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Abstract. We study Wigner ensembles of symmetric random matrices A = ( a i j ) ,  

i , j  = 1 , . . .  , n  with matrix elements a i j ,  i < j being independent symmetrically 
distributed random variables 

4u 
a i j  = aJ i - -  I " 

n g  

We assume that  Var~ij = 1, for i < j ,  Var~ii <const and that  all higher moments 
of ~ij also exist and grow not faster than the Gaussian ones. Under fornmlated 
conditions we prove the central limit theorem for the traces of powers of A growing 
with n more slowly than x/~. The limit of Var(Trace AP), 1 << p << ~ ,  does not 
depend on the fourth and higher moments of ~ij and the rate of growth of p, and 

1 As a corollary we improve the estimates on the rate of convergence of equals to ~. 
the maximal eigenvalue to 1 and prove central limit theorem for a general class of 
linear statistics of the spectra. 

Keywords: Random matrices, Wigner semi-circle law, Central limit theorem, Mo- 
ments. 

1. Introduct ion  and f o r m u l a t i o n  o f  the results.  

We revisit the classical ensemble of r andom matrices in t roduced by E. 
Qj 

Wigner  in the  fifties ([1], [2]): the components  aij = aji = ~ of the  real 

symmetr ic  n • n matrices A are such that :  

(i) {~ij}l<_i_<j <_n are independent  r andom variables; 

(ii) the laws of dis t r ibut ion for ~ij are symmetric;  
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2 YA. SINAI AND A. SOSHNIKOV 

(iii) each momen t  E ~ .  exists and E [ ~ I  _< Cp, Cp is a constant  depending 

only on p; (ii) implies tha t  all odd moments  of ~ij vanish; 

(iv) the second moments  of ~ij, i < j ,  are equal 1; for i = j they  are 

uniformly bounded.  

Studying the empirical dis tr ibut ion function F~(A) = l # { A i  < A, i = 

1 , . . .  ,n},  of the eigenvalues of A, Wigner  (see [1], [2] ) proved the 

convergence of moments  of F~(A) 

(AP}~ = [ APdF,~(A) i k 
1 

= -  A{ p = -  �9 TraceA p 
a rz/ :1  r~ 

- - 0 0  

to the moments  of nonrandom distr ibut ion function 

*'/e7 k 

2 
F(A)= - - z 2 d x ,  - 1 < A < 1  

7r 
-1 

0 ,  A < - - I  

in probability, i.e. 

(2~)! 

1 Trace A p Pr s ! ~ - l )  "4~s , if p = 2 8 ,  
- , # p  : ( 1 . 1 )  
n n---+oo 

0,  i f p = 2 s + l .  

Later, under  more general conditions, the convergence in (1.1) was 

proven to be with probabil i ty 1 (see [3] - [6]). This s ta tement  is some- 

t imes called the semicircle Wigner  law. 

The  proof  by Wigner  resembles the me thod  of moments  in the theory 

of sums of independent  r andom variables. In the late sixties and early 

seventies Marchenko and Pas tur  proposed a more powerful technique 

based on the analysis of matr ix  elements of resolvents ( A - z . I d )  -1 , which 

allowed them to generalize Wigner 's  results to the case of L indeberg-  

Feller type r andom variables: for any c > 0 

1 
lira -~ ~ E(~ 2" X(fijl > cv/n)) = 0 

l <_i<j<_n 
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CENTRAL LIMIT THEOREM FOR TRACES 3 

( [6] [9], see also [10]-  [12]). Similar results for random band matrices 

have been obtained in [13]. 

Due to strong correlations between eigenvalues, the fluctuations 

n A~ #p 
i = 1  

are of order !~ (not -~n!), and Trace AP - E(Trace A p) converges in 

distribution to the normal law H (  0, G;), (p is fixed), where the variance 

crp depends on the second and fourth moments  of ~ j  ([6]). The purpose 

of this paper is to extend these results to the case of powers of A growing 

with,n.  

M a i n  T h e o r e m .  Consider Wigner ensemble of symmetric  random ma- 

trices (i) - (iv) with the additional assumption 

E ~2~ <_ (const ~)~ , const > 0 (1.2) 

uniformly in i, j and ~, meaning that the moment s  of ~ij grow not faster 

than the Gaussian ones. Then 

1 n . ( 1 §  p =  28 

E ( Trace A p) = (1.3) 

0 , p = 2 s + l  

and Trace A p - E (  Trace A p) converges in distribution to the normal law 

1 Moreover, if [[etp]] with mathematical expectation zero and variance 3" 

is defined as the nearest integer p' to etp such that p' - p is even, then 

the random process 

~p(t) = Trace A [[~tp]] - E Trace A [[etp]] 

converges in the f ini te-dimensional  distributions to the stationary ran- 

dom process rl(t) with zero mean and covariance funct ion 

1 
E ~ ( t l ) .  ~(t2) -- ~cosh(~) " (1.4) 

Remark  1. It also follows from our results tha t  if p' - p  is odd, p' ,p  
p~ 

grow to infinity with n more slowly than  x/~, and 0 < constl  < ~ < 

const2, then  the distributions of Trace A p - E(Trace  AP), Trace A p' - 
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4 YA. SINAI AND A. SOSHNIKOV 

E(Trace A p') are asymptotically independent.  The reason for this can 

be best seen when p , p '  are consecutive integers 2s, 2s + 1. Let us also, 

in addition to p << n 1/2, assume for simplicity n 2/5 << p. 

