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Anosov maps with rectangular holes.
Nonergodic cases.

N. Chernov? and R. Markarian!

— To the memory of Ricardo Mané

Abstract. We study Anosov diffeomorphisms on manifolds in which some ‘holes’ are
cut. The points that are mapped into our holes will disappear and never return. We
study the case where the holes are rectangles of a Markov partition. Such maps with
holes generalize Smale’s horseshoes and certain open billiards. The set of nonwander-
ing points of our map is a Cantor-like set we call a repeller. In our previous paper,
we assumed that the map restricted to the remaining rectangles of the Markov par-
tition is topologically mixing. Under this assumption we constructed invariant and
conditionally invariant measures on the sets of nonwandering points. Here we relax
the mixing assumption and extend our results to nonmixing and nonergodic cases.

1. Introduction
Let T : M’ — M’ be a topologically transitive Anosov diffeomorphism
of class O on a compact Riemannian manifold M’. Sinai [12] and
Bowen [1] constructed Markov partitions for transitive Anosov diffeo-
morphisms. Let R’ be an arbitrary Markov partition of M’ into rectan-
gles Ry,..., Ry. We assume that these rectangles are small enough, so
that the symbolic dynamics is well defined [12,1].

Let I <I'. Put H = UL, (int R;) and M = M’ \ H. Then M is
a manifold with boundary. We study here the dynamics of T restricted
to M, thinking of H as a ‘hole’ into which some points of M will be
mapped by T, and then they disappear (escape).
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316 N. CHERNOV AND R. MARKARIAN

Notation. For any n > 0 we put
M, =NoT'"M and M_,=07_gT "M,
and also
My =0p>1My, M_=0Np>1M_,, Q=MiNnM_

All these sets are closed, T-'M, c My, TM_ C M_and TQ =T =
2. The set  consists of nonwandering points, i.e. those which never
escape through holes, either in the future or in the past. The sets M4
and M_ consist of nonwandering points in the past and the future,
respectively. The purpose of this paper is the study of the dynamics T
on ), M and M_. v

A vpictorial model of this type of dynamics was proposed by Piani-
giani and Yorke [10]. Imagine a Sinai billiard table (with dispersing
boundary), so that the dynamics of the ball are strongly chaotic. Let
one or more holes be cut in the table, so that the ball can fall through.
In particular, one can place those holes at the corners of the table and
make ‘pockets’. Let the initial position of the ball be chosen at random
with some smooth probability distribution (this may be the equilibrium
distribution). Denote by p(t) the probability that the ball stays on the
table for at least time ¢ and, if it does, by u(¢) its (normalized) distri-
bution on the table at time ¢. Natural questions are: does p(t) converge
to zero at some exponential rate, as t — co? is there a limit probability
distribution p4+ = lims .. p(t); is that limit distribution independent of
the initial distribution p(0)? These questions still remain open.

Pianigiani and Yorke [10] introduced a simpler class of dynami-
cal systems - expanding (noninvertible) maps with holes, for which
the above questions were answered positively in Refs. [10,5]. The
limit probability distribution py is called conditionally invariant mea-
sure. The measure p4 is not invariant under 7', it cannot be be-
cause of the holes. Instead, its image under T is proportional to itself:
pr (T"YAN M) = Ay pa(A) for any Borel A C M with some constant
At € (0,1), which we call the eigenvalue of ., cf. [4].

Tn 1981-86 Cencova [2‘,3] studied a class of invertible transformations
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with holes, namely smooth Smale’s horseshoes. She also answered the
above questions positively. In addition, she studied an inverse limit of
the iterations of the measure p4 (pulled backward in time). The result-
ing limit measure, 74, is invariant under the dynamics and supported
on the set Q of nonwandering points. That set is a Cantor-like closed
set, sometimes called a repeller or a semi-attractor.

In 1994, Collet, Martinez and Schmitt [5] constructed invariant mea-
sures on the sets of nonwandering points (repellers) for Pianigiani-Yorke
noninvertible transformations. They proved that the measure 7y is a
Gibbs measure, and thus it enjoys good statistical properties.

An special example of invertible hyperbolic systems with holes other
than horseshoes was studied by Lopes and Markarian in [9]. That was
an open billiard system — a particle bouncing off three circular scatter-
ers placed sufficiently far apart on an open plane. They constructed
measures i+ and n4 and showed that n4 was a Gibbs measure, too.

In Ref. [4] we generalized the above classes of invertible transfor-
mations with holes. We studied C1t® Anosov diffeomorphisms with
‘rectangular’ holes just as described above, under an additional ‘mixing
condition”:

Mixing condition. The symbolic dynamics generated by the partition
R ={Ry1,...,Rr} of M is a topologically mixing subshift of finite type.
Equivalently, there is a kg > 1 such that intR; N TkO(Rj NM_g,) # 2
forall 4,7 < I.

This class covered both Smale’s horseshoes and open billiard tables
(in any dimensions). We proved the existence and uniqueness of the
measures g+ and 74. We showed that 174+ was a Gibbs measure and
found its potential function and topological pressure. We found nec-
essary and sufficient conditions under which the measure 74+ coincided
with the meagsure n_ constructed in the same way for the inverse map
T-1. This last result was never discussed in [2,3,9]. In particular, we
showed that n4 = n_ for open billiard tables answering a question posed
in [9].

In this paper we relax the mixing condition, thus allowing multi-
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ple ergodic components, periodic structure of ergodic components and
nonrecurrent states as well. We prove the existence of the measures
u+ and vy and discuss their uniqueness and other properties. One of
the most remarkable results is that the eigenvalue A+ of the map 7" on
M equals the largest of the eigenvalues of T restricted to its ergodic
components components. The conditionally invariant measure .4 is de-
termined by that of the component with the largest eigenvalue. The
invariant measure v coincides with the one on the ergodic component
with the largest eigenvalue, as if the others did not exist.

