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Abstract. In this paper we study a family of complex, compact, non-symplectic 
manifolds arising from linear complex dynamical systems. For every integer n > 3, 
and an ordered partition of n into an odd number k of positive integers we construct 
such a manifold together with an ( n -  2)-dimensional space of complex structures. We 
show that, under mild additional hypotheses, these deformation spaces are universal. 
Some of these manifolds are holomorphically equivalent to some known examples and 
we stablish the identification with them. But we also obtain new manifolds admitting 
a complex structure, and we describe the differentiable type of some of them. 

1. Introduction 

Many examples of compact,  complex manifolds are given by the smooth 

projective algebraic varieties in C P  n. It has been known for some t ime 

tha t  many  other examples are not of this kind. 

The first examples given were the Hopf manifolds ([I-I]) constructed 

as follows: Given a real number r > 1, we can take in c n \ 0  the action of 

the infinite cyclic group given by m .  z = r~z .  The quotient manifold is 

diffeomorphic to S 2n-1 x S 1. Since the action is holomorphic and total ly 

discontinuous, this manifold inherits a natural  complex structure.  To 

see it is not symplectic, and therefore cannot be algebraic, we can use 

the following well known facts: 

�9 On every sympIectic manifold M of real dimension 2n there exists 

an element x E H2(M) such that x n ~ 0 in H2~(M).  
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�9 Every projective, algebraic manifold admits a Kiihler structure and, 

in particular, it admits a symplectic structure. 

(For a proof of the second fact see [We], p.182). 

It should be mentioned also that  there are examples of symplectic, 

complex, but non-KS~hler manifolds due to Kodaira and of K/ihler, non 

algebraic ones (see [We]). 

Coming back to the Hopf manifolds, since H2(S 2~ 1 • $1) = 0 for 

n > 1, they cannot be symplectic. 

More generally, Borcea ([B]), and Haefliger ([Hae]) have considered 

the generalized Hopf manifolds obtained by taking the quotient of c n \ 0  

by any action of the infinite cyclyc group which is holomorphic and to- 

tally discontinuous. For all these, the quotient is again topologically 

S 2n-1 x S 1. Haefliger obtained a complete description of these mani- 

folds and their small deformations, showing in particular that  they come 

either from linear actions, like 

m .  ( z l , . . . ,  = 

(where c~i are complex numbers with Ic~i[ > 1), or from certain non 

linear deformations of them when there are resonances among the c~i. 

Calabi and Eckmann ([C-E]) generalized Hopf's construction to give 

complex structures on S 2k-1 X S 2/-1, all of which are again non- 

symplectic for the same reason. In a recent paper, Loeb and Nicolau 

([L-N]), using constructions coming from complex dynamical systems, 

extended Haefliger's results to the Calabi-Eckmann situation, thus ob- 

taining a very complete description of a large class of complex structures 

On S 2 k - 1  X S 2 / -1  together with their deformations. 

Complex structures have also been constructed on manifolds of the 
form E2n-1 • S 1, where E 2n-1 is a homotopy sphere bounding a 7r- 

manifold (or a homology 3-sphere when n = 2), by Brieskorn and Van de 

Ven ( [B-VdV]) .  Some of these, even in the case where E 2n-1 is the stan- 

dard sphere, are different from the ones studied by Borcea and Haefliger, 

their universal covering space being holomorphically different from Cn\0 

(see [Mo]). 

Finally, complex structures have been constructed on certain con- 
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nected sums of simple manifolds: Kato constructed complex manifolds 

whose differentiable s t ructure  was found in joint work with Yamada 

([K-Y]). In particular they  proved there is a complex s tructure on the 

connected sum 

(CP 1 • $4 )~ (S  3 • $3 )~ (S  3 • $3). 

Friedman, Lu and Tian constructed complex structures on the con- 

nected sum of k copies of S 3 x S 3 for any k > 1. In fact, Fr iedman 

showed this for k > 103 (IF]), while Lu and Tian ([L-T]) proved it for 

k _< 106 by a different construction. These manifolds have the additional 

feature of having trivial canonical bundles. The case k = 0, which can 

be considered as the question of the existence of a complex s tructure on 

S 6, is one of the main open problems in this theory. 

For results concerning the non-existence of complex structures on 

certain connected sums see [A]. 