The main contribution to the Trace A p comes from the eigenval- 

ues at the 0(1) distance from the endpoints of the Wigner semicircle 

distribution. If we consider rescaling 

Aj 1 x j  = , j = 1 , 2 . . .  
P 

for the positive eigenvalues, and 

A i = - l +  y~ i = n , n - 1 ,  
P 

for the negative ones, then 

-xj  o(1) Trace A p = ~ e + + . 
j i 

We can analogously write 

Trace AP' = x j  _ Z + 
j i 

Now the asymptotic  independence of the distributions of the eigenvalues 

in the parts of the spectrum far apart  from each other, and the identical 

e 9 ,  ~ e - Y i  due to the central symmet ry  distribution of the sums ~ -x.  
j i 

of the model imply 

Coy(Trace A p , Trace A p') -+ 0 . 
Tb---~ O~ 

Remark  2. The fact that  the covariance function (1.4) of the limiting 

Gaussian process ~7(t) in the Main Theorem does not depend on the 

fourth and higher moments  of {~i j} ,  supports the conjecture of the local 

universality of the distribution of eigenvalues in different ensembles of 

random matrices (see also [11], [12]). 

We derive from the Main Theorem the central limit theorem for a 

more general class of linear statistics (see also [6] and [12], where central 

limit theorem was proven for the traces of the resolvent (A  - z .  I d )  -1  

under the condition l i ra  zJ > 1). 
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CENTRAL LIMIT THEOREM FOR TRACES 5 

Corollary 1. Let f ( z )  be an analytic function on the closed unit disk 
n ?~ 

lzl < 1. Then ~ f(/~i) - E ( ~  f(~i))  converges in distribution to the 
i = 1  i = 1  

Gaussian random variable N (O, a f ). 

Remark 3. In general, the limiting Gaussian distribution may be degen- 

erate, i.e. af  = 0. 

Another corollary concerns the rate of convergence of the maximal 

eigenvalue to 1. Under assumption of uniform boundedness of random 

variables ~ij (not necessarily symmetrically distributed), Z. Fiiredi and 

T. Komldz proved in [14]) that with probability 1 

Amax(A) = 1 + O (n -1/6 log n) 

Z. D. Bai and Y. Q. Yin showed in [15] the a.e. convergence of Amax(A) 

to 1 assuming only the existence of the fourth moments of ~ij. The main 

ingredients of proofs of both results were the estimates of the mathe- 

matical expectations of the traces of high powers of A. In particular, Z. 

Fiiredi and T. Komldz proved (1.3) for p << n 1/6. 

Corollary 2. Under the conditions of the Main Theorem 

Am~x(A) = 1 + o(n -1/2 log ]+~ n) 

for any e > 0 with probability 1. 

Remark 4. C. Tracy and H. \u proved recently (see [16]) that for 

the Gaussian Orthogonal Ensemble 

Ama (A) = + o(n -2/3) (1.5) 

and calculated the limiting distribution function 

X 

which can be expressed in terms of Painleve II functions. One can expect 

the same kind of asymptotics (1.5) in the general case. 

Remark 5. The technique used in this paper can be modified to extend 

our results to the case of not necessarily symmetrically distributed ran- 

dom variables ~ij, i < j , with a less strict condition on the growth of 
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6 YA. SINAI AND A. SOSHNIKOV 

higher moments  

IE~{~I _< (const .~?. 02') 

Remark 6. The Main Theorem also holds for the Wigner ensemble of 

hermit ian matrices 

A = ( a j ~ ) j ,  ~ = 1, . . .  n ,  

~j~ + i  �9 rlj~ where ~j~,~/j~, 1 _< j < ~ < n 
a j k  = a~j  -- X~ ~ , 

are independent  random variables, (property (iv) reads as Vat ~j~ + 

Var ~/j~ = -14); and for the ensemble of c o v a r i a n c e  matrices A.  A t, where 

the entries of A are independent  random variables satisfying the condi- 

tions of the Main Theorem. 

The plan of the remaining part  of our paper is the following. Sections 

2, 3, and 4 are devoted to the proof of the Main Theorem. We evaluate 

E Trace A p in w the variance Vat Trace A p in w and the moments  of 

higher orders in w The combinatorial technique developed in w will 

be used throughout  the sections 3 and 4 as well. We discuss corollaries 

of the Main Result and concluding remarks in section 5. 

The authors are grateful to E. I. Dinabrug for many critical com- 

ments on the text.  A. Soshnikov also would like to thank K. Johansson 

and B. Khoruzhenko for useful discussions. Ya. Sinai and A. Soshnikov 

thank National Science Foundation (grants DMS-9304580 and DMS-  

9706794) for the financial support.  

2. Mathematical  expectat ion o f  Trace A p 

The main result of this section is the following theorem. 

Theorem 1. E(Trace A 2s) - 

s = o (v~ ) .  
Since 

1 
E(Trace A p) - np /2  

~ ( i  + o (1)) 

n 

Z 
i0 , i l ,  . . . , i p  1=1 

as n -+ cxD u n i f o r m l y  i n  

E ~ o i ~ 1 i 2  " . - - " ~ p - ~ o  (2.1) 

we will s tudy in detail different types of closed paths 7 ) : io --+ i l  ---+ 
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CENTRAL LIMIT THEOREM FOR TRACES 7 

. . .  ---+ ip 1 ---+ iO of length p (loops are allowed) on the set of vertices 

{1, 2, . . .  , n}, and the contributions of the corresponding terms to (2.1). 

