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Ergodic properties of Anosov maps
with rectangular holes

N. Chernov! and R. Markarian?

— To the memory of Ricardo Marié

Abstract. We study Anosov diffeomorphisms on manifolds in which some ‘holes’ are
cut. The points that are mapped into those holes disappear and never return. The
holes studied here are rectangles of a Markov partition. Such maps generalize Smale’s
horseshoes and certain open billiards. The set of nonwandering points of a map of this
kind is a Cantor-like set called repeller. We construct invariant and conditionally
invariant measures on the sets of nonwandering points. Then we establish ergodic,
statistical, and fractal properties of those measures.

1. Introduction and main results

Let T : M’ — M’ be a topologically transitive Anosov diffeomorphism
of class C1T2 on a compact Riemannian manifold M’. Recall that a
diffeomorphism T : M’ — M’ is said to be Anosov if at every point
x € M’ there is a DT-invariant splitting

T,M' =E*® E? (1.1)

such that
|| DT ™| < CpAZ|lv|| forall ve E} and n >0,
DT || < CpNp|\v]]  for all ve E and n >0,
for some constants C7 > 0 and A7 € (0,1) independent of v and x. The

splitting (1.1) is continuous in x. Topological transitivity of T" means
that it has a dense orbit in M.
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272 N. CHERNOV and R. MARKARIAN

Sinai [23] and Bowen [2] constructed Markov partitions for transitive
Anosov diffeo-morphisms! . Let R’ be a Markov partition of M’
into rectangles Ry,..., Rp. We assume that these rectangles are small
enough, so that the symbolic dynamics can be defined [23, 2].

Let I < I'. Put H = UL, ((intR;) and M = M'\ H. Then M
is a manifold with boundary. We will study the dynamics of T on M,
thinking of H as a ‘hole’ into which some points of M will be mapped
by T, and then they disappear (escape). Equivalently, one can think
that H ‘absorbs’ points mapped into it by 7.

A pictorial model of this type of dynamics was proposed by Piani-
giani and Yorke [22]. Imagine a Sinai billiard table (with dispersing
boundary) in which the dynamics of the ball is strongly chaotic. Let
one or more holes be cut in the table, so that the ball can fall through.
One can also think of those holes as ‘pockets’ at the corners of the ta-
ble. Let the initial position of the ball be chosen at random with some
smooth probability distribution (e.g., equilibrium distribution). Denote
by p(t) the probability that the ball stays on the table for at least time
t and, if it does, by p(t) its (normalized) distribution on the table at
time £. Natural questions are: at what rate does p(t) converge to zero as
t — oo? what is the limit probability distribution lim; ., p(t), and does
it depend on the initial distribution p(0)? These questions still remain
open.

We assume that the symbolic dynamics generated by the partition
R ={R1,...,Rr} of M is rich enough, i.e., it is a topologically mixing
subshift of finite type. General case is discussed in Section 8.

Notations. For any n > 0 we put
M, =N oT'M and M_, =N T"'M,
and also
My =0po1My, M_=Nps1M_,, Q=MiNM_

IBowen’s construction actually covers larger systems — Axiom A diffeomorphisms —

which we do not consider here.
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ERGODIC PROPERTIES OF ANOSOV MAPS 273

All these sets are closed, T 'My ¢ My, TM_ C M_and TQ =T-1Q =
Q.
Denote by

U =V T'"R and S =V TR

the partitions of M’ into unstable and stable manifolds (fibers), respec-
tively. The restrictions of U’ to M, M,, and M4 are denoted by U, U,
and Uy, respectively. Similarly, we have partitions S, S_,,, S_ of the
sets M, M_,, M_ into stable fibers. Atoms U € U and S € § are
closed domains on unstable and stable manifolds, respectively, whose
boundary has Riemannian volume zero. Riemannian volume on fibers
is induced by the Riemannian metric in M.

For any x € M’ we denote by J*“(z) and J*°(x) the Jacobians of the
map DT restricted to EY and E}, respectively. We also put

T (@) = JU5 ()] (Tx) - - J™*(T" )

the Jacobians of DT™ on unstable and stable fibers.
Our first result deals with measures on unstable fibers U € Uy.

Definition. A family of probability measures, vf, on unstable fibers

U €U, is said to be conditionally invariant under T, if

(i) on every fiber U € U the measure v} is absolutely continuous with
respect to the Riemannian volume on U, and its density, pi(x),
x € U, is Holder continuous (see a convention below); .

(ii) for any z € Uy € Y and Tx € Us € U we have

Pl (x) = v (T ) - J¥(x) - py, (T) (1.3)

Convention. All the densities of measures on unstable and stable fibers
are assumed to be Holder continuous with the same Holder exponent o,
as the derivative of the map 7.

Theorem 1.1. There is a unique conditionally invariant family of prob-
ability measures, v(;, on fibers U € Uy. Any other family of probability
measures on U € Uy with Hélder continuous densities will converge,
under naturally defined action of T' (see Sect. 3, to this unique family.
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274 N. CHERNOV and R. MARKARIAN

Remark. The family v, U € Uy, is a part of a ‘bigger’ conditionally
invariant family of probability measures vf;, U € U’, ‘inherited’ from
the Anosov diffeomorphism T : M’ — M’ with the Markov partition
R'. The densities pf;(z) of the measures v, U € U’ satisfy the equation
23]
pulx) . Jp(TT"y)
w ) T a Ju (T g
pi(y)  mooo JY(T ")
for all z,y € U € U’. Note that this equation defines the densities pf;
and measures vj; completely, because of normalization.

(1.4)

Remark. If the Anosov diffeomorphism T : M’ — M’ is of class C?, then
the densities p{; are at least Lipschitz continuous on every unstable fiber
U, see [23].

Remark. The invariance condition (1.3) implies the following. Letn > 1,
UelUUand T"(UNM_,) =UU---UUy for some fibers Uy, ... ,Ur € U.
Then

L
V(T AN M) NU) = > vi(T v (ANT;) (1.5)
i=1
for any Borel set A C M. This is the analog of the Chapman-Kolmogo-
rov equation in the theory of Markov processes, see [23].
The next three theorems are related to the evolution of measures on
M under the action of T". Denote by M the class of all Borel measures
on M. For any p € M we put ||u|| = p(M). We denote by T, : M — M
the adjoint operator defined by

(Top)(A) = w(T~HAN My))

for any Borel set A C M. We denote by T’ the (nonlinear) transforma-
tion of M defined by the normalization of the measure T, u:
Tip T
ITopll — (M)

We denote by M,,, n > 1, the class of Borel measures supported
on M. Obviously, T)'M = M,. We denote by MY C M the class
of measures supported on M whose conditional measures on fibers

Tip= (1.6)

U € Uy coincide with the above conditionally invariant measures v7;.
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Any measure u € MY is then completely defined by its factor measure?

, v, on the set Uy (this set can be naturally equipped with a metric,
see Sect. 2.

Definition. A measure y € MY is said to be conditionally invariant
under T if Ty = p, i.e. there is a A > 0 such that u(T-1TAN My) =
Au(AN ML) for any Borel set A C M.

Theorem 1.2. The map T has a unique conditionally invariant proba-
bility measure py € MY. For any other up € MY the sequence T p
weakly converges, as n — 00, to py.

We also call this unique measure p4 the eigenmeasure of the map
T, and the corresponding factor AL = A € (0,1) the eigenvalue of T.

Theorem 1.3. For any smooth measure p on M (see a convention below)
the sequence T% i weakly converges, as n — oo, to the eigenmeasure pi4 .
Furthermore, the sequence A" - T['u weakly converges, as n — oo, to
the measure clu] - pi4, where c[p] > 0 is a linear functional on smooth
measures on M.

Remark. The conditionally invariant measure uy4 constructed in this
way is very natural according to the above Pianigiani-Yorke physical
motivation [22]. This measure coincides with Sinai-Bowen-Ruelle mea-
sure in the case H = @.

Convention. We call a measure on M smooth if it is absolutely contin-
uous with respect to the Riemannian volume on M, and its conditional
measures on unstable fibers have Hélder continuous densities (cf. also

the previous convention!).

This theorem shows that the eigenmeasure 4 can be naturally ob-
tained by iterating smooth measures under 7 on M.

One can think of an experiment in which we place N = N(0) points
(particles) in M at random according to a smooth probability distri-
bution . Then those points are mapped by successive iterations of T.

2 For any measure 4 € M its factor measure fi on I is defined by p(W) = u(Uyewl)
for any Borel subset W C U.
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276 N. CHERNOV and R. MARKARIAN

The number of points that stay in M (do not escape) after n iterations,
N(n), is approximately

N(n) ~ N(0) - ] - A% (1.7)

We call v4 =1In )\jrl the escape rate, cf. [10, 12, 11].
Next, we show that the eigenmeasure p can be also obtained by
iterating singular measures supported on individual unstable fibers.
For any unstable fiber U € U let ufy € M be a (canonical) singular
probability measure supported on U, which coincides on U with the
measure v, described in the remark after Theorem 1.1.

