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Abstract .  We study Anosov diffeomorphisms on manifolds in which some 'holes' are 
cut. The points that are mapped into those holes disappear and never return. The 
holes studied here are rectangles of a Markov partition. Such maps generalize Smale's 
horseshoes and certain open billiards. The set of nonwandering points of a map of this 
kind is a Cantor-like set called repeller. We construct invariant and conditionally 
invariant measures on the sets of nonwandering points. Then we establish ergodic, 
statistical, and fractal properties of those measures. 

1. Introduction and main results 
Let T : M '  ~ M '  be a topologically transitive Anosov diffeomorphism 

of class C 1+~ on a compact Riemannian manifold M' .  Recall tha t  a 

diffeomorphism T : M '  --~ M ~ is said to be Anosov if at every point 

x E M '  there is a DT-invariant splitting 

T~M' = E~ Q E~ (l.1) 

such tha t  

IIDT-~vII <_ CTA~IIvII f o r  all v E E~ and n > O, 

llDT~vtl <<_ CTA)IIv]] f o r  all v E Z~ and n > O, 

for some constants CT > 0 and AT E (0, 1) independent of v and x. The 

splitting (1.1) is continuous in x. Topological t ransi t ivi ty of T means 

tha t  it has a dense orbit in M' .  
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272 N. CHERNOV and R. MARKARIAN 

Sinai [23] and Bowen [2] constructed Markov parti t ions for transitive 

Anosov diffeo-morphisms 1 Let 74' be a Markov parti t ion of M '  

into rectangles R 1 , . . .  , Rz,. We assume that  these rectangles are small 

enough, so tha t  the symbolic dynamics can be defined [23, 2]. 
i, . M / Let I < I ' .  Pu t  H = Ui=i+l(~ntR 0 and M = \ H .  Then M 

is a manifold with boundary.  We will Study the dynamics of T on M,  

thinking of H as a 'hole' into which some points of M will be mapped 

by T, and then they disappear (escape). Equivalently, one can think 

that  H 'absorbs '  points mapped into it by T. 

A pictorial model  of this type  of dynamics was proposed by Piani- 

giani and Yorke [22]. Imagine a Sinai billiard table (with dispersing 

boundary)  in which the dynamics of the ball is strongly chaotic. Let 

one or more holes be cut in the table, so that  the ball can fall through. 

One can also think of those holes as 'pockets '  at the corners of the ta- 

ble. Let the initial position of the ball be chosen at random with some 

smooth  probabil i ty distr ibution (e.g., equilibrium distribution). Denote 

by p(t) the probabil i ty that  the ball stays on the table for at least t ime 

t and, if it does, by p(t) its (normalized) distribution on the table at 

t ime t. Natural  questions are: at what  rate does p(t) converge to zero as 

t --+ co? what  is the limit probabil i ty distr ibution limt__~ p(t), and does 

it depend on the initial distribution p(0)? These questions still remain 

open. 

We assume that  the symbolic dynamics generated by the parti t ion 

74 = {R1, . .  �9 , RI} of M is rich enough, i.e., it is a topologically mixing 

subshift of finite type. Genera] case is discussed in Section 8. 

Notations.  For any n _> 0 we put  

Mn = NnoTiM and M_n = nn-oT-iM, 

and also 

M +  = nn>_l M n  , M _  ~- nn>_l m _ n  , ~ = M +  n M _  

1Bowen's construction actually covers larger systems - Axiom A diffeomorphisms 

which we do not consider here. 
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All these sets are closed, T 1M+ c M+, TM_ C M_ and T~t = T-1~2 = 

Denote by 

= = V~=0T 7s Vn=0 T 7~ and 

the part i t ions of M '  into unstable and stable manifolds (fibers), respec- 

tively. The restrictions of L( to M,  M s  and/1//+ are denoted by b/, L/~ 

and N+, respectively. Similarly, we have parti t ions $,  S-n ,  $ -  of the 

sets M,  M_n, M_ into stable fibers. Atoms U E N and S E S are 

closed domains on unstable and stable manifolds, respectively, whose 

boundary  has Riemannian volume zero. Riemannian volume on fibers 

is induced by the Riemannian metric in M.  

For any x E M '  we denote by JU(x) and JS(x) the Jacobians of the 

map D T  restricted to E~ and Ex s, respectively. We also put  

JU,S(x) = JU,S(x)JU,S(Tx)... JU,S(Tn-lx) 

the Jacobians of D T  n on unstable and stable fibers. 

Our first result deals with measures on unstable fibers U E L/+. 

Definition. A family of probabil i ty measures, uS, on unstable fibers 

U E b/, is said to be conditionally invariant under T, if 

(i) on every fiber U E L / t h e  measure u s is absolutely continuous with 

respect to the Riemannian volume on U, and its density, p~(x), 

x E U, is H51der continuous (see a convention below); 

(ii) for any x C U1 E/4  and Tx  E U2 E bl we have 

u X Pu1 ( ) = ( T - 1U2)  (Tx) (1.3) 

Convention.  All the densities of measures on unstable and stable fibers 

are assumed to be H61der continuous with the same HSlder exponent c~, 

as the derivative of the map T. 

T h e o r e m  1.1. There is a unique conditionally invariant family of prob- 

ability measures, uS, on fibers U E bt+. Any other family of probability 

measures on U E bt+ with HSlder continuous densities will converge, 

under naturally defined action of T (see Sect. 3, to this unique family. 
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274 N. CHERNOV and R. MARKARIAN 

Remark.  The family u~, U E b/+, is a part  of a 'bigger' conditionally 

invariant family of probabil i ty measures u~, U E b/~, ' inherited' from 

the Anosov diffeomorphism T : M ~ --+ M ~ with the Markov part i t ion 

~ ' .  The densities p~(x) of the measures u~, U E/d '  satisfy the equation 

[23] 
p ~ ( x ) _  lim JU(T-ny) (1.4) 
P~r(Y) n-,~ JUn (T-nx ) 

for all x, y E U C L/~. Note that  this equation defines the densities p~ 

and measures u~ completely, because of normalization. 

Remark.  If the Anosov diffeomorphism T : M ~ --+ M ~ is of class C 2, then 

the densities p~ are at least Lipschitz continuous on every unstable fiber 

u, see [23]. 

Remark.  The invariance condition (1.3) implies the following. Let n _> 1, 

U E/d  and T n(U A M_n) = U1 U . . .  U UL for some fibers U1,. �9 �9 , UL E ld. 
Then 

L 

u { ( T - n ( A N M n )  f~U) = ~ u { ( T - n U i ) . u { i ( A A U i )  (1.5) 
i = 1  

for any Borel set A C M. This is the analog of the Chapman-Kolmogo- 

rov equation in the theory of Markov processes, see [23]. 

The next three theorems are related to the evolution of measures on 

M under the action of T. Denote by Ad the class of all Borel measures 

on M.  For any # E M we put  I]#ll = #(M) .  We denote by T. : 3,t --~ M 

the adjoint operator  defined by 

(T.#)(A) = # (T - I (A  C~ M1)) 

for any Borel set A C M. We denote by T+ the (nonlinear) transforma- 

tion of Ad defined by the normalization of the measure T.#: 

T,p T.~ 
T + # -  ]]T.#I ] - # (M_I)  (1.6) 

We denote by M ~ ,  n > 1, the class of Borel measures suppor ted  

on M~. Obviously, Trim = M~. We denote by M~_ C M the class 

of measures supported on M +  whose conditional measures on fibers 

U E b/+ coincide with the above conditionally invariant measures u~. 
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ERGODIC PROPERTIES OF ANOSOV MAPS 275 

Any measure # E A4~_ is then completely defined by its factor measure 2 

, /t, on the set b/+ (this set can be natural ly equipped with a metric, 

see Sect. 2. 

Definition. A measure p E A4 ~ is said to be conditionally invariant + 
under T if T+p = #, i.e. there is a A > 0 such tha t  # ( T - 1 A  N M+) = 

),p(A N M+) for any Borel set A C M. 

Theorem 1.2. The map T has a unique conditionally invariant proba- 

bility measure p+ E A/U +. For any other p E A4~_ the sequence T~_# 

weakly converges, as n --~ oo, to #+. 

We also call this unique measure #+ the eigenmeasure of the map 

T, and the corresponding factor A+ = A E (0, 1) the eigenvalue of T. 

Theorem 1.3. For any smooth measure p on M (see a convention below) 

the sequence T~_# weakly converges, as n -~ oo, to the eigenmeasure #+. 

Furthermore, the sequence ~+n. T,n# weakly converges, as n --+ oc, to 

the measure c[p] �9 #+,  where c[p] > 0 is a linear functional on smooth 

measures on M.  

Remark. The conditionally invariant measure p+ constructed in this 

way is very natural  according to the above Pianigiani-Yorke physical 

motivation [22]. This measure coincides with Sinai-Bowen-Ruelle mea- 

sure in the case H = ~.  

Convention. We call a measure on M smooth if it is absolutely contin- 

uous with respect to the Riemannian volume on M, and its conditional 

measures on unstable fibers have HSlder continuous densities (cf. also 

the previous convention!). 

This theorem shows tha t  the eigenmeasure #+ can be natural ly ob- 

tained by iterating smooth measures under T on M. 

One can think of an experiment in which we place N = N(0) points 

(particles) in M at random according to a smooth probability distri- 

bution #. Then those points are mapped by successive iterations of T. 

2 For  any  m e a s u r e  # C fld i ts  f a c to r  m e a s u r e  t2 on  H is de f ined  by  t2(W) : # ( U u e w U )  

for any Borel subset W C b/. 
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276 N. CHERNOV and R. MARKARIAN 

The number  of points that  stay in M (do not escape) after n iterations, 

N(n) ,  is approximately 

N(n)  ~ N(O) . c[p] . e - n l n  ;~_1 (1.7) 

We call "y+ = in/~+1 the escape rate, cf. [10, 12, 11]. 

Next, we show that  the eigenmeasure p+ can be also obtained by 

i terating singular measures supported on individual unstable fibers. 

For any unstable fiber U E U let #~ E M be a (canonical) singular 

probabili ty measure supported on U, which coincides on U with the 

measure u~, described in the remark after Theorem 1.1. 

