
Nova S~rie 

BOLETIM 
DA SOCIEDADE BRASILEIRA DE MATEMAIICA 

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 315-342 

@~ 1997, Sociedade Brasileira de Matemdtica 
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N. C h e r n o v  2 a n d  R. Markarian I 

- -  To the m e m o r y  o f  R icardo  M a d d  

Abstract. We study Anosov diffeoinorphisms on manifolds in which some 'holes' are 
cut. The points that  are mapped into our holes will disappear and never return. We 
study the case where the holes are rectangles of a Markov partition. Such maps with 
holes generalize Smale's horseshoes and certain open billiards. The set of nonwander- 
ing points of our map is a Cantor-like set we call a repeller. In our previous paper, 
we assumed that the map restricted to the remaining rectangles of the Markov par- 
tition is topologically mixing. Under this assumption we constructed invariant and 
conditionally invariant measures on the sets of nonwandering points. Here we relax 
the mixing assumption and extend our results to nonmixing and nonergodic cases. 

1. Introduct ion 

Let T : M '  --+ M '  be a topologically transitive Anosov diffeomorphism 

of class C 1+~ on a compact  Riemannian manifold M' .  Sinai [12] and 

Bowen [1] constructed Markov parti t ions for transitive Anosov diffeo- 

morphisms. Let T~ ~ be an arbi trary Markov part i t ion of M '  into rectan- 

gles R1, . . .  , RF. We assume that  these rectangles are small enough, so 

that  the symbolic dynamics is well defined [12,1]. 
I '  �9 M I Le t  I < I ' .  P u t  H = U ~ = i + l ( ~ n t R i )  a n d  M = \ H .  T h e n  M is 

a m a n i f o l d  w i t h  b o u n d a r y .  W e  s t u d y  he re  t h e  d y n a m i c s  of  T r e s t r i c t e d  

t o  M ,  t h i n k i n g  of  H as a ' ho l e '  i n to  w h i c h  s o m e  p o i n t s  o f  M will  be  

m a p p e d  b y  T ,  a n d  t h e n  t h e y  d i s a p p e a r  (escape) .  
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316  N. CHERNOV AND R. MARKARIAN 

Notation. For any n _> 0 we put 

Mn n = Ni=0T M and 

and also 

M_n = N~-oT- iM,  

M+ = Nn>IMn, M_  = F)~>_IM_n, ~2 = M+ A M_ 

All these sets are closed, T - 1 M +  C M+, T M _  C M_ and T~  = T - I ~  = 

~t. The set ~t consists of nonwandering points, i.e. those which never 

escape through holes, either in the future or in the past. The sets M+ 

and M_ consist of nonwandering points in the past and the future, 

respectively. The purpose of this paper is the s tudy of the dynamics T 

on ~, M+ and M_. 

A pictorial model of this type of dynamics was proposed by Piani- 

giani and Yorke [10]. Imagine a Sinai billiard table (with dispersing 

boundary),  so tha t  the dynamics of the ball are strongly chaotic. Let 

one or more holes be cut in the table, so that  the ball can fall through. 

In particular, one can place those holes at the corners of the table and 

make 'pockets'. Let the initial position of the ball be chosen at random 

with some smooth probability distribution (this may be the equilibrium 

distribution). Denote by p(t) the probability that  the ball stays on the 

table for at least t ime t and, if it does, by #(t) its (normalized) distri- 

bution on the table at t ime t. Natural  questions are: does p(t) converge 

to zero at some exponential rate, as t --+ cx~? is there a limit probability 

distribution #+ = limt__+~ #(t); is that  limit distribution independent  of 

the initial distribution #(0)? These questions still remain open. 

Pianigiani and Yorke [10] introduced a simpler class of dynami- 

cal systems - expanding (noninvertible) maps with holes, for which 

the above questions were answered positively in Refs. [10,5]. The 

limit probability distribution #+ is called conditionally invariant mea- 

sure. The measure #+ is not invariant under T, it cannot be be- 

cause of the holes. Instead, its image under T is proportional to itself: 

# + ( T - I ( A  N M1)) = A+#+(A) for any Borel A C M with some constant  

~+ ~ (0, 1), which we call the eigenvalue of #+, cf. [4]. 
, 

In 1981-86 0encova [2,3] studied a class of invertible transformations 
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with holes, namely smooth Smale's horseshoes. She also answered the 

above questions positively. In addition, she studied an inverse limit of 

the iterations of the measure #+ (pulled backward in time). The result- 

ing limit measure, 7+, is invariant under the dynamics and supported 

on the set ft of nonwandering points. Tha t  set is a Cantor-like closed 

set, sometimes called a repeller or a semi-attractor. 
In 1994, Collet, Martinez and Schmitt  [5] constructed invarian.t mea- 

sures on the sets of nonwandering points (repellers) for Pianigiani-Yorke 

noninvertible transformations.  They  proved tha t  the measure rl+ is a 

Gibbs measure, and thus it enjoys good statistical properties. 

An special example of invertible hyperbolic systems with holes other 

than horseshoes was studied by Lopes and Markarian in [9]. That  was 

an open billiard system - a particle bouncing off three circular scatter- 

ers placed sufficiently far apart  on an open plane. They  constructed 

measures #+ and ~]+ and showed tha t  ~]+ was a Gibbs measure, too. 

In Ref. [4] we generalized the above classes of invertible transfor- 

mations with holes. We studied C 1+~ Anosov diffeomorphisms with 

' rectangular '  holes just  as described above, under an additional 'mixing 

condition': 

Mixing condition. The symbolic dynamics generated by the parti t ion 

= {R1, . . .  , RI} of M is a topologically mixing subshift of finite type. 

Equivalently, there is a k0 _> 1 such that  intRi A Tko(Rj ~ M-ko) r ;g 
for all i, j < I. 

This class covered both Smale's horseshoes and open billiard tables 

(in any dimensions). We proved the existence and uniqueness of the 

measures #+ and rl+. We showed tha t  rl+ was a Gibbs measure and 

found its potential function and topological pressure. We found nec- 

essary and sufficient conditions under which the measure r/+ coincided 

with the measure 7-  constructed in the same way for the inverse map 

T -1. This last result was never discussed in [2,3,9]. In particular, we 

showed tha t  r/+ = r l_ for open billiard tables answering a question posed 

in [9]. 
In this paper we relax the mixing condition, thus allowing multi- 
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318 N. CHERNOVAND R. MARKARIAN 

ple ergodic components,  periodic structure of ergodic components and 

nonrecurrent  states as well. We prove the existence of the measures 

#+ and u+ and discuss their uniqueness and other properties. One of 

the most remarkable results is tha t  the eigenvalue A+ of the map T on 

M equals the largest of the eigenvalues of T restricted to its ergodic 

components components.  The conditionally invariant measure #+ is de- 

termined by that  of the component  with the largest eigenvalue. The 

invariant measure u+ coincides with the one on the ergodic component 

with the largest eigenvalue, as if the others did not exist. 