Theorem 1.4. For any U € U and any singular measure uy € M
supported on U with a Hélder continuous density with respect to the
Riemannian volume on U, the sequence T uyy weakly converges, asn —
00, to . Furthermore, the sequence of measures A" - T g, weakly
converges, as . — 00, to a measure supported on My and proportional

to K.
Proposition 1.5. The function e(U) on the set of unstable fibers U € U
defined by

Tm A TR = e(U) - s (1.8)
is bounded away from 0 and oo and its restriction on the set of fibers
U € Uy satisfies the equation

| ew)dis@) =1 (1.9)
Uy

where [14 is the factor measure of the eigenmeasure piy.
Next, since the set M4 is invariant under T-1, it makes sense to
define the inverse images of uy under T, i.e. T "uy for n > 1, by

(T e )(A) = pp (TT[A N M_p)) (1.10)

for any Borel set A C M. In virtue of Theorem 1.2 the measure T "u,
n > 1, simply coincides with the conditional measure p (-/M_,,) defined
by '

B (A/M ) = g (AN M_p) /g (M) = AT - g (AN M) (L11)
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Theorem 1.6. The sequence of measures T, "uq = put(-/M_,) weakly
converges, as n — 00, to a probability measure, ny € M, supported on
the set Q= M4 N M_. The measure n4 is T-invariant, i.e.

N (T A) = np(TA) =11 (A) (1.12)
for every Borel set A C M.

Proposition 1.7. The factor measure iy of the measure ny on the set of
unstable fibers U € U is absolutely continuous with respect to the factor
measure ji4 of the eigenmeasure p, and its Radon-Nikodym derivative
18
@i
div+
where e(U) is the function introduced in Proposition 1.5.
We call the closed set @ = My N M_ the repeller of the map T. Tt
is normally a Cantor-like set. The T-invariant measure 7+ on Q can be

(U) = e() (1.13)

obtained naturally by iterating smooth measures on M as follows. For
any probability measure 4 € M and n,m > 1 we denote by pnm the
measure 17y conditioned on M_p,, i.e.

pngn(A) = TRU(AN M_p) - [T2 (M )]~ (1.14)
for any Borel A C M.

Theorem 1.8. For any smooth probability measure u on M the sequence
of measures pn,m weakly converges, as m,n — 0o, to the invariant mea-
sure ny on the repeller Q. Moreover, the sequence of measures puy, ,
defined by '

rm(A) = A TP WA N M) (1.15)

weakly converges, as m,n — 0o, to the measure c[u] - N+, where cly] s
the positive linear functional on measures, involved in Theorem 1.5.

Next, we establish the ergodic properties of the invariant measure
7+ on the repeller Q.

Theorem 1.9. The measure n4 is an equilibrium measure for the Hélder
continuous potential
g+(x) = —log J*(z) (1.16)
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on § and the topological pressure P(ny) = —log )\jrl = —v4. Thus, n+
ts a Gibbs measure.

Corollary 1.10. T he measure 1. is ergodic, mizing, K-mizing and
Bernoulli. Its correlations decay exponentially fast and it satisfies the
central limit theorems and its invariance principle.

Remark. There are certainly other Gibbs invariant measures on Q, see
[7]. Some particularly interesting ones are the measure of maximal en-
tropy and the Hausdorff measure [14]. Our measure 74 is the only one
generated by originally smooth measures p on M, in the sense of Theo-
rems 1.3 and 1.8 and the original Pianigiany-Yorke philosophy [22]. Let
us note that Theorems 1.3 and 1.8 cannot be obtained by the study of
the symbolic dynamics on the repeller © alone.

Theorem 1.11. The sum of positive Lyapunov exponents of the map T
18
Xt = /Q log JU@)dns () >0 a.e. (1.17)

and the sum of negative Lyapunov exponents of T is

Xny = /Qlog Jix)ydny(xz) <0 ae. (1.18)

The variational principle
g =y (T) - /Q log J*(z) dn ()

(1.19)
= sup{Iy(T) - /Q log J* () dn(z)}

holds, where hy(T') denotes the Kolmogorov-Sinai entropy of the measure
n, and the supremum is taken over all T-invariant probability measures
on the repeller . The left equation in (1.19) is equivalent to

Xiy = by (1) + 7+ (1.20)

The equation (1.20) generalizes Pesin’s formula for smooth hyper-
bolic maps, for which h = x* and v+ = 0. This equation can be
understood as follows. The exponential rate of separation of nearby
trajectories, characterized by x T, contributes to both the chaoticity of
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ERGODIC PROPERTIES OF ANOSOV MAPS 279

the dynamics on the repeller, measured by A(7T'), and the scattering away
from the repeller measured by the escape rate 4.

In a particular case, where dim M’ = 2, let 6% and 6° be the Haus-
dorff dimensions of the invariant measure 74 on unstable fibers U C M
and on stable fibers U C M_, respectively.

Theorem 1.12. Let dim M = 2. According to Manning’s formula [18],
we have

hn (T) = 8408, = =6%x7, (1.21)
This agrees with Young’s formula [25] for the Hausdorff dimension of
the measure n4:

1 1 U )
HD(ny) = hy (T) (T - T) =0y + 0% (1.22)
Xt X,

By reversing the time, we can define the eigenmeasure p_ on M_ for
the map 7!, whose eigenvalue is A_ € (0,1). We then can define the
corresponding invariant measure 7_ on the repeller Q. These also have
all the properties described in the above theorems. The measure 7. and
the values of A_ and Xf;_ are, generally, different from the previously
described measure 74 and the quantities A and X737E+’ see some examples
in [4]. However, there are remarkable exceptions.

Definition. We say that the repeller 2 is time-symmetric if ny = n_,
A=A, X =X = Ixqg, | = x|
Theorem 1.13. The measures ny and n_ on the repeller Q coincide if

and only if there is a constant Z > 0 such that for every periodic point
z €, Trz = z, we have

det DT*(z) = J¥(x) - Ji(z) = ZP
Moreover, the repeller Q is time-symmetric if and only if Z7 = 1.

Corollary 1.14. If the original Anosov diffeomorphism T : M’ — M’
preserves an absolutely continuous invariant measure on M’ then the
repeller Q0 is time-symmetric.

The history of the subject goes back to 1979, when Pianigiani and
Yorke [22] constructed conditionally invariant measures for expanding
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280 N. CHERNOV and R. MARKARIAN

(noninvertible) maps. Their results are analogous to our Theorems 1.2
and 1.3. In 1981-86 Cencova [3,4] undertook a detailed study of both
invariant and conditionally invariant measures for smooth Smale’s horse-
shoes (her results are a particular case of our Theorems 1.1-1.8. In 1994,
Collet, Martinez and Schmitt [6] constructed invariant measures on the
sets of nonwandering points for Pianigiani-Yorke transformations (their
results are similar to our Theorems 1.6-1.9. In a later manuscript [7]
the same authors constructed conditionally invariant measures for some
symbolic subshifts of finite type. Smooth hyperbolic systems other than
horseshoes were first considered in this context by Lopes and Markarian
recently [16]. They studied an open billiard system — a particle bouncing
off three circular scatterers placed sufficiently far apart. Their results
are a particular case of our Theorems 1.2) 1.3, 1.6, and 1.9-1.12. The-
orem 1.13 applies to open billiards, answering a question posed in [16].
Let us also point out physical papers by Gaspard et. al. [9,10,11,12,15]
in which the dynamics on repellers was discussed and some equations,
like our (1.7) and (1.20), were conjectured and their connections with
other equations in statistical physics established.

From measure-theoretic point of view, our systems resemble proba-
bilistic Markov chains with absorbing states. For such chains, condition-
ally invariant distributions (called quasi-stationary distributions) have
been studied in [8,19].

The purpose of the present paper is threefold. First, we cover much
larger classes of smooth hyperbolic systems with ‘holes’ than the previ-
ous papers did. Second, we collect all the existing results in this direction
scattered in other papers, add some new ones (e.g., 1.13 and 1.14), and
present the complete (up-to-date) program for studying smooth hyper-
bolic repellers. Third, we simplify and improve the matrix techniques
for the construction of conditionally invariant measures used by Cencova
[4]. The matrix method she used goes back to Sinai [24], but its real-
izations are sometimes lengthy and heavy, as it unfortunately happened
to [4]. In our framework, this method works quite effectively and eas-
ily. Moreover, at present it is nearly the only workable method in the
context of systems with countable Markov partitions, like billiards with
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ERGODIC PROPERTIES OF ANOSOV MAPS 281

‘holes’, open Lorentz gases [11,12] and other models of physical interest.
We sharpen the matrix method preparing it for an attack on billiards,
but such an attack is beyond the scopes of this paper.

The paper is organized as follows. Section 2 provides necessary re-
sults on Markov partitions and symbolic dynamics for Anosov diffeomor-
phisms. Section 3 contains a proof of Theorem 1.1 and other properties
of conditional measures on unstable fibers. In Section 4 we describe,
in general terms, the matrix techniques for constructing invariant mea-
sures. Then we construct the conditionally invariant measure p4+ prov-
ing Theorem 1.2. In Section 5 we prove the limit theorems 1.3 and
1.4 along with Proposition 1.5. In Section 6 we construct the invariant
measure 74 and prove statements 1.6-1.8. In Section 7 we prove the
ergodic and fractal properties of the measure n4 described by the state-
ments 1.9-1.14. In Section 8 we discuss possible generalizations of our
main results and related open problems. Appendix provides necessary
techniques from the theory of positive matrices.

Acknowledgements. R.M. is indebted to S. Martinez for introducing
him to the subject and stimulating discussions. This work was initi-
ated during the authors’ visits at Princeton university, for which we are
grateful to Ya. Sinai and J. Mather. Special thanks go to Ya. Sinai who
mentioned to us Cencova’s papers. This work was essentially completed
when N.Ch. visited IMERL, Facultad de Ingenieria, Uruguay, for which
he is the most indebted. N.Ch. acknowledges the support of NSF grant
DMS-9401417.