T h e o r e m  1.4. For any U E bt and any singular measure #u E AA 

supported on U with a HSlder continuous density with respect to the 

Riemannian volume on U, the sequence T ~ p u  weakly converges, as n --+ 

ec, to #+. Furthermore, the sequence of measures )~+n. Tnp~  weakly 

converges, as n -+ oc, to a measure supported on M+ and proportional 

to #+. 

Proposi t ion 1.5. The function e(U) on the set of unstable fibers U ELt 

defined by 

. : e ( u )  . ( 1 . 8 )  

is bounded away from 0 and ce and its restriction on the set of fibers 

U E H+ satisfies the equation 

fu  e(U) dft+(U) = 1 (1.9) 
+ 

where [t+ is the factor measure of the eigenmeasure #+. 

Next, since the set M+ is invariant under T -1, it makes sense to 

define the inverse images of #+ under T., i . e .T . -n#+  for n > 1, by 

(T ,n#+  )(A) = #+(Tn[A M M-n]) (1.10) 

T - n  for any Borel set A C M. In virtue of Theorem 1.2 the measure . #~,  

n _> 1, simply coincides with the conditional measure #+ (./M_~) defined 

by 

#+(A/M_~)  = # + ( d  n M_~) /#+(M_n)  = A+ ~.  #+(A • M-n)  (1.11) 
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T h e o r e m  1.6. The sequence of measures T j n p +  = p+( ' /M_n)  weakly 

converges, as n --+ co, to a probability measure, ~l+ E AA, supported on 

the set ~ = M+ N M_.  The measure ~l+ is T-invariant ,  i.e. 

fl+ ( T -  1 A) = ~l+ (TA)  = ~/+ (A) (1.12) 

for every Borel set A C M .  

Propos i t i on  1.7. The factor measure il+ of the measure ~l+ on the set of 

unstable fibers U E bt+ is absolutely continuous with respect to the factor 

measure it+ of the eigenmeasure #+, and its Radon-Nikodym derivative 

is 
d;7+ 
- - ( U )  : e(U) (1.13) 

where e(U) is the funct ion intwduced in Proposition 1.5. 

We call the  closed set ~ = M +  N M_ the  repeller of the  m a p  T. It  

is normal ly  a Cantor- l ike set. The  T- invar iant  measure  ~+ on ~ can be 

ob ta ined  na tu ra l ly  by i te ra t ing  smoo th  measures  on M as follows. For 

any  probabi l i ty  measure  # E J~4 and  n, m _> 1 we denote  by ~n,rn the  

measure  T~_p condi t ioned on M - m ,  i.e. 

#n,m(A) = T~_p(A N M - m ) "  [T~-p(M-m)] -1 (1.14) 

for any  Borel A c M.  

T h e o r e m  1.8. For any smooth probability measure # on M the sequence 

of measures Itn,m weakly converges, as m, n ~ ~ ,  to the invariant mea- 

sure ~+ on the repeller ~2. Moreover, the sequence of measures #~,m 

defined by 

= A+ �9 T ? u ( A  n (1.15) 

weakly converges, as m, n --+ co, to the measure c[p] �9 ~]+, where e[p] is 

the positive linear functional  on measures, involved in Theorem 1.3. 

Next,  we establ ish the  ergodic proliert ies of  the  invariant  measure  

~+ on the repeller ~. 

T h e o r e m  1.9. The measure ~l+ is an equilibrium measure for  the HSlder 

continuous potential 

g+(x) = - log J~(x)  (1.16) 
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on ft and the topological pressure P(r/+) = - l o g  A+ 1 = - 7 + .  Thus, rl+ 

is a Gibbs measure. 

Corollary 1.10. The measure rl+ is ergodic, mixing, K-mixing and 

Bernoulli. Its correlations decay exponentially fast and it satisfies the 

central limit theorems and its invariance principle. 

Remark.  There are certainly other Gibbs invariant measures on ft, see 

[7]. Some particularly interesting ones are the measure of maximal en- 

t ropy and the Hausdorff measure [14]. Our measure rl+ is the only one 

generated by originally smooth measures # on M, in the sense of Theo- 

reins 1.3 and 1.8 and the original Pianigiany-Yorke philosophy [22]. Let 

us note that  Theorems 1.3 and 1.8 cannot be obtained by the s tudy of 

the symbolic dynamics on the repeller f~ alone. 

T h e o r e m  1.11. The sum of positive Lyapunov exponents of the map T 

is 

X++ =/f~ log JU(x)d~l+(x) > 0 a.e. (1.17) 

and the sum of negative Lyapunov exponents of T is 

)C~+ = log J~(x)drl+(x) < 0 a.e. (1.18) 

The variational principle 

- 7 +  = h~+ (T) - ~ log J~(x) drl+(x) 
(1.19) t 

= sup{hv(T) - [ _  log JU(x) d~/(x)} 
d~t 

holds, where hn(T ) denotes the Kolmogorov-Sinai entropy of the measure 

~, and the supremum is taken over all T-invariant probability measures 

on the repeller ~. The left equation in (1.19) is equivalent to 

;~++ = h~+ (T) + 7+ (1.20) 

The equation (1.20) generalizes Pesin's formula for smooth hyper- 

bolic maps, for which h = )/+ and 7+ = 0. This equation can be 

understood as follows. The exponential rate of separation of nearby 

trajectories, characterized by X +, contributes to both the chaoticity of 
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the dynamics on the repeller, measured by h(T),  and the scattering away 

from the repeller measured by the escape rate 7+. 

In a particular case, where dim M' = 2, let 6 u and 6 s be the Haus- + 

dorff dimensions of the invariant measure r/+ on unstable fibers U C M+ 

and on stable fibers U C M_, respectively. 

Theorem 1.12. Let d im M = 2. According to Manning's  formula [18], 

we have 

h~+(T) 6 ~- + - 6  s - (1.21) = + ~ +  = +X~+ 

This agrees with Young's formula [25] for  the Hausdorff  dimension of 

the measure ~l+ : 

HD(rl+ ) = h ~ + ( T )  X X~+ = 6 + +  + 

By reversing the time, we can define the eigenmeasure #_ on M_ for 

the map T -1, whose eigenvalue is X_ E (0, 1). We then can define the 

corresponding invariant measure r l_ on the repeller f~. These also have 

all the properties described in the above theorems. The measure ~]_ and 

the values of ,~_ and ;g=L are, generally, different from the previously 7/_ 
+ 

described measure r/+ and the quantities A+ and X~+, see some examples 

in [4]. However, there are remarkable exceptions. 

Definition. We say that  the repeller ~2 is t ime-symmetric  if ~/+ = ~_, 

T h e o r e m  1.13. The measures ~l+ and ~l- on the repeller ~2 coincide if  

and only i f  there is a constant Z > 0 such that for every periodic point 

x E ~, T k x  = x, we have 

det D T k ( x )  = J~(x)  . J~(x) = Z k 

Moreover, the repeller ~ is t ime-symmetric  i f  and only if Z = 1. 

Coronary  1.14. I f  the original Anosov diffeomorphism T : M '  -+ M '  

preserves an absolutely continuous invariant measure on M' ,  then the 

repeller ~ is t ime-symmetric.  

The history of the subject goes back to 1979, when Pianigiani and 

Yorke [22] constructed conditionally invariant measures for expanding 
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(noninvertible) maps. Their results are analogous to our Theorems 1.2 

and 1.3. In 1981-86 Cencova [3,4] undertook a detailed study of both 

invariant and conditionally invariant measures for smooth Smale's horse- 

shoes (her results are a particular case of our Theorems 1.1-1.8. In 1994, 

Collet, Martinez and Schmitt [6] constructed invariant measures on the 

sets of nonwandering points for Pianigiani-Yorke transformations (their 

results are similar to our Theorems 1.6-1.9. In a later manuscript [7] 

the same authors constructed conditionally invariant measures for some 

symbolic subshifts of finite type. Smooth hyperbolic systems other than 

horseshoes were first considered in this context by Lopes and Markarian 

recently [16]. They studied an open billiard system - a particle bouncing 

off three circular scatterers placed sufficiently far apart. Their results 

are a particular case of our Theorems 1.2, 1.3, 1.6, and 1.9-1.12. The- 

orem 1.13 applies to open billiards, answering a question posed in [16]. 

Let us also point out physical papers by Gaspard et. al. [9,10,11,12,15] 

in which the dynamics on repellers was discussed and some equations, 

like our (1.7) and (1.20), were conjectured and their connections with 

other equations in statistical physics established. 

From measure-theoretic point of view, our systems resemble proba- 

bilistic Markov chains with absorbing states. For such chains, condition- 

ally invariant distributions (called quasi-stationary distributions) have 

been studied in [8,19]. 

The purpose of the present paper is threefold. First, we cover much 

larger classes of smooth hyperbolic systems with 'holes' than the previ- 

ous papers did. Second, we collect all the existing results in this direction 

scattered in other papers, add some new ones (e.g., 1.13 and 1.14), and 

present the complete (up-to-date) program for studying smooth hyper- 

bolic repellers. Third, we simplify and improve the matrix techniques 

for the construction of conditionally invariant measures used by Cencova 

[4]. The matrix method she used goes back to Sinai [24], but its real- 

izations are sometimes lengthy and heavy, as it unfortunately happened 

to [4]. In our framework, this method works quite effectively and eas- 

ily. Moreover, at present it is nearly the only workable method in the 

context of systems with countable Markov partitions, like billiards with 
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'holes', open Lorentz gases [11,12] and other models of physical interest. 

We sharpen the matrix method preparing it for an attack on billiards, 

but such an attack is beyond the scopes of this paper. 

The paper is organized as follows. Section 2 provides necessary re- 

sults on Markov partitions and symbolic dynamics for Anosov diffeomor- 

phisms. Section 3 contains a proof of Theorem 1.1 and other properties 

of conditional measures on unstable fibers. In Section 4 we describe, 

in general terms, the matrix techniques for constructing invariant mea- 

sures. Then we construct the conditionally invariant measure p+ prov- 

ing Theorem 1.2. In Section 5 we prove the limit theorems 1.3 and 

1.4 along with Proposition 1.5. In Section 6 we construct the invariant 

measure r]+ and prove statements 1.6-1.8. In Section 7 we prove the 

ergodic and fractal properties of the measure 7+ described by the state- 

ments 1.9-1.14. In Section 8 we discuss possible generalizations of our 

main results and related open problems. Appendix provides necessary 

techniques from the theory of positive matrices. 