The importance of the present s tudy is in the following possible con- 

struction. Let T : M ~ --~ M ~ be an Anosov diffeomorphism and H C M ~ 

be an arbi t rary hole with smooth boundary, not necessarily connected 

(this is a physically interesting model!). To s tudy the dynamics of T 

on M = M ~ \ H one can approximate the hole H by a union, H (~), of 

' rectangular '  holes taking, for a sufficiently fine Markov partition, all its 

rectangles intersecting H. The union H(r) of ' rectangular '  holes can be 

made arbitrarily close to the original hole H, and then one can possibly 

approximate the measures #+,  ~+ for the map T on M by the measures 

#~),  r](+ r) for the map T on M(~) = M ' \  H(r). The work in this direction 

is currently underway. However, the map T on M (r) most certainly fails 

to satisfy the above mixing condition, so we cannot use our previous 

results in Ref. [4] directly. We have to relax the mixing condition first, 

and here we do just that .  

Section 2 contains necessary results from Ref. [4]. In Section 3 we 

establish new results (still undor the mixing condition), which we will 

need further. In Section 4 we discuss the case where the subshift gen- 

erated by T~ is topological transitive but  not topologically mixing. In 

Section 5 we s tudy nonrecurrent  rectangles. In Section 6 we consider 

the coexistence of two transitive classes of rectangles. Section 7 covers 

the cases of three or more transitive classes. Section 8 contains general 
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conclusions on arbi t rary number  of transitive classes. 

319 

2. N e c e s s a r y  r e s u l t s  f o r  t h e  m i x i n g  c a s e  

Here we recall the results of [4] which we are going to extend to non- 

mixing cases. 

Denote by 

5F oo ~ , S, oo -~ , = = V n = 0 T  7~ V~=0T 7~ and 

the partit ions of the rectangles R E ~ /  into unstable and stable man- 

ifolds (fibers), respectively. The restrictions of L/' to M and M+ are 

denoted by N and N+, respectively. Similarly, we have partitions $ and 

$_ of the  sets M and M_ into stable fibers. Atoms U E/~  and S E S 

of these partit ions are closed domains on unstable and stable manifolds. 

For any x E M '  denote by J~(x) and J~(x) the Jacobians of the map 

D T  restricted to the unstable and unstable subspaces at x, respectively. 

Fact. [12,4]. There is a unique family of probability measures u~ on 

fibers U E U' such tha t  

(i) (smoothness) v~ is absolutely continuous with respect to the Rie- 

mannian  volume on U, and its density, p~(x), x E U, is HSlder 

continuous (see a convention below); 

(ii) (conditional invariance) for any x E U1 E N' and T x  E U2 E 5/' we 

have 

p ~  (z) = u ~  (T-1U2) �9 J~(x) .  P~J2 (Tx) (2.1) 

Equivalently, if T U  = U1 U �9 .. U UL, where Ui E b/, then 

L 

~ , ~ ( U N T - ~ A )  = ~--~,~(T-1Ui) �9 uSi(d N V d (2.2) 
i = l  

for any Borel set A C M'.  The densities p~r(x) satisfy the equation 

[12] 
p (z) 
pb(v) 

for all x, y c U. 

- - -  lira J U ( T - ~ Y ) ' " J U ( T - l Y )  
n--+~ J u ( T - ~ x ) . . .  J ~ ( T - l z )  

(2.3) 
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Convention.  [4]. All the densities of measures on unstable and stable 

fibers are assumed to be H61der continuous with the same Hglder expo- 

nent a, as the one of the derivative of the map T. We call a measure # 

on M smooth  if its conditional measures on unstable fibers U E b / a r e  

absolutely continuous with HSlder continuous densities. 

Recall that  every transitive Anosov diffeomorphism has a unique 

Sinai-Bowen-Ruelle [13,1,11] m e a s u r e  (SBR-measure),  whose condit- 

ional distributions on unstable manifolds U E b/' are exactly our @.  

Motivated by that ,  we will call @ u-SBR measures (on unstable  mani- 

folds). 

For any Borel measure # on M we define its norm by I I#ll = #(M).  

We denote by T. the adjoint operator  on the class of Borel measures on 

M defined by 

( T , p ) ( A )  = # ( T - I ( A  N M1))  

for any A c M.  Due to the holes, the operator  T. does not preserve 

norm. We denote by  T+ the (nonlinear) transformation on the set of 

probabil i ty measures defined by the normalization of the measure T.#: 

T ,p  _ T ,#  (2.4) 
IIT. II 

Definition. A measure # on M is said to be conditionally invariant 

under T if T + #  = #. Obviously, any conditionally invariant measure # 

is suppor ted  on M+,  and there is a )~ > 0 such that  # ( T - 1 A  N M + )  = 

A#(A n M+)  for any A C M. 

Theo rem 1. A s s u m e  the mix ing  condition. The map  T has a unique con- 

di t ionally  invar iant  probability measure t~+ whose condit ional  measures 

on unstable fibers are HSlder continuous.  In  fact,  those condit ional  mea- 

sures are u - S B R  measures @/, U E bl+. For any smooth measure # on 

M (see again the above convent ion)  the sequence T~_# weakly converges, 

as n --+ ec, to the measure #+.  Furthermore,  the sequence A+ ~ . T,~# 

weakly converges, as n -+ oc, to the measure c[#] �9 #+,  where c[#] > 0 is 

a linear func t iona l  on smooth measures on M .  

Remark.  The conditionally invariant measure #+ constructed in this 
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way is physically na tura l  according to the original Pianigiani-Yorke mo- 

t ivat ion [10]. This  measure coincides with the Sinai-Bowen-Ruelle mea- 

sure in the  case H = O. 

Corol lary 1. Let U ELt .  I f  # is a singular measure supported on U 

with HSlder continuous density (on U), then the sequence T~_p weakly 

converges to #+. 

We call "y+ = In/~+1 the  escape rate, cf. [6,8,7,4]. 

Next, since the  set M +  is invariant under  T -1, the  measures T -n. #+  

for n _> 1 are probabil i ty measures for all n > 0. In vir tue of Theorem 1 

they coincide with the condit ional  measures #+( . /M_z)  satisfying 

#+(AIM_n)  = #+(A N M - n ) / p + ( M - n )  = A+ ~.  #+(A N M-n)  (2.5) 

T h e o r e m  2. The sequence of measures T j n # +  = #+( ' /M-n)  weakly 

converges, as n --+ 0% to a probability measure, ~l+, supported on the set 

~2 = M+ f~ M_.  The measure ~l+ is T-invariant,  i.e. 

71+ (T -  1 A) = ~7+ (TA) = ~/+ (A) (2.6) 

for every Borel set A C M.  

T h e o r e m  3. The measure ~l+ is an equilibrium state for the HSlder 

continuous potential 

g + ( x )  = - log J (x) (2.7)  

on t2 and its topological pressure is P(r/+) = - l o g  A+I = - 7 + .  Thus, 

~l+ is a Gibbs measure. The sum of positive Lyapunov exponents of the 

map T is 

+ Jt~ log jU(x) d~7+(x) a.e. (2.8) X~/+ =- 

T h e  variational principle 

- 7 +  = hv+ (T) - [~  log J~(x) d~l+(x) 
(2.9) f 

= sup{by(T) - [ _  log J~(x) d~l(x)} 
J ~ t  

holds, where hv+(T) denotes the Kotmogorov-Sinai entropy of the mea- 

sure r/+, and the supremum is taken over all T-invariant probability 

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997 



322 N. CHERNOVAND R. MARKARIAN 

measures on ~). The left equation in (2.9) is equivalent to the following 

escape rate formula 

~+,+ = h~+ (T) + ~+ (21o)  

3. Symbofic dynamics and new results for the mixing case 
We translate Theorems 1-3 into the language of symbolic dynamics to 

obtain new properties of the measures #+ and ~/+ under the mixing 

condition. 