The importance of the present study is in the following possible con-
struction. Let T : M’ — M’ be an Anosov diffeomorphism and H C M’
be an arbitrary hole with smooth boundary, not necessarily connected
(this is a physically interesting model!). To study the dynamics of T
on M = M'\ H one can approximate the hole H by a union, H (T), of
‘rectangular’ holes taking, for a sufficiently fine Markov partition, all its
rectangles intersecting H. The union H () of ‘rectangular’ holes can be
made arbitrarily close to the original hole H, and then one can possibly
approximate the measures g4+, 74 for the map T on M by the measures
ugf), ngf) for the map T on M ) = M \H (). The work in this direction
is currently underway. However, the map T on M (") most certainly fails
to satisfy the above mixing condition, so we cannot use our previous
results in Ref. [4] directly. We have to relax the mixing condition first,
and here we do just that.

Section 2 contains necessary results from Ref. [4]. In Section 3 we
establish new results (still under the mixing condition), which we will
need further. In Section 4 we discuss the case where the subshift gen-
erated by R is topological transitive but not topologically mixing. In
Section 5 we study nonrecurrent rectangles. In Section 6 we consider
the coexistence of two transitive classes of rectangles. Section 7 covers
the cases of three or more transitive classes. Section 8 contains general
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conclusions on arbitrary number of transitive classes.

2. Necessary results for the mixing case
Here we recall the results of [4] which we are going to extend to non-
mixing cases.

Denote by

U =V TR and 8 =V, T "R’

the partitions of the rectangles R € R’ into unstable and stable man-
ifolds (fibers), respectively. The restrictions of I’ to M and M, are
denoted by U and U, respectively. Similarly, we have partitions S and
S_ of the sets M and M _ into stable fibers. Atoms U € f and S € S
of these partitions are closed domains on unstable and stable manifolds.
For any z € M’ denote by J*(z) and J*(x) the Jacobians of the map
DT restricted to the unstable and unstable subspaces at z, respectively.

Fact. [12,4]. There is a unique family of probability measures v on

fibers U € U’ such that

(i) (smoothness) v is absolutely continuous with respect to the Rie-
mannian volume on U, and its density, pf;(x), * € U, is Holder
continuous (see a convention below);

(ii) (conditional invariance) for any x € Uy € U’ and Tz € Uy € U’ we
have

oty (@) = v (T Uy) - J*(x) - pi, (T'x) (2.1)

Equivalently, if TU = Uy U --- U Ur, where U; € U, then
L
U NT 4 =S v (T Uy - v (AN Ty) (2.2)
=1

for any Borel set A C M’. The densities pf;(x) satisfy the equation
[12]

Se

(@) _ ST AT )
pip(y) oo JUT ) JUT )
for all z,y € U.

(2.3)
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Convention. [4]. All the densities of measures on unstable and stable
fibers are assumed to be Hélder continuous with the same Holder expo-
nent ¢, as the one of the derivative of the map T'. We call a measure
on M smooth if its conditional measures on unstable fibers U € U are
absolutely continuous with Hoélder continuous densities.

Recall that every transitive Anosov diffeomorphism has a unique
Sinai-Bowen-Ruelle [13,1,11] measure (SBR-measure), whose condit-
ional distributions on unstable manifolds U € U’ are exactly our v.
Motivated by that, we will call v4 u-SBR measures (on unstable mani-
folds).

For any Borel measure 1 on M we define its norm by ||u|| = p(M).
We denote by T, the adjoint operator on the class of Borel measures on
M defined by

(T.p)(A) = p(T~H(AN M)

for any A C M. Due to the holes, the operator T, does not preserve
norm. We denote by T4 the (nonlinear) transformation on the set of
probability measures defined by the normalization of the measure T p:

Ty T
Teb =l = W) @4

Definition. A measure p on M is said to be conditionally invariant

under T' if Ty = p. Obviously, any conditionally invariant measure p
is supported on My, and there is a A > 0 such that T YAN My =
(AN My) for any A C M.

Theorem 1. Assume the mizing condition. The map T has a unique con-
ditionally invariant probability measure py whose conditional measures
on unstable fibers are Holder continuous. In fact, those conditional mea-
sures are u-SBR measures vi;, U € Uy. For any smooth measure pi on
M (see again the above convention) the sequence Ty weakly converges,
as n — 00, to the measure piy.. Furthermore, the sequence A\J™ - T u
weakly converges, as n — oo, to the measure cly] - 4, where c[u] > 0 is
a linear functional on smooth measures on M.

Remark. The conditionally invariant measure p4 constructed in this
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way is physically natural according to the original Pianigiani-Yorke mo-
tivation [10]. This measure coincides with the Sinai-Bowen-Ruelle mea-
sure in the case H = &.

Corollary 1. Let U € U. If p is a singular measure supported on U
with Hoélder continuous density (on U), then the sequence T p weakly
converges 1o (4.

We call vy =1n )\4__1 the escape rate, cf. [6,8,7,4].

Next, since the set M is invariant under T-1, the measures T ™y
for n > 1 are probability measures for all n > 0. In virtue of Theorem 1
they coincide with the conditional measures gy (-/M_,,) satisfying

p(A/M p) = pr (AN M )/ (M) = AT" - pp (AN M_,) - (2.5)

Theorem 2. The sequence of measures T "yt = pi(-/M_,) weakly
converges, as n — oo, to a probability measure, n4, supported on the set
Q=M NM_. The measure ny is T-invariant, i.e.

(T~ A) = 14 (TA) = 14 (4) (2:6)
for every Borel set A C M.

Theorem 3. The measure n4+ is an equilibrium state for the Holder
continuous potential

g+(z) = —log J¥(x) (2.7)
on Q and its topological pressure is P(ny) = —log )\4—_1 = —v4. Thus,

14 is a Gibbs measure. The sum of positive Lyapunov exponents of the
map T is

X;; = /Qlog JUz)dny(z)  ae. (2.8)
The variational principle
s = b (T) = [ og I (a)dn (2)
(2.9)
= sup{iy(T) ~ [ log (@) dn(a)}
holds, where h, (I} denotes the Kolmogorov-Sinai entropy of the mea-

sure N+, and the supremum is taken over all T-invariant probability
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measures on Q. The left equation in (2.9) is equivalent to the following
escape rate formula

Xy = hoy (T) + 14 (2.10)

3. Symbolic dynamics and new results for the mixing case
We translate Theorems 1-3 into the language of symbolic dynamics to
obtain new properties of the measures p4 and n4 under the mixing
condition.