Acknowledgements. R.M. is indebted to S. Martfnez for introducing 

him to the subject and stimulating discussions. This work was initi- 

ated during the authors' visits at Princeton university, for which we are 

grateful to Ya. Sinai and J. Mather. Special thanks go to Ya. Sinai who 

mentioned to us Cencova's papers. This work was essentially completed 

when N.Ch. visited IMERL, Facultad de Ingenierla, Uruguay, for which 

he is the most indebted. N.Ch. acknowledges the support of NSF grant 

DMS-9401417. 

2. Background on Anosov diffeomorphisms 
This section provides necessary tools from the theory of Anosov dif- 

feomorphisms. It is known that Anosov diffeomorphisms enjoy strong 

ergodic properties if they are of class C l§ not just C 1, i.e. 

I IDT(x) - DT(y)  II <_ C~.  [d(x, y)]~ 

for some Ca > 0, where d(x, y) is the distance in the Riemannian metric. 

The constant ~ E (0, 1] will be fixed throughout the paper. 
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The local unstable manifolds Wr x C M', are defined by 

W~(x)=  { y c  M ' :  d(T~x,T~y) <_e Vn <O} 

for small e > 0. Similarly, local stable manifolds W[(x) are defined 

taking positive n. 

It is known tha t  these manifolds are 'as smooth as the map'  T, see 

[1]. Precisely, they are of class C 1+~, i.e. the tangent  space Ex u is HSlder 

continuous along each W ~, with the HSlder exponent ~, and the same 

is true for E s along stable manifolds. The tangent  bundles E u and Ex s 

over the whole of M '  are also HSlder continuous [1,17], but the exponent 

may be different from ct. 

Therefore, the Jacobians JU(x) and JS(x) are HSlder continuous 

function on M'.  Moreover, the restrictions of log JU(x) on unstable 

manifolds are HSlder continuous with the exponent c~: 

l log JU(x) - log JU(y)l <_ C j .  [du(x, y)]C~ (2.1) 

with some Cj > 0, for all x, y E U, U E L/' (the same is true for js ,  of 

course). Here and elsewhere du and ds are intrinsic metrics on unstable 

and stable manifolds, respectively, induced by the Riemannian metric 

on M r . 

For any x, y C M '  we put 

[x, y] = w s ( x )  n W (y) 

There is a 8 > 0 such tha t  if d(x, y) < ~, then [x, y] consists of a single 

point. A subset R C M'  is called a rectangle if diam R < ~ and Ix, y] E R 

whenever x, y E R. A rectangle R is called proper if R = in tR and 

for any point x E R the sets W~(x) • OR and W~(x) A OR have zero 

Riemannian volumes in the manifolds W~(x) and W~S(x), respectively. 

For x E R we put 

•)  = n R 

Recall [2] tha t  R' C R is called a u-subrectangle in a rectangle R if 

W~(R, x) c R' for all x E R'. Similarly, R' c R is an s-subrectangle in 

R if WS(R, x) C R' for all x E R'. 
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A Markov part i t ion of M '  is a finite covering 7U = {R1, -R2, �9 �9 �9 , RI,} 

of M' by proper rectangles such that  

(i) intRi n intRj = ~ for i r j ;  

(ii) if x c intRi and Tx E intRj, then TWO(x, Ri) D W~(Tx, Rj) and 

T W S ( x ,  R i )  C W S ( T x ,  R j ) .  

Equivalently, for any Ri, Rj  and n _> 1 such that  int(TnRi NRj) # 2J 
the set T~Ri Cl Rj is a u-subrectangle in Rj and Ri • T-~Rj is an s- 

subrectangle in Ri. 

Every topologically transitive Anosov diffeomorphism T : M '  --* M '  

has Markov parti t ions of arbi trary small diameter. 

We work with a fixed Markov part i t ion 7U of a sufficiently small 

diameter. 

For every z E Ri we define ~he project ion h~z : Ri -+ WU(z, Ri) by 

h~z(x) = [x, z]. For every x E Ri this is a one-to-one map from WU(x, Ri) 
to W~(z, Ri), which is called canonical isomorphism or holonomy map. 

This map is absolutely continuous in the sense that  its Jacobian with re- 

spect to Riemannian volume on unstable fibers is bounded and positive. 

Moreover, the Jacobian DhSz(X) of the map h~ : WU(x, Ri) -+ WU(z, Ri) 
satisfies the Anosov-Sinai formula [1] 

~t ?.t s DhS(x) = lira J'~(x)/J'~(hz(x)) 
7%--+00 

The Jacobian of the holonomy map is HSlder continuous in the following 

sense: for any x, y E WU(x, Ri) we have 

IDh~z(X) - Dh~z(y)l < C'. [d~(x, y)]~' 

and 

(2.2) 

IDh z(X)l < exp (C' . [<(x, (2.3) 

for some constants C'  > 0, c~' > 0. (For proofs of these results, see for 

example, the book by Marl6 [17], Chapter  3, Lemmas 2.7 and 3.2). 

We now recall the basic definitions of symbolic dynamics. A transi- 

tion matr ix A' = (A~j) of size I '  x I '  is defined by 

, ]" 1 if i n t R i A T - l ( i n t R j ) ~ ; g  
AiJ = ]. 0 otherwise 
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In the space E' = {1, 2 , . . . ,  I '}  z of doubly infinite sequences ~_ {czi}_~ 

with the product  topology we consider a closed subset  

E ~ 4 , = { w E E ' :  A;i~i+l = 1  f o r  all - o o <  i < oc} 

The left shift homeomorphism a : E~4, --+ E~4, is defined by (a(a_))i = 

cdi+ 1. This symbolic system is called a subshift of finite type, or a 

topological Markov chain. 

There is a natural  projection II : E~, --+ M t, continuous, surjective 

and commuting with the dynamics: II ocr = T o 1I. This projection is 

one-to-one on the set M ' \  UjEzTJ(OR'). 

Now, the covering 7~ = {R1 , . . .  , RI} of M = M '  \ H defines a I • I 

submatr ix  A = (Aij) of A/. We call A the transition matrix for the 

restriction of T on M.  It defines a new subshift of finite type  by 

E A = { C ~ E E = { 1 , . . . , I } z ,  A~i,~i+l =1  f o r  all i E Z } .  

Mixing assumption.  The matrix A is irreducible and aperiodic. This 

means that  a : ~ A  --+ ~ A  is topologically mixing. Equivalently, there is 

a k0 > 1 such that  A k0 has all positive entries. We call k0 the mixing 

power of A. 

Next, for every n > 0 we denote by 7~n the restriction of the parti t ion 

J~ V TT~ ~ V . . .  V TnJ-~ ~ of M ~ to the set Mn. It is a parti t ion of Mn 

into u-subrectangles of the Markov rectangles Ri. Likewise, 7~-n is the 

restriction of 7U V T-1T~ t V . . .  V T-nT-~ ~ to M-n,  which is a part i t ion 

of M_~ into s-subrectangles of Ri. Also, for any n > 1 let 7~ + be the 

restriction of the  part i t ion 7 ~  of Mn to the set 2/4+ C M~. Note that  

each a tom of ~ +  consists of some fibers U E/g+. 

We equip the sets b / a n d  $ defined in Introduct ion with the following 

metrics. For any U, U' E 14 we put  

du(U, U') = sup{ds(x, [x, y]) : x E U, y C U'} 

if U, U' belong in one Markov rectangle Ri, otherwise we set du(U, U ~) = 

diam M.  Similarly, we define a metric ds on S. 

For any a tom B E T ~ ,  m > 0, we put  

U B = { U ~ U : U c B }  
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For any # E A4 and U E b / w e  will denote by #u  the conditional 

probability measure of # on U. Note that  if two measures, # and #' are 

proportional, then #u  = #~ for all U E/1/. For any U E b( we denote 

by m u  the Riemannian volume on U. The conditional measures satisfy 

the following properties. 

Let n > 1, U C / / a n d  T~(U ~ M ~) = U1 U . . .  U Ul for some fibers 

Ui E/tin. Then  

1 

# u [ T - n ( A  N Mn) V) U] = ~ #u(T-nUi)  �9 (T,~p)Ui (A ;~ Vi) (2.4) 
i = 1  

for any Borel subset A C M. In addition, if the measure #u is absolutely 

continuous with respect to the Riemannian volume m u  on U with den- 

sity fu(x) = d p u / d m u ( x )  and Tnx  E Ui, then the measure (Sr,n#)ui has 

a density on Ui, which is 

fT.~u(T~x) = [#u(T-nUi)]-l  fu(x)/Jr~(x) (2.5) 

We denote by 7-/(G), G > 0, the class of measures # E 34 such that  

their conditional measures #v  on unstable fibers U E b / a r e  absolutely 

continuous with respect to the Riemannia.n volume m u  with densities 

f , ( x )  whose logarithms are HSlder continuous with the exponent c~ and 

constant G > 0: 

l log ft.(x) - log f.(Y)l < G.  [d~(x, y)]~ (2.6) 

for a l lx ,  y ~ U a n d U E H .  

3. C o n d i t i o n a l l y  invariant  m e a s u r e s  o n  u n s t a b l e  f ibers  

In this Section we prove Theorem 1.1 and some lemmas on the evolution 

of measures under T,, that  will be used in the forthcoming sections. 

Proof  o f  Theorem 1.1. Our Theorem 1.1 is in fact an adapted version 

of a result by Sinai for ordinary Anosov systems (without holes). In our 

notations, his result reads 

Fact. [23, L e m m a  2.3]. Let T be a C 2 transitive Anosov diffeomorphism. 

Then  there exists a unique family of conditionally invariant probability 
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measures u~ on unstable fibers U E b/' satisfying (1.3) with Lipschitz 

continuous densities p~(x) = du~ /dmu(x). 

Remarks.  Actually, Sinai constructed measures on stable fibers, but  this 

does not mat te r  because one can take T -1 instead of T. Our map T 

need not be C 2, it may be less regular than Sinai's. This is why our 

densities are only HSlder continuous. 