Define a transition matrix A ~ = (A~j) of size F • I ~ by 

' / 1 if i n t R i N T - l ( i n t R j ) ~  
AiJ = . 0 otherwise 

In the space E' = {1, 2 , . . .  , It} 2Z of doubly infinite sequences ~ = 

{aJi}_~ with the product  topology we consider a closed subset  

E ~ , = { w _ E E ' :  ASia• =1 for  all - c c <  i < cc} 

The left shift homeomorphism ~r : E~, --+ E~, is defined by (a(~_))i = 

Wi+l. This symbolic system is a subshiR of finite type. 

There is a natural  projection I] : E~4, --+ M t, continuous, surjective 

and commuting with the dynamics: II o a = T o II. This projection is 

one-to-one on the set M' \ 0 c ~ T  j(OR'). 
3 

The part i t ion 7~ = {R1 , . . .  ,Rz} of M = M t \ H defines a I / I 

submatr ix  A = (A/j) of A t. We call A the transition matr ix for the 

restriction of T on M.  It defines a new subshiR of finite type  by 

EA= {W_E E' A, : ~/ < I for  all - c c  < i < oc}. 

It is clear tha t  I I ( E A )  = ~. 

Consider also a 'hybrid'  symbolic space 

~ +  = {~- ~ ~"A, : ~/  <-- ~ f o r  al l  i <_ 0}. 

02 oz Its positive semi-sequences { /}/=1 are defined just  like those in E~4,, 
w 0 while its negative semi-sequences { / } i = - ~  are defined in the same way 

as those in EA. This space is not cr-invariant, but  it is ~r-l-invariant. It 

is easy to check that  II(E+) = M+.  
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Fact. [13,1,11]. Every topologically transitive Anosov diffeomorphism 

T : M I --+ M I of class C 1+~ has a unique SBR measure #u. Its condi- 

tional measures on unstable fibers are absolutely continuous with HSlder 

continuous densities. The measure #u is a weak limit of the iterates of 

any smooth measure on M '  under T n as st ~ co. For any Markov par- 

t i t ion 7~' with sumciently small rectangles the measure #~ = I1-1 o #~ 

on the symbolic space E~, is a Gibbs measure with potential  function 

~(~) = - l o g  ju(II(~)) and topological pressure P = 0. 

The measure #u conditioned on M is smooth under our convention 

in Section 2. Thus, T2~# u weakly converges, as n -+ co, to #+. Since 

#~ is T-invariant on M' ,  we actually have T~_# ~ = #~(./Mn). Therefore, 

the measure #~ conditioned on Mn approaches, as n --+ oo, the measure 

#+ on M+. It follows from the results in [4] (see Corollary 5.7 there) 

tha t  there are constants C1, C2 > 0 such tha t  for all n _> 0 

C1 < #~(M~)/e n~+ <_ C2 

Combining the above facts gives the following property of the mea- 

sure #+ = n - l # +  on the symbolic space E+. 

Theorem 4. For any admissible cylinder C = (w_m,... , w,0 c E+ and 

every symbolic sequence ~_ E C we have 

C3 < ) + ( C )  < C4 (3.1) 
- e x p  + - 

where C3, C4 > 0 are constants independent of the cylinder C or the 

values of n, m. 

Comparing this theorem to Bowen's definition of Gibbs measures 

[1] suggests us to call the measure/2+ on E+ a 'hybrid'  Gibbs measure 

with the potential  function )(co). Unlike Bowen's definition, however, 

here the 'positive' and 'negative' components of the cylinder C have 

different 'topological pressures', P+ = 0 and P_ = - 7 +  respectively. 
- n -  For any n >_ 1 the measure a .  #+ is supported on or-hE+. This 

space has the same cylinders of length 2n + 1, i.e. (cJ_n,.. .  ,~n), as 
O - - n -  the space EA. It is clear tha t  . #+ converges, as n -+ oc, to the 

Gibbs measure fT+ = II- lr /+ on E+ corresponding to the same potential  
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function ~0(w). This is exactly what  Theorems 2 and 3 say. 

Lastly, let C = (w0,. . .  , wk) be any admissible cylinder of length k+  1 

in E~,, and let aJ 0 _< I. Denote by P+,c  the  measure p+ conditioned 

on E+ N C. Its inverse images ~ ,~(P+ ,c )  behave asymptotically, as 

n --+ oc, just like cr;-~(#+), because the cylinder C is moved under cr -n  

to the  right and eventually its influence vanishes. Thus, the measure 

~2n(#+,c) weakly converges to the same Gibbs measure f]+. Back on 

M, this last conclusion means the following. 

Corollary 2. Let R' be any s-inscribed subrectangle in any rectangle 

Ri E TI (i.e., R' is a union of some stable fibers S E S , S  C t~).  Denote 

by #+,n' the measure #+ conditioned on R' N M+. Then the sequence 

Tj~#+,n,  weakly converges, as n -+ eo, to the measure rl+. 

This corollary is dual to Corollary 1, for it shows tha t  the measure 

T/+ can be obtained by backward iterations of a measure supported on 

just one stable fiber, S N M+, the lat ter  measure is p+ conditioned on 

S N M+. This corollary was missing in Ref. [4], and we need it in this 

paper. 

4. Topologically transitive case 
Here we replace the mixing condition by the following weaker one. 

Transitivity condition. The symbolic dynamics generated by the par- 

tition 7~ = {R1, . . .  , RI}  of M is a topologically transitive subshift of 

finite type. Equivalently, for any Ri, Rj E 7-'i there is a kij >_ 1 such tha t  

intRi N T~iJ(Rj N M_kij) ~ ~. 

Under this condition the subshift is either topologically mixing (i.e. 

T satisfies the mixing condition) or periodic. The latter means that  

there is a finite p > 2 (period) and a parti t ion of T~ into p subgroups 

7~1,... , T@ cyclically permuted by the Shift. Precisely, intRi n T(Rj  n 

M_I) r ~ if and only if/~i E 7~l and Rj E J~I+l for some 1 (here and 

on l is a cyclic index, i.e. l = p + i is identified with l = 1). Besides, 

the map T p restricted to M (~) = UR~TzzR for any l satisfies the mixing 

assumption. 
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The  map  T p restr icted to M(l) has all the  propert ies listed in the 

previous section. In particular,  there are condit ionally invariant mea- 

sures #~)~ on ~'M}~ ) = M +  A M (z) and TP-invariant measures r/}~ )'" on the 

sets ft (t) = ft • M(1). We call these basic measures. These measures 

satisfy Theorems 1-3 wi th  T replaced by T p and M by M (1). 

