2 and 3 determine seven open regions in the plane 

A , B  : Z1, Z 2 , " ' ,  Z7 (see Fig.6). Region Z7 corresponds to A < 0, 

hence we have three singular points (0, 0, si) ,  i = 1, 2, 3, and, since s] < 

- 1  < s2 = 0 < 1 < s3, they  are hyperbolic saddles. The other re- 

gions correspond to A > 0 and we therefore have five singular points 

(0, 0, si), i = 1, �9 �9 �9 , 5; the relative positions of these points with respect 

to the points s = -t-1 and the origin as well as their topological type 

are shown in Table 1, where S (resp. N)  stands for saddle point (resp. 

node) of the vector field W. 
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region relat ive posit ion topological  t ype  
Z1 p 1 < - l < p 2 < P 3 = O < p 4 < 1 < p 5  S S S S S  
Z2 ~ p l < - l < p 2 < P 3 = O < p 4 < l < p 5  S S N S S  
Z 3 p l < - l < p 2 < P 3 < P 4 = O < l < p 5  S S N S S  
Z4 Pl < - 1  < p2 = 0 < P3 < P4 < 1 < P5 S S N S S 
Z 5 p l < P 2 < P 3 < - l < p 4 = O < 1 < p 5  S N S S S  
Z 6 p l < - l < p 2 = O < l < p 3 < P 4 < P 5  S S S N S  

Table 1 

The proof of the lemma is now complete. [] 

Remark  5.2. Under conditions of previous lemma, it follows from its 

proof tha t  Condition H4 is satisfied if and only if, up to a rotat ion of 

the u, v-plane, - 1 / 4  < A < 0 (This condition already implies A > 0). 

Z7 Z2 Z1 

Figure 6. 

Proof  of  Theo rem 1.1. It follows from the previous lemma. [] 

If we denote the set of smooth immersions f : M ~ 1~4 endowed 

with the C~- topology by Z4(M), our results may then be summarized 

in the following theorem. 

T h e o r e m  5.3. The set of smooth immersions f : M --+ ]R 4, such that 

every umbilic point is locally topologically stable, is open and dense in 
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z4(M). 
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