2. Construction o f  the manifolds. 

Given an n-tuple A = (A1, . . . ,  An) of complex numbers satisfying the 

property  of weak hyperbolicity (cf. [Ch], [LdM1]): 

(WH) For no pair of indices i , j  does the segment [Ai, Aj] contain 0, 

we shall construct  a complex manifold N = N(A), as follows: 

Consider the system of linear, complex, differential equations in cn: 

~i = Aizi (1) 

The solutions (other than  zero) of this system are 1-dimensional 

complex submanifolds of C n, which form the leaves of a foliation of 

Cn\0. Such a leaf 12 is called a Poincard leaf if the origin belongs to the 

closure of 12. Otherwise it is called a Siegel leaf. One says that  A is in 

the Poincard domain if the  origin is not in the convex hull of the Ai. In 

tha t  case all leaves are Poincar6. If the  origin is in the convex hull of 

the Ai one says that  A is in the Siegel domain. In this case there are 

both  Poincar~ and Siegel leaves. (See, e.g., [C-K-P]). 

Let S be the union of all Siegel leaves of this system, which is empty  

if A is in the Poincar6 domain and is an open dense set if A is in the 
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Siegel domain. The complement of $ is a union of coordinate subspaces, 

corresponding to the subconfigurations of A which are in the Poincar6 

domain. 

There is an action of C on ,3 given by the flow of system (1). There 

is also an action of C* on $ given by scalar multiplication in C n. These 

two actions commute, giving a free action of (7 • C* on S by holomorphic 

transformations. The corresponding quotient will be our manifold 

N = N(A) = S / C  • C*. 

To see that  N is a compact Hausdorff manifold it is convenient to use 

the following alternative description: It can be shown ([C-K-P]) tha t  on 

every Siegel leaf there is a unique point which is closest to the origin. 

The set of those points coincides with the set 

M = {z Cn\0l  = 0} 

and therefore we can identify M with 8 / C .  M is a cone from the origin 

so its quotient by the radial action of R + can be identified with 

m 1 = m n S 2n-1 = {z C C n] 2Aiz i z i  = O, Ez iz i  = 1} 

which is compact.  The equations describing M1 are independent,  as a 

result of condition (WH), therefore M1 is a compact; smooth manifold. 

To obtain N from M1 it only remains to divide by the scalar action 
of $1: 

x = M 1 / S  1 

and N is also a compact,  smooth manifold. N clearly inherits a complex 

s t ructure  from S. 

Observe that  N ( A 1 , . . . ,  An) is biholomorphically equivalent to 

N(c~A 1 + / 3 , . . . ,  ct/~n +/3) 

if ct r 0 and /3 are such that  both configurations have the same 8: 

actually all orbits of the first action are orbits of the second action. In 

other words, two such collections of eigenvalues give equivalent manifolds 

if they  are affinely equivalent in C. Thus we must reduce effectively to an 

(n - 2)-dimensional space of complex structures which is always smooth; 

we cM1 this space a reduced de fo rma t ion  space. 
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To describe the topology of N we will use the following known facts 

about the topology of MI: First observe that  the smooth topological 

type of M1 (as well as that  of N) does not change if we vary continuously 

the parameters A as long as we do not violate condition (WH) in the 

process. It is shown in [LdM2] that  the parameters A can always be so 

deformed until they occupy the vertices of a regular k-gon in the unit 

circle, where k = 21 + 1 is an odd integer, every vertex being occupied 

by one or more of the ),i. Therefore the topology of M1 (and that  of 

N also) is totally described by this final configuration, which can be 

specified by the multiplicities of those vertices, that  is, by the parti t ion 

rt = n  1 + . . . + n k .  

Observe that  different partitions give different open sets S and there- 

fore also different reduced deformation spaces. It is clear that  if we per- 

mute cyclically the numbers ni we obtain again the same manifolds and 

deformation spaces, but  it follows from the next result that  the cyclic 

order is relevant for their description. 

It is shown in [LdM2] that  the topology of _/FI~ is given as follows: 

Let di = ni  § n i + l  + ' ' '  + hi+l_1 for  i = 1, . . . ,  k (the subscripts being 

taken modulo k). Let also 

d = min{d l , . . . , dk} .  

These numbers determine the topology of MI: 

Theo rem 1. (1) I f  k = 1 then M1 = 2~. 

(2) I f  k = 3 then M1 = S 2 n 1 -1  • S 2n2-1  • S 2 n 3 - 1 .  