We shall call edges of the path  7) such pairs ( i , j )  tha t  i , j  G {1, 2, . . .  , 

n} and 7) has either the step i --+ j or the step j --+ i. Mathemat ical  ex- 

pecta t ion E{i0q , �9 .. , {iv_,i 0 is non zero only if each edge in 7 ) appears 

even number of times. Such paths will be called even. Even paths  exist 

only if p is even, therefore the mathematical  expectat ion of the traces 

of odd powers of A equal zero. From now on we assume p to be even, 
~(n) --+ 0 p 2s. The case we are interested in is s = s(n), s ( n )  ---+ oc ,  , /~ 

as n --+ oo. We are going to show that  similar to the case of fixed p the 

main contribution to E(Trace  A p) comes from simple even paths  (see 

the definition below). For this we shall introduce some classification of 

all closed paths by constructing for each 7) a part i t ion of the set of all 

vertices {1, 2 , - . .  , n} onto subsets JV0,JVI' '  .JV~. 

Definition 1. The gth step ig_ 1 --+ ie,  g = 1 , . . .  , p of the path  7) is 

called marked if during the first g steps of 7) the edge {ie-1, ie} appeared 

odd number of times. 

The first step obviously is marked, and for even paths the number 

of marked steps is equal to the number of unmarked ones. 

Definition 2. The vertex i, 1 _< i _< n, belongs to the subset  A/~ = 

Y~(7)), 0 _< k _< s, if the number of times we arrived at i by marked 

steps equals to k. In other words, i E A/~ if the vertex i was k times the 

right end of marked steps, All but  one vertices from No do not belong 

to 7). The only possible exception can be the starting point i0 of the 

path, if it was not visited by the path  at the intermediate steps. 

Pu t  nk = #(2V~). It follows easily from the definitions that  

Z n/~ =r~ ,  k . r ~  k = 8 .  
k=0 k=0 

We shall call 7) to be of the type  (no, r q , . . .  , n,).  

Definition 3. Any pa th  of the type  (n - s, s, 0, . . .  , 0) and such that  

i0 E N'o will be called simple even path. 

For simple even paths  each edge appears twice, once in one direction, 
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8 YA. SINAI AND A. SOSHNIKOV 

and once in the other direction. However, not all paths with the last 

property are simple even paths. 

We shall estimate the number of closed even paths of each type and 

their contribution to E(Trace AP). First of a]l, ]et us remark that the 

set of n vertices can be decomposed onto ( s + l )  subsets A/o, H I , . . .  , Afs 

with no, n l , . . .  , ns elements by 

n! 

no!n1! . . .  as! 

ways. If this parti t ion is given and the path  7 ~ is such that  io E H0, 

then i0 can be chosen by no ways, and H I  uA/'2 U . . .  , o a f s  is the set of 

remaining vertices of 7 ~ . 

Different paths  with the same parti t ion {A/ 'o ,A/ ' I , . . .A fs} ,  the same 

initial point and the same order of appearance of the vertices at the 

marked steps, differ by the choice of the moments  of time when marked 

steps occur, and by the choice of end points of the unmarked steps. 

Since at any moment  of time, the number of marked steps is greater 

or equal to the number of unmarked steps, we can code the choice of 

marked steps by a random walk of length p = 2s on the set of non-  

negative integers which s tar ts  and ends at the origin. Namely, at the 

k th step our random walk goes to the right if the U h step is marked, 
(2s)! (see and to the left otherwise. The number of such walks is 

[17]). For simple even paths we have no freedom of choosing unmarked 

steps (we just  go back), and if the part i t ion A / ' o , A / ' I , ' "  , Ns ,  the initial 

point i0 and the order of the appearance of the vertices are given, the 

constructed correspondence between paths  and random walks is 1 to 1. 

Let us first calculate the contribution to E Trace A p from simple 

even paths. Suppose that a random walk, a partition {No,..., A/s} 

and initial point are chosen. Then the related number of paths is 

s! 

k--i 

Indeed, the the number of marked steps is s, the number of the vertices 

Bol. Soc. B~ts. Mat., Vol. 29, N. 1, 1998 



CENTRAL.LIMIT THEOREM FOR TRACES 9 

of the type  Ark is k �9 nk, then 

s! 
8 

rl (knk)! 
k = l  

is the number of ways to decompose the set of s points onto s subsets 

of cardinality k- nk each. As soon as each of these subsets is chosen the 

number of ways to write down each of nk points k times is (knk)!/(k!)%. 
Therefore, the total  number of paths is 

s! 
s 

H (k!) n~ 
k = l  

"For simple even paths E~i0i 1 . . . . . ~ i p i  0 = (~)s and the contribution 

of these paths  to E(Trace  A p) equals to 

1 n[ (28)[ s! n 
~w(~-s)! 5 ! ( ~ - ~ )  s!(~+1)!1~ - ~v~2~3(1+o(1)). (2.2) 

If n l  = s, n2 = n3 . . . . .  ns = 0 and io ~ Afo, we have a "double 

loop" when the second half of the path  7) repeats the  first one. The 

expression for the contribution of this set of paths  is different because 

of the difference in the number of positions of the initial point, which 

now belongs to All, and by this reason is ~ times smaller than (2,2) 

and can be neglected. 

We shall show that  the contribution to (2.1) of all terms with nl  < s 

is also smaller compared with (2.2). 