It is s t andard  in the ergodic theory to reduce transit ive but  nonmix- 

ing subshifts to mixihg ones by replacing T with its appropr ia te  iterate, 

T p. It is interesting, however, to extend Theorems 1-3 directly to the 

nonmixing map  T, the task we accomplish in this section. 

According to Theorem 1, every basic measure #~)' is a weak limit of 

c[#]. [A~)]-nTp, n#, as n--+ oc, for any smooth  measure p on M (1). I t i s  

then  clear tha t  the eigenvalues of the measures #~)- under  T p coincide, 

i.e. A(~ ) = X+ for all 1. Also, for any 1 the measure T,#(+ ) is propor t ional  

to #(++1), i.e. T,#(+ ) = Al#(+ +1) with some At E (0,1]. Then  X+ = 

)~1 " '"  )~p. From these remarks and the cyclic character  of the  map  T we 

derive the following. 

T h e o r e m  5. There is a unique conditionally invariant measure #+ for  

the map T,  whose conditional measures on unstable fibers are smooth. 

These are, in fact, the u -SBR measures u~. The eigenvaIue of #+ is 

~+ = (~+)1/p. The measure #+ is a weighted sum of basic measures 

# +  = W l #  (1) + . . . - k W p # ~  ) 

where the weights wl > 0 are uniquely determined by the equations 

wlAz = wl+lA+ for  all l and wl  + " "  + Wp = 1. 

Example .  Let p = 2, and A1 = 1, A2 -- 1/4. Then  the  eigenvalue of the 

measure #+  is 1/2 and the  weights are Wl = 1/3 and w2 = 2/3. 

However, the  images T~_# of an arbi t rary smooth  measure # on M 

generally need not  converge, as n --+ oc, to the measure #+.  Normally, 

the sequence T~_# periodically approaches a finite number  (_< p) of limit 

measures,  all of t h e m  being some weighted sums of the  basic measures 

#(1) , . . .  , #~)  (in particular,  they  are all equivalent to #+) .  The  Cesaro 
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limit of the sequence T2~# always exists and does not  depend  on #. But  

it is an equidis t r ibuted sum of the basic measures 

1 ( , ( + 1 ) + . . . + # ~ ) )  

Even though  this mbasure is equivalent to #+,  it is generally different 

from #+.  

T h e o r e m  6. (i) The equidistributed sum of basic measures ~(+P), 

r l + = p  ~ + ' " + 7  

is a T- invariant  measure on ft. It  is the only T- invariant  measure equiv- 

alent to ~)' on M(O for  every I. 

(ii) The weak Cesaro limit of the sequence T j n # + ,  as n --+ oo, is rt+. 

Proof .  The  basic measures rl(~ )-  on ~2 (l) satisfy the invariance proper ty  

T,r/}~ ) '  = rl}~ +1).'" This follows from Theorem 2 and Corollary 2. Then  

the par t  (i) is immediate .  

It is easy to see tha t  the measure ~]+ is the weak limit of the s e q u e n c e  

T j n #  0 as n --+ oc. However, the sequence T j n # + =  #+O/M_z)  gen- 

erally does not converge to any measure on ft. Instead,  it periodically 

approaches a finite number  (_< p) of measures  on ft t ha t  will be weighted 

sums of the basic measures rl}~ ) . '  In the above example, the two limit 

measures for the sequence T j n # +  have weight distr ibutions (1/3, 2/3) 

and (2/3, 1/3). It is now clear tha t  the par t  (ii) of Theorem 6 holds. 

T h e o r e m  7. (i) The measure rl+ is a Gibbs measure with potential func- 

tion 9(x) = - in J~(x) and topological pressure P = in/~+. 

(ii) It  satisfies the equation (s 

Proof .  According to Theorem 3 the basic measures ~7(~ ) are Gibbs with 

potent ia l  gl(x) = - l n ( J U ( x ) ' " J ~ ( T p - l x ) ) ,  x C ft(t), and topological 

pressure Pt = In X+. Then  the par t  (i) easily follows. 

The  equat ion (2.10) holds for the measure ~(~) and the map  T p on 

ft(0. It is easy to check tha t  every quant i ty  involved in (2.10) decreases 

by a factor of p if we replace T p : ft(0 --+ f~(0 by T : ft -+ ft and rl~ )'" by 

r/+. This gives the  par t  (ii). 
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Summarizing, we find that  Theorems 1- 3 still hold under the tran- 

sitivity assumption, with two exceptions. First, the images T~_p of an 

arbi t rary smooth measure # on M do not exactly converge to #+.  They  

approach a finite number  of limit measures on M+,  all equivalent to 

#+.  The same goes to the sequence T,-n#+ and the limit measure W+. 

In the latter case, however, the Cesaro limit of T,-~#+ is always ~+. 

Corollaries 1 and 2 cannot be extended to nonmixing cases. 

5. Nonrecurrent rectangles 
One can classify the rectangles R E 7~ just like states of Markov chains 

are classified in probability theory. We call a rectangle R E 7~ recurrent 

if its interior points come back to R under T, i.e. intR N Tn(R N M-n) 
for some n > 1. In the trivial case, where all the rectangles are 

nonrecurrent  (transient), the sets M+, M_ and ~ are all empty, and the 

phase space M 'escapes' entirely. 

The recurrent  rectangles can be grouped, withi~ each group points 

from any rectangle are eventually mapped into any" other rectangle. The 

symbolic dynamics within every group is a topologically transitive (TT) 

subshift of finite type. 

In this section we still assume that  there is just one transitive group 

of recurrent rectangles R 1 , ' - - , R i 0 ,  but we allow some nonrecurrent  

rectangles R r 0 + l , . . .  ,R r  as well. Pu t  M (1) = R1 U . . .  U RI 0. 

Nonrecurrent  rectangles are further subdivided into three groups: 

(i) incoming: such that  intT~(Ri n M - s )  N M (1) r s for some n >_ 1; 

(ii) outgoing: such tha t  in tT-n(Ri  N Mn) n M (1) r 2~ for some n > 1; 

(iii) isolated: such that  intTn(Ri N M-n)  N M (1) = 2~ for all n C 2Z. 

The set of nonwandering points ft obviously belongs in M (1). The 

restriction of the map T to M (1) satisfies the transit ivity assumption in 

the previous section. Thus, there is a conditionally invariant measure 

#~)" on ""Mr+ 1) = M+ AM(l )  with eigenvalue A~ ),'" and the corresponding 

T-invariant measure r/~ ~)'' on ft. 

The isolated rectangles escape to H altogether in a finite t ime and 

have no influence on the measures #+,  W+ whatsoever. The incoming 
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rectangles are absorbed into M (1) in a finite time, so their presence (or 

absence) cannot affect the properties of the measures #+ or r/+ either. 

The set M+ intersects only recurrent and outgoing rectangles. The 

measures T.~#(+ 1) (the images of #(+1) under the maps T ~ on M)  will be 

supported on M+, and their restrictions to -M~+ ~) will be always propor- 

tional to #~).'~ It is then easy to check the following. 

Theorem 8. Under the above conditions, there is a unique conditionally 

invariant measure #+ for the map T supported on M+ with absolutely 

continuous conditional measures on unstable fibers. They are, in fact, 

the u-SBR measures u~. The measure #+ is proportional to #(~) on the 

set ,4Mr+l). These two measures have the same eigenvalue A+ = A~ ).'" 