(3) I f  k = 21 + 1 > 3 then M1 is di f feomorphic to the connected sum of 

the mani folds  s2di  -1  • s2n-2di  -2 ,  i = 1 , . . . ,  k. 

The proof of parts (1) and (2) is quite direct, while the proof of part  

(3) is long and complicated ([LdM2]). In what follows we shall only use 

the fact that  the integral homology groups of M1 coincide with those 

of the above described connected sum and the fact that  M1 is (2d - 2)- 

connected. The homology calculations (and part  (2) of Theorem 1) 

were first obtained by C.T.C. Wall ([Wa]). Thus our results will be 

independent of [LdM2] and will provide a simplified proof of some of 
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the cases of Theorem 1. 

3. T h e  m a n i f o l d s  N are n o t  symplect ic .  

Theorem 2. For n > 3, the manifold N = N(A) is a compact, complex 

manifold that does not admit a symplectic structure. 

P r o o f .  Recall tha t  for k = 1 the manifold M1 is empty. In general we 

have tha t  M1 lies in the sphere S 2n-1 and tha t  N sits inside the complex 

projective space C P  n-1 (but not as a holomorphic submanifold), so we 

have an inclusion of Sl-bundles: 

M1 ~ $2n-1 

N ---+ C P  ~-1 

We will prove first tha t  the inclusion of N can be deformed down 

into a projective subspace of low dimension d - 1, but not lower: 

Lemma. The above inclusion of Sl-bundles embeds homotopically in the 

following sequence of bundle maps: 

$2d-1 __+ M 1 -+ $2d-1 __+ $2n-1  

l ! l l 
C P d-1 --+ N ---+ C P d-1 ----+ C P n-1 

where the composition of the bottom arrows is homotopic to the natural 

inclusion. 

Proof  o f  the Lemma. If we put  d coordinates zi = 0 we obtain a new 

manifold M1 (A t) where A' is a configuration of eigenvalues tha t  is con- 

centrated in l + 1 consecutive vertices of the regular (2l + 1)-gon. This 

configuration being in the Poincar6 domain, it follows tha t  the above 

manifold is empty. 

This means tha t  the original M1 (A) does not intersect a linear sub- 

space of C n of codimension d and tha t  correspondingly N does not 

intersect an d-codimensional projective subspace of CP n-1. Then the 

inclusion of N in C P  n-1 can be deformed into a complementary projec- 

t ire subspace of dimension d - 1, which gives the middle bundle map. 
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Now, M1 being ( 2 d -  2)-connected, it follows that  M1 --+ N is a 

universal S l -bundle  for spaces of dimension less than 2 d -  1 (see Is], w 

and therefore the Hopf bundle over C P  d-1 admits a classifying map into 

it, which gives the first map in the b o t t o m  row. The composit ion of the 

b o t t o m  maps also classifies this Hopf bundle and is therefore homotopic 

to the natural  inclusion, so the Lemma is proved. 

l%om the description of M 1 it follows that  M1 is simply connected, 

except for the cases k = 3, d = nl  = 1. In these cases the Sl -ac t ion  on 

M1 = S 1 x S 2n2-1 X S 2n3-1 can be concentrated on the first factor, and 

therefore N is diffeomorphic to S 2n2-1 • S 2n3-1. Unless n2 = n3 = 1 

we have that  H 2 (N) = 0 and N is not symplectic. 

In all the other cases we have that  d > 1 and M1 is 2-connected. 

From the cohomology Gysin sequence of the fibration M1 --+ N it follows 

that  H 2 ( N )  = Z generated by the Euler class e. However, it follows from 

the Lemma that  

e d - 1  ~ 0, e d = 0 

so this class does not go up to the top cohomology group H 2 n - 4 ( N ) ,  

and it follows again that  N is not symplectic, and Theorem 2 is proved. 

Nevertheless, observe that  N is a real algebraic submanifold of 

C P  n-1 since it is the regular zero set of the (non holomorphic) function 

g : C P  ~-1 --+ R 2 defined by 

EA~zi2i 
g ( [ z l , . . . ,  - 

Ezi~i 

This implies tha t  the normal bundle of N in C P  n-1 is trivial. Ob- 

serve also that  the map C P  d 1 __~ N in the Lemma is homotopic to 

an embedding (since, by definition of d, we have n _> 2d + 1 and there- 

fore the dimension of N is greater than twice the dimension of c p d - 1 ) ,  

whose normal bundle is then stably equivalent to the normal bundle of 
C.P d-1 in C P  ~ 1. 