We now start  the proof. Let # E 7-/(G). Our proof works for measures 

defined on M ~ with (2.6) valid on all U c b/'. Take a fiber U E b/'. The 

measure #n = T.~P on M '  conditioned on U has a density fn(x) = 
dp~,u/dmu(x). Due to (2.5), we have 

- J~(T-ly)"" J~(T-nY) �9 f"(T-nx) (3.1) 

Ju(T- lz ) . . .  Ju(T-nx) f ,(T-~y) 
f~(x) 

A (y )  

for every x, y E U. 

Note that  

du(T-nx, T-~y) < CT)~" du(x, y) 

Since both  j u  and fu are HSlder continuous on unstable fibers, see (2.1) 

and (2.6), we have 

I log JU(T-ny) - log gu(T-nx)l < Cj .  C~A~[du(x, y)]~ (3.2) 

and 

I log fu (T-nx) - log f~ (T-ny) l <_ G" C~/~ n [du(x, y)] ~ 

Hence, the ratio in (3.1) converges, as n --+ oc, to 

~(x,y) = lim A ( x ) / f n ( y ) =  lim J # ( T - ~ y ) / J # ( T - ~ z )  

Moreover, this convergence is uniformly exponential in n: 

Ilog[A(x)/A(y)] - log~(x, y)l <- (cl + c 2 G ) ~  ~ 

with some cl, c2 independent of x, y, U, # and G. 

We define a function p~(x) on U by 

- 1  

p~(x) = (fur(X, xo)dmu(x) ) r(x, xo) 

(3.3) 
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for any x0 E U. 

x0 and is a density of a probability measure, u~, on U. 

calculation that  

o (x) = l i m  
n---+ OO 

and 

The function p~(x) so defined does not depend on 

It is a direct 

(3.4) 

1 log f (x) - log p .(z)l _< (c3 + c4G)   (3.5) 

with some c3, c4 independent  of x, y, U, # and G. 

Obviously, the function p~(x) is bounded away from zero and infinity, 

and it is Hhlder continuous with the exponent c~: 

I logp~(x) - logp~(y)] _< G . .  [d~(x, y)]~ (3.6) 

with 

n = 0  

which is independent  of U. 

The conditional invariance (1.3) now follows from the fact tha t  

--1 t fn(x) = It~,u(T U ) " J~(x) " f~+l(Tx)  

for all x E U, T x  E U ~, which is just  a particular case of (2.5). Taking 

the limit as n --+ oc yields (1.3). 

The uniqueness of the conditionally invariant family of measures 

follows from the convergence to it of any other family of measures with 

Hhlder continuous densities on unstable fibers, under the iterates of T., 

due to (3.4). 

The restriction of the conditionally invariant family of measures @ 

to b/+ will then  satisfy Theorem 1.1. Theorem 1.1 is now proved. 

We now establish a few useful lemmas. 

L e m m a  3.1. There is a constant GO > O, and for any G > 0 there is 

an integer na  ~_ 1 such that i f  # E ~ (G) ,  then T.~# E ~(GO) for all 

n > n G .  

Proof .  It follows from (3.1)-(3.3) that  if # E 7-/(G), then T.~# E 7Y(Gn) 

with 

Gn _< G ~ o~n �9 C ~ A  T + G .  
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Lemma 3.1 is then established for any GO > G,. 

Lemma 3.1 means the following. If the densities of the conditional 

measures Pu on U E 5/ oscillate wildly (G is big), then the map T 

stretching unstable fibers will quickly 'smooth out '  those densities. In 

fact, the HSlder constant Gn decreases basically like a geometric pro- 

gression as n grows. There is a natural  bound, G,,  however, under  which 

the values of G~ will not drop. 

Lemma  3.2. The funct ion p'~ (x) and its logarithm are HSlder continuous 

(with some exponent a' > O) on every Markov rectangle t~ C TC. 

Proof.  The HSlder continuity of p~(x) along every unstable fiber U E L/' 

(with the exponent a)  was established by (3.6). Its HSlder continuity 

along stable fibers (with some positive exponent) follows from the HSlder 

continuity of J*~(x) along stable manifolds and the HSlder continuity of 

the holonomy map (2.3). 

Let i z E 7-/(G0). For any n > 0 and U E N~ denote b y p ~ , u  the 

measure Pn = T,~P conditioned on U. 

Lemma  3.3. For any U E Ltn the above measure I_tn,U is equivalent to u~7 

and 
e_c),n < dpn,U < ec),n 

- d u ~ 7  - 

w h e r e  c > 0 and k E (0, 1) are independent of U, n, p. 

Proof.  This follows from (3.5) with A = ~ and c = c3 + c4Go. 

In the notations of the previous lemma, let m _> 0 and B E 7~,,~ be 

an a tom of the parti t ion 7~m of the set Mm, and U, U' C B two unstable 

fibers. Let A C U and A' c U' be two canonically isomorphic Borel 

subsets, i.e. A' = hSz(A) for any z E U'. 

Lemma  3.4. For any n > m we have 

e -c2~ < "~7(A~) < e ca'~ (3.7") 
- . ~ 7 , ( A ,  ) - 

a n d  

< < (3.s) 
- - 
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with some c > 0 and ~ E (0, 1) independent of U, n, #. 

Proof.  First,  note that  

du(U, U') <_ DsCTA~ 

where Ds is the maximum diameter of stable fibers S E S'. The bound 

(3.7) now follows from Lemma 3.2 and the HSlder continuity of the 

Jaeobian of the ho]onomy map (2.3). The bound (3.8) follows from 

(3.7) and the previous lemma. 

Convention. Withou t  loss of generality, we can assume that  the values 

of c and A are the same in both  lemmas. 

The next three s ta tements  involve the mixing power k0 of the tran- 

sition matr ix A. 

Lemma 3.5. There is a constant/3 > 0 such that for any # E 7-t(Go) and 

Rj E 7-r we have 

inf pu(T  k~ N mko) n U) >_/3 (3.9) 
UEZg 

Proof.  In virtue of the mixing assumption, for any U C /2 and any 

Rj  E Tr we have u~(T-~o(Rj NMk0) NU) > 0. For every i = 1 , . . .  , I  we 

pick an arbi t rary 'representative'  fiber U~ C Ri and from Lemmas 3.3 

and 3.4 it follows that  for any other U C Ri we have 

  (T-k0(Rj n Mk0) n U) _> n Mk0) n 

The bound (3.9) follows with 

Lemma 3.6. There is a/3 > 0 such that for any # E 7-t(Go) and Rj E 7~ 

and all k > kO we have 

inf # u ( T - k ( R j  n Mk) N U) > /3 . sup # u ( T - k ( R j  n Mk) n U) (3.10) 
U ELt U ELr 

Proof .  Pu t  m = k - k0. For U E N, let Tko(U N M_~o ) = U1 U . . .  U UL 
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for some fibers Ut E L/k0. From (2.4) we obtain 

L 

#u(T-k(R~ N Mk) n U) = ~ # v ( T - k ~  . 
l = l  

�9 (T~~ N )Vim) N Ul) 

I 

= ~ Z "v(T-k~ 
i = 1  I : U l c R  i 

�9 (T.k~ N Mm) N Ul) 

Using once again 'representatives' Ui C Ri and Lemmas 3.3 and 3.4, we 

get an upper bound, 

I 

~v(T ~(Rj n Mk) n U) _< e 2c. }-~. ~v(r-k0(R~ n Mk0) n U). 
i = 1  

" Uui (T-m(Rj  N Mm) N (li) 

I 

e2C" ~ u~,i (T-m(RJ N Mm) N [l,z) 
i = 1  

By invoking (3.9), we get a lower bound, 

I 

#u(T-k (Rj  N Mk) n U) > e -2c. ~ #v(T-kO(Ri N Mko) N U). 
i = 1  

I 

> e-2C./3. ~-~Uui(T-~(RjNMm) n(li)  
i = 1  

Then we decrease the value of/3 by a factor of e -4c and complete the 

proof. 

Corollary 3.7. There is a/3 > 0 such that for any # E 7-l(Go) and any 
s-subrectangle D E R4 (in particular for any atom D E 7~-m, m >_ O) 
and all k >_ ko we have 

inf #u(T-k(D N Mk) N U) > ~ .  sup #u(T-k(D N Mk) N U),  (3.1t) 
UEbf - -  UES/ 
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Without loss of generality, the values of/3 E (0, i) are assumed to be 

the same in these statements. 

4. Condi t ional ly  invariant measure  #+  o n  M+ 

In this section we prove Theorem 1.2. First, we describe the concepts 

on which our proofs in this and the following sections are based. 

We invoke the Perron-Frobenius theorem for positive matrices and 

related techniques developed by Sinai and Cencova. One can think of 

the matrices we will work with as finite-dimensional approximations to 

the usual Perron-Frobenius operator on (infinite-dimensional) space of 

measures. To clarify this connection, let us sketch how these matr ix  

techniques work for an arbi t rary measurable t ransformation T : M --+ 

M. 

The adjoint operator, 7",, on the space of measures on M acts by 

T,#(A) = #(T-1A) for any measurable subset A C M. Construct ions of 

the invariant measures and studies of their statistical properties usually 

rely on the convergence of the sequence of measures #~ = T,n#, as n --+ 

oe, to a T-invariant measure #0 on M.  To s tudy this convergence, one 

can take an increasing sequence of finite partitions ~i < ~2 < "'" of M, 

where ~m = {A~ m) A (m)~, that converges to a partition into single 
' ' ' "  ' k m J  

points. Then one can represent any measure # on M by a sequence of 

(row) vectors Pro(P) with components (Pm(#))i (m) = #(A i ), I < i <  kin. 
A probability measure p is represented by unit  vectors, ]p,~(p)] = 1, the 

norm I" ] for (row) vectors being defined below. Then, under certain 

regularity conditions tha t  we leave out here, the weak convergence of a 

sequence of measures #n, as n --+ oc, to a measure #0 is equivalent to 

the componentwise convergence of the sequence of vectors Pm(Pn), as 

n --+ ec, to the vector P,~(#O) for every m >_ 1. 