2. Background on Anosov diffeomorphisms

This section provides necessary tools from the theory of Anosov dif-
feomorphisms. It is known that Anosov diffeomorphisms enjoy strong
ergodic properties if they are of class cMe not just Cl ie.

|1DT(z) — DT (y)|| < Co - [z, y)]*

for some C, > 0, where d(z, y) is the distance in the Riemannian metric.
The constant « € (0, 1] will be fixed throughout the paper.
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The local unstable manifolds W2(x), € M’, are defined by
Wiz)={ye M : dT"z,T"y) <e VYn <0}

for small € > 0. Similarly, local stable manifolds WZ(x) are defined
taking positive n.

It is known that these manifolds are ‘as smooth as the map’ T, see
[1]. Precisely, they are of class C17®  i.e. the tangent space EY is Holder
continuous along each W*, with the Holder exponent «, and the same
is true for E7 along stable manifolds. The tangent bundles EY and E?
over the whole of M’ are also Holder continuous [1,17], but the exponent
may be different from c.

Therefore, the Jacobians J“(z) and J*(z) are Holder continuous
function on M’'. Moreover, the restrictions of log J%(z) on unstable
manifolds are Holder continuous with the exponent «:

|log J*(z) — log J*(y)| < C - [du(z, y)|* (2.1)

with some Cy > 0, for all z,y € U, U € U’ (the same is true for J*%, of
course). Here and elsewhere d,, and d; are intrinsic metrics on unstable
and stable manifolds, respectively, induced by the Riemannian metric
on M’.

For any z,y € M’ we put

[z,y] = W2 (x) N W (y)

There is a § > 0 such that if d(z,y) < é, then [z, y] consists of a single
point. A subset R C M’ is called a rectangle if diam R < § and [z,y] € R
whenever x,y € R. A rectangle R is called proper if R = intR and
for any point 2 € R the sets WX(z) N OR and W}(z) N OR have zero
Riemannian volumes in the manifolds W2 (z) and WZ(z), respectively.

For z € R we put
W%z, R) = W*(x)N R

Recall [2] that R’ C R is called a u-subrectangle in a rectangle R if
W¥R,x) C R for all x € R'. Similarly, R’ C R is an s-subrectangle in
Rif W¥(R,x) C R' forall x € R'.
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A Markov partition of M is a finite covering R’ = {R1, Ro,... , Ry}
of M’ by proper rectangles such that
(i) intR; N ntR; = & for i # j;

(ii) if z € intR; and Tz € intR;, then TW"(z, R;) D W*(Tz, R;) and

TW?(x, R;)) Cc Wé(T'z, R;).

Equivalently, for any R;, R; and n > 1 such that int(T"R; N R;) # @
the set T"R; N R; is a u-subrectangle in R; and R; NT™"R; is an s-
subrectangle in R;.

Every topologically transitive Anosov diffeomorphism T': M' — M’
has Markov partitions of arbitrary small diameter.

We work with a fixed Markov partition R’ of a sufficiently small
diameter.

For every z € R; we define the projection hj : R; — W"(z, R;) by
hi(x) = [z, 2]. For every x € R; this is a one-to-one map from W4(x, R;)
to W*(z, R;), which is called canonical isomorphism or holonomy map.
This map is absolutely continuous in the sense that its Jacobian with re-
spect to Riemannian volume on unstable fibers is bounded and positive.
Moreover, the Jacobian DhS(x) of the map 3 : W¥(z, R;) — W*(z, R;)
satisfies the Anosov-Sinai formula [1]

Dh(x) = lim J¥(2)/ T2 (hS())

The Jacobian of the holonomy map is Holder continuous in the following
sense: for any x,y € W%(z, R;) we have

|DRS(x) — Dh(y)| < C" - [du(a, y)]* (2.2)
and
D (@)] < exp (C - [ds (@, h (@)™ ) (2:3)

for some constants C’ > 0, o' > 0. (For proofs of these results, see for
example, the book by Mané [17], Chapter 3, Lemmas 2.7 and 3.2).

We now recall the basic definitions of symbolic dynamics. A transi-
tion matrix A" = (A};) of size I’ x I' is defined by

. { 1 if int R; NTY(int R;) # @
¥ 1 0 otherwise '
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In the space &' = {1,2,..., I'}* of doubly infinite sequences w = {w;}*_
with the product topology we consider a closed subset

S ={wex: 4 =1 forall —oo<i<oo}

Wi+l
The left shift homeomorphism o : ¥y, — ¥/, is defined by (o(w)); =
wi+1. This symbolic system is called a subshift of finite type, or a
topological Markov chain.

There is a natural projection II : ¥y, — M’ continuous, surjective
and commuting with the dynamics: o o = T o II. This projection is
one-to-one on the set M’ \ Uje,T7 (OR').

Now, the covering R = {Ry,... ,Rr} of M = M’'\ H defines a I x I
submatrix A = (A;;) of A’. We call A the transition matrix for the
restriction of T' on M. It defines a new subshift of finite type by

Ya={aev={1,...,1}%* A =1 forall i€Z}.

Q41

Mixing assumption. The matrix A is irreducible and aperiodic. This
means that o : X4 — X4 is topologically mixing. Equivalently, there is
a kg > 1 such that A% has all positive entries. We call kg the mATINgG
power of A.

Next, for every n > 0 we denote by R,, the restriction of the partition
R'VITR'V...VT™R' of M’ to the set M,,. It is a partition of M,
into u-subrectangles of the Markov rectangles R;. Likewise, R_,, is the
restriction of R’ VT R/ v ... VT "R’ to M _,, which is a partition
of M_, into s-subrectangles of R;. Also, for any n > 1 let R;" be the
restriction of the partition R,, of M, to the set My C M,. Note that
each atom of R, consists of some fibers U € ...

We equip the sets I/ and S defined in Introduction with the following
metrics. For any U, U’ € U we put

dM(U, U/) = Sup{dS(xa [az,y]) RS Uay € UI}

if U, U’ belong in one Markov rectangle R;, otherwise we set dy (U, U’) =
diam M. Similarly, we define a metric ds on S.
For any atom B € R,,, m > 0, we put

Up={Uecl:Uc B}
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For any p € M and U € U we will denote by pr the conditional
probability measure of p on U. Note that if two measures, p and u' are
proportional, then py = ug; for all U € Y. For any U € U’ we denote
by my the Riemannian volume on U. The conditional measures satisfy
the following properties.

Let n>1, Ucldand THUNM ) =U; U---UU; for some fibers
U; € U,,. Then

l
p[TMAN M) MUY = > up (T - (TP )y, (AN Uy) (2.4)
i=1
for any Borel subset A C M. In addition, if the measure gy is absolutely
continuous with respect to the Riemannian volume my on U with den-
sity fu(z) = duy/dmy(z) and T"x € U;, then the measure (T7 v, has
a density on U;, which is

Frn, (T"2) = [ (T"U)] 7 fu() ) T2 (@) (2.5)

We denote by H(G), G > 0, the class of measures u € M such that
their conditional measures uy on unstable fibers U € U are absolutely
continuous with respect to the Riemannian volume my with densities
fu(z) whose logarithms are Holder continuous with the exponent o and
constant G > 0:

| log fu(@) ~log fu(y)| < G - [du(z,y)]* (2.6)
for all z,y € U and U € U4.

3. Conditionally invariant measures on unstable fibers
In this Section we prove Theorem 1.1 and some lemmas on the evolution
of measures under T,, that will be used in the forthcoming sections.

Proof of Theorem 1.1. Our Theorem 1.1 is in fact an adapted version
of a result by Sinai for ordinary Anosov systems (without holes). In our
notations, his result reads

Fact. [23, Lemma 2.3]. Let T be a C? transitive Anosov diffeomorphism.
Then there exists a unique family of conditionally invariant probability
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measures v on unstable fibers U € U’ satisfying (1.3) with Lipschitz
continuous densities pf; () = dvf; /dmy ().

Remarks. Actually, Sinai constructed measures on stable fibers, but this
does not matter because one can take 7-! instead of T. Our map T
need not be C2, it may be less regular than Sinai’s. This is why our
densities are only Holder continuous.

We now start the proof. Let p € H(G). Our proof works for measures
defined on M’ with (2.6) valid on all U € U’. Take a fiber U € U'. The
measure p, = T,y on M’ conditioned on U has a density fp(x) =
dpn, 7 /dmy (x). Due to (2.5), we have

falw)  JYT1y)-- _
faly) — JUT ) JHT"a) fu(T-"y)
for every a,y € U.