4. Some old complex  structures 
In the cases where M is not simply connected (i.e., when k = 3 and 

d = nl  = 1), the complex structure on N can be described in terms of 
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the defining parameters  by identifying it with previous descriptions of 

these known manifolds: 

(a) Elliptic curves  

When n - k = 3 the manifold N is diffeomorphic to the torus S 1 >< S 1. 

To identify the corresponding complex structure,  observe that  in this 

case S = (C*) 3. The mapping exp : C 3 --+ S = (C*) 3 given by 

exp(r r r = (e<l, j2, 

can be used to identify N(A1,12, 13) with the quotient of C by the lattice 

generated by 13 - 12 and t l  - 12. So we have that  

N(A1, 12, 13) is biholomorphiealIy equivalent to the elliptic curve with 

modulus 
13 - 12 
11 -- 12" 

Observe that  in this case we obtain all complex structures on the 

torus. By chosing adequately the order of the 1i we obtain a mapping 

from the Siegel domain (dynamical systems) to the Siegel upper  half- 

plane in C (complex function theory). 

(b) Genera l i zed  H o p f  m a n i f o l d s  

When n l  = n2 = 1 the manifold N is diffeomorphic to S 1 X S 2n3-1. 

Here the mapping exp : C 2 x (C~3\0) --+ S = (C*) 2 x (Cn3\0) given by 

exp(r r ~) = ( eQ , er r 

can be used to identify N with the quotient of C n3 \0 by the action of 

Z defined by the multipliers 

= exp (2 i 1 1 _ t 2  j ' : i = 1 ' ' ' ' ' n 3 "  

In this case we obtain all complex structures on S 1 • S 2n3-1 having 

c n \ 0  as universal cover when there is no resonance among the ai. But  in 

the resonant case we do not obtain all such complex structures since we 

do not obtain the non-linear resonant cases of Haefiiger. It is clear that ,  
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in order to obtain the latter, one must look at the resonant non-linear 

versions of equation (1). 

(c) Generalized Calabi-Eckmann manifolds 

When nl  = 1 and n2, n3 are both  greater than 1 we have seen that  

the manifold N is diffeomorphic to S 2~2-1 • S 2n3-1. Here the mapping 

exp: (3 • (C ns\O) • (C ha\O) -+ ,.5 = C* • (C ns\O) • (C na \0) given by 

exp(r r r : r r 

can be used to identify N with the quotient of (C n2 \0) • (C n~ \0) by the 

action of C defined by the linear differential equation with eigenvalues 

)~ = 277i()~i --•1) ,  i = 2 , . . .  ,n. This is exactly the construction of 

the Loeb-Nicolau complex structure corresponding to a linear system of 

equations of Poincar6 type  ([L-N]). 

Again we obtain all their examples of complex structures on S 2n2-] • 

S 2n3-1 when there is no resonance among the A~. But,  once more, we 

do not obtain the non-linear resonant structures. 

Observe that  in their construction only the quotients of the eigenval- 

ues of the system are relevant for the definition of the complex structure 
Ai-~k on N,  so once again only the quotients ~ of our original eigenvalues 

count (in accordance with the observation made in section 2 that  affinely 

equivalent configurations of eigenvalues with the same $ give the same 

complex structure) and that  they are actually moduli  of that  complex 

structure. We will prove in section 6 that  for d _> 3 the same result is 

true. 

5. S o m e  new c o m p l e x  structures 

In all the other cases (i.e., when M1 is simply connected) we obtain new 

complex structures on manifolds. An intermediate si tuation is given by 

the cases k = 3, with n 1 = 2, n2 and n 3 even, where one can show, using 

the fact tha t  each Cni can be considered as a quaternionic vector space, 

that  N is diffeomorphic to C P  1 • S 2n2-1 • S 2n3-1. It is easy to see that  

in some cases N can be identified with the product  of C P  1 with one of 

the Loeb-Nicolau complex structures on S 2n2-1 • ~ 2n3-1. But  in other 
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cases there is no simple way to stablish such an identification, and it is 

plausible that  these give new complex structures. 