For a fixed m _> 1 and a measure p, the vectors p~(p) and pro(T.#) 
are related by 

pm(T,u) = pm(p)H,~(>) (4.1) 

where II~(#) is a k~ •  matrix with components 
(.~) (m) 

(II,~(p))ij = p(T-1A~ ~) A A i ) /p(A i ) 

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997 



292 N. CHERNOV and R. MARKARIAN 

(m) i). Therefore, we have (we assume # (A  i ) r 0 for all rn, 

pm(T,n#) = p~(#)I I~(#)  �9 I Im(T,#) . . -  IIm(T,n-1/~) (4.2) 

If the partitions ira have nice geometric properties (e.g., they  are Markov 

partitions or alike), then the matrices in (4.2) are very close to each 

other, and so one can replace their product  by H m with some matr ix  

I'Im close to all of the matrices in (4.2). All these matrices have non- 

negative entries, and usually some power, II~ m, nrn >_ 1, has all positive 

entries. In that  case Perron-Frobenius theorem for positive matrices, 

see Appendix, applies. It provides a (unique) positive unit eigenvector, 

1O,~, for the matr ix  H,~, corresponding to its largest eigenvalue A,~ > 0 

(of multiplicity one). We call ib,~ the Perron eigenvector and ~n  the 

Perron eigenvalue. Moreover, for any other positive unit vector qm the 

sequence of vectors - ~ qII m converges, as n --+ oc, to/5,~ (exponentially fast 

in L = n/n,~) .  These facts can be used to prove tha t  for some suitable 

probability measures # the vectors p~(T.~#) will be close to the Perron 

eigenvector Prn for large enough n. 

Now, the limit of the Perron eigenvectors/Srn, as rn --+ ec, defines a 

measure #0 on M, which will be the weak limit of T.~#, as n --+ oc. The 

details of this scheme depend on the specific dynamical  system and spe- 

cific sequence of partitions ~,~. Various versions of this matr ix  method 

work well for systems with sufficiently strong hyperbolic or expanding 

properties. 

We prefer this matr ix  machinery to the Perron-Frobenius functional 

operator techniques for two reasons. First, it allows us to compute some 

characteristics of limit invariant measures which are not readily avail- 

able otherwise, like the ones in our Propositions 1.5 and 1.7. Second, 

this machinery looks flexible enough to work well for nonuniformly hy- 

perbolic systems, in particular billiards, where other techniques fail. 

We now make a few conventions. As it is already clear, we will s tudy 

vectors p whose components correspond to atoms A E ~ of some finite 

partitions ~ of M. We will not enumerate  or even order those atoms, so 

our 'vectors' will be just  collections of numbers, denoted by PA, A E 4. 

Likewise, we will work with 'matrices'  II whose entries correspond to 
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(ordered) pairs A, B of atoms of the parti t ion ~, and we denote them by 

IIA,B. Despite the lack of order, we think of our vectors as row vectors, 

and the product  q = pII is natural ly defined to be another  (row) vector 

with components  

qB = Z pAIIA, B 
A ~  

Next, for any (row) vector p we define its norm by 

Ipl-- ~ IpAI 
A~ 

and we call a positive vector p a unit vector if Ipl -- 1. For a positive 

matr ix  H the ratio of rows, P,  is defined by 

P = m a x A , , A , , , B e ~  I - I A , , B / I I A , , , B  

Any two positive matrices, 1] and II', are said to be close with the 

constant of proximity R > 1 if for all A, B E ~ we have 

R -1 < HA,B/n'A, B <_ R 

We now begin the proof of Theorem 1.2. Recall that  any measure 

# C M~_ is supported on M+, has conditional measures @ on fibers 

U E H+ and is then completely defined by its factor measure/2 on H+. 

Due to Theorem 1.1 the operator 77, and the transformation T+ leave 

Ad~_ invariant. The conditionally invariant measures p E M g  are fixed 

points of the t ransformation T+. 

Consider the increasing sequence of partitions ~ +  < ~ +  < . . .  of 

M+ defined in Sect. 2. 

Any measure p E M~_ can be represented by a sequence of (row) 

vectors 

= : B �9 n + }  

The weak convergence of a sequence of measures, #~ -* #, in M~_, 

is equivalent to the componentwise convergence Pm(Pn) ~ Pro(P), as 

n --~ oc, for every m > 1. 

According to (4.1), for any # �9 M~_ and k _> 1 we have 

pm(T.k#) = pm(p)II(m k)(") (4.3) 
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where I I~  ) (#) is a matrix with components 

{1*(T-k[B " n Mk] n B')/1*(B') : B' ,  B"  e ~ + }  (4.4) 

(here B'  is the 'row number '  and B" is the 'column number ') .  Note 

that  if 1.' is proportional to 1., p' = a .  1. with some constant a > 0, then 

II~ ) (#') = n ~  ) (1.) for all m, k _> 1. 

Remark.  Some entries of H~ ) (1.) may not be defined by (4.4) if #(B')  = 

0. In that  case we can define them arbitrarily without doing any harm 

to the equation (4.3). We simply pick a U C B'  and set the component 

(4.4) to ~ -~ " Uu(T [B ~ Mk] n U). 

Next, the equation (4.3) directly implies that  

pm(T~1*) = Pm(1*)II~)(1*) (4.5) 

Ipm(1*)n~)(1*)l 

n(m+k), , Lemma 4.1. For any m > 1 and k > ko the matrices m [p)~ p E 

M~_, satisfy two conditions: 

(i) the ratio of its rows is bounded by P =/3-1: 

>(T-m-k[B '' A Mm+k] A BI)/#(B~I) </3_ 1 (4.6) 
/3 -< 1*(T-m-k[B" n Mm+k] n B~)/1*(B~) - 

for all B~, B~, B" e ~ +  ; 
ri(m+k), , _(m+~) (ii) the matrices m i1.1) and nm (I'2), for any 1.1,1.2 E Ad~_, are 

close to each other with the constant of proximity R = exp(cAm), i.e. 

e_cAm < 1*l(T-m-k[B '' N Mm+k] A B')/1*I(B') < ecAm (4.7) 
- m ( T - m - k [ B "  n Mm+k] C~ B ' ) / m ( B ' )  - 

for all B', B" r Tr +. 

Proof.  Put  H+,B = {U E H+ : U C B} for B C 7-4+. Then the 

components of the matrix II (re+k) (1.) can be expressed by 

1*(T-m-k[B '' N Mm+,v] N B') 

1*(B,) (4.8) 
_ 1 s ~/(T-m-kEB" ~ Mm+k] n U) d#(g) 

#(UB,,+) B,,+ 
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For any B" E g +  there is an a tom D E 7~_,~ such tha t  T - m t ~  '' = M+ 71 

D. So, for any k > 0 we have T - m - ~ [ B " N M m + k ]  = T - k [ D N M k l  A M + .  

Now, the  es t imate  (4.6) follows from (4.8) and Corollary 3.7. 

To prove (4.7), notice tha t  the set T - k I D  N M~] is a finite union of 

s-subrectangles (some a toms of 7-r Thus,  for any two unstable 

fibers U, U' C B '  the sets T - k [ D  N Mk] N U and T - k I D  Cl Mk] N U' are 

canonically isomorphic, and L e m m a  3.4 implies 

e_C;~ < u~7(T-k[D N Mk] N U) < eCam (4.9) 
- u~7,(T kiD fl Mk] N U') - 

This and (4.8) prove (4.7). Lemma  4.1 is proved. 

We continue the  proof  of Theorem 1.2. For any rn >_ 1 a n d / 3  E g +  

we pick an arbi trary ' representative '  unstable fiber D'B C /3. For any 

rn > 1, k > 1, denote  by I:I~ ) the matr ix  with components  

{.~B,(T-k[B" n ink] n 0 . , ) :  B ' ,B"  en+~} (4.10) 

Note tha t  1)~ ) = I I~  ) (/2) for any measure /2 E M ~  suppor ted  on the  

union of representat ive fibers UB, B E P~+, and such tha t  /2(DB) > 0 

for all B E 7~+. Thus,  the matr ix  u,~ , k > k0, satisfies the bound  

ii(,~+~), , (4.6) on the ratio of rows and is close to any ,~ /#), # E M~_, with 

the constant  of proximity R,~, see (4.7). 

According to the Perron-Frobenius theorem, provided in Appendix,  

the mat r ix  l~I (rn+k~ has a positive unit  (row) eigenvector, /5,~, corre- 

sponding to its largest eigenvalue. 

We put  

"Y = max{/~, 1 --/~/2} 

and fix an rn 0 such tha t  

(1 - ;~ )e  2c~'~~ < 

Proposition 4.2. There is a constant C1 > 0 such that for  all rn > rno, 

rnl = rn + ko, and n > rn we have 

Ipm(T~U) - ~ 1  -< Cl('~ ['~/'~1] + )"~) 
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Proof .  Pu t  L = In/m1] and 1 = n - r o l L ,  so that  n = r o l L + l ,  

0 _ < l < m l .  Then 

T ~ = ~T l , i i (ml) .T l ,ii(ml) . . .  II(ml) 'T(L-1)ml+l , p ~ ( , ~ )  p . ~  . m  .~ ~ . ~ J  ~ ( T ? 1 + %  ~ ~ ,  m 

and 
pro(Trip) 

p ~ ( T ~ u ) -  ]pm(T,~u)] 

Theorem A.6 now implies Proposit ion 4.2. 

Next, for any m > 1 _> 1 and any vector Pm whose components  corre- 

spond to atoms B E 7~ +,  we denote by Pmil the vector with components  

B c B '  

corresponding to atoms B'  E gz +. 

Proposi t ion 4.3. For any 1 >_ 1 there exists a l imit  

rl = lira [gm+ l 
T~-->CX) 

The sequence of  vectors rl satisfies the equations 

Irll = 1 and  rl~k = rk (4.11) 

for  all l > k >_ 1. Moreover~ for  all m >_ 1 we have 

I~.~+l - rll _< 4C1"/m (4.12) 

Proof .  Let # C A4~, 1 > 1 and n > m ( >  l) be large enough. For any 

s > n ( n  + ko) Proposit ion 4.2 yields 

[ p m ( T ~ p )  - -  ~3m[ ~ 2C1"7 m 

and 

T* By using an obvious fact that  p ~ , ~ ( + # )  = p,~(T~#), we get 

]P.~+~- ~ 1 - <  [b .~ -  b~+.~] _< 4c1~ "~ (4.13) 

Thus, for any 1 > I the sequence of vectors )5<t, n _> 1, is a Cauchy 

sequence, so it converges to a vector that  we denote by rt. Now (4.12) 

follows from (4.13). It, in turn, readily implies (4.11). Proposit ion 4.3 

is proved. 
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Due to (4.11), the sequence of vectors rz, l _> 1, specifies a probability 

measure #+ E M ~  such tha t  Pl(#+) = rl for all l _> 1. 