Define a transition matrix A" = (4;;) of size I' x I' by

s { 1 if it RyNT! mtR);éQ
0 otherwise

In the space ¥ = {1,2,...,I }Z of doubly infinite sequences w =
{wi}>, with the product topology we consider a closed subset

Yy ={wex: Afdiwiﬂzl for all —oo < i< oo}

The left shift homeomorphism o : ¥y, — ¥4, is defined by (o(w)); =
w;+1. This symbolic system is a subshift of finite type.

There is a natural projection II : ¥y, — M’, continuous, surjective
and commuting with the dynamics: I1 oo = T o II. This projection is
one-to-one on the set M’ \ UjEZZTj(BR’).

The partition R = {Ry,... ,R;} of M = M'\ H defines a I x I
submatrix A = (4;;) of A’. We call A the transition matrix for the

restriction of 7" on M. It defines a new subshift of finite type by
Sa={w ey w, <I forall —oo<i<oo}
It is clear that I[I{(34) =
Consider also a ‘hybrid’ symbolic space

Sr={weyw<I forall i<o0}l

Its positive semi-sequences {w;}2 are defined just like those in ¥,

are defined in the same way
1

while its negative semi-sequences {w;})__

as those in ¥ 4. This space is not o-invariant, but it is ¢~ -invariant. It

is easy to check that TI(X4) = M.
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Fact. [13,1,11]. Every topologically transitive Anosov diffeomorphism
T : M — M’ of class C1T® has a unique SBR measure p¥. Its condi-
tional measures on unstable fibers are absolutely continuous with Hélder
continuous densities. The measure p* is a weak limit of the iterates of
any smooth measure on M’ under 7™ as n — oo. For any Markov par-
tition R’ with sufficiently small rectangles the measure g% = II~! o p*
on the symbolic space ¥/, is a Gibbs measure with potential function
g(w) = —log J*(II{w)) and topological pressure P = 0.

The measure p* conditioned on M is smooth under our convention
in Section 2. Thus, T} " weakly converges, as n — oo, to pu4. Since
p is T-invariant on M’, we actually have T u* = p*(-/My). Therefore,
the measure p* conditioned on M, approaches, as n — 00, the measure
p+ on My. It follows from the results in [4] (see Corollary 5.7 there)
that there are constants C,Cy > 0 such that for all n > 0

Cy < pt(Mp)/e"+ < Cy
Combining the above facts gives the following property of the mea-
sure fip = II"' 4y on the symbolic space Y.

Theorem 4. For any admissible cylinder C = (w_g, ... ,wn) C X4 and
every symbolic sequence w € C we have

p+(C)
exp (L2 _p g(o'w) + nv4) ~
where Cg,Cyq > 0 are constants independent of the cylinder C or the

Cy < (3.1)

values of n, m.

Comparing this theorem to Bowen’s definition of Gibbs measures
[1] suggests us to call the measure i+ on ¥4 a ‘hybrid’ Gibbs measure
with the potential function g(w). Unlike Bowen’s definition, however,
here the ‘positive’ and ‘negative’ components of the cylinder C have
different ‘topological pressures’, Py =0 and P_ = —v respectively.

For any n > 1 the measure o "[i4 is supported on ¢ "%4. This
space has the same cylinders of length 2n + 1, i.e. (w_p,...,wn), as
the space 4. It is clear that o_ ", converges, as n — 00, to the
Gibbs measure 74 = II" 174 on o4 corresponding to the same potential
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function g(w). This is exactly what Theorems 2 and 3 say.

Lastly, let C = (wy, . .. ,ws) be any admissible cylinder of length k+1
in ¥/, and let wg < I. Denote by ji4 ¢ the measure fi4 conditioned
on Xy NC. Its inverse images o,"(fi4+,c) behave asymptotically, as
n — 00, just like 07" (4 ), because the cylinder C is moved under o~
to the right and eventually its influence vanishes. Thus, the measure
0. "(fi4+,c) weakly converges to the same Gibbs measure 7. Back on

M, this last conclusion means the following.

Corollary 2. Let R be any s-inscribed subrectangle in any rectangle
R, € R (i.e., R is a union of some stable fibers S € S, S C R;). Denote
by pt r the measure py conditioned on R' N My. Then the sequence
T "y r weakly converges, as n — 00, to the measure 1.

This corollary is dual to Corollary 1, for it shows that the measure
1+ can be obtained by backward iterations of a measure supported on
just one stable fiber, S N M, the latter measure is u+ conditioned on
SN M4. This corollary was missing in Ref. [4], and we need it in this

paper.

4. Topologically transitive case
Here we replace the mixing condition by the following weaker one.

Transitivity condition. The symbolic dynamics generated by the par-
tition R = {Ry,...,Rr} of M is a topologically transitive subshift of
finite type. Equivalently, for any R;, R; € R there is a k;; > 1 such that
intR; N T"7 (R; N M.y,)# 9.

Under this condition the subshift is either topologically mixing (i.e.
T satisfies the mixing condition) or periodic. The latter means that
there is a finite p > 2 (period) and a partition of R into p subgroups
Ri,..., Ry cyclically permuted by the shift. Precisely, intR; N T(R; N
M_1) # @ if and only if R; € R; and R; € R4y for some ! (here and
on [ is a cyclic index, i.e. [ = p+ 1 is identified with [ = 1). Besides,
the map TP restricted to M O =y Rrer, Rt for any [ satisfies the mixing
assumption.

Bol. Soc. Bras. Mat., Vol. 28, N. 2, 1997



ANOSOV MAPS WITH RECTANGULAR HOLES 325

The map TP restricted to M () has all the properties listed in the
previous section. In particular, there are conditionally invariant mea-
sures ugl_) on M_(:) =M, NM () and TP-invariant measures 77_(&) on the
sets Q) = 0N MW", We call these basic measures. These measures
satisfy Theorems 1-3 with T replaced by TP and M by M @,

It is standard in the ergodic theory to reduce transitive but nonmix-
ing subshifts to mixihg ones by replacing T' with its appropriate iterate,
TP. Tt is interesting, however, to extend Theorems 1-3 directly to the
nonmixing map T, the task we accomplish in this section.