When  k = 3, n l  > 2 we definitely get a manifold which is not a 

product,  but  a twisted fibration o v e r  CP n1-1. In fact, N clearly fibers 

ove r  CP n1-1 with fiber $2~2 -1 • • 2n3-1.  This fibration does have a 

section (recall that  we are assuming that  n l  = d is not bigger than 

the other ni) which is homotopic to the map C P  n1-1 ---+ N constructed 

in the Lemma in section 3. But ,  by the observation and the end of 

that  section, the normal bundle of C P  ~1-1 in N is s tably equivalent to 

the normal bundle of C P  ~1-1 in C P  n-1. This bundle is non-trivial for 

n l  > 2, being the sum of n - n l  copies of the Hopf  bundle and therefore 

its first Pontryagin class is ( n - n l ) a  2. (We owe this observation to Elfas 

Micha). We therefore have: 

Theo rem 3. When 3 <_ n l  <_ n2 <_ n3 there is a non-trivial (S 2n2-1 X 

S2na-1)-fibration over C P  nl-1 with an ( n -  2)-dimensional space of com- 

plex structures. 

We will see in section 6 that  all these structures are in fact non- 

equivalent and that  for n l  >_ 4 the family is universal when all the ),i 

are distinct. 

When  k > 3 we get new complex structures on manifolds. We will 

give the complete description of the underlying real smooth  manifold 

only in the case where all n~ = 1 (so n = k = 21 + 1), where the compu- 

tations and arguments are simpler. To do this we can assume as before 

that  the Ai are the n- th  roots of unity: Ai = pi, p a primitive root. 

In that  case M1 is a s tably parallelizable (2n - 3)-manifold with 

homology in the middle dimensions only, where it is free of rank n: 

H n _ 2 ( M 1 )  = H n _ I ( M 1 )  = z n  

It follows from the Gysin sequence of the fibration M1 --+ N (and 

from the order of its Euler class found in section 3) that  N has homology 

only in dimensions 2i, i = 1 , . . . ,  n - 2 where it is free of rank 1, and in 

dimension 21 - 1 where it is free of rank 21. 

On the other hand, 3//1 is the boundary  of a manifold Q constructed 
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as follows: Let 

g = {z  ~ C n l ~ R e ( A i ) z i ~ i  = 0, ~z i~ i  = 1}. 

Z is diffeomorphic to S 2l 1 x S 2l+1 (since the defining quadratic form 

has index 2l) and is the union of two manifolds with boundary  

Q+ = {z E C~l~Re(A~)z~zi = 0, ~ I m ( A j z i z i  > o, Zz~i  - 1} 

whose intersection is M1. 

The involution of C n which interchanges the coordinates zi and zn i 

preserves Z and M1, and interchanges Q+ with Q- .  Therefore these 

two are diffeomorphic and M1 is an equator of Z. 

Let Q = Q+. It follows now easily from the Mayer-Vietoris sequence 

of the triple (S 2l-1 x S 21+I,Q,Q ) that  Hi(Q) = 0 for i r 21 - 1,21, 

in which case it is free of rank 1 + 1 and l, respectively, and that  

Hi(M1) --+ Hi(Q) is always surjective. Q is also simply connected by Van 

Kampen 's  Theorem. The Hurewicz and Whitehead Theorems now show 

that  all homology classes in Q can be represented by spheres which for 

dimensional reasons can be assumed to be embedded in M by Whitney 's  

imbedding theorem. (This is enough to show, using the h-cobordism 

theorem, that  M1 is a connected sum, as described in Theorem 1. Cf. 

[LdM2] and the argument  used below. It is shown in [LdM2] that  these 

facts are t rue in general, by a detailed description of all homology classes 

in M1). 

The S 1 scalar action leaves Q invariant, so the quotient R = Q / S  1 is 

a compact manifold with boundary  OR = N. Now the fibration Q --+ R 

again embeds in a diagram like the one in the Lemma of Section 3. It 

follows now from the cohomology Gysin sequence of the fibration Q --+ R 

that  H2i(R) = Z, i = 0 , . . . ,  l - 1 and H2z_I(R) = Z l, all other homology 

groups being trivial. 

