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Abst rac t .  We compute the spectra of the adjacency matrices of the semi-regular 
polytopes. A few different techniques are employed: the most sophisticated, which 
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to those of Lov~sz and Bahai ([L], [B]). It turns out that  the algebraic degree of the 
eigenvalues is at most 5~ achieved at two 3-dimensional solids. 
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Introduction 

Important information about a graph is conveyed by its spectrum, i.e., 

the set of eigenvalues of its adjacency matrix; an extensive bibliography 

can be found in [CDS]. Symmetries of a graph are helpful in computing 

the spectrum ([PS]). If the group of symmetries acts transitively on 

vertices, Lov~sz ([L]) and Babai ([B]) show how to apply techniques 

from representation theory of groups to reduce significantly the algebraic 

degree of the problem. 

In [ST], we computed the spectra of all regular polytopes (i.e., of 

the graph formed by their vertices and edges); somewhat surprisingly, 

all eigenvalues have algebraic degree at most 3. The complete list of reg- 

ular polytopes is known since Schlgfli ([Sc], [el). Semi-regular poly~opes 
are polytopes with regular faces whose isometry group acts transitively 

on vertices. Trivial examples are regular polytopes and, in three di- 

mensions, prisms and antiprisms. Nontrivial 3-dimensional semi-regular 

polytopes are known as Archimedean solids, despite the fact that the writ- 
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ings by Archimedes on the subject are lost ([C]). Kepler ([K]) wrote the 

first available list of Archimedean solids with a proof its completeness. 

The semi-regular polytopes in higher dimensions were known to Gosset 

([Go]) and were extensively studied by Coxeter ([C2], [C3]), but only 

recently Blind and Blind ([BB]) showed that  Gosset's list is complete. 

In this paper, we compute the spectra of all semi-regular polytopes. 

Section 1 contains our results: characteristic polynomials of the adja- 

cency matrices are completely factored in Z[~-], ~- = (1 + v~)/2.  It turns 

out that  the algebraic degree of the eigenvalues is at most 5, achieved 

at two 3-dimensional solids. Section 2 is devoted to the study of some 

Archimedean solids whose spectra can be obtained by taking into ac- 

count a few planes of symmetry. Gosset polytopes are described in 

section 3: since they have very large groups of symmetry, the technique 

used in [ST] for regular polytopes is convenient here. In section 4, we 

show how to apply group representations to compute the spectrum of 

a Cayley graph by Lovs Babai's and our modified version of their 

methods. Chung and Sternberg ([CS]) used similar ideas to compute the 

spectra of some regular graphs and of the buckyball molecule, which cor- 

responds to a weighted version of {5, 6, 6} (in the notation of the next 

section). Group representation techniques are used in section 5 to com- 

pute the spectra of the remaining Archimedean solids. In section 6 we 

consider three discrete subgroups of S 3, the unit quaternionic sphere. 

These come in handy in sections 7 and 8 where we compute the spectra 

of the two missing semi-regular polytopes. We tried to make this paper 

accessible to readers with a scant knowledge of the semi-regular poly- 

topes; most difficulties should be resolved by consulting the excellent 

book [C]. 

1. Statement  o f  results  

The semi-regular polytopes in dimension three are the five Platonic and 

the thirteen Archimedean solids, besides prisms and antiprisms. We 

shall denote the Archimedean solids by the types of polygons surround- 

ing each vertex. Thus, (3, 6, 6) is the solid with two hexagons and a 
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triangle at each vertex, which is obtained by removing small te t rahedra  

of edge 1 from each vertex of a regular te trahedron of edge 3. In this no- 

tation, the Archimedean solids m'e (3, 6, 6), (3, 8, 8), (3, 4, 3, 4}, (3, 4, 4, 4), 

(3,3,3,3,4), (4,6,8}, (4,6,6), (5,6,6), (3,10,10), (3,5,3,5), (3,4,5,4), 

(3, 3, 3, 3, 5), (4, 6, 10). In higher dimensions, the non-trivial semi-regular 

polytopes are the Gosset family G4, . . .  , G8 (subscripts indicate dimen- 

sion) and two 4-dimensional polytopes P96 and P720 (subscripts now 

indicate the number of vertices). Coxeter ([el) uses 

3,3 ' 3,5 ,h75,221,321 and 421 

instead of our G4, P96, P720, Gs, G6, G7 and G8, respectively. 