If n l  < 5, then some of nk, k _~ 2 are non zero and the choice of the 

end points at the unmarked steps from the vertices of type  Ark, k > 2 

may be non-unique.  Namely, if the leR end, which we denote by j ,  of 

the unmarked step belongs to A/'k. we have at most 2k possibilities for 

the right end of the step: it can be shown that  we can count all the 

possibilities by assigning to each marked step arriving at j zero, one or 

two of them. 

For the paths  of (no, n l , . . .  , ns) type  in view of condition (1.2) 
8 

E~o~ "" "~%~i0 -< 1-I (const. k)k'~k. (2.3) 
k = l  

Bol. Soc. Bras. Mat., Vol. 29, N. 1, 1998 



10 YA. SINAI AND A. SOSHNIKOV 

The  s u b s u m  in (2.1) cor responding  to  (no, n l , . . .  , ns) can be  e s t ima ted  

from above by  

i n! (2s)! 
n 

n s no!  n l !  . . . n s !  s! ( s §  

s! 

s 

�9 I-I(2k)~~k. (const ~)knk _< n- 
k=2 k=2 

l~I (k!)',k 
k=2 

(2~)! i 
s! (s + 1)! 4 ~ 

�9 [~(~ - i ) . . .  (n - no + i) ~! f I  (2 c o n s t  k2)~ ~ 4  s 
n s .n~! . . .n~!  f i (ke-1)k '~k ~=2 

h=2 

(2.4) 

8 
In view of the  inequal i ty  8! _< nl!  �9 8 s - h i  , and 

k=l 
n -- no, the  r.h.s, of (2.4) is not  grea ter  t han  

8 
knk=8, E n k =  

k = l  

�9 . _ _  . ~=2 8! I ~  (8e const  k ) ~ %  n . 8 ! ( 8 + 1 ) !  4 s n -  �9 �9 
n l !  n s !  k = l  

(28), I (kiWi2 1__ ( 8 e . c o n s t . k . s )  k nk )  
<- ns!  (s + 1)! " 4 ~ nk! n k-1 " 

The  sum of the  last express ion over all non negat ive  integers n2, n3 ,. �9 �9 , 

nk such tha t  
8 

0 < ~  k . n k  < s  
k = 2  

is not  grea ter  t han  

n .  8! ( s + l ) !  ' �9 exp ~ _ ~  - -1  . (2.5) 

Since for 8 << n 1/2 

n k _ l  
k = 2  

(2.5) is small  compared  wi th  (2.2). T h e o r e m  1 is proven�9 As one can see 

the  core of the  p roof  of T h e o r e m  1 is the  following P ropos i t ion  which 

will be  useful  in the  next  sect ions as well. 

Bol. Soc. Bras. Mat., Vol. 29, N. 1, 1998 



CENTRAL LIMIT T H E O R E M  F O R  TRACES l 1 

Proposition 1. The main contribution to the number of all even paths 

of length p on the set of n vertices {1,2 , . . .  ,n} where p = o(n 1/2) as 

n ---+ oc is given by simple even paths, i. e. 

#n,p (simple even paths) 
> 1 .  

#n,p (even paths) n-+~ 

3. Variance of Trace Ap 

The main result of this section is the following theorem. 

Theorem 2. Let  p = o(~/n). Then Vat(Trace A p) <_ const for  all n and 

Var(Trace A p) ~ 1~ as n ---+ 0% p ---+ 0% ~ ---+ O. 

The formula for the variance of Trace A p has the form 

Vat (Trace A p) = E(Trace AP) 2 - (E Trace AP) 2 = 

n P  
i o , i l  . . . . .  i p - - l = l  Jo,Ji ..... jp_l=l (3.1) 

- E ~ig-lig " ~Jm-lJm -- ]2 ~i~_lig �9 E ~Jrn lJm 

g:l m=l g:l m:l 

where we use the convention ip = io,3p = Jo. The only non-zero terms 

in (3.1) come from pairs of paths 

P { i o  --+ i l  - -+ . . .  ip i 0 } ,  p '  : {J0 -+ J l  -*  Jp-1 J0} 

such tha t  the following conditions are satisfied: 

(a) 7 9 and 79' have at least one edge in common. 

(b) Each edge appears in the union of 7 9 and 79' an even number of times. 

Definition 4. Any pair of paths satisfying (a) and (b) is called correlated. 

A correlated pair is called simply correlated if each edge appears in the 

union of 79 and 79' only twice. 

Proposition 2. Let  p = o (v/n).  Then in the main order the number of 

correlated pairs equals to the number of s imply correlated pairs and is 

1 .  np " 22P. (1 + o(1)) . (3.2) 
7l" 

Bol. Soc. Bras. Mat., VoL 29, N. 1, 1998" 



12 YA. SINAI AND A. SOSHNIKOV 

Remark.  A slight modification of the proof, which takes into account 

the weights 

m = l  j = l  

ascribed to the correlated paths gives 

1 
Var (Trace A p) > - (3.3) 

Proof of Proposition 2. To calculate the number of correlated pairs, we 

construct  for each such a pair an even path of the length 2p - 2. The 

corresponding map of correlated pairs to such paths  will not be 1 to 

1, and in general an even path  of length 2p - 2 has many preimages. 

We will s tudy the number of preimages in more detail, and then count 

even paths  of length 2p - 2 (with corresponding multiplicities) in a way, 

similar to the one used in section 2 for calculating E Trace AP. 