If the transitive group of rectangles is topologically mixing, the se- 

quence T~_# converges, as n --+ ec, to #+ for any smooth measure # 

on M. In nonmixing cases the situation is equivalent to the one in the 

previous section. 

Theorem 9. (i) The T- invariant  measure rl+ on f~ simply coincides 

with the measure ~i+• Thus, it enjoys all the properties established by 

Theorems 3 and 3. 

(ii) The measure rl+ is the weak Cesaro limit of T j ~ # +  as n --+ oc (in 

the mizing case, it is just  the weak limit). 

Proof. Only the part  (ii) needs a proof. According to Theorem 6, the 

weak Cesaro limit of the sequence Tf -n#~  )'" is r/+. Consider the measure 

#+ conditioned on outgoing rectangles. It will be transferred under 

7". ~ into measures supported on some s-inscribed subrectangles in some 

rectangles Ri C M (1) and on those subrectangles those measures will 

be proportional to #~).'" Due to Corollary 2, such measures converge to 

7+, as n --+ oc, in the same way as the sequence T - ~ # ~  ) . '  The theorem 

is proved. 

6. Two TT groups o f  rectangles 

As it was remarked in the previous section, recurrent rectangles can 

be divided into topologically transitive (TT) groups so tha t  in each 
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group points from any rectangle can be mapped into any other rectangle. 

In this Section we will assume that  there are just two TT  groups of 

rectangles: M (1) = R1 U . .-  U •I1 ,  M(2) = R/1+1 U " "  U /~i2, and 

some non-recurrent rectangles RI2+1, . . .  , R1. If there is no connection 

between these groups, i.e. i n t (TnM (1) N TraM (2)) = s for all m, n E 

7Z, then we have two trivially independent  repellers, one in M (1) and 

another  in M(2). 

There may be, however, a one-way route from M (1) to M (2), i.e. 

in t (TnM (1) N M (2)) r ~ for some n _> 1. In this case the picture gets 

more intricate. The rate of escape from M (1) is still the same as for the 

map TIM(l), as if M(2) did not exist. The escape from M(2), however, is 

combined with the influx from M(1) . The resulting escape rate from M 

and conditionally invariant measures will be then determined by three 

factors: the escape of mass from M(1), M (2) and the transfer of mass 

from M (1) to M (2). 

Nonrecurrent  rectangles are now subdivided into four groups: 

(i) incoming: such that  intT~(Ri N M_n) N (M (1) U M (2)) ~ ~ for 

some n _> 1 but  in tT-n(Ri  N Mn) N (M (1) U M (2)) = ~ for all 

n _ > l ;  

(ii) outgoing: such that  intT-n(Ri N Mn) N (M (1) U M (2)) ~ ~ for 

some n > 1 but  intT~(Ri N M-n) N (M (1) U M (2)) = ~ for all 

n > l ;  

(iii) isolated: such tha t  intT~(Ri N M ~) N (M (1) U M (2)) = ~ for all 

n E 2 Z ;  

(iv) transmitt ing:  such that  int Tn(Ri N M_~) n M (2) ~ ~ for some 

n > 1 and int T-m(Ri  N M~)  N M (1) ~ ~ for some m > 1. 

Slightly abusing the language, we will say tha t  incoming rectangles 

have one-way connections to M (1) U M (2), and the outgoing rectangles 

have one-way connections from M (1) U M (2). We may also say that  

t ransmit t ing rectangles are connected from M(1) and to M (2). 
For the map T restricted to M(i), i = 1,2, we denote by M (i) and 

~(i) the corresponding sets defined as in Introduction,  and by #(~) and 

~(~) their conditionally invariant and invariant measures, respectively. 
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We denote  by )dZ ), ~; i 

It is clear tha t  

= 1, 2, the corresponding eigenvalues. 

= 1) n s 

and 

M _  = (1) n M_(2)). 

In the  present case, the set M+ consists, in addi t ion to M(+I) U M(+ 2), 

of some unstable  fibers in outgoing and t ransmi t t ing  rectangles, as well 

as some unstable  fibers in M(2) not included in M (2). These fibers are 

images of M(+ 1) under  T ~, n _> 1, and they are get t ing closer and closer 

to M (2) as n --~ co. Symmetr ic  s ta tements  can be made  of the set M_. 

The  set of nonwander ing points  ~t = M + n M _  includes ~t(1) and 2(2) , 

but  is not l imited to them.  It also contains (i) points  of intersection of 

stable fibers of M (2)_ and unstable fibers of (TnM(+ 1)) • M (2), as well as 

(ii) similar points  in M(1) , and (iii) the  points in t ransmi t t ing  rectangles 

which belong in T ~ M  (1) • T - ' ~ M  (2), n, m _> 1. 

Standing assumption for all theorems in Sections 6 and 7. The map 

T restricted to every TT  component is not only topologically transitive, 

but also topologically mixing. 

This is assumed for simplicity only. Nonmixing maps require the 

modifications to our results completely described in Section 4. 

We now construct  the condit ionally invariant measure #+  for T on 

M.  Obviously, isolated and incoming rectangles do not affect the men- 

sure #+.  Outgoing and t ransmi t t ing  rectangles can capture  some frac- 

t ion of this measure as we described in the  previous section. A new twist 

here is a flow of mass into M(2) from the t ransmi t t ing  rectangles or di- 

rectly from M 0 ) .  The  flowing mass then  evolves in M (2) and approaches 

'~M~ z) compet ing  wi th  the measure #~z).'~ This  flow is characterized by 

parameters  described below. 

Denote  by M (1+) the union of M(1) with all outgoing rectangles 

connected from M (1) and all t ransmi t t ing  rectangles. Consider the re- 

striction of the map  T to M (1+). This  restriction has one T T  group of 
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rectangles (it is M (1)) and others act just like outgoing rectangles in the 

previous section. We proved there that  T on M(1+) has a conditionally 

invariant measure with the same eigenvalue as the measure 

#(~). Similarly, denote by M (2+) the union of M(2) with all outgoing 

rectangles connected from M (2). Let #(~+) be the conditional invariant 

measure for the restriction of T to M (2+) . Note that,  in a peculiar way, 

the sets M (1+) and M(2+) may have common outgoing rectangles. But 
, (1+) and #(+2+) even in this case the measures p+ are supported on disjoint 

closed sets. 
Now, let q[12) > 0 be the fraction of #(~+) t ransmit ted to M (2+) 

, ( 1 2 )  under the action of T, i.e. q~12) = T,p(~+)(M(2+)). Denote by P1 the 
(! ~12) 

measure T,# +) conditioned on M (2+). For any k >_ 2 let q > 0 be 

the fraction of #(~+) t ransmit ted to M (2+) and surviving k -  1 iterations 

,(12) -(12)Tk-l,,(12)(M(2+)5 For any k > 2 of T w i t h i n M  (2+),i .e.  uk = U l  �9 ~1 ~ ,' - 

let #~12) = 1+~k-1#1(12) . The measure #~12) is supported on some unstable 

fibers in M(2+). Its further evolution under T_~, k > 1, within M(2+) 
, ( 1 2 )  will satisfy Theorem 8. According to that  theorem, ~ will weakly 

(~ ~(12) (+2) k, ~k [ " + ]  --+ converge to # +) as /~ --+ ec, and ~ ~ [A ] i.e. "~(12)rx(2)]-k 

eonst > 0 as k --+ oc. 