@

According to Theorem 1, every basic measure 11}’ is a weak limit of

-1
cly] - [Agﬂ TP, as n — 00, for any smooth measure p on M . 1t is

@

then clear that the eigenvalues of the measures p” under 7% coincide,

ie. )\Sf) = Ay for all [. Also, for any [ the measure T*,ugi) is proportional
(14+1) 0 (+1)

to puy 7, ie. Tipy’ = Npi ~ with some Ay € (0,1]. Then Ay =
A1+ Ap. From these remarks and the cyclic character of the map T" we

derive the following.

Theorem 5. There is a unique conditionally invariant measure py for
the map T, whose conditional measures on unstable fibers are smooth.
These are, in fact, the u-SBR measures vj;. The eigenvalue of py is

Ap = (5\+)1/ P The measure py is a weighted sum of basic measures

1
Bt = wlMS-) + +wpﬂgf)

where the weights w; > 0 are uniquely determined by the equations
wA = wip1 Ay for alll and wi + - +wp, = 1.

Example. Let p = 2, and A\; = 1, Ay = 1/4. Then the eigenvalue of the
measure g is 1/2 and the weights are w; = 1/3 and wg = 2/3.

However, the images 7y of an arbitrary smooth measure y on M
generally need not converge, as n — 0o, to the measure p4.. Normally,
the sequence T i1 periodically approaches a finite number (< p) of limit
measures, all of them being some weighted sums of the basic measures

MS}) ey ,ugf) (in particular, they are all equivalent to p4). The Cesaro
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limit of the sequence 77 u always exists and does not depend on p. But
it is an equidistributed sum of the basic measures

1 1
Even though this measure is equivalent to p4, it is generally different
from pi4.

(p)

Theorem 6. (i) The equidistributed sum of basic measures ny’,

1
= (0 P

is a T-invariant measure on Q. It is the only T-invariant measure equiv-
alent to nﬁf) on M® for every [.
(ii) The weak Cesaro limit of the sequence T "y, as n — 00, is N+.

0

Proof. The basic measures 77}’ on o satisfy the invariance property
T*ngp = nﬁ“). This follows from Theorem 2 and Corollary 2. Then
the part (i) is immediate.

It is easy to see that the measure 4 is the weak limit of the sequence -
T,jn,u(}r as n — oo. However, the sequence T, "uy = py(-/M_p) gen-
erally does not converge to any measure on Q. Instead, it periodically
approaches a finite number (< p) of measures on Q that will be weighted
sums of the basic measures ngi). In the above example, the two limit
measures for the sequence T, "y have weight distributions (1/3,2/3)

and (2/3,1/3). It is now clear that the part (ii) of Theorem 6 holds.

Theorem 7. (i) The measure ny is a Gibbs measure with potential func-
tion g(x) = —In J"(z) and topological pressure P =1n Ay.
(ii) It satisfies the equation (2.10).

Proof. According to Theorem 3 the basic measures 779 are Gibbs with
potential g;(z) = —In(J"(z)--- J”(Tp_lm)), T € Q(l), and topological
pressure P, = In A;. Then the part (i) easily follows.

The equation (2.10) holds for the measure nﬁﬁ) and the map TP on
0. It is easy to check that every quantity involved in (2.10) decreases
by a factor of p if we replace TP : o® - W) by T:Q — Q and nﬁ) by
N+. This gives the part (ii).
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Summarizing, we find that Theorems 1- 3 still hold under the tran-
sitivity assumption, with two exceptions. First, the images T%u of an
arbitrary smooth measure y on M do not exactly converge to u.. They
approach a finite number of limit measures on M, all equivalent to
p+. The same goes to the sequence T, "y and the limit measure n.
In the latter case, however, the Cesaro limit of T, "uy is always n..
Corollaries 1 and 2 cannot be extended to nonmixing cases.

5. Nonrecurrent rectangles

One can classify the rectangles R € R just like states of Markov chains
are classified in probability theory. We call a rectangle R € R recurrent
if its interior points come back to R under 7', i.e. intRNT™"(RNM_,,) #
& for some n > 1. In the trivial case, where all the rectangles are
nonrecurrent (transient), the sets M4, M_ and  are all empty, and the
phase space M ‘escapes’ entirely.

The recurrent rectangles can be grouped, within each group points
from any rectangle are eventually mapped into any other rectangle. The
symbolic dynamics within every group is a topologically transitive (TT)
subshift of finite type.

In this section we still assume that there is just one transitive group
of recurrent rectangles Ry,---, Rj,, but we allow some nonrecurrent
rectangles Ry +1,..., Ry as well. Put ML = RyU...URy,.

Nonrecurrent rectangles are further subdivided into three groups:
(i) incoming: such that int7T™(R; N M_,) N MM £ & for some n > 1;
(ii) outgoing: such that int7~"(R; N M,) N M) + & for some n > 1;
(iii) isolated: such that int7™(R; N M_,) N M) = & for all n € Z.

The set of nonwandering points Q obviously belongs in M (1), The
restriction of the map T to M (1) satisfies the transitivity assumption in
the previous section. Thus, there is a conditionally invariant measure
,ung) on MJ(rl) =MinNM 1) with eigenvalue )\E&), and the corresponding
T-invariant measure 77.(4_1) on Q.

The isolated rectangles escape to H altogether in a finite time and
have no influence on the measures p+,n+ whatsoever. The incoming
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rectangles are absorbed into M (1) in a finite time, so their presence (or
absence) cannot affect the properties of the measures p or ny either.
The set My intersects only recurrent and outgoing rectangles. The

measures Tf,ug:) (the images of NSE) under the maps 7™ on M) will be
)

supported on M., and their restrictions to MJ(F1 will be always propor-

tional to MS}). It is then easy to check the following.