Let us now construct  the map. Consider the ordered pair of corre- 

lated paths 7), 7)' (see Figure 1). Each edge appears in the union of 

7) and 7)t an even number of times. In Fig. 1 we have shown this for 

simplicity only for the joint edge, which we define below: 

i p - i , S  ...... o( y 
Z2 

Figure 1 

Definition 5. The first edge along 7 ) which also belongs to 7)' is called 

joint edge of the (ordered) correlated pair 7), 7)'. 

BoL Soc. Bras. Mat., VoL 29, N. i, 1998 



CENTRAL LIMIT THEOREM FOR TRACES 13 

�9 . . . . . . . . . 

i~ =gr =Jm 

il :gl a " ~  2 ...... / ~ . . . ~  

Figure 2 

The new path  of length 2 p - 2  is constructed in the following way (see Fig. 

2). We begin walking along the first pa th  until we reach the left point 

of the joint edge, then switch to the second path and make other p - 1 

steps if the directions of 7) and 7 9/ along the joint edge are opposite. If 

the directions coincide, we walk along 7 )I in the inverse direction. After 

p - 1 steps along 79', we will arrive at the right point of the joint edge, 

then switch to the first pa th  and go until the final point io. The new 

path  

gO - io  - ~  g l  : i l  --~ . . .  - ~  gr  = i r  = j m  --~ . . .  

--+ g r + p - 1  = i r + l  J ~ " . .  ---+ g2p-3 = ip  1 - ~  gO = io  

is even and is exactly what  we need. Now assume that  we have an 

even path  go --~ gl --* .-.  -~ g 2 p - 3  ---+ go .  We shall est imate in how 

many different ways it can be obtained from correlated pairs of paths of 

length p. To construct  the pair of correlated paths, we have to choose 

some vertex gr in the first half of the path, 0 < r < p -  1, and connect it 

with the vertex gr+p-1 (see Fig. 2). We also have to choose the start ing 

point of the second path  of the correlated pair and the direction of the 

path. This can be done in not more than 2p ways. The edge {1,., lr+p_l} 
can be the joint edge of 7 9 and 7)i if it is the first along 79 common edge 

of 79 and 7 9/. This condition is easier to formulate in terms of a simple 

walk on the positive semi-axis which corresponds to the sequence of the 

marked steps of {gO ~ el ~ . . .  --+ g2p-3 --+ gO}. We recall that  at the 

moment  of time t random walk jumps  to the right, if during the first t 

steps we met the edge {gt-1, gt} an odd number of times; otherwise it 

Bol. Soc. Bras. Mat., Vol. 29, N. 1, 1998 



14 YA. SINAI AND A. SOSHNIKOV 

j umps  to the  left; we s ta r t  f rom the  origin at  the  zeroth m o m e n t  of t ime  

and  re tu rn  there  at  the  final (2p - 2) - th  step. 

The  necessary condi t ion for {gr, gr+p-1} to be the  joint  edge of 7 9 and  

79' is t h a t  dur ing  the  t ime  interval  It, r + p - 1] (half  of the  whole walk),  

the  t r a j ec to ry  does not  descent lower t h a n  x(r) .  It is also a sufficient 

condi t ion in a typical  s i tuat ion,  i.e. when  {go --+ gr --+ . . .  --+ g2p-3 --+ ~0} 

is a simple even path .  

L e m r n a l .  The sum o v e r t ,  0 <_ r <<_ p - 1  of the number of walks of 

length 2p - 2 on the positive semi-az i s  such that 

z ( t )  >_ o , t  = o, 1, . . . ,  2 p -  2; 

x ( t  + 1) - x ( t )  -- + ] ;  

�9 (0) = x ( 2 p  - 2) = 0 

and 

z ( t )  >> z ( r )  i f  r < ~ < r + p - 1 

is 2 2p-2  �9 2 . 1 .  (1 + o (])). 
~r p 

Remark .  The  probabil is t ic  meaning  of L e m m a  1 is t h a t  the  m a t h e m a t -  

ical expec ta t ion  of the  number  of moment s  of t ime t, for which 

z(~-) >_ x ( t ) ,  t < ~- < t + p - 1 ,  

is equal  in the  main  order to 2. ~/~. 

P r o o f  o f  L e m m a  1. F ix  some r, 0 _< r _< p -  1, and  assume t h a t  a 

t r a j ec to ry  does not  descend lower t h a n  x(r)  dur ing  the  interval  of t ime  

r < t < r + p - 1. Let  us first consider the  non-degene ra t e  case when  

x(r)  > 0. Since z ( 2 p -  2) = 0, there  exists a mo me n t  of t ime r + p -  1 +g,  

0 < g < p - - l - - r ,  such t h a t  

�9 (t) >_ z ( r )  

and 

for r < t < r + p - l + g  

x(r  + p - -  l + ~ + l) < x(r)  = x(r  + p - -  l + g) . 

If we now fix g and  freeze the  t r a j ec to ry  outside the  interval  of t ime 

jr, r + p - 1 + g ], t hen  the  number  of t ra jector ies  sat isfying the  last  two 
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inequal i t ies  equals  

2p_1+ e. ( p - 1 +  6) ! 
+1) : 2 p - l + g  �9 (1 +o(1) ) .  (3.4) 

[] 

From the  o ther  side, the  n u m b e r  of t ra jec tor ies  on [0, r] U [r + p - 

1 + g, 2p - 2] such tha t  x(t) >_ 0 for all mome n t s  of t ime, and x(0) = 

x(2p--2) = 0 ,  x(r)  = x ( r + p - - l + g ) ,  x ( r + p + ( ) - - x ( r + p - - l + ( )  = - 1  
is 

1 . 2 p _  1 e .  (p - 1 - g)! . (1 + o(1)) : 

(3.5) 
= 1.2p 1-g. i __.(1+o(1)). 