Note that

(T "z, T7"y) < Cr X} - dy(x,y)

Since both J* and f,, are Holder continuous on unstable fibers, see (2.1)
and (2.6), we have

[log JXT™"y) —log JY(T"x)| < C - CFAT" [du(z, y)]* (3.2)

and
|og fu (T "x) = log fu(T™"y)| < G- CEAT [dy(, y)1* (3.3)

Hence, the ratio in (3.1) converges, as n — oo, to

r@,y) = I fa@)/faly) = lm JHT"y)/THT ")
Moreover, this convergence is uniformly exponential in n:

[log[fn(2)/ fa(®)] —log7(@,y)| < (c1 + 2G)AT"

with some ¢y, ¢y independent of z,y, U, 4 and G.
We define a function pg;(z) on U by

ot = ([, ?‘(xyxo)de(w))Wl?"(w,on)
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for any g € U. The function p{;(z) so defined does not depend on
xg and is a density of a probability measure, v;, on U. It is a direct
calculation that

b (@) = Jim_fu(a) (3.4
and v
| log fa(x) — log pi ()] < (3 + c4aG)AT” (3.5)

with some c3, ¢4 independent of z,y, U, 4 and G.
Obviously, the function pf;(z) is bounded away from zero and infinity,
and it is Holder continuous with the exponent a:

| log pgy () — log prr(y)| < G - [du(z, y)]* (3.6)
with -
G.=Cr- 023 g
n=0

which is independent of U.
The conditional invariance (1.3) now follows from the fact that

Fal@) = po (T 7HU7) - J4@) - frg1 (TT)

for all z € U, Tz € U’, which is just a particular case of (2.5). Taking
the limit as n — oo yields (1.3).

The uniqueness of the conditionally invariant family of measures
follows from the convergence to it of any other family of measures with
Holder continuous densities on unstable fibers, under the iterates of 7.,
due to (3.4).

The restriction of the conditionally invariant family of measures v
to Uy will then satisfy Theorem 1.1. Theorem 1.1 is now proved.

We now establish a few useful lemmas.

Lemma 3.1. There is a constant Gg > 0, and for any G > 0 there s
an integer ng > 1 such that if u € H(G), then TP € H(Gp) for all
n > ng-
Proof. It follows from (3.1)-(3.3) that if p € H(G), then T]'n € H(Gr)
with

Gn <G-CENF"+ G,
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Lemma 3.1 is then established for any Gg > G..

Lemma 3.1 means the following. If the densities of the conditional
measures py on U € U oscillate wildly (G is big), then the map T
stretching unstable fibers will quickly ‘smooth out’ those densities. In
fact, the Holder constant G, decreases basically like a geometric pro-
gression as n grows. There is a natural bound, G, however, under which
the values of G,, will not drop.

Lemma 3.2. The function p{;(z) and its logarithm are Hélder continuous
(with some exponent o/ > 0) on every Markov rectangle R; € R'.

Proof. The Holder continuity of p};(z) along every unstable fiber U € U’
(with the exponent «) was established by (3.6). Its Holder continuity
along stable fibers (with some positive exponent) follows from the Hélder
continuity of J%(x) along stable manifolds and the Holder continuity of
the holonomy map (2.3).

Let n € H(Gp). For any n > 0 and U € U, denote by u,y the

measure i, = T,'u conditioned on U.

Lemma 3.3. For any U € U,, the above measure pny s equivalent to vj;

and
e—C)\n g dﬂn’U < eCAn
du}}

where ¢ > 0 and A € (0,1) are independent of U, n, .
Proof. This follows from (3.5) with A = A% and ¢ = ¢3 + caGy.

In the notations of the previous lemma, let m > 0 and B € R, be
an atom of the partition R, of the set M,,, and U, U’ C B two unstable
fibers. Let A C U and A’ C U’ be two canonically isomorphic Borel
subsets, i.e. A" = hi(A) for any z € U’.

Lemma 3.4. For any n > m we have

—cA™ Vg'(A) A’
< = L .
= (A S e (3.7)
and A)
—e\™m Hn,U cA™?
[ < —2 < 3.8
#n,U’(A/) (38)
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with some ¢ > 0 and X € (0,1) independent of U,n, p1.
Proof. First, note that

dy (U, U") < D;CrAT

where D, is the maximum diameter of stable fibers S € &’. The bound
(3.7) now follows from Lemma 3.2 and the Hélder continuity of the
Jacobian of the holonomy map (2.3). The bound (3.8) follows from
(3.7) and the previous lemma.

Convention. Without loss of generality, we can assume that the values
of ¢ and A are the same in both lemmas.

The next three statements involve the mixing power kg of the tran-
sition matrix A.

Lemma 3.5. There is a constant 3 > 0 such that for any p € H(Gg) and
R; € R we have

ity (T5(R; 0 Myy) N U) > 3 (3.9)

Proof. In virtue of the mixing assumption, for any U € U and any
R; € R we have V}}(T‘kO(Rj N Mpg,) N U)M > 0. Forevery i =1,...,1 we
pick an arbitrary ‘representative’ fiber U; C R; and from Lemmas 3.3
and 3.4 it follows that for any other U C R; we have

pu(TR0(R; N M) N U) > e v (T7F(R; N Myy) N Uy)

1

The bound (3.9) follows with

b= 2. min; ; Vg} (Tﬂko (R; N Mko) N ﬁz) >0

Lemma 3.6. There is a 8 > 0 such that for any p € H(Go) and B; € R
and all k > ky we have

inf pp(T*(R; N My) N U) > 8- sup pp(T*(R; N M) N T)  (3.10)
Uel Ueld

Proof. Put m =k — kg. For U € U, let TkO(UﬂM_kO) =71 U---UUg
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for some fibers U; € Uy,. From (2.4) we obtain

po(TF(R; N M) NU) = ZMU T ou;).

: <T’“0mU,< ™(R; N M) NTY)

—Z Y (TR

=11 UlCR
(TP o, (T™™(R; 1 Min) N UY)

Using once again ‘representatives’ U; C R; and Lemmas 3.3 and 3.4, we
get an upper bound,

o (T (R; N M) NU) < €* iw(T—kai N M) NU):
: V[%;(T_m(Rj N M) N T;)
< o2 EI: ;/gi(T—m(Rj N M) N ;)
i=1
By invoking (3.9), we get a lower bound,

I
po (TR N M) N U) > €723 (T4 (Ry 0 Migg) N U)-

i=1

V¢ (T7™(R; N M) N T;)
K3
I
>e 5.y Vg (T (Rj 0 Mim) 1) U;)
i=1

Then we decrease the value of 3 by a factor of e~%¢ and complete the
proof.

Corollary 3.7. There is a B > 0 such that for any u € H(Gq) and any
s-subrectangle D € R; (in particular for any atom D € R_p,, m > 0)
and all k > kg we have

inf (T *DONMINU)>B-sup pyT¥DAM)NU)Y, (3.11)
Uel Ueu
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Without loss of generality, the values of § € (0,1) are assumed to be
the same in these statements.

4. Conditionally invariant measure ;. on M
In this section we prove Theorem 1.2. First, we describe the concepts
on which our proofs in this and the following sections are based.

We invoke the Perron-Frobenius theorem for positive matrices and
related techniques developed by Sinai and Cencova. One can think of
the matrices we will work with as finite-dimensional approximations to
the usual Perron-Frobenius operator on (infinite-dimensional) space of
measures. To clarify this connection, let us sketch how these matrix
techniques work for an arbitrary measurable transformation T': M —
M.

The adjoint operator, T, on the space of measures on M acts by
T p(A) = p(T~ 1 A) for any measurable subset A C M. Constructions of
the invariant measures and studies of their statistical properties usually
rely on the convergence of the sequence of measures pu, = 7', as n —
00, to a T-invariant measure pg on M. To study this convergence, one

can take an increasing sequence of finite partitions & < &2 < --- of M,
where &, = {Agm), .. ,A](:n?}, that converges to a partition into single

points. Then one can represent any measure p on M by a sequence of
(row) vectors pp,(p) with components (pp,(u)); = ,u(Agm)), 1 <4 < k.
A probability measure p is represented by unit vectors, |pm (i) = 1, the
norm | - | for (row) vectors being defined below. Then, under certain
regularity conditions that we leave out here, the weak convergence of a
sequence of measures p,, as n — 00, to a measure pg is equivalent to
the componentwise convergence of the sequence of vectors p, (i), as
n — oo, to the vector p,,(ug) for every m > 1.
For a fixed m > 1 and a measure p, the vectors p,,(u) and py,(Tep)
are related by
pm(Tept) = P (1) (1) (4.1)

where T, (1) is a kp, X ky, matrix with components

(M ()55 = w(T AT 0 AT fucAl™)
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(m)

Prn(T7) = Do () i (1) - W (Taps) - - W (T 1) (4.2)

If the partitions &, have nice geometric properties (e.g., they are Markov

(we assume p(A;") # 0 for all m,i). Therefore, we have

partitions or alike), then the matrices in (4.2) are very close to each
other, and so one can replace their product by I, with some matrix
I, close to all of the matrices in (4.2). All these matrices have non-
negative entries, and usually some power, IT%™, n,,, > 1, has all positive
entries. In that case Perron-Frobenius theorem for positive matrices,
see Appendix, applies. It provides a (unique) positive unit eigenvector,
Pm, for the matrix II,,, corresponding to its largest eigenvalue Ay, > 0
(of multiplicity one). We call p,, the Perron eigenvector and Am the
Perron eigenvalue. Moreover, for any other positive unit vector ¢, the
sequence of vectors gII%, converges, as n — 00, to Py, (exponentially fast
in L = n/ny,). These facts can be used to prove that for some suitable
probability measures p the vectors p,, (T, 1) will be close to the Perron
eigenvector p,, for large enough n.

Now, the limit of the Perron eigenvectors P, as m — oo, defines a
measure pg on M, which will be the weak limit of 7', as n — oo. The
details of this scheme depend on the specific dynamical system and spe-
cific sequence of partitions &,,. Various versions of this matrix method
work well for systems with sufficiently strong hyperbolic or expanding
properties.