The spectrum of a prism of n-gonal basis ([CDS]) is 

• i = 0 , 1 , . . .  , n - 1  

and the spectrum of an antiprism of n-gonal basis is 

2 ( c o s ( 2 ~ i / ~ )  + c o s ( ~ i / ~ ) ) ,  i = o, 1 , . . . ,  2 n  - 1, 

as we will see in Section 2. Below, we list the characteristic polynomials 

of the non-trivial semi-regular polytopes (i.e., the characteristic polyno- 

mials of the adjacency matrices of their graphs). The polynomials are 

factored in Z[~-], where ~- = (1 + x/5)/2 and T = (1 - v/5)/2; the numeri- 

cal values of non-integer eigenvalues are listed in the same order as the 

factors, with semi-colons separating roots of different factors. By the 

Perron-Frobenius theorem ([Ga]), the eigenvalue with largest module is 

simple and equals the number of neighbours of a vertex, since adjacency 

matrices have non-negative entries and are irreducible. 

<3,6, 6> 
( x  - 3 ) ( x  - 2 ) 3 x 2 ( x  + 1)3(x  + 2) 3 

(3, 4,3,4) 
(X - 4)(X - 2)3X3(X + 2) 5 

(4, 6, 6) 
( x  - 3 ) ( x  - 1 ) 3 ( x  + 1 ) 3 ( 2  + 3 ) ( x  2 - 3 ) 2 ( x  2 - 2 x  - 1 ) 3 ( x  2 + 2 x  - 1) 3 

(1.732051, --1.732051; 2.414214, --0.414214; --2.414214, 0.414214) 
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(3, 8, 8} 

( X  - 3 ) ( X  - 2 )3 (X  - 1 ) X 5 ( X  + 1)3(X + 2 )5 (X  2 - X - 4) 3 

(2.561553, - 1.561553) 

(3 ,4 ,4 ,4}  

( X  - 4 ) ( X  - 3 )3 (X  - 1 ) 2 X 4 ( X  + 1 )6 (X + 3 )2 (X  2 + X - 4) 3 

(1.561553, -2 .561553)  

( 3 , 3 , 3 , 3 , 4 }  

( X  - 5 ) ( X  + 1 )4 (X 2 + 2 X  - 2 )2 (X  2 - 2 X  - 6 )3 (X  3 + X 2 - 4 X  - 2) 3 

(0.7320508, --2.7320508; 3 . 6 4 5 7 5 1 , -  1.645751; 1.81361,--0.470683,--2.34292) 

(4,6,8) 
( X  - 3 ) ( X  - 2 )2 (X  - 1 ) 4 X 4 ( X  + 1 )4 (X + 2 )2 (X  + 3 ) ( X  2 - 2 X  - 2)3(X 2 + 

2 X - 2 ) 3 ( X  3 + x  2 - 4 X - 2 )  3 , ( X  3 - X  2 - 4 X + 2 )  3 

(2.732051, -0 .732051;  0.732051, -2 .732051;  

1 .81361 , -0 .470683 , -2 .34292 ;  2.34292, 0 . 4 7 0 6 8 3 , -  1.81361) 

( 3 , 5 , 3 , 5 )  

( X  - 4 ) ( X  - 2 )5 (X  - 1 )4 (X + 1 )4 (X + 2)10(X - 27-)3(X - 2~) 3 

(3.236068; - 1.236068) 

(5, 6, 6) 

( X  - 3 ) ( X  - 1 )9 (X  + 2 )4 (X  + 2 - 7-)3(X + 2 -- K)3 (X  § 7-)5(X + T) 5 

( X  2 - (1 + 7-)X - 2 + 7)3(X2-(l+T)X-2+T)3(X2+X-4)4(X2-X-3) 5 

( - 0 . 3 8 1 9 6 6 ; - 2 . 6 1 8 0 3 4 ;  - 1.618034; 0.618034; 2.756598, -0 .138564;  1.820249, 

-1 .438283;  1.561553, -2 .561553;  2.302776, -1 .302776)  

<3, 10, 10> 

( X  - 3 ) X  10 ( X  + 2) 11 ( X  - 7-) 4 ( X  - K)4 ( X  2 _ X - 2 - 27-) 3 ( X  2 - X - 2 - 2~) 3 

( X  2 -- X -- 3 ) 4 ( X  2 -- X -- 4) 5 

(1.618034; --0.618034; 2.842236, --1.842236; 1.506942, --0.506942; 2.302776, 

--1.302776; 1.561553, --2.561553) 

( 3 , 4 , 5 , 4 )  

(X-4) (X-1)4X6(X  +1)4(X- 2 -  7-)3(X- 2 -  e)3(X + 2 -  7-)S(X + 2-  ~)8 
( X  + 1 - 27-)4(X + I - 2T)4 (X  3 - X 2 - 7X  + 4) 5 

(3.618034; 1.381966; -0 .381966;  -2 .618034;  2.236068; -2 .236068;  