Theorem 8. Under the above conditions, there is a unique conditionally
invariant measure py for the map T supported on My with absolutely
continuous conditional measures on unstable fibers. They are, in fact,
the u-SBR measures vi;. The measure py is proportional to ,u_:) on the
set MJ(rl). These two measures have the same eigenvalue A4 = )\Srl).

If the transitive group of rectangles is topologically mixing, the se-
quence Ty converges, as n — o0, to p4 for any smooth measure p
on M. In nonmixing cases the situation is equivalent to the one in the

previous section.

Theorem 9. (i) The T-invariant measure n+ on Q simply coincides
with the measure ng_l) . Thus, it enjoys oll the properties established by
Theorems 8 and 3.

(ii) The measure n4 is the weak Cesaro limit of T, ™y asn — oo (in
the mizing case, it is just the weak limit).

Proof. Only the part (ii) needs a proof. According to Theorem 6, the
weak Cesaro limit of the sequence T*_”,us}) is n4. Consider the measure
U+ conditioned on outgoing rectangles. It will be transferred under
T7™ into measures supported on some s-inscribed subrectangles in some
rectangles R; C M (1) and on those subrectangles those measures will

(1)

be proportional to u'’. Due to Corollary 2, such measures converge to

N+, a8 n — 00, in the same way as the sequence T‘”,ug_l). The theorem

is proved.

6. Two TT groups of rectangles
As it was remarked in the previous section, recufrent rectangles can
be divided into topologically transitive (TT) groups so that in each
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group points from any rectangle can be mapped into any other rectangle.
In this Section we will assume that there are just two TT groups of
rectangles: MO — Ry U---U Ry, M@ = Ry +1U---U Ry, and
some non-recurrent rectangles Ry, 11,..., ;. If there is no connection
between these groups, i.e. int(T”M(l) N TmM(Z)) = @ for all m,n €
7Z, then we have two trivially independent repellers, one in M 1) and
another in M(2).

There may be, however, a one-way route from M M to M (2), ie.
int(T”M(l) N M(Q)) # @ for some n > 1. In this case the picture gets
more intricate. The rate of escape from M (1) is still the same as for the
map T'|, 1), as if M (2) did not exist. The escape from M (2), however, is
combined with the influx from M), The resulting escape rate from M
and conditionally invariant measures will be then determined by three
factors: the escape of mass from M (1), M®) and the transfer of mass
from M) to M),

Nonrecurrent rectangles are now subdivided into four groups:

(i) incoming: such that int7™(R; N M_,) N M®D UM £ & for
some n > 1 but int7T~"(R; N M) N (MWD U M) = & for all
n > 1;
(i) outgoing: such that intT~"(R; N M) N (MDD U M) +£ & for
some n > 1 but intT™(R; N M_,,) N (MWD U M) = & for all
n > 1;
(ifi) isolated: such that intT™(R; 0 M_,) N (M1 U M) = & for all
n € 7Z;
(iv) transmitting: such that int T™(R; N M_p,) N M ) £ & for some
n > 1and int T-™(R; N My,) N MW £ & for some m > 1.

Slightly abusing the language, we will say that incoming rectangles
have one-way connections to M Wy m (2), and the outgoing rectangles
have one-way connections from M W UM, We may also say that
transmitting rectangles are connected from M (1) and to M),

For the map T restricted to M (i), i = 1,2, we denote by M% and

K2

0 the corresponding sets defined as in Introduction, and by py’ and

(#)

n.’ their conditionally invariant and invariant measures, respectively.
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We denote by )\gf), i = 1,2, the corresponding eigenvalues.
It is clear that

My = UpsoT (M 0 2y

and _
M_ = Upso T (MY 1 @)y,

In the present case, the set My consists, in addition to MS) UM (2},
of some unstable fibers in outgoing and transmitting rectangles, as well
as some unstable fibers in M2 not included in ]\4_(3). These fibers are

images of M_(Fl) under 77, n > 1, and they are getting closer and closer

to Mf) as n — o00. Symmetric statements can be made of the set M_.

The set of nonwandering points Q& = M NM _ includes o) and Q(Z),
but is not limited to them. It also contains (i) points of intersection of
stable fibers of M£2) and unstable fibers of (T"Mil)) N M@ as well as
(ii) similar points in M (M), and (iii) the points in transmitting rectangles
which belong in T"Mj(Ll) N T‘mM(2), n,m > 1.

Standing assumption for all theorems in Sections 6 and 7. The map
T restricted to every TT component is not only topologically transitive,

but also topologically mizing.

This is assumed for simplicity only. Nonmixing maps require the
modifications to our results completely described in Section 4.

We now construct the conditionally invariant measure p4 for 7" on
M. Obviously, isolated and incoming rectangles do not affect the mea-
sure p14. Outgoing and transmitting rectangles can capture some frac-
tion of this measure as we described in the previous section. A new twist
here is a flow of mass into M(?) from the transmitting rectangles or di-
rectly from M (1), The flowing mass then evolvesin M ) and approaches
Mf) competing with the measure ,ugf)‘ This flow is characterized by
parameters described below.

Denote by M (%) the union of M) with all outgoing rectangles
connected from M (1) and all transmitting rectangles. Consider the re-
striction of the map T to M (1) This restriction has one T'T group of
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rectangles (it is M (1)) and others act just like outgoing rectangles in the

previous section. We proved there that T'on M (I+) has a conditionally
(1+) (1)

invariant measure py ’ with the same eigenvalue A~ as the measure

,uE:). Similarly, denote by M (2+) the union of M? with all outgoing
(

rectangles connected from M (), Let 7 f +) be the conditional invariant
measure for the restriction of T to M(2+). Note that, in a peculiar way,
the sets M+) and M) may have common outgoing rectangles. But
even in this case the measures M$+) and ,ungr) are supported on disjoint
closed sets.