We prefer this matrix machinery to the Perron-Frobenius functional
operator techniques for two reasons. First, it allows us to compute some
characteristics of limit invariant measures which are not readily avail-
able otherwise, like the ones in our Propositions 1.5 and 1.7. Second,
this machinery looks flexible enough to work well for nonuniformly hy-
perbolic systems, in particular billiards, where other techniques fail.

We now make a few conventions. As it is already clear, we will study
vectors p whose components correspond to atoms A € £ of some finite
partitions £ of M. We will not enumerate or even order those atoms, so
our ‘vectors’ will be just collections of numbers, denoted by pa, A € &.
Likewise, we will work with ‘matrices’ II whose entries correspond to
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(ordered) pairs A, B of atoms of the partition £, and we denote them by
IT4,B. Despite the lack of order, we think of our vectors as row vectors,
and the product ¢ = pII is naturally defined to be another (row) vector
with components
gB = ZPAHA,B
Acg

Next, for any (row) vector p we define its norm by

Ipl = Ipal

Aeé

and we call a positive vector p a unit vector if |p| = 1. For a positive
matrix II the ratio of rows, P, is defined by

P = MaXA’ A" Bet HA’,B/HA”,B

Any two positive matrices, I and II’, are said to be close with the
constant of proximity R > 1 if for all A, B € £ we have

R‘l < HA,B/H;LB <R

We now begin the proof of Theorem 1.2. Recall that any measure
p € MY is supported on My, has conditional measures v on fibers
U € U4 and is then completely defined by its factor measure fi on Us.
Due to Theorem 1.1 the operator T, and the transformation T leave

Y% invariant. The conditionally invariant measures p € MY are fixed
points of the transformation 7. .

Consider the increasing sequence of partitions R]L < ’R; < .- of
M defined in Sect. 2.

Any measure 4 € MY can be represented by a sequence of (row)
vectors

() = {n(B) : B € Ry}
The weak convergence of a sequence of measures, p, — pu, in MY,
is equivalent to the componentwise convergence pm(tn) — Pm(it), as
n — oo, for every m > 1.
According to (4.1), for any p € M and k > 1 we have

PrnTE ) = prn ()1 (1) (4.3)
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(k)

where IT,,” (1) is a matrix with components
{W(T~*B" N My] N B)/uw(B'): B',B" € R} (4.4)

(here B’ is the ‘row number’ and B” is the ‘column number’). Note
that if ¢’ is proportional to u, y’ = a - p with some constant @ > 0, then
Hg,]f) (i) = Hﬁ,’j) (p) for all m, k > 1.

Remark. Some entries of Hgf)(,u) may not be defined by (4.4) if u(B') =
0. In that case we can define them arbitrarily without doing any harm
to the equation (4.3). We simply pick a U C B’ and set the component
(4.4) to v&(T~*B" N My N U).

Next, the equation (4.3) directly implies that

Pm(tt) ®) (1)

(4.5)
Do ()T (1)

P(Th ) =

Lemma 4.1. For any m > 1 and k > kg the matrices HS?*’“) (W), p €

Y, satisfy two conditions:
(i) the ratio of its rows is bounded by P = f~*:
p(T~™F[B" N M) N BY)/1(BY)
p(T=m=F[B" O Mynyk] 0 Bb)/1(Bbh)
for all B}, By, B" € R};
(ii) the matrices Hﬁ,ﬁ”*’“) (u1) and Hq(qTJrk)(ug), for any pq, o € MY, are
close to each other with the constant of proxzimity R = exp(cA™), i.e.
o (T B0 My 0 B) i (B) _ oam
= (T =F(B" 0 My 4] 0 B') [ 12(B') =
for all B, B" € R}\,.
Proof. Put Uy = {U € Uy : U C B} for B € R}. Then the

components of the matrix HS,T[L ) () can be expressed by

(T~ F[B" N Myis] N B)
w(B’)

1 / —m—k ~
M(UB’;{—) Z/{B,7+ U( [ +k] ) /.L( )

8 < < g1 (4.6)

(4.7)

(4.8)
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For any B” € R, there is an atom D € R_,, such that T"™B" = My N
D. So, for any k > 0 we have T-™ ¥[B" N\ My1x] = T~ %[ DN M0 M.
Now, the estimate (4.6) follows from (4.8) and Corollary 3.7.

To prove (4.7), notice that the set T-*[D N My] is a finite union of
s-subrectangles (sbme atoms of R_p,_r). Thus, for any two unstable
fibers U, U’ C B’ the sets T-*[D N M) NU and T~*[D N M) N U’ are

canonically isomorphic, and Lemma 3.4 implies

T vE(TRD N My N U) <
T Vg (T RDOMNU) ~
This and (4.8) prove (4.7). Lemma 4.1 is proved.
We continue the proof of Theorem 1.2. For any m > 1 and B € R,

(4.9)

we pick an arbitrary ‘representative’ unstable fiber Ug C B. For any
m > 1, k > 1, denote by ﬁﬁ,’f) the matrix with components
g, (T IB"N My NUp): B',B" € R} (4.10)
Note that ﬁﬁ’:f) = ,(lf) (1) for any measure e MY supported~ on the
union of representative fibers Ug, B € R}, and such that i(Ug) > 0
for all B € R}. Thus, the matrix H,(fln +h) , k > kg, satisfies the bound
(4.6) on the ratio of rows and is close to any ngﬁk) (1), p € M4, with
the constant of proximity R,,, see (4.7).
According to the Perron-Frobenius theorem, provided in Appendix,

(m+ko)

the matrix II, has a positive unit (row) eigenvector, p,, corre-

sponding to its largest eigenvalue.
We put

v =max{\,1— [3/2}

and fix an mg such that

(1 - B)e*™ <4

Proposition 4.2. There is a constant C1 > 0 such that for all m > my,

my =m+ ko, and n > m we have

P (T 41) — ] < Cr(1™™) 4 2™
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Proof. Put L = [n/mi] and [ = n — m1L, so that n = miL + [,
0 <1< mq. Then

Pr(T7 1) = o (T T (T TG (T ) (=Dt

and "
Pl
|pm (T 1)
Theorem A.6 now implies Proposition 4.2.

Pm (T—lﬂ: :U’> =

Next, for any m > | > 1 and any vector p,, whose components corre-
spond to atoms B € R, we denote by py,|; the vector with components

Pmu)e = Y, (Pm)B

BcB!

corresponding to atoms B’ € R;L
Proposition 4.3. For any | > 1 there exists a limit
r; = lim i)mll
m—0o0

The sequence of vectors r; satisfies the equations

=1 and ryE=r7k (4.11)
for olll > k > 1. Moreover, for all m > 1 we have

Pt — 1i| < ACIHY™ (4.12)

Proof. Let p € MY, 1 > 1 and n > m(> [) be large enough. For any
s > n(n + ko) Proposition 4.2 yields

[P (TS 1) = Brm| < 2C19™
and
Pn (T3 1) — Bn| < 2C17"
By using an obvious fact that pjm (1 1) = pm(T5 1), we get
|I~7mll - ﬁnill < l@m - pnlm| < 4617m (4’13)

Thus, for any ! > 1 the sequence of vectors p,;, n > 1, is a Cauchy
sequence, so it converges to a vector that we denote by r;. Now (4.12)
follows from (4.13). It, in turn, readily implies (4.11). Proposition 4.3
is proved.
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Due to (4.11), the sequence of vectors 1y, [ > 1, specifies a probability
measure 4 € MY such that py(u4) = for all { > 1.

Corollary 4.4. For any measure y € MY the sequence {7} weakly
converges, as n — 00, to puy. Moreover, for all 1 > 1 and n >
max{m3,1?} we have

(T ) — pr(p4)| < Coy¥™,

with some constant Co > 0.
Clearly, T4 p+ = p4 and

Topp = Appy with Ay = p (M)

Theorem 1.2 is now proved.

5. Limit theorems for the measure ;|
Here we prove Theorems 1.3 and 1.4. The proofs require the extension
of the previous analysis from the class of measures MY to the larger
classes M,,.

For any measure p € M,, we denote by py its conditional measures
on unstable fibers U C M,,, and by [ its factor measure on U,,. For any

measure i € M, we can consider a finite sequence of vectors,

() = {u(B) : B € R}

for 1 < m < n. Note that if we have a sequence of measures u, € M,,
for which the sequence of factor measures i, weakly converges, then
its limit is a factor measure ji of some y € M%. This is equivalent to
a componentwise convergence py,(in) — Pm(t), as n — oo, for every
m > 1.