R e m a r k .  (3.5) holds for typical  g, i.e. when  p - 1 - g >> 1; o therwise  

we can mul t ip ly  r.h.s, of (3.5) by  2 and use it as an uppe r  bound .  It  is 

easy  to  see tha t  the  con t r ibu t ion  from ( such tha t  p - 1 - g << const  is 

negligible. Mul t ip ly ing  (3.4) and (3.5) and making  the s u m m a t i o n  over 

r, 0 < r  < p - l a n d g ,  0 < g < p - l - r  (depending  on w h e t h e r p - 1  

g takes  only even or odd  values) we arrive at is even or odd,  

1 22p_ 2 1 
2 rc 

2 2 P  . 

p-i f-l-r 8 �9 (1 + o (1)) 
E ~ ( p - - l + ( ) 3 / 2 . ( p - - 1 - - e ) 3 / 2  
r = l  g : 0  

p 2 

1 ~ 1 1 (1 + o(1)) 
7c ~-~= ( p - - l + g ) 3 / 2  ( p _ l _ g ) l / 2  

i/2 
=22P ' 1 1 f 1 1 

~ ' 4 ( p - l ~  " d ( 1 - y ) 3 / 2  yl/2 dy . ( l+o(1) )  

= 22P. 1 1 - -  o _ _  

2 ( p -  1) 
� 9  

(3.6) 

The  case x(r) = 0 can be  considered in a similar way. The  cor responding  

sum will be  O(22p �9 p-3 /2)  and is negligible compared  to (3.6). 

Taking into account  the  factor  2p s tand ing  for the  choice of direct ion 

and  initial point  of 79', we get the  s t a t e m e n t  of L e m m a  1. 

Bol. Soc. Bras. Mat., Vol. 29, N. 1, 1998 



16 YA. SINAI AND A, SOSHNIKOV 

Now we are r e ady  to  conclude  the  p roo f  of P ropos i t i on  2 and  Theo-  

rem 2. Calcula t ions  similar  to  t h a t  f rom T h e o r e m  1 prove t h a t  the  ma in  

con t r ibu t ion  to  the  n u m b e r  of cor re la ted  pairs and  to  Var (Trace  A p) is 

due  to  s imple cor re la ted  pairs.  In this  case the  weight  

P P P P 

E ~ ~ig_lig " H ~ J f n - l J m  - -  j ~  I I  ~ig-lig" E H ~ J m - l J m  
g = l  m = l  g = ]  r n = l  

equals  to  2 -2p if {gr, gr+p-1} is not  the  edge of {go --+ gl --+ . . .  --+ 

g2p-3 --+ go}, Otherwise  the  weight  is e i ther  

2 -2p-4 �9 E ~4rir+ 1 Or 2 -2p-4  �9 ( E  ~irir+ -- ( E  ~irir+ 1 )2) . 

It  is easy  to  see t h a t  the  ra t io  of the  n u m b e r  of s imple even pa ths  

of length  2p - 2 t h a t  have an edge {gr, g~+f-1} for some 0 < r < p - 1 

to  the  whole n m n b e r  of s imple even pa th s  of length  2p - 2 t ends  to  

zero when  p -+ oc, n --+ ee which means  t h a t  in the  l imit  n -+ oc the  

var iance  Var(Trace A p) does not  d e p e n d  on the  fou r th  m o m e n t s  of {~ij }. 

I t  follows also f rom our  ca lcula t ions  t h a t  

1 n l / 2  lira Var(Trace A p) = - ,  1 << p << . (3.7) 
n ~ o o  7I" 

In a similar  way one can  show t h a t  

lim Cov(Trace A [tlpl , Trace A [t2p]) = 
Tb --+ OO 

2 t ~  if we choose [tlp] - [t2p] 

= even 

0 if we choose [tlp] - [t2p] 

odd  

(3.8) 

4. Higher moments  o f  Trace A p 

To finish the  p roo f  of the  Cen t ra l  L imi t  T h e o r e m  for Trace  A p, we have 

to show that 

E(Trace  AP - E Trace AP) 2k = (2k - 1) !!. (~_-k + o(1)) (4.1) 

E(Trace  A p - E Trace AP) 2k+l = o (1) . (4.2) 

Bol. Soc. Bras. Mat., Vol. 29, N. 1, 1998 



CENTRAL LIMIT THEOREM FOR TRACES 17 

The main idea is rather straightforward: the analogue of (3.1) is 

E(Trace A p - E Trace AP)  L = 

1 f l  ( ~  ( ~ I  h / /  (4.3) ~L " E ~.(.~) .(~) - E ~i(~) i(.~) 
n ~ -  m = l  .(m) .(m) i (m) 1 r=l 4~'--lZV r=l 7---1 r /] / \40 '41 ~ "" ' p- l -  

as before (we use in (4.3) the convention i (m)  = i~ "~), m = 1 , . . . ,  L). 

Consider the set of closed paths of the length p 

" " p - 1  ~ " 

We shall call 79~, and 79,~,, connected, if they share some common edge. 

Definition 6. A subset of paths 79~jl , 79~j2 , . . .  , 79~j~ is called a 

cluster of correlated ioaths if 

1) for any pair 7~ i ,  72mj from the subset one can find a chain of paths 

79m~, also belonging to the subset, which starts with 79~i, ends with 

79.,~j, and is such that  any two neighboring paths are connected; 

2) the subset Pray1 , "]-)my 2 , . . . ,  J')mi ~ cannot be enlarged with the 
preservation of 1). 