T h e o r e m  10. Assume that the two TT groups of rectangles are topolog- 

ically mixing. 

(i) If A(~ ) > A(~ ), then there are two conditionally invariant proba- 

bility measures for T whose conditional measures on unstable fibers are 
(2+) and has eigenvaIue A~ z).'~ u-SBR measures. One coincides with #+ 

The other has eigenvalue A~ it is a weighted sum 

oo (12)r.(1)l_k (12)~ ,u+ = Q-1. #(~+)+ E q k  [A+ ] .k / (6.1) 
k = l  / 

where Q-1 is the normalization factor: 

~ ,~(12) Fl(1)l-k Q 1 + - -  ~k  L " +  
k=l 
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In particular, # + ( M  (2+)) = 1 - Q-1 and # + ( M  (2)) = 0. 

(ii) I f  A(~ ) < A(~ ), then the only conditionally invariant probability 

measure for T with u-SBR conditional distributions on unstable fibers is 

#(~+) with eigenvalue A(~ ) . 
For any smooth measure tt on M the sequence T~_# weakly converges, 

as n -+ 0% to one of the above conditionally invariant measures. In the 

case (i) this limit measure is the one from (6.1) (rather than #(2++)) if  

and only i f  # ( M  (1-)) ~ O, where M (1-) is the union of M (1) and all 

incoming rectangles connected to M (1). 

P roof .  It is enough to invest igate the  evolut ion under  T, of the  measure  

#0 = x#(~ +) +y#(+2+) wi th  a rb i t ra ry  x, y > O, x + y  = 1. Its image,  T,#O , 

is 
A(1) (1+) . (12) (12) , ( 2 ) .  (2+)  

x + I_t+ ~-xql #1 +yA+ t~+ 

Its k- th  image,  T.k#O, is 

k 
r.(1)~k (1+) x~_(12) r . (1 ) , k_ i  (12) ,.(2)1k (2+) (6.2) 

x[A+ j # +  + qi [A+ ] #i + y[A+ J # +  
i=1  

The  no rm of the  second t e rm in (6.2) is 

k 

xl;:)l E I;:)/;?J 
i----1 

with  some ci = O(1), i.e. ci are bounded  away from 0 and  co. This  

series converges iff A(+ I) > A(~ ). In this case the asymptotics of T.k#0 

will be determined by the first two terms in (6.2) provided x ~ 0 and 

by the third term alone otherwise. In the case A(~) < A(~) we use the 

convergence of p~12) to #(+2+). Renormalizing and taking limit as k --+ ec 

prove the theorem. 

T h e o r e m  11. (i) I f  A(~ ) > A(+ 2), then the measure 77+ = lira T -n, •+" is 

either ~l(~ ) or ~(~) depending on #+ being defined by (6.1) or being equal 

to #(+2+); 

(ii) I f  A(~ ) <_ A(~), then ~1+ : ~l(~ ) . 
In either case ~7+ is a T-invariant Gibbs measure with potential function 
g(x) = - l n J ~ ( x )  and topological pressure P = lnA+.  It satisfies the 
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equation (2.10). 
This theorem readily follows from the previous one, in view of The- 

orems 2 and 3. 

In the case (i) of Theorems 10 and 11, the options #+ = #(+2+) and 

7+ = ~]~z)~ can be regarded as quite singular. Indeed, these measures 

are generated by initially smooth measures # such that  #(M(1-))  = 0. 

LFrom now on, we will rule out such degenerate measures: 

Definition. The measures #+ and 7+ are said to be regular if they  are 

generated by smooth measures on M that  are positive on every open 

set. 

In particular, # ( M  (1-)) > 0, so tha t  in each case in Theorems 10 

and 11 the regular measures are unique. We will restrict ourselves to 

regular measures. Then  these theorems can be summarized as follows. 

Rule 1. The eigenvalue A+ of the map T on M equals the largest of the 

eigenvalues of T restricted to T T  components.  The conditionally invari- 

ant measure #+ is determined by that  of the component  with the largest 

eigenvalue. The other components tha t  have one-way connections to the 

one with the largest eigenvalue, play no role. The other components that  

have one-way connections from the one with the largest eigenvalue, play 

the same role as outgoing rectangles, capturing a fraction of #+.  The 

invariant measure 7+ coincides with the one on the T T  component  with 

the largest eigenvalue, as if the others did not exist. 

Motivated by this rule, we will call the T T  components with the 

largest eigeuvalue (i.e., the smallest escape rate) the dominating com- 

ponents. We will see later tha t  the above rule holds for maps with 

any number of T T  components,  provided the dominating component  is 

unique. Necessary corrections in the case of several dominating compo- 

nents will be made below. 

7. Three TT groups of  rectangles 
The description of measures #+ and ~7+ gets more complicated in the 
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case of more than two T T  groups of rectangles. However, the entire 

picture is still determined by the rates of escape of mass from every 

transitive component  and by the rates of transfer of mass between com- 

ponents. 

It is clear that  there can be only one-way routes between compo- 

nents. These routes make an oriented graph in which transitive com- 

portents are vertices. Moreover, there can be no (oriented) loops in this 

graph, so tha t  it is actually a tree. We can assume tha t  it is a connected 

tree, otherwise it decomposes into two or more trivially independent 

trees. 

In this section we s tudy maps with three transitive components.  

Again, for simplicity we assume tha t  all these components are topo- 

logically mixing. Let us denote them by M (1) = R1 tJ . . .  CJ Rzl , 

M (2) = R z ~ + 1 t J . . . U R I 2  and M (3) = RI2+I U . . . U R ~  3. In addi- 

tion, there may be some non-recurrent  rectangles RI3+1, . . .  ,Rx. For 

map T restricted to M(i), i = 1, 2, 3, we will use the notations --M}~ ) , the 

A(~ ), #(~) and r/(~ ) introduced in the previous section. 

There are four nonisomorphic connected oriented trees with three 

vertices. They  are (up to renumbering of vertices): 
(I) M(1) --+ M(2) --+ M(3), 

(II) M(1) --~ M(2) and M (1) -+ M(3), 

(III) M(1) --+ M(2) --+ M (3) and M(1) --+ M(3), 

(IV) M(1) --+ M(3) and M (2) -+ M(3). 

For every of these configurations, the nonrecurrent  rectangles can 

be classified and the sets M+ an<l t2 can be described in a way similar 

to the one we gave in the previous section. We do not dwell on this, 

since it will not be essential to our analysis. We turn  to the s tudy of 

the measures #+ and 7+ for the map T on M. 