According to (4.1), for any n >m > 1, k > 1 and u € M,, we have
TFu € My1y and

P

Pl TF 1) = (1) - T (1)

where Hq(jf) (1) is the matrix with components
{(W(T B M N B)/u(B) : B',B" € Rn}
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(here, as in (4.4), B’ is the ‘row number’ and B” is the ‘column num-
ber’). The equation (4.5) holds without changes. The remark before
Lemma 4.1 also applies, but now B’, B” are atoms of R,, instead of
RE. The following lemma is an analog of Lemma 4.1:

Lemma 5.1. Let p € H(G) with some G > 0. Then for any m > 1,
k > kg and n > m+ ng the matriz Hﬁ,T*’“) (tbn) for the measure iy, =
TPu € My, satisfies two conditions:

(i) the ratio of its rows is bounded by 3~ :

—
~—

g < BT "M B 0 Maiad 0 B1)/ an(Bi

-1
> Mn(T—M—k‘[B// N Mm~|—k] N Bé)/un(Bé) <pg (5.1)

for all By, By, B” € Ryn;
(ii) for all B', B" € Ry, we have

—-m—k[Ry / /
6—20/\m < Mn(T_ ¥k[B” N Mm+k] n B,)/N’n(B/) < chz\m (52)
pp (T=™K[B" N My N B') /i (B')

Proof. Note that p, € H(Gp) due to Lemma 3.1. for B € R,,. Then

the components of the matrix H&T &) (in) can be expressed by

1T~ ™ F(B" A M) (1 B)
Mn(B/)
/u s (T ¥[B” A M) O U) dion(U)
B/

B 1
lln (uB’)

For any B” € R, the set D = T~ B" is an atom of R_,,. So, for any
k > 0 we have T~ F[B" N M1y = T7%[D N My). Now, the estimate
(5.1) follows from (5.3) and Corollary 3.7.

The first part of the proof of (5.2) repeats word by word that of
(4.7), but then (4.9) must be combined with Lemma 3.3. This gives

200 _ Hnu(T5[D N My N U)
T v (TR DN M N U)

m
S ech

for all U, U’ ¢ B’. This and (4.8) with (5.3) prove (5.2). Lemma 5.1 is
proved.
The following proposition is an analog of Proposition 4.2:
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Proposition 5.2. There is a constant C3 > 0 such that for all m > myg,
m1 =m+ kg, n>m and any G > 0, p € H(G) we have

‘pm(TernGM) —f?m‘ < 03(ry[”/m1] + ™)

It is enough to prove this for p € ‘H(Gg) and ng = 0. The proof then
repeats that of Proposition 4.2 word by word.
Combining Propositions 5.2 and 4.3 gives

Corollary 5.3. Let G > 0 and pn € H(G). For every l > 1 the sequence
of vectors p(I}u) converges to rp = pi(u+). Moreover, for all n >
max{m2, 12} we have

+n n
Ty G ) — py(pg)| < CayV,

with some constant Cq > 0.

Corollary 5.4. Let G > 0 and p € H(G). The sequence of factor mea-
sures fin, where p, = 17 u, weakly converges, as n — oo, to the factor
measure 4+ on Uy,

We now begin the proofs of Theorems 1.3 and 1.4.

Proposition 5.5. Let G > 0 and p € H(G). The sequence of measures
pn = T0p, n > 1, weakly converges to the measure piy.

Proof. Since TiGu € H(Gg), we may assume that p € H(Gg). It is
enough to show that for every [ > 0, £ > 0, every atom B € R; and
every atom D € R_; we have a convergence

n(BND) - pu (BND) as m— o0 (5.4)

In the following, B and D may be also unions of some atoms of R;
and R_g, respectively, in one Markov rectangle R; € R. Let n >
max{m%,lQ}. Put m = [/n]. Then B is the union of some atoms of
Rm, let us denote them by By,...,Br. In every B; we pick a ‘repre-
sentative’ fiber U; C B;. Note that

pn(BOD) = [ (D OU) djia(U)
B
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where p, 17 is p, conditioned on the fiber U and [, is its factor measure
on U,. Due to Lemmas 3.3 and 3.4 we have

pn(BND) < X" Zﬂn[j )+ ten(Bi)

m
e?eX ZMU - tn(By)
i=1

The corresponding estimate from below with negative exponents also

holds. In the same way Lemma 3.4 yields

(BN D) < e ZNU (Bi)

and the corresponding lower bound with the negative exponent.
Now, Corollary 5.3, in which we can set [ = m, implies

pn(BND) <P (BN D)

+ e3¢ . sup pgr(D) - |Pm (tin) _pm(ﬂ+)|
UEZ/{B (55)

<3N (BND)+e¥ sup ph(D) - Cyy™
UEUB

and, respectively,

pn(BOD) 2 e ¥y (BOD) = - sup uy(D)-Ciy™ (5.6
eUp

These two bounds readily imply (5.4). Proposition 5.5 is proved.
The first statement of Theorem 1.3 now follows immediately. To
prove the second, it is enough to establish the following:

Proposition 5.6. For any G > 0 and u € H(G) the limit

clu] = lm AT ] (5.7)
exists and c[y] > 0.
Proof. Clearly,
n—1 n-1
17l = HO 17Tl = _1]0<Tiu><M_1> (5.8)
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Let p, =T for n > 0. It is enough to show that the series

Zlog Zl ))

n=0 ’UI+M

converges. Note that Png € H(Gp), so we may again assume that
u € H(Gp).

Now, let R; € R and D = R;NM_1. Let Py' = min; py (R; N M_y).
Then the bounds (5.5) and (5.6) combined with (3.7) imply that

e 3" _ Py Cyy™ < pin(D) /(D) < 327 4 Py - Cyy™

for all n > m32 with m = [/n]. Therefore,

Mn(M—l)‘ i
log ——1 < Csy
' p(M_1)

with some constant Cs > 0. Proposition 5.6 is proved.
Theorem 1.3 is then proved also.

Remark. For every G > 0 the convergence in (5.7) is uniform in p €
H(G). In particular, if u € H(Gp), then for all m > m%

|log clp] — log A ™ [Tl < Cs - > Y™ (5.9)

n=m
We conclude this section with proofs of Theorem 1.4 and Proposi-
tion 1.5. The first part of Theorem 1.4 is a particular case of Proposi-
tion 5.5. Next, since uf; € H(Gp), Proposition 5.6 applies and ensures
the second part of Theorem 1.4 with

e(U) = ] = lim A"t (M) (5.10)
In virtue of Corollary 3.7, the function e(U) is positive and bounded:
sup e(U) < 87! inf e(U) (5.11)
Ueu Ueu

This bound and (5.9) imply the following:

Corollary 5.7. There is Cg > 1 such that for any m > 0 and any U € U
we have

Cql < AT U (Mom) < Cg
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Due to (5.9), the normalization (1.9) will follow if we show that for
alln >0

[Tl i) =1
Uy
This equation is verified as follows:

[ ITw dpee ) = [ M) dig () = i (M) = N
Uy

Uy

Proposition 1.5 is proved.

remarkRemark There is an alternative proof of Theorem 1.4, along
the lines of [4], based on the following observation. Recall that the ma-
trix 11 R0 (u+), cf. Sect. 4, has the largest eigenvalue )\T+k0 and the
Perron row eigenvector p,, (144 ). According to the Perron-Frobenius the-
orem, see Appendix, it also has a positive column eigenvector, p, (14 ),
such that

* +ko «
e tRo(u ypr, () = AT 0pk ()

The sequence of vectors p}, (u4) ‘converges’, as m — oo, to the func-
tion e(U) on Uy in the following sense: for any U € Uy the numerical

sequence
{(Pp(11+))B, where B € R} is such that B D U}

converges, as m — 00, to e(U) exponentially fast in m. We do not
elaborate this proof here, it is given in full detail in [4] for the case
where T is a smooth horseshoe.

6. Invariant measure 7, on the repeller (2
Here we prove Theorems 1.6 and 1.8.

For any n > 1 the measure MS:') = T "u4 defined by (1.10) is sup-
ported on M N M_,,. Its conditional measures on U N M_,,, U C My,
i.e. vii(-/M_y), they are absolutely continuous with respect to the Rie-
mannian volume on U with densities

ol (@) = WU N M_p)\pi(z), zeUnM_,
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(n)

Its factor measure, i J:’ , on Uy is absolutely continuous with respect to

[+, and its Radon-Nikodym derivative is
it
for U C Uy, in virtue of (1.11). Due to (5.10), we have

(U) = A" v (U N M_y)

for any U € U,..
(n)

Corollary 6.1. The sequence of measures f1y, ' weakly converges to the

measure iy on Uy defined by

ditg(U) = e(U)dj1+(U)

We now complete the proof of Theorem 1.6. Let & > 1,1 > 1, and
consider two arbitrary atoms B € R; and D € R_g. For all n > k we
have

u(B 0 D) =y (TP[(B 0 D) 0 M)
= p (T FTHB N D) N M_p 1))
n—k
=y B *B N D))
The set T%(B N D) is an atom of Ry1;. Due to Corollary 6.1 we have
Jim w8 (BAD) = tim w0 (* (B0 D)
=no{U ey : U c T*(BN D)}
(n)

Hence, the sequence of measures u)° = T, "py weakly converges, as
n — 00, to a measure 1y, which is supported on the closed set My N
(Mp>1M_p) = Q. The invariance of ny under T follows from two equa-
tions:

W(@(B DY) = W (@B N D))

and
W@ B D) = W BN D)

(B and D are the same as above). By taking the limit as n — oo, we
obtain (1.12). Theorem 1.6 is proved.
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Proposition 1.7 follows from Corollary 6.1.
We now prove Theorem 1.8.