It is clear that  the sets of edges corresponding to different clusters 

are disjoint. By this reason and because of the independence of ~ij, 

the mathemat ical  expectation in (4.3) decomposes into the product  of 

mathemat ica l  expectations corresponding to different clusters. We shall 

show that  the main contribution to (4.3) comes from products where all 

clusters consist exactly of two paths. 

Formulas (4.1), (4.2) essentially follow fi'om Lemma 2. 

Lemma 2. 

nPg /2  m:l i~,,~) i ( m ) _  1 r : l  r - -1 r r : l  r - 1  r / 
"": p--1-- 

=I , if =2 
! 
(o(1)  , i f  g > 2 

(4.4) 

Bol. Soc. Bras. Mat., Vol. 29, N. 1, 1998 



18 YA. SINAI AND A. SOSHNIKOV 

where the product l~* in (4.4) is taken over the paths which form a 

cluster. 

P r o o f o f L e m m a  2. The case g = 2 was actually considered in w Assume 

now g > 2. Similar to w we are going to construct  for each correlated 

cluster {7)1 , . . .  , 7)g} an even path  of the length behaving roughly as 

g.p ,  est imate the multiplicity with which the newly constructed path  

appears, and apply the technique used in w and w As soon as the 

construction procedure is explained and the multiplicity problem is in- 

vestigated, the last par t  of the proof is very much the same as in the 

previous sections. [] 

The construction procedure. 

Regular  Step. Take the path  7)1 = ' P o q  (i.e. we set C~l = 1) and find 

the first edge along 7)1 that  also belongs to some other path,  say 7)~ 2. 

Since {7)1 , - - - ,  7)e}, form a cluster such edge always exists. We will 

denote the new path  by {i , j} .  Using ~')c~ 1 and 7)~ 2 construct the new 

path  of the length 2/) - 2 as it was explained in w (see Fig. 1, 2). We 

will denote the new path  by 7)al V 7)a 2 . Now if 7)a 1 V 7)a 2 and (g - 2) 

remaining paths  still form a cluster, we perform again the Regular Step 

at the next stage of the construction procedure, and so on. 

However it can happen in general, that  the edge we just  threw away 

was the only one that  connected 7)~1, 7)~ 2 with the rest of the cluster 

and P~I V7)~2 does not have this edge anymore. In particular, it implies 

that  { i , j }  appears both  in each 7)a 1 and P~2 only once. In this case we 

have to modify the construction procedure. 

Modif ied step. Consider all paths that  contain the edge {i, j } and denote 

them 7)~1, 7)~ 2 , . . .  , J')ag 1 . We remark that  the number of such paths gl 

must be greater than 2. If gl is even, we shall construct  the new path  of 

length gl "P - gl in the following way: first we go along 7)~ 1 = 7)1 until 

we reach Vertex i of the edge {i , j} ,  then we switch to the path 7)ou and 

make (in the appropriate  direction) (p - 1) steps until we reach vertex 

j ,  then we switch to 7)~a and make other ( p -  1) steps until we reach 
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i, then we switch to 79~4, and so on. Finally, we return to 79~i at the 

vertex j and finish the walk along 79~i' We shall denote the new path 

by 79~i V 79~2 V ... V 79~i" This path and the remaining 6 - gl paths 

again form a cluster, and we can apply Regular, or Modified Step at the 

next stage. 

Consider now the case of odd 61. Since {i,j} appears in the union of 

all paths an even number of times, at least one of the paths 79aQ,..- , 

79~Q contains {i,j} two times or more. We will denote such path by 

79a2 (if there are several, take one with the minimal subindex). It should 

also be noted that 791 contains {i, j} only once. Now 79~i V 792 still 

contains {i, j}, and 79~1V. 792 and (g- i) remaining paths form a duster. 

This means that we are allowed to apply the Regular Step at the next 

stage; but if we wish to finish the part of the construction procedure 

corresponding to {i,j} faster, we can apply the Modified Step to the 

paths containing {i, j }  once again. (Now we have an even number of 

such paths.) 

As a final result of so defined procedure, we will get an even path of 

length ( @ - q ) ,  which we denote by 79~ \/79~2 V. . .V  79<~e with g _< q _< 26 

and q = 2~ 1 + 2~2 + " "  + 2as + 2g, where g is the number of times we used 

Regular Step, r is the number of times we used Modified Step; first time 

"combining" 26 1 paths, second time combining 262 paths, and so on. 

Now we come to the question in how many ways we can get an even 

path  7 9 of length gp - q from the correlated cluster of 6 paths each of 

the length p. We need only a rough estimate of this multiplicity from 

above. First of all we have to choose 

- the order in which we are taking 791, �9 �9 �9 , 7)6 to construct 79~ V. . .  V 

79c~ e (since 79~ is always equal to 79t we can do it in (6 - 1)! ways); 

- moments of t ime when we use Regular Steps and Modified Steps 

(the whole number of steps is not greater than  6 so we can do it in 

no more than  2 e ways); 

- how many paths we combine together on each of the Modified Steps 

(ge is a trivial estimate). 