Now, let qglz) > 0 be the fraction of ,ug}ﬂ transmitted to M(2T)

under the action of T, i.e. q§12) = T*HSFH) (M21)). Denote by Mgu) the

measure T, ug_&) conditioned on M(2+). For any k > 2 let q](€12) > 0 be

(1+

the fraction of iy ) transmitted to M(21) and surviving k—1 iterations
of T' within M(2+), i.e. q,(clz) = qglz)Tf 1 (12 (M (2+) ). For any k > 2
let ,u,(cm) = T_’f_‘l M§12). The measure ugm) is Supported on some unstable
fibers in M (2T). Tts further evolution under Tk, k > 1, within M (2+)
(12)

will satisfy Theorem 8. According to that theorem, p

converge to ufﬂ as k — oo, and q](gu) ~ [)\f)]k

will weakly
(12) [Af)]—k N

, Le. g
const >0 as k — oo.

Theorem 10. Assume that the two TT groups of rectangles are topolog-
ically mizing.

(i) If )\S}) > Af), then there are two conditionally invariant proba-
bility measures for T whose conditional measures on unstable fibers are

(2+)

u-SBR measures. One coincides with py '’ and has eigenvalue )\f).

(1)

The other has eigenvalue Ay, it is a weighted sum
-1 (1+ 12 12
pt =Q ( )+Z s )> (6.1)
where Q=1 is the normalization factor:

Q=1+3 ¢+
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In particular, u+(M(2+)) =1- Q'l and u+(M_(E)) = 0.

(i) If /\g&) < )\g) , then the only conditionally invariant probability
measure for T with u-SBR conditional distributions on unstable fibers is
ufﬂ with eigenvalue )\f)

For any smooth measure j1 on M the sequence T’} i weakly converges,
as n — 00, to one of the above conditionally invariant measures. In the
case (i) this limit measure is the one from (6.1) (rather than ,ug?ﬂ) if
and only if ,u(M(1 )) £ 0, where M=) s the union of M) and all

incoming rectangles connected to M1,
Proof. It is enough to investigate the evolution under T, of the measure
1o mpi +) +y;¢f+) with arbitrary z,y > 0, z+y = 1. Its image, T\ g,
is
1+ 12 2) (2+
AU 4 (12,02 @) 25)

Its k-th image, T g, is

x[/\(l)]k (1+) +$Zq7,12) A(l)]k i (12) +y[)\( )]k (2+) (62)
i=1
The norm of the second term in (6.2) is

k
RSN
i=1

with some ¢; = O(1), i.e. ¢; are bounded away from 0 and co. This
series converges iff Aﬂf) > )\f). In this case the asymptotics of T*pug
will be determined by the first two terms in (6.2) provided z # 0 and
by the third term alone otherwise. In the case )\S}) < /\f) we use the
(12) (2+)

prove the theorem.

convergence of ;" to p} /. Renormalizing and taking limit as k — oo

Theorem 11. (i) If /\S}) > )\f), then the measure ny = limT, "4 is

either 77.(4_1) or nf) depending on p4 being defined by (6.1) or being equal

to 12

(ii) If /\Srl) < )\f), then ny = nf).
In either case 1y is a T-invariant Gibbs measure with potential function
g(z) = —InJ%(z) and topological pressure P = InAy. It satisfies the
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equation (2.10).
This theorem readily follows from the previous one, in view of The-
orems 2 and 3.

In the case (i) of Theorems 10 and 11, the options py = ,u(+2+) and

Ny = nf) can be regarded as quite singular. Indeed, these measures
are generated by initially smooth measures p such that (M (1‘)) = 0.

JFrom now on, we will rule out such degenerate measures:

Definition. The measures 4 and ny are said to be regular if they are
generated by smooth measures on M that are positive on every open
set.

In particular, p(M (1_)) > 0, so that in each case in Theorems 10
and 11 the regular measures are unique. We will restrict ourselves to
regular measures. Then these theorems can be summarized as follows.

Rule 1. The eigenvalue A} of the map T on M equals the largest of the
eigenvalues of T restricted to T'T components. The conditionally invari-
ant measure p4 is determined by that of the component with the largest
eigenvalue. The other components that have one-way connections to the
one with the largest eigenvalue, play no role. The other components that
have one-way connections from the one with the largest eigenvalue, play
the same role as outgoing rectangles, capturing a fraction of p4. The
invariant measure 74 coincides with the one on the TT component with
the largest eigenvalue, as if the others did not exist.

Motivated by this rule, we will call the T'T' components with the
largest eigenvalue (i.e., the smallest escape rate) the dominating com-
ponents. We will see later that the above rule holds for maps with
any number of T'T components, provided the dominating component is
unique. Necessary corrections in the case of several dominating compo-
nents will be made below.

7. Three TT groups of rectangles
The description of measures 4+ and 74 gets more complicated in the
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case of more than two T'T' groups of rectangles. However, the entire
picture is still determined by the rates of escape of mass from every
transitive component and by the rates of transfer of mass between com-
ponents.

It is clear that there can be only one-way routes between compo-
nents. These routes make an oriented graph in which transitive com-
ponents are vertices. Moreover, there can be no (oriented) loops in this
graph, so that it is actually a tree. We can assume that it is a connected
tree, otherwise it decomposes into two or more trivially independent
trees.

In this section we study maps with three transitive components.
Again, for simplicity we assume that all these components are topo-
logically mixing. Let us denote them by M 1) = RyU...URy ,
M®) = R 41U...URp and M®) = Ry U...URy,. Tn addi-
tion, there may be some non-recurrent rectangles Ry 41,...,R;. For

the map 7 restricted to M (i), 1= 1,23, we will use the notations M (9) ,
(2), ugf) and ng_f) introduced in the previous section.

There are four nonisomorphic connected oriented trees with three
vertices. They are (up to renumbering of vertices):
1) MO - 2@ s M),

1) M® — M@ and M M®3),
(IH) 1) — M@ - MG and MO - MG,
(IV) — M® and M® — MO,

For every of these configurations, the nonrecurrent rectangles can
be classified and the sets M. and Q can be described in a way similar
to the one we gave in the previous section. We do not dwell on this,
since it will not be essential to our analysis. We turn to the study of
the measures p4 and ny for the map T on M.