2.92542, 0.551929, -2 .47735)  
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{3, 3, 3, 3, 5} 

(X-5)(X + I )6(X 2-2TX-4:T)3(X 2 - 2 K X - 4 - Y ) 3 ( X 4 - 8 X 2 - 2 X + 1 0 )  4 

( X  5 + X  4 - 1 1 X  3 - 1 9 X  2 - X + 1 )  5 

(4.48789, -1 .25182 ;  1.32205, -2 .55812 ;  2.71687, 1.07082, -1 .50739 ,  -2 .2803 ;  

3.5766~ 0.195279~ -0 .285153 ,  -2.1357~ -2 .35102)  

(4, 6, 10} 

( x  - 3 ) ( x  - 1 )~ (x  + 1 ) 6 ( x  + 3 ) ( x  2 + 2 x  - 1 - 

~-)3(x2 - 2X 1 - ~-)3(x2 + 2 x  - 1 - 7 )3 (x  2 - 2 x  - 1 - ~)3 

( X  4 - 6 X  2 - 2 X  -}- 2 ) 4 ( X  4 - 6 X  2 + 2 X  -}- 2) 4 

(X 5 - 3X 4 - 3X 3 -I- l l X  2 - X 3)5(X 5 + 3X 4 - 3X 3 - l l X  2 - X + 3) 5 

(0.902113, -2.902113; 2.902113, 0.902113; 0.175571, -2.175571; 2.175571, 

-0.175571; 2.54501, 0.439406, -0.830209, -2.15421; 2.15421, 0.830209, 

-0.439406, -2.54501; 2.72142, 1.88838, 0.684645, -0.466437, 

-1.82801; 1.82801, 0.466437, -0.684645, 1.88838, 2.72142) 

G4 

( x  - 6 ) ( x  - 1 ) 4 ( x  + 2) 5 

P96 
( X  - 9 ) ( X  - 3 ) 8 ( X  - 1 ) 8 X 1 4 ( X  + 2)24(X + 3 ) 6 ( X  2 - 4 X  - 24)4(X 3 - 

X 2 - 16X - 16) 9 

(7.291503~ -3 .291503;  4.91638~ ~1.19656~ -2 .71982)  

P72o 

( X  - 10) (X - 3 ) 1 6 X 1 6 ( X  + 1)60(X + 2)28(X - ,v/5)24(X § x/~) 24 

( X  - 5 - 2v /5 )4 (X  - 5 + 2x /5 )4 (X + 1 - 37-)24(X + 1 - 3T) 24 

( X  + 2 § "]-)16(X + 2 + T )16 (X  + 1 + T)48(X § 1 + T )48 (X  2 + 3 X  - 3) 40 

( X  2 - 7 X  - 4 )16(X2 + ( - 3  § 2~(/5)X - 10)9(X 2 + ( - 3  - 2V/5)X - 10) 9 

( X  2 - X - 10 + 4 v ~ ) 3 6 ( X  2 - X - 10 - 4~ /5)36(X 3 - 4 X  2 - 15X + 6) 25 

(2.23607; -2 .23607 ;  9.47214; 0.527864; 3.8541; -2 .8541 ;  -3 .61803;  -1 .38197 ;  

-2 .61803 ;  -0 .38197 ;  

0.79129~ -3 .79129;  7.53113, -0 .53113 ;  2.51075, -3 .98288 ;  8.63078, -1 .15864 ;  

1.642685~ -0 .642685;  4.88113~ -3 .88113 ;  6.2473, 0.36732~ -2 .61463)  

G5 

( X  - 1 0 ) ( X  - 2 ) 5 ( X  -t- 2) 10 
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G6 
(X - 16)(X - 4)6(X + 2) 20 

G7 
(X - 27)(X - 9)7(X + 1)27(X + 3) 21 

G8 
(X - 56)(X - 28)8(2 - 8)35(X + 2)112(_32 + 4) 84 

2. A r c h i m e d e a n  sol ids  I 

In this section, we compute the spectra of seven Archimedean solids: 

(3,6,6}, (3,4,3,4}, (4,6,6), (3,8,8), (3,4,4,4}, {4,6,8} and {3,5,3,5} as 

welt as the spectra of the antiprisms, by using mirrors ([PS]) and rela- 

tions between adjacency matrices. 

puting the spectrum of (3, 4, 4, 4}. 