Corollary 4.4. For any measure # E M~_ the sequence {T~#} weakly 

converges, as n -+ oo, to #+. Moreover, for all l >_ 1 and n > 

m~{m~,  t 2 } we have 

Ipz(T~_~) - p~(~*+)l ~< 02~ ~ ,  

with some constant C2 > O. 

Clearly, T+#+ = #+ and 

T .#+  = A+#+ with A+ = #+(M_I)  

Theorem 1.2 is now proved. 

5. Limit t h e o r e m s  for  the measure  #+ 

Here we prove Theorems 1.3 and 1.4. The proofs require the extension 

of the previous analysis from the class of measures M~_ to the larger 

classes Adn. 

For any measure # C M n  we denote by #u its conditional measures 

on unstable fibers U c Mn, and by/2 its factor measure on Hn. For any 

measure # E M n  we can consider a finite sequence of vectors, 

Pro(,) = { , ( m :  B ~ 7 G }  

for 1 _< m _< n. Note tha t  if we have a sequence of measures #~ E M n ,  

for which the sequence of factor measures /sn weakly converges, then 

its limit is a factor measure/5 of some # E AA~_. This is equivalent to 

a componentwise convergence Pm(#n) ---+ P~(#),  as n --+ oc, for every 

m > l .  

According to (4.1), for any n _> m > 1, k >_ 1 and # E M ~  we have 

T.k# C Mn+k and 

where II~ ) (#) is the matr ix  with components 

b(T-k[B '' n Mk] ~ B')/~(B') : B', B" ~ ~} 
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(here, as in (4.4), /3 / i s  the 'row number '  and /3 i ,  is the 'column num- 

ber'). The  equat ion (4.5) holds wi thout  changes. The  remark  before 

Lemma  4.1 also applies, but  now B',/31, are a toms of 7 ~  instead of 

7~ +. The  following lemma is an analog of Lemma  4.1: 

L e m m a 5 . 1 .  L e t #  E 7~(G) with some G > O. Then for  any m > 1, 

k >_ ko and n >_ m + na  the matrix l~,~ IP~) for the measure p~ = 

T,n# E fl,4~ satisfies two conditions: 

(i) the ratio of its rows is bounded by/3 -1: 

fl < p~(T-m-k[B 1' N M.~+k] N Bi)/pn(Bi) < /3-1 (5.1) 
-- /31 1 -- #~(T-m-~[B" n M~+k] N 2)/Pn(B2) 

for all B~, B~,/3" E ~ ;  

(ii) for all/31/31, E 7~m we have 

e_2~a,~ < p~(T-~-~[/311N M~+k] N/31)/#~(/31) < e2~a,~ (5.2) 
- ~+(T-~-k[/3,, n M~+k] n B')/~+(B') - 

Proof .  Note tha t  #n E 7-{(G0) due to Lemma  3.1. for /3 ~ ~m- Then  

ri(m+k), , the components  of the matr ix  m /#n) can be expressed by 

~,~(r-~-k[B '' n M~+k] n ~') 

~,~(/31) (~.3) 
1 f -m-k // 

~n(uB,) Jus, u~,v(T [/3 n M~+k] n U) dg~(U) 

For any B" E ~ m  the set D = T-roB"  is an a tom of 7~-m. So, for any 

k _> 0 we have T - ~ - k [ B  '' N M~+k] = T - k I D  N Mk]. Now, the  es t imate  

(5.1) follows from (5.3) and Corollary 3.7. 

The  first par t  of the  proof  of (5.2) repeats  word by word tha t  of 

(4.7), but  then  (4.9) must  be combined with Lemma  3.3. This  gives 

e_2Cx,~ < p~,u(T-kED N Mk] N U) < e2cx,~ 
- @, (T -k [D  N Mk] N g I) - 

for all U, U / C B/. This  and (4.8) with (5.3) prove (5.2). L e m m a  5.1 is 

proved. 

The  following proposi t ion is an analog of Proposi t ion 4.2: 
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Proposition 5.2. There is a constant C 3 > 0 such that for  all m > too, 

m l  = m + ko, n > m and any G > O, # E ~ ( G )  we have 

- -<  + 

It is enough to prove this for p E 7-t(G0) and n G =  0. The proof then 

repeats that  of Proposition 4.2 word by word. 

Combining Propositions 5.2 and 4.3 gives 

Corollary 5.3. Let G > 0 and # E 7-t(G). For every 1 > 1 the sequence 

of vectors p l (T~p)  converges to rt = Pl(P+). Moreover, for  all n >_ 

max{m02, 12} we have 

lPl(T++na#) - Pl(#+)l < C47 'm, 

with some constant C4 > O. 

Corollary 5.4. Let G > 0 and # E 7-I(G). The sequence of factor  mea- 

sures ) n ,  where #n = T~_#, weakly converges, as n --+ oc, to the factor  

measure [~+ on Lt+. 

We now begin the proofs of Theorems 1.3 and 1.4. 

Proposit ion 5.5. Let  G > 0 and # E 7-I(G). The sequence of measures 

#n = T~_#, n >_ 1, weakly converges to the measure p+. 

n G Proof.  Since T+ p E 7-t(G0), we may assume that  # c 7-t(G0). It is 

enough to show that  for every 1 _> 0, k > 0, every a t o m / 3  E 7~l and 

every atom D E 7~_k we have a convergence 

# n ( B  A D) --+ # + ( B  N D) as n --+ oc (5.4) 

In the following, B and D may be also unions of some atoms of 7~t 

and ~_~, respectively, in one Markov rectangle Ri E 7~. Let n >_ 

max{m~,12}. Put  m = [v~]. Then B is the union of some atoms of 

~,~, let us denote them by B1 , . . .  ,BL .  In every Bi we pick a 'repre- 

sentative' fiber 0i C/J i .  Note that  

#n(BND): [ p n , u ( D n U )  d[~n(U) 
r i l l  B 

BoL Soc. Bras. Mat., Vol. 28, N. 2, 1997 



300 N. CHERNOV and R. MARKARIAN 

where Pn,U is #n conditioned on the fiber U and/Sn is its factor measure 

on Un. Due to Lemmas 3.3 and 3.4 we have 

L 

#n(B ~ D) <_ e c ~  ~'~#n,(z~(D) " #n(Bi) 
i = 1  

L 
< e2cAm E ~u  _ ui ( D ) .  Un(B~) 

i = 1  

The corresponding est imate from below with negative exponents also 

holds. In the same way Lemma 3.4 yields 

L 

i = 1  

and the corresponding lower bound with the negative exponent. 

Now, Corollary 5.3, in which we can set l = m, implies 

#~(B N D) <_ 3~)''~ p+(B N D) 

+ e 3~. sup / ,~(D)- IP-~(/<) -P-~(~*+)I 
veu B (5.5) 

< e3C;~'~p+(B N D) + e 3c. sup #~(D).  C47 m 
UcU B 

and, respectively, 

p,~(B n D) > e-a~'mp+(B n D) - e a~. sup #~(D) �9 C47 "~ (5.6) 
UcVt B 

These two bounds readily imply (5.4). Proposition 5.5 is proved. 

The first s ta tement  of Theorem 1.3 now follows immediately. To 

prove the second, it is enough to establish the following: 

Proposi t ion 5.6. For any G > 0 and # E ~(G) the limit 

exists and c[#] > 0. 

Proof.  Clearly, 

T n c [ , ]  = ~L%-xjII, ;11 

n-1  n-1  
f n  ~ ~_ II ,/~ll H IIT.(T~-,~)II II (T~_~)(M ~) 

i = 0  i----0 

(5.7) 

(5.s) 
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Let #n = T~_# for n _> 0. It is enough to show that  the series 

log #n(M-1)  - ~ log #n(M-1) 

~=0 ~+ ~=0 t~+(M-1) 

converges. Note that  #n c ~ St(Go), so we may again assume tha t  

~ ~(G0). 
Now, let Ri E T4 and D = RiC3M_I.  Let /Do 1 = mini #+(Rj  AM_l) .  

Then the bounds (5.5) and (5.6) combined with (3.7) imply that  

e-ac'xm -- PO " C4~/m <- # ~ ( D ) / # + ( D )  < e 3~xm + PO " C47 m 

for all n > m 2 with m = Iv/n]. Therefore, 

log #n (M_I )  < C57V,n 
#+(M_I )  - 

with some constant C5 > 0. Proposition 5.6 is proved. 

Theorem 1.3 is then proved also. 

Remark.  For every G > 0 the convergence in (5.7) is uniform in # E 

7-t(G). In particular, if # E ~(G0) ,  then for all ra > m 2 

oo 

n z f t ' t  

We conclude this section with proofs of Theorem 1.4 and Proposi- 

tion 1.5. The first part  of Theorem 1.4 is a particular case of Proposi- 

tion 5.5. Next, since #~ E 7-t(G0), Proposition 5.6 applies and ensures 

the second part  of Theorem 1.4 with 

A -n ~ ' M  " e(U) = c[#~] = lira + # u ( - n )  (5.10) 
n--+OO 

In virtue of Corollary 3.7, the function e(U) is positive and bounded: 

sup e(U) </~-1 inf e(U) (5.11) 
U E U  - -  U E b /  

This bound and (5.9) imply the following: 

Corollary 5.7. There is C6 > 1 such that for any m >_ 0 and any U E lg 

we have 

C61 < )~-'~ ~ M  " - + # u ~  - ~ )  < C 6  
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Due to (5.9), the normalization (1.9) will follow if we show that  for 

all n _> 0 

A+'~ [, [[T,~#~:]ldp+(U) = 1 
d lA + 

This equation is verified as follows: 

IIT:~vll ~+(  ) =  #~(M_~)d[~+(U)=#+(M_~) A+ 
+ + 

Proposition 1.5 is proved. 

remarkRemark  There is an alternative proof of Theorem 1.4, along 

the lines of [4], based on the following observation. Recall that  the ma- 

trix Ilmm+~~ of. Sect. 4, has the largest eigenvalue A~ +% and the 

Perron row eigenvector p~(#+) .  According to the Perron-Frobenius the- 

orem, see Appendix, it also has a positive column eigenvector, p~(#+) ,  

such that  
m + k  0 * / ~ m + k o  * ~,.. (n+)p.~(~+) = + p.~(n+) 

The sequence of vectors p~(#+) 'converges', as m --~ ec, to the func- 

tion e(U) on L/+ in the following sense: for any U �9 U+ the numerical 

sequence 

{(P~(P+))B, where B �9 Ti+m is such that B D U} 

converges, as m --~ oc, to e(U) exponentially fast in m. We do not 

elaborate this proof here, it is given in full detail in [4] for the case 

where T is a smooth horseshoe 

6. Invariant m e a s u r e  r]+ o n  the repe l l e r  f~ 

Here we prove Theorems 1.6 and 1.8. 