Proposition 6.2. For any G > 0 and any measure (1 € H(G) the sequence
of measures pin,m defined by (1.14) weakly converges, as m,n — oo, to
N+

Proof. Since TﬁG,u € H(Gy), we may assume that p € H(Gp). It is
enough to show that for every k,I > 0, every atom B € R; and every
atom D € R_; we have

i finm(BN D) =174(BN D)

Let m > k and n > I. Note that ni(B N D) = n(T*(B N D)) and

tnm(BN D) = pnipm-x(T*(B N D)), and T¥(B N D) is an atom of
Ri+i- Thus, it is enough to show that

im  ppm(B) =n+(B) (6.1)

m,n— o0

Recall that u(n) (B) — ny(B) as n — oc by Theorem 1.6. Thus,
(6.1) is equivalent to the following:

i ,un,m(B)
im

—1 (6.2)

Let p, = 1% . The ratio of the above measures can be rewritten as

Pn,m(B) _ pn (BN M_p,) _ Pt (M)
/‘S—m) (B) pr(BNM_p)  pn(M_p)

First, we will show that

pn(B N M_p,)

= 1 .
minoo 1 (B O M ) 63

A direct application of bounds (5.5), (5.6) and Corollary 5.7 gives
(B OV M_p) < Ny (BOM_y) + e CedT - O™
and

—OC. \/ﬁ C m
pn(BOM ) 2 e 3N (BO M ) — €% CoAT - Cyy V™
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for all n > max{m%, 12} and m > m% Due to Corollary 5.7 we have
G (B) < LB M)
T
Combining all the previous bounds yields (6.3).
The equation (6.3) holds, in particular, for [ = 0 and B = R;, 1 <
1 <I. Since M_,, = Ule(Ri N M_,,), we immediately obtain

i - (M)
o0 fin(M )

< Copu1(B)

=1

thus completing the proof of (6.2) and Proposition 6.2.
The first part of Theorem 1.8 is then established.

Proposition 6.3. For any G > 0 and u € H(G) the limit (see (1.15))

clul = lim_||pg ]l

mM,N—00
exists, and clu] is the same as in Proposition 5.6.

Proof. We have
(i ll =l AT (M)

m,n—oo M, — 00

= lm A""u(M_ym)

M, N—00
which is equal to ¢[u] due to Proposition 5.6. Proposition 6.3 is proved.
The proof of Theorem 1.8 is completed.

7. Ergodic properties of the measure 7.
Here we prove the ergodic and fractal properties of the invariant measure
1+ on the repeller, given by statements 1.9-1.14.

Let k,1 > 0, and take arbitrary atoms B € R;and D € R_;. Assume
that int(B N D) # @ and pick a point z€BND.

Lemma 7.1. There is a constant C7 > 1 independent of x, B, D, k,l such
that
C7l < N (T ') - (BN D) < Oy

Proof. The set E = T*(B N D) is an atom of Ry, and due to (1.13)

e(BOD) = (T*BND) = [ eU)dins V)
Ug
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In virtue of (1.9) and (5.11) we have

B < inf e(U) < supe(U) < gt
Ueu Uecu

so that
< n+(BND) <1
1+ (B)
Next, the conditional invariance of p4 implies that

Nkl Nkl " .
pe(B) = X7 (P =23 | oy HENDRD)

where FF = T-Y(BN D) is an atom of R_,_; and U(F) = {U € U :
UNF +o}.

To estimate this last integral, recall that the measures v} on unstable
fibers U € U have densities uniformly bounded away from zero and
infinity, and note that for all U C U(F)

0 <const <my(ENU)- J,’;”H(T_lx) < const < oo

which follows from the absolute continuity of stable and unstable folia-
tions, Sect. 2. This completes the proof of Lemma 7.1.

This lemma immediately implies that ny is a Gibbs measure with
the potential g4 (x) = —log J*(z) and the topological pressure P(n.) =
log Ay = —v4, see [2].

Theorems 1.9 and 1.11 are now proved. Corollary 1.10 mostly fol-
lows from [2], for more advanced limit theorems than the central limit
theorem see, e.g., [13].

Theorem 1.12 is self-evident.

We now turn to Theorem 1.13.

The measure 7_ is also a Gibbs measure, with potential

9-(z) = log J*(T1x)

and topological pressure P(n_) = —log Al = —~_. The next lemma is
a direct consequence of Proposition 4.5, [2].

Lemma 7.2. The following three conditions are equivalent:
(i) m =n-;
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(ii) there is a constant Z > 0 such that for any periodic point € Q,
TFz =z, we have J(z) - Ji(z) = Z*;

(ili) the functions g4(x) and g_(z) are cohomologous, i.e. there is a
constant R and a Héolder continuous function u(x) such that g+ (x)—
g-(z) = R+ u(Tx) — u(z).

If those conditions are satisfied, then

—InZ=R=Pny)—-Pn-)=v-—7+

Theorem 1.13 now follows immediately. This theorem, combined
with Proposition 4.14 from [2], gives Corollary 1.14.

Possible applications of Theorem 1.13 and Corollary 1.14 cover hy-
perbolic repellers constructed on the base of Hamiltonian systems (those
preserve Liouville measures that are absolutely continuous). In partic-
ular, these include billiard systems, like the open billiard with three
circular scatterers studied in [16], where repellers are thus always time-
symmetric.

Another interesting class of repellers are linear repellers. Let the
rectangles Ry,..., Ry be subset in R? and all EY and all E be paral-
lel. Let the map T be linear on each R;, with the constant derivative
DT =const on M, so that the functions J%(z) = J* and J*(x) = J* are
constant on M. In this case the measures 74 and n_ always coincide,
and both coincide with the measure of maximal entropy on Q, see [2]
for definitions and details. In this case the repeller Q is, however, time
symmetric if and only if det DT = J% - J® = 1, i.e. if T preserves the
Lebesgue measure in RY.

8. Generalizations and open problems
In our arguments, we never essentially relied on the fact that T was
a diffeomorphism of a connected manifold, in fact the action of 7' on
H = M'\ M never came into play. All our results hold true under the
following, more general assumptions:

Let M be a finite union of disjoint closed domains Ry,..., Ry in a
smooth Riemannian manifold M. Let T': M — M be a diffeomorphism
of M onto its image, which is C'** up to the boundary M. We
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assume the Anosov splitting (1.1) at every z € M, and require (1.2) if
the corresponding iterations of 7' are defined. Let the bundles E}® be
Hélder continuous and integrable over every R;, so that R; is foliated
by Hélder continuous families of C1*® submanifolds W* such that
TW3® = E%® at every © € R;. Assume that every R; is a rectangle and
{Ry...,Ry} is a Markov partition of M in the sense of Section 2.

Under these assumptions our results remain true. The above setting
is very convenient for horseshoe-like maps, studied in [4,21].

We now discuss what happens if we relax the mixing assumption in
Section 2. First, we can classify the rectangles like one does states of
Markov chains. We call a rectangle R; recurrent if its points come back
to itself under 7', i.e. intR; NT™(R; N M_,) # & for some n > 1. In
the trivial case, where all the rectangles are nonrecurrent (transient),
the sets My, M_ and ) are empty, and the phase space M ‘escapes’
entirely.

The recurrent rectangles can be grouped, in each group points from
any rectangle can be mapped into any other rectangle, so that the sym-
bolic dynamics within every group is transitive.

Let us assume first that there is only one transitive group of rectan-
gles Ry,---, Ry, and put Mg = Ry U...U Ry,. This group is periodic
if there is a &k > 1 such that the periods of all the periodic points in
My are multiples of k. In that case this group can be divided into
k subgroups cyclicly permuted by T, and the restriction of T* to any
subgroup is topologically mixing. The study of the map 7' admits a
standard reduction to that of 7%, well known in the theory of Axiom A
diffeomorphisms [2], so that we can restrict ourselves to the case k = 1.
Then the repeller Q belongs in Mg. The nonrecurrent rectangles R;,
i > Iy, can be of three types: isolated (such that int7T"R; N My = & for
all n € Z), incoming (such that int7™R; N My # @ for some n > 0) and
outgoing (such that int7™R; N My # @ for some n < 0). The set M4 in-
tersects only recurrent and outgoing rectangles, M . only recurrent and
incoming ones. The measures p. conditioned on My coincide with the
corresponding measures for the restriction of 7' to My. The measures
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n+ and the escape rates 4 will be the same for T3, and T'|,. So, non-
recurrent rectangles do not really affect the properties of the repeller £
studied in this paper, they only may enlarge the sets My and ‘stretch’
the measures p4 accordingly.

A more involved situation occurs when there are two or more groups

of recurrent rectangles. For simplicity, consider two groups, Rf,... , llo
and RY,..., f}o, and put M) = UR; and Mg = UR]. If there is no

connection between these groups, i.e. int(T"My N T™"My) = @ for all
m,n € Z, then we have two trivially independent repellers in My and
My, respectively. On the contrary, if there is a route from My to M,
i.e. int(T"MyNMy) # & for some n > 1, then the picture gets intricate.
The rate of escape from M is still the same as for the map T| M, 88
if M did not exist. The escape from M, however, is combined with
the influx of points from M. The resulting escape rate from M will be
than influenced by three factors: the escape rates from My, M and by
the fraction of M) transmitted to My after escaping from M;. We did
not investigate here these interesting phenomena.

Another natural extension would be to study Axiom A diffeomor-
phisms rather than Anosov ones. Let T : M’ — M’ be an Axiom A
diffeomorphism with the basic set Q. Let M C M’ be a proper closed
subdomain such that & = N> _T™M. Then it might be possible to con-
struct conditionally invariant measures on My = NZ°T™M and invariant
measures on ) in the same way as we did for Anosov diffeomorphisms.
We leave this for future researches.