Wha t  is really important  here is tha t  the number of all such choices 

is bounded by some constant depending only on g. 
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Now we have to est imate the number of ways in which we can re- 

construct  from 79 the paths P~e, 79ae_1, . . .  , 79~2" We will write down 

the trivial upper bound for the number of choices of the edges to be 

thrown away at all stages of the construction procedure except the first 

one: we can choose the left point of each of these edges in at most (g.p) 

ways (we will recall that  the right point automatical ly lies ( p -  1) steps 

further along 79), and we can choose the direction and the starting point 

of the path that  we split off from 79 in (2 �9 p) ways. The only nontrivial 

est imate appears for the number of choices of the edge thrown away at 

the first step of the construction procedure. And here we essentially 

repeat  the arguments that  we used in section 3. Namely, consider the 

simple walk of l eng th (@ - q) on the positive semi axis associated with 

79c~1V79c~2 V" " V  79~. The necessary condition on {i,j} {i!1), i!1+)1} to 

be the first edge of 79 that  also belongs to another path  from the cluster 

can be wri t ten in terms of simple walk as 

z(t)>_z(r) for r < t < r + ( g p  q ) - p - 1 .  

A trivial modification of Lemma 1 gives us a factor O(p 1/2) for the 

number of choices of i = i(1). We also have 2. p choices for the direction 

and the starting point of 79~2" Altogether, the above arguments allow 

us to write the upper bound for the multiplicity of 79 as 

constg �9 pl/2. p. p291+2g2+...+2gr+2g 2 = constg �9 pq-1/2 . 

Taking into account that  the number of even paths of length (gp - 

is O (n(~P-q)/2+l/p3/2), we obtain the est imate of the number of q) 
\ / 

ps 
correlated clusters containing g paths as o(n~-). Lemma 2 is proven. 

Formulas (4.1), (4.2) are straightforward corollaries of this lemma. 

Factor ( 2 k -  1)!! = ( 2 k -  1). (2k-3)  . . .  1 appears as a number of partit ions 

of {1, 2, . . .  , 2k} onto two element subsets corresponding to correlated 

pairs of paths. 

The Central Limit Theorem for Trace (A p) - E  Trace (A p) is proven. 

The s ta tement  about  finite-dimensional distributions 

(Trace A [[etlp]]- E ] 5 " a c e  A[[etlp]],..., Trace A [[etrnp]]- E Trace A [[J'~p]]) 
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can be obtained in the same way. 

5. Corollaries of  the Main Theorem 

The proof of corollaries formulated in the introduction is rather  straight- 

forward. First we prove Corollary 2. Let us choose 

1 n 1/2 

p 212 logC/2n ]' e > O .  

Then  

log1+ ~ ~ 
Pr Am~x(A)_> 1+ nl/2 J 

<< P r  Trace (A p) _> 

E Trace A p < 

- -  �89 exp(log 1+~/2 n) 

= o(~exp(- log 1+~/2 ~)) 

( 5 . 1 )  

which implies 

Pr Amax(A) _> 1 + < oc I 

n = l  

The s ta tement  of corollary 2 now follows from Borel Cantelli lemma. 

"We finish the paper with the proof of Corollary 1. 

Let us denote the linear statistics 
7~ 

E f(Ai) 
i = 1  

by Sn(f) .  Then  we can write 

Sn(f) = S~( f ) .  X{]Ail 
log 1+C n 

.< 1 + ~ ;  i = 1, . . .  , n} + S~( f ) .  X{lAil (5.2) 

log l+e n 
_<1+ ~/~ , i = l , . . . , ~ } c ,  

here by { }c we denote the complement of the set. It follows from (5.1) 

that  probability of the complement of the event in (5.2) decays faster 
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t han  any power of n and 

Es,~( f ) -z  &~(f).x I~1<-1+ v~ ' i = l ' " n  n-~'~ 

Clearly it is enough to prove the Central  Limit  Theorem for 

s~(f)-x J a ~ l _ < l + ~ ; i = l , . . . , n  . 

To use our results for the  traces of powers of A we write the Taylor 

series for f(x):  
oo 

k=0 
The analytici ty of f(x) in the closed uni t  disk implies the exponential  

decay of the series coefficients: 

lakl < c.  (1 - (5)/c, c = c((5) > 0, 0 < (5 < t .  (5.3) 

We choose a positive big enough integer M and write 

{ l~ n" } s,~(f)x Ixil _< 1 + ~ j - ,  i = 1 , . . . , n  - 

- E  & ( / ) - x  I A ~ [ _ < ~ + - ~ , i - - 1 , . . . , n  -- 

oo 

= ~ ak" (Trace AkX{...} E( Trace AkX{...})) 
k--0  

(5.4) 
= ~ ak.(Trace A k . x { . . . } -  E( Trace A k .x{ . . .}) )+  

k = 0  

nl/lO 

+ ~ ak(Trace A k. X{... } - / ; (T race  A k. x{... })) 
s  

+ ~ a~(Trace A ~ . x { . . . } -  E( Trace A k .x{ . . .} ) ) .  
k>nl/10 

We proved in w tha t  

Var (Trace Av), p << v ~  

are uniformly bounded.  This  allows us to es t imate  from above the vari- 

ance of the second subsum in (5.4) by D - (1 - 5) M, where D is some 
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constant. Similar arguments imply tha t  the variance of the sum of the 

first two terms in (5.4) has a finite limit as n --+ ~ which we denote 

crf. We also claim tha t  the third term in (5.4) goes to zero, because 

of (5.2). Finally we remark tha t  for any fixed M the Central Limit 

Theorem holds for the first subsum. Making M as large as we wish~ we 

derive the Central Limit Theorem for the linear statistics S~(f). 
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