For any n > 1 the measure #(+n) = T , n #  + defined by (1.10) is sup- 

ported on M+ A M_n. Its conditional measures on U N M-n, U C Mr+, 

i.e. u~z('/M_n), they are absolutely continuous with respect to the Rie- 

mannian  volume on U with densities 

;~ , . ( z )  = [ .?:(u ~ M_~)]- lp~(z) ,  z �9 U N M_,~ 
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Its factor measure , /2~ ~ ~ , on b/+ is absolutely continuous with respect to 

/2+, and its Radon-Nikodym derivative is 

d#(+ n) 
dp+ (V) = ~+~..~(V n M_~) 

for U C 5/+, in virtue of (1.11). Due to (5.10), we have 

dh(n) 
~im d~7+ (V) = e(u) 

for any U E b/+. 

Corollary 6.1. The sequence of measures fi(~) weakly converges to the 
measure Po on 5/+ defined by 

d#o(U) = e(U)dh+ (U) 

We now complete the proof of Theorem 1.6. Let k > 1, l > 1, and 

consider two arbi trary atoms B E T~l and D E ig_k. For all n > k we 

have 
#~+n)(B" N D) = #+(Tn[ (B n D) N M_n]) 

: ~+(Tn-k[Tk(8 n D) n M_~+k]) 

= #(n-k)(Tk(B N D)) 

The set Tk(B N D) is an a tom of Tr Due to Corollary 6.1 we have 

= h0{U e 5/+ : U C Tk(B n D)} 

Hence, the sequence of measures p(n) = Tj~#+ weakly converges, as 

n --* oo, to a measure r/+, which is suppor ted  on the closed set /14+ N 

(nn>lM n) = fL The invariance of r/+ under T follows from two equa- 

tions: 
#(+n) (T(B n D)) = Iz;n-k+l) (Tk(B N D)) 

and 

t,'4~ n D)) = ~_~ ~ ~-I)(Tk(B n D)) 

(B and D are the same as above). By taking the limit as n --+ oo, we 

obtain (1.12). Theorem 1.6 is proved. 
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Proposi t ion 1.7 follows from Corollary 6.1. 

We now prove Theorem 1.8. 

Proposi t ion  6.2. For any G > 0 and any measure # E 7-{(G) the sequence 

of measures #~,m defined by (1.13) weakly converges, as m, n --* oo, to 

~l+. 

Proof .  Since T + c #  E 7-/(G0), we may assume that  p E 7~(G0). It is 

enough to show that  for every k, l > 0, every a tom B E ~ l  and every 

a tom D E 7~_k we have 

lira ~.~(B n D) = 7+ (B n D) 

Let m > k and n > I. Note that  r I + ( B O D )  = ~I+(Tk(BND))  and 

#,~,ra(B n D) = #n+l~,ra_t~(Tk(B N D)), and T k ( B  N D) is an a tom of 

7 ~ k + z .  Thus, it is enough to show that  

lira #nm(B)  = ~/+(B) (6.1) 
TYb ~ Tb --+ Oo 1 

Recall that  p(~)(B) ---+ ~]+(B) as n + oo by Theorem 1.6. Thus, 

(6.1) is equivalent to the following: 

lira #n'm(B) - 1 (6 .2 )  

Let #~ = T~_#. The ratio of the above measures can be rewrit ten as 

/~(+'~)(B) 

First, we will show that  

u~(B n M_n) u+(M_.~) 
t ,+(B rq M_m) u~(M_.~) 

,~,,~--+oo /_t+ (B n M _ .  d 

A direct application of bounds  (5.5), (5.6) and Corollary 5.7 gives 

u~(B n M-.d _< e a ~ t t + ( B  n M-.0 + e 4~- C6~"  C47 e~ 

~<(B n M _ . d  
lira = 1 (6.3) 

and 

p ~ ( B  n M _ m )  >_ e - a C ~ p + ( B  n m_.~)  - e 4~ �9 C 6 ~  . C4~ ~ 
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for all n >_ max{m2, 12} and m _> m 2. Due to Corollary 5.7 we have 

- - 

Combining all the previous bounds yields (6.3). 

The equation (6.3) holds, in particular, for l = 0 and B = Ri, 1 < 

i < I. Since M_,~ = U~/=l(/~i N M-m), we immediately obtain 

lira -- 1 
m,~-~oo #~(M-m) 

thus completing the proof of (6.2) and Proposition 6.2. 

The first part  of Theorem 1.8 is then established. 

Proposition 6.3. For any G > 0 and # E ~(G) the limit (see (1.15)) 

lira I[ ;,mll 
m~----+OO 

exists, and c[#] is the same as in Proposition 5.6. 

Proof .  We have 

lira 
f/% t n---~ OO 

�9 ) - n - m , T  ~ " ' M  " II nmll= lira + -m) 

= lim 
~TLln --+ OO 

which is equal to e[#] due to Proposition 5.6. Proposition 6.3 is proved. 

The proof of Theorem 1.8 is completed. 

7. Ergodic properties of the measure r/+ 
Here we prove the ergodic and fractal properties of the invariant measure 

r]+ on the repeller, given by s ta tements  1.9-1.14. 

Let k, I >_ 0, and take arbi t rary a toms/3  E ~z and D E Tg_k. Assume 

that  int(B N D) r ~ and pick a point x E B n D. 

Lemma7.1. There is a constant C7 > 1 independent of x, B, D, k, 1 such 

that 
C71 <_ )~k++l J~+l(T-lx ) �9 rl+(B n D) <_ C7 

Proof.  The set E = Tk(B N D) is an a tom of 7~k+t, and due to (1.13) 

~+(B n D) = rl+iTk(B N D)) = f e(g) df~+(U) 
d M  

E 

Bol. Soc. Bras. Mat., Vol. 28, ~L 2, 1997 



306 N. CHERNOV and R. MARKARIAN 

In virtue of (1.9) and (5.11) we have 

fl < inf e(U) < sup e(U) _< fl-1 
UcS/ UcU 

so that  
8 < v+(B n D) <_ fl_~ 

Next, the conditional invariance of #+  implies that  

=  +k- fu #+(E) 
(F) 

where F = T- I (B  • D) is an a tom of "] '~ -k - I  and U(F)  = {U 6 L/ : 

UNEr 
To est imate this last integral, recall that  the measures u~ on unstable 

fibers U E /g have densities uniformly bounded away from zero and 

infinity, and note tha t  for all U C b/(F) 

0 < const < m u ( F  A U) �9 J~+l(T-Zx) < const < oc 

which follows from the absolute continuity of stable and unstable folia- 

tions, Sect. 2. This completes the proof of Lemma 7.1. 

This lemma immediately implies that  ~+ is a Gibbs measure with 

the potential  g+(x) = - l o g  JU(x) and the topological pressure P(r]+) = 

log I +  = - 7 + ,  see [2]. 

Theorems 1.9 and 1.11 are now proved. Corollary 1.10 most ly fol- 

lows from [2], for more advanced limit theorems than the central limit 

theorem see, e.g., [13]. 
Theorem 1.12 is self-evident. 

We now turn to Theorem 1.13. 

The measure % is also a Gibbs measure, with potential  

g_(x) = log JS(T- lx)  

and topological pressure P(r/_) -- - l o g  A_-I = - 7 - .  The next lemma is 

a direct consequence of Proposi t ion 4.5, [2]. 

Lemma  7.2. The following three conditions are equivalent: 

(i) ~+ = r]_; 
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(ii) there is a constant  Z > 0 such that for  any periodic point  x E ~2, 

T k x  = x,  we have J~(x)  . J~(x)  = Zk ;  

(iii) the func t ions  g+(x)  and g_(x)  are cohomoIogous, i.e. there is a 

constant  R and a H61der cont inuous func t ion  u(x)  such that  g+ (x) - 

g _ ( z )  = R + u ( T x )  - u ( z ) .  

I f  those condit ions are satisfied, then 

- in  Z = R = P ( r ] + )  - P ( • _ )  = ~/_ - 7 +  

Theorem 1.13 now follows immediately. This theorem, combined 

with Proposi t ion 4.14 from [2], gives Corollary 1.14. 

Possible applications of Theorem 1.13 and Corollary 1.14 cover hy- 

perbolic repellers constructed on the base of Hamiltonian systems (those 

preserve Liouville measures that  are absolutely continuous). In partic- 

ular, these include billiard systems, like the open billiard with three 

circular scatterers studied in [16], where repellers are thus always time- 

symmetric. 

Another interesting class of repellers are linear repellers. Let the 

rectangles RI,... , RI be subset in ]R d and all E~ and all E s be paral- 

lel. Let the map T be linear on each Ri, with the constant derivative 

D T  =const  on M,  so that  the functions JU(x) = j u  and j S ( x )  = j s  are 

constant  on M.  In this case the measures r/+ and r/_ always coincide, 

and both  coincide with the measure of maximal entropy on ~2, see [2] 

for definitions and details. In this case the repeller ~2 is, however, t ime 

symmetric  if and only if det D T  = J~ �9 j s  = 1, i.e. if T preserves the 

Lebesgue measure in ]R d. 