The first configuration logically reduces to the study of two TT
groups if we consider first the subgroup M @ - pG) independently
of M) and then the pair M@ and M® UM®). The results will then
perfectly fit Rule 1 at the end of the previous section. We leave out the
details and turn to the more interesting configurations (II)-(IV).
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The configurations (II) and (I11I) are characterized by flows of mass
from M®) into M@ and M) (directly or via transmitting nonrecur-
rent rectangles). The flowing mass then evolves in both M 2 and M®)
approaching the sets M}’ 2) and MJ(E) respectively. In the configuration
(IIT) there is also a ﬂow of mass from M® to M®). These flows are
characterized by parameters described below.

For simplicity, we assume that there are no outgoing or transmitting
rectangles in the system. If there are any, one has to take unions of
M with outgoing and transmitting rectangles connected from M ()
like we did in the previous section. This amounts to somewhat heavier
notations but makes little difference in our arguments.

For any pair of components M () and M%) we introduce a sequence of
numbers {q,(jj )} similarly to the sequence {q,glg)} in the previous section.
Let qgij ) > 0 be the fraction of ,ugl;) transmitted to M) under the action

of T, ie. q&ij) = T*ugﬁ)(M(j)). Denote by ugﬁ the measure Tpg}

conditioned on M), For any k > 2 let ql(cw) > 0 be the fraction of pg_)
transmitted to M) and surviving k—1 iterations of T restricted to M ( ),
ie. q,(cj) = (ij)T'“c_1 (ij)( (j)) For any k > 2 let ,u(ij) be the measure
Tk- 1 ( ) conditioned on M (). The measure ,u( 7 ; is supported on some
unstable fibers in M), Its further evolution under the restriction of
T* k> 1, to M) will satisfy Theorem 1. According to that theorem,
;L,(jj ) will weakly converge to ,u(“? (a7) [)\S"f)]k, ie
q](:'j) [}\S—)]—k

as k — oo, and g

— const > 0 as k — oo.

Theorem 12. Assume the configuration (II), the mizing condition within
every TT group of rectangles, and the absence of outgoing and transmit-
ting rectcmgles in the system

i) If AL D 5 max {/\ %) )\(3 }, then the unique regular conditionally
1)

invariant measure py has eigenvalue /\g_ and s a weighted sum

pe=Q7" ( + Z PRI R el [/\ng)]'kM;(fg)> (7.1)

k=1
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where Q1 is the normalization factor:

Q=1+ Z ql(cm) [)\S_l)]—k + Z (13)[/\(1)]

k=1

In particular, p (M ) U M( ))
(i) Let AP < max{Al ,A(j")} and NP £ A®. Without loss of
generality, assume that )\f) > )\EE), Then the only regular conditionally

2) (2)

invariant measure pi4 coincides with pY’ and has eigenvalue AY

i) I ALY < max{ D@ 2D} and 2D = 2D then any weighted
(2) (3)

sum of the measures py’ and p"’ is a regular conditionally invariant
\@ _\®
+ = A

For any smooth measure y on M positive on every open set the

measure for T. Its eigenvalue is

sequence T i weakly converges, as n — oo, to a regular conditionally
invariant measure p4. In the case (i) the resulting measure pu4 1is
determined by the initial distribution of p between the TT components.

Proof. As in the proof of Theorem 10, it is enough to investigate the
evolution under 7, of the measure pug = xugrl) + yuf) + zuf) with
arbitrary z,y,z > 0 such that z + y + z = 1. Its image, T, p, is

DD L pg0D,02) @ @) a3 18) @) 6)

Its k-th image, T% g, is

k
PP+ 3 g 1y n P
o (7.2)
+z Z qi(l?’) [)\S})]k—i,ugw) + Z[Af)]kﬂg)

The rest of the proof goes like that of Theorem 10.

Theorem 13. Under the condztzons of the previous theorem we have

(i) If ,\ﬂf) > max{)\(Q) )\ } then the measure ny = limT, "uy co-
incides with 77(1)

(ii) Let )\(1) < 1[1[1&}({/\(2 ,)\(3} and /\(2) > /\() as before. Then
n+ = 77—(1—)'
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(iii) If )\Srl) < max{)\(2), /\SE’)} and )\f) = Af), then n4 is a weighted

sum of nf) and nf’)

with the same weights as in the case (iii) of the
previous theorem.

In every case n4 is a T-invariant Gibbs measure with potential func-
tion g(z) = —In J*(x) and topological pressure P = ln Ay. It is ergodic
in the cases (i) and (i), and has two ergodic components in the case
(iii). The measure ny satisfies the equation (2.10).

We now turn to the configuration (III). A new twist here is a sec-
ondary flow of mass from M®) to M®) via M), For any m,n > 1
denote by M,S}Zl the set of points of ML) whose first m images land in

M® and the following n images land in M (3), ie.

My =fw e MV Tig e M® for1<i<m and
Tz e MG form+1<j<m+n}

Let iz = M (MG and pbrad) = T4 (M| M0)), note that pas)
is a probability measure. Obviously, T*_1u7(71213) is the measure uﬁii")

conditioned on M@ N T-13B). Therefore, the measure - 1#5,1213)

converges, as m — 00, to ,ugf) conditioned on M @ N7-1mB). Accord-
(123)

ing to Theorem 1, the measure pmn, then converges, as n — oo, to

,uf) and this convergence is uniform in m. Also, r(123) {)\f)]m[)\f)]",

ie. 7‘7(7%%3)[)\3?)] X f)] ™ — const > 0 as m,n — 00, and the values of
ry(i,%g) [Ai)]—m{,\f)]—" are bounded away from 0 and oco.