Lastly, there are nonuniformly hyperbolic diffeomorphisms and hy-
perbolic maps with singularities, like billiards, which have countable
Markov partitions and the derivatives growing to infinity at singulari-
ties. Extension of our results to those models is the most challenging
problem at present.

Appendix
This appendix contains the Perron-Frobenius theorem on positive ma-
trices and related results. Most of these results are taken from [4].
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Let V,, be the space of row m-vectors, and V}, the space of column
m-vectors. We equip them with norms

ja] = Z |ail,  |b7] = maxi<i<m |bil (A.1)
i=1

and scalar product
(a, b*) = a1by + -+ + ambn,

for all @ € V;,, and b* € V3. We call vectors a € Vy, and b* € V), positive
if their components are all positive.
Note that |(a,b*)| < |a]|b*|.
Let P, be the set of m x m matrices with positive entries:
AZ(AZ']')E’Pm Zf Aij>0 Vi1i<i,j<m
Stochastic (3°; Ai; = 1) and substochastic (3_; A;; < 1) matrices are the

best studied classes of matrices in P,,.

Theorem Al. Perron-Frobenius theorem| Fvery positive matriz A €
Pm has a positive row eigenvector p and a positive column eigenvector

p*
pA=Ap and Ap"=M\p*

where A > 0 is the largest (in absolute value) eigenvalue of the matrix
A. These vectors are unique up to a scalar multiple, i.e. the multiplicity
of A is one.

We put p and p* for the Perron eigenvectors of A normalized so that

m m
Spi=lpl=1 and > pii=("p) =1 (A.2)
i=1 =1

For a fixed matrix A € Pp,, we introduce other norms in V,,, and V%,
by -
\lallr = 21 lailp;,  ||b*]|c = maxq<j<m (1b5]/5) (A.3)
If the components c;— a are non-negative, then
lallr = (a,p")  and [|aA[l, = Mlall;
Note that |{a, b*}| < |la||-]16*]]e-
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We will say that P > 1 is an estimate of the ratio of rows of A € Py,
if
Pt < Ay/A <P Yi1<ijk<m

If A satisfies this estimate, we write A € Pp,,(P).
If A € P, (P), then the components of its Perron eigenvectors satisfy

Pl <pi/p; <P AP < Ay/p;<AP, PT<pi<P

for all 1 < 4,5 < m. The norms defined by (A.1) and (A.3) are then

equivalent:
PYal < llall, < Pla] and P 5| <[]l < Plb)

for all a € V;;, and b* € V..
The following estimate on the so called coefficients of ergodicity is
also satisfied if A € P, (P):

1<i<m

m
S p;- inf (Ai/p}) > AP
j=1

Denote by Ly, and L, the orthogonal complements to the Perron

eigenvectors:
Lim={a€Vp: (a,p")=0} and L ={b"e€V}: (p,b*)=0}
Then we have the decompositions
a=(a,p")p+ag with ag€ Ly,
and
b* = (p,b")p" + by with by€ Ly,
Lemma A.2. If A € P, (P), then for any a € L, we have
laAlly < A1 = P~H]al|,
and for any b* € L;, we have
147l <A@ = P26l

If A < 1 (this is the case if A is a proper substochastic matrix), then
this lemma says that the contraction in the orthogonal subspaces L,
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and Ly, is stronger than that in the eigenspaces spanned by the Perron

eigenvectors.
Corollary A.3. If A € Ppp(P) and 6 =1 — P~ then
lim AT"A" =p"®@p

7—00

where (p* ® p)i; = pip; 15 the tensor product of p* and p. Moreover,
AT A" — p" @ pillr < 20" p;
where By, for a matrix B, means the k-th row.

Remark. If A is a stochastic matrix (3_; A;; = 1), then A =1 and p; =1
for all 1 < j < n, and we recover a well known ergodic theorem for finite
Markov chains.

We now compare the action on positive row vectors by two positive
matrices which are close to each other. We say that B € P, is close to
A € Py, with the constant of proximity R > 1 if

R1<B,;/A; <R VY1<ij<m (A.4)

In the following statements, A € P, (P) is a fixed matrix, p is its
Perron row eigenvector normalized by (A.2) and A is the corresponding
eigenvalue. We also set § =1 — P~1.

LemmaA.4. Let g be an arbitrary positive row vector such that ||g||, = 1.
Let B € Py, be another matriz close to A with the constant of proximity
R > 1. Then

R |pAl}» < llgBll, < Rl|pAll,

and
llgB — pA|l, < M|lq = p|lr + A(R—1)

Lemma A.5. Let B € Py, be as in Lemma A.4. For any positive row
vector ¢ € Vp, we have

< 0R|lg — pllr + 2R(R - 1)

“IIQBHT HPAHT

Theorem A.6. Let By, Bs,...,B, € Py, be matrices, all close to A
with the same constant of prozimity R > 1. For any positive row vector

r
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q € Vi we put g, = By -+ B,. In addition, assume that 6R < 1. Then
we have

< 20"R" + 2R(R — 1)(1 — OR)™

HanHT

and
h—g—”—‘ — p‘ < 4P"R" + 4PR(R — 1)(1 — §R) !
n
References

[1] D.V. Anosov and Ya.G. Sinal, Some smooth ergodic systems, Russ. Math. Surveys
22 (1967), 103-167.

[2] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,
Lect. Notes Math. 470, Springer-Verlag, Berlin, 1975.

[3] N.N. Cencova, A natural invariont measure on Smale’s horseshoe, Soviet Math.
Dokl. 23 (1981), 87-91.

[4] N.N. Cencova, Statistical properties of smooth Smale horseshoes, in: Mathematical
Problems of Statistical Mechanics and Dynamics, R.L. Dobrushin, Editor, pp.
199-256, Reidel, Dordrecht, 1986.

[5] N.I. Chernov, G.L. Eyink, J.L. Lebowitz and Ya.G. Sinai, Steady-state electrical
conduction in the periodic Lorentz gas, Comm. Math. Phys. 154 (1993), 569-
601.

[6] P. Collet, S. Martinez and B. Schmitt, The Yorke-Pianigiani measure and the
asymptotic law on the limit Cantor set of expanding systems, Nonlinearity 7
(1994), 1437-1443.

[7] P. Collet, S. Martinez and B. Schmitt, The Pianigiani- Yorke measure for topolog-
ical Markov chains, manuscript, 1994.

[8] P. Ferrari, H. Kesten, S. Martinez and P. Picco, Ewistence of quasi stationary
distribution. A renewal dynamical approach, to appear in Annals Probab.

[9] P. Gaspard and F. Baras, Chaotic scattering and diffusion in the Lorentz gas,
Phys. Rev. E 51 (1995), 56332-5352.

[10] P. Gaspard and J.R. Dorfman, Chaotic scattering theory, thermodynamic for-
malism, and transport coefficients, preprint, 1995.

[11] P. Gaspard and G. Nicolis, Transport properiies, Lyapunov exponents, and en-
tropy per unit time, Phys. Rev. Lett. 65 (1990), 1693-1696.

[12] P. Gaspard and S. Rice, Scattering from a classically chaotic repellor, J. Chem.
Phys. 90 (1989), 2225-2241.

[13] Y. Guivarc’h and J. Hardy, Théorémes limiles pour une classe de chaines de
Markov et applications aux difféomorphismes d’Anosov, Ann. Inst. H. Poincaré,
24 (1988), 73-98.

[14] M. Keane and M. Mori, Dynamical systems on the Cantor sets associated with
piecewise linear transformations, manuscript.

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997



314 N. CHERNOV and R. MARKARIAN

[15] O. Legrand and D. Sornette, Coarse-grained properties of the chaotic trajectories
in the stadium, Phys. D 44 (1990), 229-247.

[16] A. Lopes and R. Markarian, Open billiards: Cantor sets, invariant and condi-
tionally invariant probabilities, SIAM J. of Applied Math, 56 (1996), 651-680.

[17] R. Mané, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin,
1987.

[18] A. Manning, A relation between Lyapunov exponents, Hausdorff dimension and
entropy, Ergod. Th. & Dynam. Sys. 1 (1981), 451-459.

[19] S. Martinez and M.E. Vares, Markov chain associated to the minimal Q.S8.D. of
birth-rate chains, to appear in J. Applied Probab.

[20] L. Mendoza, The entropy of C? surface diffeomorphisms in terms of Hausdorff
dimension and a Lyapunov exponent, Ergod. Th. & Dynam. Sys. 5 (1985),
273-283.

[21] Z. Nitecki, Differentiable Dynamics, MIT Press, Cambridge, Mass., 1971.

[22] G. Pianigiani and J. Yorke, Ezpanding maps on sets which are almost invariant:
decay and chaos, Trans. Amer. Math. Soc. 252 (1979), 351-366.

[23] Ya.G. Sinai, Markov partitions and C-diffeomorphisms, Funct. Anal. Its Appl.
2 (1968), 61-82.

[24] Ya.G. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surveys 27 (1972),
21-69.

[25] L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. & Dy-
nam. Sys. 2 (1982), 109-124.

N. Chernov

Department of Mathematics
University of Alabama in Birmingham
Birmingham, AL 35294, USA

E-mail: chernov@vorteb.math.uab.edu

R. Markarian

Instituto de Matematica y Estadistica “Prof. Ing. Rafael Laguardia
Facultad de Ingenierianewline Universidad de la Reptblica

C.C. 30, Montevideo, Uruguay

E-mail: roma@fing.edu.uy

”

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997