The first configuration logically reduces to the s tudy of two T T  

groups if we consider first the subgroup M (2) --+ M (3) independently 

of M (1) and then the pair M (1) and M(2) U M (3). The results will then 

perfectly fit Rule I at the end of the previous section. We leave out the 

details and tu rn  to the more interesting configurations (II)-(IV). 
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The  configurations (II) and (III) are characterized by flows of mass 

from M(1) into M(2) and M(3) (directly or via t r ansmi t t ing  nonrecur-  

rent rectangles).  The  flowing mass then  evolves in bo th  M(2) and M(3) 

approaching the sets ~M~+ z) and ~-M~+ 6) respectively. In the  configuration 

(III) there is also a flow of mass from M (2) to M (3). These flows are 

characterized by parameters  described below. 

For simplicity, we assume tha t  there are no outgoing or t r ansmi t t ing  

rectangles in the system. If there are any, one has to  take unions of 

M(i) with  outgoing and t ransmi t t ing  rectangles connected from M(O 
like we did in the previous section. This  amounts  to somewhat  heavier 

notat ions  bu t  makes little difference in our arguments .  

For any pair of components  M (i) and M(J) we introduce a sequence of 

numbers  {q~k ~j) } ~  similarly to the  sequence {qk 02) } ~ in the previous section. 

Let q}ij) ~ > 0 be the  fraction of #~)J t r ansmi t t ed  to M(J) under  the  action 

condit ioned on M (j). For any k _> 2 let q > 0 be the fraction of # 

t r ansmi t t ed  to M (j) and surviving k - 1  i terations of T restr icted to M (j), 
i.e. q~J)- (iJ)Tk-1 (iJ)(M(J)) For any k > 2 let #~J)~ be the  measure  = ql , #1 �9 - 
Tk_l, (ij) condit ioned on M(J) The  measure #~ij) is suppor ted  on some , t~l 
unstable  fibers in M (d). Its further  evolution under  the  restr ict ion of 

T k, k > 1, to M (j) will satisfy Theorem 1. According to tha t  theorem,  

woadS. 4 
q A --+ const > 0 as k --+ oc. 

T h e o r e m  12. Assume the configuration (II), the mixing condition within 
every T T  group of rectangles, and the absence of outgoing and transmit- 
ting rectangles in the system. 

(i) If A~! > max{A~),A~)},'~ J~ then the unique regular conditionally 

invariant measure #+ has eigenvalue A~ ) ' '  and is a weighted sum 

I O0 
/.t+ = Q-1 /t(~) ]_ E q(12)[/~(1)]-kLt(k 1 2 ) k  + ~_ ~ q~13) r.(1)l-k (13)'~ �9 [A+ j #k J (7 .1 )  

k=l k=l 
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where Q-1 is the normalization factor: 

.(12) r~(1)l_k ~ ~(13)r~(1)l_k 
Q = 1 +  L + J  + 

k = l  k = l  

In particular, #+(M(+ 2) U M(+ 3)) = O. 

(ii) Let )~(~) ~_ max{/~(~),)~(~ ) } and ~(~) ?g A(3+ ) . Without loss of 

generality, assume that s > )~(~). Then the only regular conditionally 

invariant measure #+ coincides with #(~) and has eigenvalue s 

(iii) I f  s ~ ma•163 3)} and A(~) = s then any weighted 

sum of the measures #(~) and #(+3) is a regular conditionally invariant 

measure for T.  Its eigenvaIue is )~(+2) = )~(+3). 

For any smooth measure p on M positive on every open set the 

sequence T~p  weakly converges, as n ~ oc, to a regular conditionally 

invariant measure p+. In the case (iii) the resulting measure p+ is 

determined by the initial distribution of p between the T T  components. 

Proof.  As in the proof of Theorem 10, it is enough to investigate the 
evolution under T, of the measure #0 = xP(~ ) + y#(2+) + zp(~ ) with 
arbitrary x, y, z _> 0 such that  x + y + z = 1. Its image, T,#0, is 

X/~(1), (1) (12) (12) /~(2) (2) (13) (13) Z/~(3), (3) 
+ t~+ + x q l  #1 +Y  + It+ +xq l  #1 + + t~+ 

Its k-th image, T.k#0, is 

r.(1)lk (1) 
x[A+ j #+ + 

k 
( 1 2 ) ~ , ( 1 ) 1 k - i  (12) ~-,(2)~k (2) 

x2_,qi  ['% J #i +YLA+ J #+ 
i----1 

Zr.(3)lk (3) + [.4+ j #+ 
k 

v--, (13)~.(1)~k_i (13) 
+ x 2_., qi [~+ J #i 

i=1 

The rest of the proof goes like that  of Theorem 10. 

(7.2) 

Theorem 13. Under the conditions of the previous theorem we have 
(i) I f  ~(+1) > max{.~(+2), .~(+3)}, then the measure ~/+ -- lira T -n, #+ co- 

inc ides  with ~1(+ 1) . 

(ii) Let ~(~) ~ max{A(+2),A(+ 3)} and )~(~) > A(3+ ) as before. Then 

7]+ = ~(~). 
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sum of ~](+2) and 7(+ 3) with the same weights as in the case (iii) of the 

previous theorem. 

In every case 7+ is a T- invariant  Gibbs measure with potential func- 

tion g(x) = - in J~(x) and topological pressure P = lnA+. It  is ergodic 

in the cases (i) and 5i), and has two ergodic components in the case 

(iii). The measure ~?+ satisfies the equation (2. I0). 

We now tu rn  to the  configuration (III). A new twist here is a sec- 

ondary  flow of mass from M(1) to M (3) via M (2). For any m, n > 1 

denote  by M. (1) the  set of points  of M(1) whose first m images land in 

M (2) and the following n images land in M(3), i.e. 

M,(1) { x E M  (1) T i x  E M (2) f o r  l < i < m and ~n ---- 

T J x E M  (3) f o r m + l  < _ j < m + n }  

Let m , n  : 

is a probabil i ty measure.  Obviously, T,-lp(m],~3) is the  measure .(m 12) 

condit ioned on M (2) M T - 1 M  (3). Therefore, the  measure T . I # ~ , ~  3) 

converges, as rn --+ oc, to #(~) condit ioned on M (2) N T - 1 M  (3). Accord- 
(123) 

ing to Theorem 1, the measure pm,n t hen  converges, as n -* oc, t o  
, r (123) [/~(+2)]m [/~(+3)]n #(+3) and this convergence is uniform in m. Also, m,n 
r (123) r/~(2)l-mr/~(3)]-n i.e. m,n [ + j J + J --* const  > 0 as m, n --+ oc, and the values of 

r(123)[)~(~)]-m[)~(+3)] - n m , n  are bounded  away from 0 and oo. 

T h e o r e m  14. Assume the configuration (III), the mixing condition 

within every T T  group of rectangles, and the absence of outgoing and 

transmitt ing rectangles in the system. 

(i) I f  A(~)>  max{/~(+2),A(+3)}, then the unique regular conditionally 

invariant measure #+ has eigenvalue A(~ ), and it is a weighted sum 

(12) r . ( 1 ) l - k  (12) (13)r/~(1)~-k (13) #+ Q-1 .(~)+ qk LA+] ,u,~ + Z  = " qk [ + J P k  

k=l ,~=1 (7 .3)  
oo 

+ ~ ~(123)r~(1)1_.~_~ ' (123)~ 
- m , n  [ " 4 -  J t~m,  n ] 

m , n = l  
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where Q-1 is the normalization factor: 

+ E -m-~  Q =  1 +  ~k 
k = l  k = l  m , n = l  

In particular, #+(M(+ 2) t2 M (3)) = 0. 