Theorem 14. Assume the configuration (III), the mizing condition
within every TT group of rectangles, and the absence of outgoing and
transmitting rectangles in the system.
(i) If /\S:) > max{)\(z), )\f)}, then the unique regular conditionally
(1)

invariant measure p4 has eigenvalue Ay ', and il is a weighted sum

= Q70 (0 + 3 PR+ 3 I
k=1 k=1 (73 )

e i 7.123) /\(1 —-m— nyq(%%?))

m,n=1
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where Q=1 is the normalization factor:

Q=1+ Z q£12)[ + ko Z q(13) + Z 123) jmmen
k=1

mnl

, 2) 3
In particular, ,u+(MJ(r U M_(F )) =0.
(i) Let )\SLI) < )\f) and )\Ef) > )\f). Then the only regular con-
(2)

ditionally invariant measure py has eigenvalue Ay’ and is a weighted

wy=Q - (uf) +3> [Af)r’“ufg)) (7.4)
k=1
where Q=1 is the normalization factor:

Q=1+Y ¢+
k=1

In particular, ,u+(M4(_1) U M<3)) =
(iii) Let )\f) > max{)\g_l ,/\Sf }. Then the only regular conditionally
(3) (3)

invariant measure pi4 coincides with py’ and has eigenvalue Ay

sum

For any smooth measure i on M positive on every open setl the
sequence T weakly converges, as n — 00, to a regular conditionally

tnvariant measure (L.

Proof. As in the proofs of Theorems 10 and 12, it is enough to investi-

gate the evolution under T, of the measure g = a:,uSLl) + y,ugf) + zu&)

with arbitrary z,y, z > 0 such that = +y + 2 = 1. Its k-th image, T%puq,
is

)\(1 + +$Z (12 )\(1 k— ZMZ(12) [/\(2)]]6 (2)

’L

_'_mzq(l )\(1 k—1 (13)_1_2[)\&?)]]6“53)

+yZ dBPOEE) | g 3 0D 123)

2v 2]
i+g<k

The rest of the proof goes basically like that of Theorems 10 and 12.
(123)

In the analysis of the case (ii) the measures p,

.;  Play some role. The
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(123)

necessary result follows from two facts: (i) the measure 71 M {1 con-

verges, as ¢ — 00, to uf) conditioned on M2 N T-1373) and (ii) for

any ji,7js > 1 we have

lim 7
11— 00

) =2
Theorem 15. Under the conditions of the previous theorem we have

(i) If )\Srl) > max{/\g), )\f)}, then the measure Ny = lim T "y co-
incides with "75_])-

(i) Zet AP < AP and AP > 2D Then ny = n®.

(iii) If )\f) > max{)\g}), )\f)} then ny = nf).

In every case n+ is an ergodic T-invariant Gibbs measure with po-
tential function g(z) = —In J“(x) and topological pressure P =InAy. It
satisfies the equation (2.10).

The last configuration, 1V, can be reduced to III by eliminating
the flow of mass from M) to M2 together with the secondary flow
from M1 to MB) via M3, In the previous two theorems this forces
q,ElQ) = (0 and rﬁ,ﬁg) = 0 for all k,m,n. Then the results of those
theorems apply to the configuration IV in the cases (i) and (iii). The

case (ii) goes through under an additional assumption that )\Sp < )\f).

The possibility A(l) = )\f) > )\f) is treated separately in the following
theorem.

Theorem 16. Assume the configuration (IV), the mizing condition
within every TT group of rectangles, and the absence of outgoing and
transmitting rectangles in the system. Let AS}) = Agf) > /\g). Then

any regular conditionally invariant measure for T is a weighted sum

ft = Wifi4 ] + wop 2, where
. 0 .3 . - 3
pii =i+ 3 gD
k=1
for i =1,2. The measures (11 ; are singular with respect to each other.
. The eigenvalue of any such p4 is )\g}) = )\EE).

For any smooth measure . on M positive on every open set the se-
quence Ty weakly converges, as n — oo, to some regular conditionally
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mvariant measure py, whose weights are determined by the initial dis-
tribution of u between the TT components.

(1

The T-invariant measure Ny = imT %y is a weighted sum of n i

and nf) . It is a Gibbs measure with potential function g(x) = —In J%(x)
and topological pressure P = InAy. It satisfies the equation (2.10) and

has two ergodic components.

8. General conclusions

Here we generalize (leaving out some technical details and exact proofs)
the theorems obtained in the previous two sections to systems with
arbitrary number of TT components.

First of all, if the system has an only dominating T'T component (the
one with the largest eigenvalue), then Rule 1 describes the properties of
measures 4 and 74.

If the system has more than one dominating T'T' components, then
we subdivide them into essential and nonessential ones as follows. Any
dominating component M (©) that has a one-way connection fo another
dominating component (possibly, via some transmitting rectangles
and/or other TT components) is said to be nonessential. The remaining
dominating components are essential.

Rule 2. The measures p+ and 74 always exist. They are determined by
essential dominating (ED) components only. If the system has just one
ED component, the measures yy and n. are unique and determined
by that component according to the Rule 1, as if all the other TT

components were not even dominating.

Rule 3. If the system has two or more ED components, the measures p+
and 74+ are not unique. Every ED component M (¢) determines measures
t+; and n4 ; according to the Rule 2. The measures p ; are singular
with respect to each other. The set of regular conditionally invariant
measures . for T is the convex hull of the measures p1 ;. They have the
same eigenvalue, which is the common eigenvalue of all ED components.
The set of regular invariant measures n4 for T is the convex hull of the
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measures 74 ;. Every ny is a Gibbs measure with potential function
g(z) = —InJ*(x) and topological pressure P = In A4, and it satisfies
the equation (2.10). The number of its ergodic components equals the
number of ED components in the system.

We do not prove Rules 2 and 3 in the general case, since they directly
generalize our theorems proved in two previous sections. We also leave
out detailed description of the measures p.; that was provided in the
previous sections. We could have given such a description along the
lines developed in the case (i) of Theorems 10, 12 and 14, but it would
involve unpleasantly heavy, though conceptually simple, calculations.
So, we restricted ourselves to the detailed analysis of two and three TT
groups.

Finally, let us emphasize that Rules 2 and 3 do not require the
topological mixing condition within TT components. This condition
only affects the way the iterations of smooth measures converge to u,
and the way the iterations of 7T, "u4 converge to ny. If the mixing
condition within ED components fails, then the Cesaro limit of 7", for
any smooth measure 4, is a measure ug_ equivalent to pu, cf. Sect. 4.
Also, the Cesaro limit of T "u+ (and the limit of T*‘"ugr) is N4
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