8 .  G e n e r a l i z a t i o n s  a n d  o p e n  p r o b l e m s  

In our arguments,  we never essentially relied on the fact that  T was 

a diffeomorphism of a connected manifold, in fact the action of T on 

H = M'  \ M never came into play. All our results hold true under the 

following, more general assumptions: 

Let M be a finite union of disjoint closed domains R 1 , . . .  , R1 in a 

smooth  Riemannian manifold AA. Let T : M -+ 34 be a diffeomorphism 

of M onto its image, which is C 1+~ up to the boundary  OM. We 
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assume the Anosov splitting (1.1) at every x E M,  and require (1.2) if 

the corresponding iterations of T are defined. Let the bundles E~ 's be 

HSlder continuous and integrable over every Ri, so that  Ri is foliated 

by HSlder continuous families of C 1+~ submanifolds W~ ,s such that  

T W ~  '8 = E~ 's at every x E Ri. Assume that  every Ri is a rectangle and 

{R1 .. �9 , R r} is a Markov part i t ion of M in the sense of Section 2. 

Under these assumptions our results remain true. The above setting 

is very convenient for horseshoe-like maps, studied in [4,21]. 

We now discuss what  happens if we relax the mixing assumption in 

Section 2. First, we can classify the rectangles like one does states of 

Markov chains. We call a rectangle/~i  recurrent if its points come back 

to itself under T, i.e. intRi N Tn(Ri A M-n) r 2J for some n _> 1. In 

the trivial case, where all the rectangles are nonrecurrent (transient), 

the sets M+,  M_ and f~ are empty, and the phase space M 'escapes' 

entirely. 

The recurrent rectangles can be grouped, in each group points from 

any rectangle can be mapped  into any other rectangle, so that  the sym- 

bolic dynamics within every group is transitive. 

Let us assume first that  there is only one transitive group of rectan- 

gles R 1 , ' "  , Rz0, and put  M0 = R1 U . . .  t_J Ri0. This group is periodic 

if there is a k _> 1 such that  the periods of all the periodic points in 

M 0 are multiples of k. In tha t  case this group can be divided into 

k subgroups eyelicly permuted by T, and the restriction of T k to any 

subgroup is topologically mixing. The s tudy  of the map T admits a 

s tandard reduction to that  of T k, well known in the theory of Axiom A 

diffeomorphisms [2], so that  we can restrict ourselves to the case k = 1. 

Then the repeller fl belongs in M0. The nonrecurrent rectangles Ri, 

i > I0, can be of three types: isolated (such that  intTnRi N M 0 = 2~ for 

all n E Z), incoming (such that  intTnRi N M0 r ~ for some n > 0) and 

outgoing (such that  i n t T n R / ~  M 0 ~ ~ for some n < 0). The set M+ in- 

tersects only recurrent and outgoing rectangles, M_ only recurrent and 

incoming ones. The measures #-L conditioned on M0 coincide with the 

corresponding measures for the restriction of T to M0. The measures 
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W+ and the escape rates 7+ will be the same for TIM and TIM o. So, non- 

recurrent rectangles do not really affect the properties of the repeller ft 

studied in this paper, they  only may enlarge the sets M• and 'stretch'  

the measures #• accordingly. 

A more involved situation occurs when there are two or more groups 
�9 . . j ~ /  of recurrent rectangles. For simplicity, consider two groups, R~, , I0 

ll II and R~,... ,Rjo, and put M(~ = UR~ and M(~' = URn. If there is no 

connection between these groups, i.e. int(T~M(~ N T'~M~ t) = 2~ for all 

m, n E Z, then we have two trivially independent  repellers in M D and 

M~ t, respectively. On the contrary, if there is a route from M~ to M~', 

i.e. int(TnM~NM~ ') r rg for some n >_ 1, then the picture gets intricate. 

The rate of escape from M(~ is still the same as for the map TIM;, as 

if M(~' did not exist. The escape from M(~ ~, however, is combined with 

the influx of points from M(~. The resulting escape rate from M will be 

than  influenced by three factors: the escape rates from M~, M~' and by 

the fraction of M(~ t ransmit ted  to M(~' after escaping from M(~. We did 

not investigate here these interesting phenomena. 

Another  natural  extension would be to s tudy Axiom A diffeomor- 

phisms rather  than  Anosov ones. Let T : M t ~ M' be an Axiom A 

diffeomorphism with the basic set ft. Let M C M'  be a proper closed 

subdomain such tha t  ft = N~_ooTnM. Then it might be possible to con- 

struct conditionally invariant measures on M+ = N~TnM and invariant 

measures on ft in the same way as we did for Anosov diffeomorphisms. 

We leave this for future researches. 

Lastly, there are nonuniformly hyperbolic diffeomorphisms and hy- 

perbolic maps with singularities, like billiards, which have countable 

Markov partitions and the derivatives growing to infinity at singulari- 

ties. Extension of our results to those models is the most challenging 

problem at present. 

A p p e n d i x  

This appendix contains the Perron-Frobenius theorem on positive ma- 

trices and related results�9 Most of these results are taken from [4]�9 
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Let Vm be the space of row m-vectors, and Vr~ the space of column 

m-vectors. We equip them with norms 
m 

la] = ~ lail, Ib*l = maxl<i<m ]bil (A.1) 
i = 1  

and scalar product  

(a, b*) = albl + ' "  + ambm 

for all a E V,~ and b* E V~. We call vectors a E V,~ and b* E Vr~ positive 

if their components  are all positive. 

Note that  I(a,b*)l <_ lallb*l . 

Let 79,rn be the set of m x m matrices with positive entries: 

A = ( A i j )  ET),~ i f  A i j > O  Y l < _ i , j < _ m  

Stochastic (Ej  Aij = 1) and substochastic (E j  Aij <_ 1) matrices are the 

best  studied classes of matrices in 79,~. 

T h e o r e m  Al . [Pe r ron-Froben ius  theorem] Every positive matrix A E 

T'm has a positive row eigenvector p and a positive column eigenvector 
p * :  

pA = Ap and Ap* = Ap* 

where A > 0 is the largest (in absolute value) eigenvalue of the matrix 

A. These vectors are unique up to a scalar multiple, i.e. the multiplicity 

of A is one. 

We put  p and p* for the Perron eigenvectors of A normalized so that  
m m 

~ P i  = lpl = 1 and ~P iP~  = (P*,P)= 1 (A.2) 
i = 1  i = 1  

For a fixed matrix A E Pro, we introduce other norms in Vm and V~ 

by 
m 

Ilall~ = ~ la~lp~, IIb*ll~ = maxl~j~m(IbSI/P~) 

If the components  of a are non-negative, then 

Ilall~ = (a,p*) and IlaAIl~ =.~llall~ 

(A.3) 

Note that  I(a,b*)l < llallrllb*llc. 
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if 

We will say that  P _> 1 is an estimate of the ratio of rows of A C 7)m 

p - 1  < A i j /Ak j  < P V l < i , j , k  <_ m 

If A satisfies this estimate, we write A E 7).~(P). 

If A c 7)m (P), then the components of its Perron eigenvectors satisfy 

p - 1  ~_ p~/p~ ~_ p, )kP -1 ~_ A i j / p j  ~_ )~P, p - 1  ~_ p~ <_ p 

for all 1 < i , j  <_ m. The norms defined by (A.1) and (A.3) are then 

equivalent: 

P - l i d  I < [[al[~ < rid[ and P-11b*] < [Ib*]l~ < P]b] 

for all a E Vm and b* E V,~. 

The following est imate on the so called coefficients of ergodicity is 

also satisfied if A E Pro(P): 
ft~ 

> a p  

j = l  

Denote by Lm and L~n the orthogonal complements to the Perron 

eigenvectors: 

Lm = {a E Vm : (a,p*) = O} and 

Then we have the decompositions 

and 

L ~  = {b* e V ~ :  (p, b*) = O} 

a = (a,p*)p + ao wi th  ao E L.~ 

b* = (p, b*);* + b~ w i th  b~ c L ~  

LemmaA.2 .  I f  A E 7),~(P), then for  any a E Lm we have 

IlaAll~ <_ ~(1 - P-~lllall~ 

and for  any b* C L m we have 

[IAb*IIr ~_ A(1 - P-2)ilb*IIr 

If A < 1 (this is the case if A is a proper substochastic matrix),  then 

this lemma says tha t  the contraction in the orthogonal subspaces Lm 
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and L m is stronger than that  in the eigenspaces spanned by the Perron 

eigenvectors. 

CorollaryA.3.  I f  A E 72re(P) and 0 = 1 - p - l ,  then 

lira A - h A  n = p* |  
Tb -~  (X9 

where (p* | p ) ~ j  = p~pj is the tensor product of p* and p. Moreover, 

II(A- A n - p *  op) ll  _< 

where Bk, for  a matrix B,  means the k-th row. 

Remark.  If A is a stochastic matrix ( ~ j  A~j = 1), then A = 1 and p~ = 1 

for all 1 _< j < n, and we recover a well known ergodic theorem for finite 

Markov chains. 

We now compare the action on positive row vectors by two positive 

matrices which are close to each other. We say that  B G P,~ is close to 

A E 7)m, with the constant of proximity R > 1 if 

R -1 <_ B i j /A i j  <_ R V 1 <_ i, j <_ m (A.4) 

In the  following statements,  A E 7P,~(P) is a fixed matrix, p is its 

Perron row eigenvector normalized by (A.2) and A is the corresponding 

eigenvalue. We also set 0 = 1 - p - 1 .  

LemmaA.4 .  Let q be an arbitrary positive row vector such that iiqI[r = 1. 

Let B E 7)ra be another matrix close to A with the constant of proximity 

R > 1. Then 

R-11[pA[I, < [[qBIIr _< R[]pd]]~ 

and 

]]qB - pAiI r <_ AO][q- plir + A ( R -  1) 

Lemma A.5. Let B E 7)m be as in Lemma A.4. For any positive row 

vector q E V,~ we have 

qB pA  r 
iiqBil ~ ilpAll ~ <- ORIlq - pllr + 2 R ( R  - 1) 

T h e o r e m  A.6. Let B 1 , B 2 , . . .  ,Bn  E 7)m be matrices, all close to A 

with the same constant of proximity JR >_ 1. For any positive row vector 
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q ~ V ~  we  p u t  q~ = qB1  �9 

we  have  

a n d  

�9 B ~ .  I n  add i t ion ,  a s s u m e  t h a t  OR < 1. T h e n  

qn P IIq, llr <- 2 0 u R n  + 2R(R -- 1)(1 -- 0/{) -1  

qTEr, - p <_ 4 P O ~ R  ~ + 4 P R ( R  - 1 ) ( 1  - OR) 1 
Iqnl 
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