(ii) Let A(~ ) <_ A(~ ) and i(~ ) > A(~ ) . Then the only regular con- 

ditionally invariant measure p+ has eigenvalue t(~ ) and is a weighted 

s u m  

= " qk [ a+]  #k ) (7.4) 
k = l  

where Q-1 is the normalization factor: 
O 0  

Q = 1 + ~ .k"(23),"+r~(2)1-~, 
k : l  

I n  particular, #+(M~ 1) U M(+ 3)) = 0. 

(iii) Let A(3+ ) >_ max{A(+1), A(~)}. Then the only regular conditionally 

invariant measure #+ coincides with #(~) and has eigenvalue A(3+ ) . 

For any smooth measure # on M positive on every open set the 

sequence T~#  weakly converges, as n -+ co, to a regular conditionally 

invariant measure #+. 

Proof.  As in the proofs of Theorems 10 and 12, it is enough to investi- 

gate the evolution under T, of the measure #0 = x#(~ ) + y#(+2) + z#(+3) 

with arbitrary x, y, z _> 0 such that  x + y + z = 1. Its k-th image, T,k#O, 

is 
k 

x[ +]#+ + x  + y[a+ ] #+ 
i=1 

k 
zr~(3),k (3) 

i:1 

k 
v-, (23)~)~(2)~k_{ (23) r(123)r;~(1)]k_i_j#(123) 

+Y~...,qi [ J- ] # i  ~ - x  Z i , j  [ s I i , j  
i : 1  i + j < k  

The rest of the proof goes basically like that  of Theorems 10 and 12. 
#(123) In the analysis of the case (ii) the measures i,j play some role. The 
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necessary result follows f rom two facts: (i) the  measure T,_ip~?13)i1o con- 

verges, as i -+ oc, to  #(+2) cond i t i oned  on M (2) N T - 1 M  (3), and  (ii) for 

any  J l ,  J2 --> 1 we have 
. (123), (123) (23). (23) 
lm r i x / r  i i--+oc ,J1 ,al = qJl /qJ2 

T h e o r e m  15. Under the conditions of the previous theorem we have 

(i) I f  A~ )'" > max{A?),A~)},'~ "~ then the measure T/+ = l i m T , - n # +  co- 

incides with rl(+ 1) . 

(ii) Let 2(~ ) <_ 2(2+ ) and 2(~ ) > 2 (3) . Then ~]+ = ~(~). 

(iii) I f  2 (3) > max{2(+1), 2( :  ) } then ~l+ : @+3). 

In every case r]+ is an ergodie T- invariant  Gibbs measure with po- 

tential funct ion g(x) = - in JU(x) and topological pressure P = In 2+ .  / t  

satisfies the equation (2.I0). 

T h e  last  conf igura t ion ,  IV, can  be r educed  to I I I  by e l imina t ing  

the  flow of mass  f rom M(1) to  M(2) t oge the r  w i th  the  secondary  flow 

f rom M(1) to  M(3) via  M(2).  In  the  previous  two t h e o r e m s  this  forces 
2 ~(123) q12) = 0 and -m,n = 0 for all k,m,n. Then the results of those 

theorems apply to the configuration IV in the cases (i) and (iii). The 

case (ii) goes through under an additional assumption that 2~ I' < 2~).'~ 

The possibility 2~ ),4 = 2~ z)'~ > 2~ ~)~ is treated separately in the following 

theorem. 

Theorem 16. Assume the configuration (IV), the mixing condition 

within every T T  group of rectangles, and the absence of outgoing and 

transmitting rectangles in the system. Let 2~)~ = 27)'~ > 2~+ ~).'~ Then 
any regular conditionally invariant measure for T is a weighted sum 

/ t+ = Wl/~+, 1 + w2/z+,2, where 

k = l  

for  i = 1, 2. The measures #+,i  are singular with respect to each other. 

The eigenvalue of any such #+ is 2~)='" 2 ~  ) . ' ~  

For any smooth measure # on M positive on every open set the se- 

quence T~_# weakly converges, as n -+ o% to some regular conditionally 
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invariant measure #+, whose weights are determined by the initial dis- 

tribution of p between the TT components. 

The T-invariant measure U+ = lira Tjk#+ is a weighted sum of ~(~) 

and ~l~ It is a Gibbs measure with potential function g(x) = - In J~(x) 

and topological pressure P = lnA+. It satisfies the equation (2.10) and 

has two ergodic components. 

8. General conclusions 

Here we generalize (leaving out some technical details and exact proofs) 

the theorems obtained in the previous two sections to systems with 

arbi t rary number of T T  components.  

First of all, if the system has an only dominating T T  component (the 

one with the largest eigenvalue), then Rule 1 describes the properties of 

measures #+ and ~+. 

If the system has more than one dominating T T  components,  then 

we subdivide them into essential and nonessential ones as follows. Any 

dominating component M(i) that  has a one-way connection to another  

dominating component (possibly, via some t ransmit t ing rectangles 

and /o r  other T T  components) is said to be nonessential. The remaining 

dominating components are essential. 

Rule 2. The measures #+ and ~/+ always exist. They  are determined by 

essential dominating fED) components only. If the system has just  one 

ED component,  the measures #+ and U+ are unique and determined 

by that  component according to the Rule 1, as if all the other T T  

components were not even dominating. 

Rule 3. If the system has two or more ED components, the measures #+ 

and ~/+ are not  unique. Every ED component  M (i) determines measures 

#+,i and ~+,i according to the Rule 2. The measures #+,~ are singular 

with respect to each other. The set of regular conditionally invariant 

measures #+ for T is the convex hull of the measures #+,i. They  have the 

same eigenvalue, which is the common eigenvalue of all ED components.  

The set of regular invariant measures ~+ for T is the convex hull of the 
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measures U+,i. Every U+ is a Gibbs measure with potential function 

g(x) = - l n J ~ ( x )  and topological pressure P = lnA+, and it satisfies 

the equation (2.10). The number of its ergodic components equals the 

number of ED components in the system. 

We do not prove Rules 2 and 3 in the general case, since they directly 

generalize our theorems proved in two previous sections. We also leave 

out detailed description of the measures #+,i that was provided in the 

previous sections. We could have given such a description along the 

lines developed in the case (i) of Theorems 10, 12 and 14, but it would 

involve unpleasantly heavy, though conceptually simple, calculations. 

So, we restricted ourselves to the detailed analysis of two and three TT 

groups. 

Finally, let us emphasize that Rules 2 and 3 do not require the 

topological mixing condition within TT components. This condition 

only affects the way the iterations of smooth measures converge to #+, 

and the way the iterations of Tj~#+ converge to ~+. If the mixing 

condition within ED components fails, then the Cesaro limit of T.~#, for 

any smooth measure #, is a measure #o equivalent to #+, cf. Sect. 4. 

Also, the Cesaro limit of Ti-n#+ (and the limit of Tjn# ~ is ~+. 
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