Now we can embed, by the Lemma of section 3, C P  l-1 in R repre- 

senting all even dimensional homology classes, and 1 disjoint ( 2 / -  1)- 

spheres with trivial normal bundle representing the generators of the 

corresponding homology group of R (since all these classes come from 

Q and are therefore spherical, and their normal bundles are again stably 
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equivalent to the trivial normal bundle of S 21-1 in Cpn-1 ) .  Taking a 

tubular  neighborhood of these manifolds and joining them by tubes  we 

get a manifold with boundary  R'  whose inclusion in R induces isomor- 

phisms in homology groups. It follows from the h-cobordism theorem 

([Mi]) tha t  N = OR is diffeomorphic to 0R '  which is a connected sum of 

simple manifolds. These are l copies of S 2t-1 • S 2l-1 and the boundary  

of the tubular  neighborhood of C P  l-1 in R. By the remark at the end 

of section 3 we know that  the normal bundle of this inclusion is s tably 

equivalent to the normal bundle of C P  1-I in C P  2l. We have therefore 

proved the following 

T h e o r e m  4. For every l > 1 there is a (2l - 1)-dimensional space of 

complex structures on the connected sum of C P  t-1 f<S 2l and t copies 

of S 2t-1 • S 2z-l, where C P  1-1f<S 21 denotes the total space of the S 2t- 

bundle over C P  1-1 stably equivalent to the spherical normal bundle of 
C P  1-1 in C P  21. 

We will see in section 6 that  for 1 > 3 all these structures are in fact 

non-equivalent and that  for l _> 4 the family is universal. 

Observe that  for l = 2 we get a manifold which is close, but  not equal, 

to the one constructed by Kato  mentioned in the introduction, where the 

first summand is a product.  Both  manifolds had been considered before, 

from the point of view of group actions, by Goldstein and Lininger ([G- 

L]). 
In general, these complex structures are very symmetric,  in the sense 

that  we can still find holomorphic actions of large groups on them (Cf. 

[LdM1]). In particular, there is an action of the complex, noncompact ,  

(n - 2)-torus (C*) n-2 on them with a dense orbit. In this sense, our 

manifolds behave as toric varietes. 

6. Rigidity and Versality 
Recall that  the complex structure on N(A) does not vary within the 

affine equivalence class of A. We show now that  the converse is true in 

most of the cases. These include in particular all cases with k > 5. It is 

plausible that  the result is t rue in general. 
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T h e o r e m 5 .  Let n = n l + ' " + n k  be an ordered partition of n with d ~ 2. 

Then two collections of eigenvalues corresponding to this partition give 

holomorphically equivalent manifolds N if, and only if, they are affinely 

equivalent. 

Proof .  The sufficiency of the condition was observed above. For the 

necessity, if d = I we are in the Calabi-Eckmann case, and this was 

shown by Loeb and Nicolau ([L-N], proposition 12). For d > 2 we 

follow their argument:  

Let V = $ /C* which is an open subset of CP n-1. Then the comple- 

ment  of V in C P  n-1 is a union of projective subspaces whose smallest 

codimension is d. By the results of Scheja [Sc] we have that  

Hi(V, O) = Hi (CP n-l ,  (9) for  i <_ d - 2 

where O denotes the sheaf of holomorphic functions on a manifold. The 

second cohomology groups were computed by Serre and are C in dimen- 

sion 0 and trivial otherwise (see e.g. [G-Hi p.118). 

Now, let O inv be the kernel of the map O -+ (9 given by the Lie 

derivative along the vector field ~ which generates the C action on V, 

so we have an exact sequence of sheaves: 

0 ""+ (Qinv __+ (Q L~) 0 ---+ 0 

The associated cohomology exact sequence shows that ,  for d > 3, 

HI(V , O  inv) = C, but this group can be identified with H I ( N , O ) .  

Therefore this group is also C and since it classifies the principal C- 

bundles over N,  any two non-trivial principal C-bundles over N differ 

by a scalar factor. 

Let N1, N2 be two such manifolds which are holomorphically equiv- 

alent and consider a biholomorphism r : N1 --+ N2. Over each Ni there 

is a principal C-bundle Vi --+ Ni, where the total  space V/ is in both 

cases V, but is foliated in two different ways by the projectivized leaves 

of each system. We have to lift r to an equivalence of the principal 

C-bundles E ,  which amounts to finding an equivalence between V1 and 

r Now V1 and r are non-trivial C-bundles (otherwise they would 

have sections, N~ would embed holomorphically in C P  n-1 and would be 
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a Kghler manifold, recall [We], p.182). By the previous computat ion 

these differ by a scalar factor and there is an equivalence between V1 

and V2 preserving the leaves of the foliations. By Hartog's Theorem this 

equivalence extends to one of C P  n-1 into itself which must then nec- 

essarily be linear since the group of biholomorphisms of C P  n-1 is the 

corresponding projective linear group. But then it follows easily that  

the corresponding eigenvalues must be affinely equivalent. 

Observe that  we have actually proved that  any holomorphic equiva- 

lence between two such manifolds Ni extends to a linear automorphism 

of C P  n-1. In the case all the Ai are different it follows by the same 

argument that  the action of (C*) ~-2 described at the end of section 5 

gives the whole group of automorphisms of the corresponding N. 

Theorem 5 says that  when d r 2 the reduced deformation space of 

N injects into its versal deformation space. For d = 1 the question of 

whether the reduced deformation space is universal or not depends on 

the existence of resonances among the -~i (see [Hae], [L-N]). For d _> 4 

the situation is simpler and only depends on the condition that  all the 

hi be different: 

Theorem 6. Let n = n l  + " + nk be an ordered parti t ion of n with 

d >_ 4. Let  A be a collection of eigenvalues corresponding to this part i t ion 

and assume that all hi are different. Then the corresponding reduced 

deformation space of N(A) is universal. 

Proof.  Following again [L-N] we consider the exact sequences of sheaves 

over V: 
0 - + 0  inv ---+ ~) L~ 0 - -+0  

0 --+ o i n v ~  --+ 0 inv --+ (~b --+ 0 

where O denotes the sheaf of holomorphic vector fields on a manifold 

and O inv and Ob are defined by these sequences. Now again by Scheja 

([Sc]) we have 

Hi(V,  O) = H i (CP  n- l ,  O) f o r  i < d - 2 

H0(Cp~ 1, 0) is the space of holomorphic global vector fields on 

C P  n-1 (all of which are linear) and can be identified with the space of 
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n x n matrices modulo the scalar ones. For i > 0, H~(CP n- l ,  O) = 0. 

The first sequence above gives a cohomology exact sequence for d _> 

4: 

0 ---> H0(@ in~) --+ Ho(@ ) ---+L{ H0(O ) --+ Hl(Oinv) --~ O. 

Since [ corresponds to the diagonal matr ix  with entries Ai and these 

are different, the kernel and cokernel of L~ can be identified with the 

space of diagonal matrices modulo the scalar ones, so H 1 (O inv) is a space 

of dimension n - 1. The class of ~ in this vector space is non-zero. 

From the exact sequences of sheaves we have the diagram: 

HO ( Ob ) --+ H I ( 0  in~) __+ Hl (e~  '~v) 

No(o) --, Ho(e) 

--+ H (Oh) --+ 0 

where the two middle horizontal maps are induced by multiplication by 

4. Since the lower one is injective by the above remark, it follows that  

so is the upper one and tha t  H 1 (Ob) is of dimension n - 2. 

Now it is easy to see tha t  Hi(Oh) is isomorphic to Hi(N,O). It 

follows tha t  H 1 (N, O) is of dimension n - 2. Since it contains the versal 

(Kuranishi) deformation space of N (see [Su] p. 160), we obtain a 

map from the reduced deformation space into it, which is injective by 

Theorem 5. Now, an injective holomorphic map between smooth spaces 

of the same dimension must  be regular and it follows that  the Kuranishi 

space is the whole H I(N, @) and that  t h e  reduced space is itself a versal 

deformation space of N. But, using again the fact that  no two structures 

in this space are equivalent, it follows that  it is actually universal and 

Theorem 6 is proved. 

It follows from the above computat ions that  H~ O) has also di- 

mension n - 2. (This also follows from the remark after Theorem 5 

tha t  the group of automorphisms of N has dimension n - 2). Since this 

dimension is the same for all complex structures of the family with all 

)~i different, a theorem of Wavrik (cf [Su], pp. 160-161) can also be used 

to prove tha t  the Kuranishi family is universal. 

It also follows from the above computat ions that  if d _> 5, even 
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without the condition that the Ai be different, then HS(N, O) = 0 and 

that therefore H 1 (N, (9) is the versat deformation space of N and the 

Kuranishi space is smooth. But, without the condition that all the Ai 

be different, its dimension is bigger than n - 2 and the reduced family 

only injects as a proper subfamily of the versal one. 
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