We illustrate this method by corn- 

s 

f 

A 

Figure 2.1 

In Figure 2.1, full lines form the Schlegel diagram ([C]) of <3, 4, 4, 4>, 

i.e., the stereographic projection of the polyhedron to the plane. Dot- 

ted horizontal, vertical and round lines indicate three planes of symme- 

try associated to three commuting involutions A, B and C. Let V be 

the vector space of complex valued functions on the set of vertices of 

Bol. Soc. Bras. Mat., Vol. 29, N. I, 1998 



SPECTRA OF SEMI-REGULAR POLYFOPES 31 

(3, 4, 4, 4}. Let X be the 24 • 24 adjacency matr ix  of the polyhedron 

(i.e., of its graph). The involutions A, B and C, as well as the matr ix  

X, can be interpreted as commuting linear transformations from V to 

V. Thus, the eigenspaces V+ A and V_ A associated to the eigenvalues 1 

and - 1  of A are invariant under B, C and X. In a similar fashion, V 

splits as a direct sum of eight subspaces (which a priori could be trivial) 

of the form V A, B,s C = V d where  ubscripts denote signs. 
These subspaces are invariant under X and the problem of comput-  

ing the spectrum of X reduces to the same problem for the restriction 

X~A,SB,~ C of X to V~A,~B,~ C. 
Each invariant subspace can be coordinatized by the values r, s and 

t of each vector on the three vertices indicated in Figure 2.1: mirror- 

ing by A, B and C prescribes the values at the remaining vertices. In 

particular, in this example, the eight invariant subspaces are of dimen- 

sion 3. The adjacency matrices for V++_, V+_+ and 1 / + +  are trivially 

conjugate (by renaming the dot ted lines), and therefore have the same 

spectrum; the  same happens to V+__, V_+_ and V +. We have 

X + + +  = 
(!11) 

2 1 , 
1 2 

X++_  = 0 , 
1 

(Tll) 1) 
X+__ : 0 1 , X . . . .  1 - 2  1 

1 - 2  1 1 - 2  

and the spectrum of X is thus immediately computed. 

For (3, 6, 6), there are two commuting involutions corresponding to 

reflections with respect to the two orthogonal planes indicated by dot ted 

lines in the Schlegel diagram in Figure 2.2. The values r, s, t and u in 

the vertices marked in the figure determine a unique vector in V++. 

Similarly, r, s, t provide a basis for V+_ and s, t a basis for If__ (If_+ 

is equivalent to If+_ by renaming planes). 
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Figure 2.2 

The same three mirrors used for {3, 4, 4, 4} work for {3, 4, 3, 4}, re- 

ducing the problem to that of finding the spectra of a 3 • 3 matrix in 

V+++, a 2 x 2 matrix in V++ and a 1 • 1 matrix in V+__ (V___ is 

0-dimensional). Again, the mirrors used for {3, 4, 4, 4) convert the com- 

putation of the spectrum of {3, 8, 8} into the study of the restriction 

of the adjacency matrices to invariant subspaces of dimension 3. For 

{4, 6, 8}, however, these mirrors produce 6 • 6 matrices. A fourth mirror, 

indicated in Figure 2.3, can be used to further split the invariant sub- 

spaces. The reflection D on the fourth mirror does not commute with 

either A or/3.  Still, V+++, If++_, V__+ and V____ are invariant under D 

and can thus be decomposed into the two eigenspaces for the restrictions 

of D. Notice that  the four remaining subspaces are not invariant under 

D. This is no serious problem, however: for example, the restriction of 

the adjacency matrix to V_++ has the same spectrum as the restriction 

to If++ , and this last space can be split by D. The values r, s, t in 

the figure again provide a basis for each of the eight relevant invariant 

subspaces and the spectrum of {4, 6, 8} is now easily obtained. The solid 

{4, 6, 6} can be handled in the same fashion; in section 5 we compute  its 

spect rum using other methods.  
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B 

D 

C 

33 

Figure 2.3 

We finish this section with three examples of computations of spectra 

based on algebraic relations between adjacency matrices. Let Y be the 

adjacency matrix of a 2n-gon: then X = y2 + y _ 2I is the adjacency 

matrix of the antiprism with n-gonal basis and an eigenvalue A of Y 

corresponds to an eigenvalue A 2 + A - 2 of X. As another example, the 

spectrum of X3434, the adjacency matrix of (3, 4, 3, 4}, can be computed 

in terms of the spectrum of X444, the adjacency matrix of the cube. 

Indeed, let Y~,~ be a 8 x 12 incidence matrix obtained by numbering 

vertices and edges of the cube and setting Yi,j - -  1 if the i-th vertex 

belongs to the j - th  edge. Dually, let Y~,~ = (y~,~)T. Notice that X444 + 

3I  = Y~,~Y~,~ and that X3434 + 2I  = Ye,~Yv,~: thus, the spectra of the left 

hand sides are equal except for 4 extra zero eigenvalues in the second one. 

The same method yields the spectrum of (3, 5, 3, 5} from the spectrum 

of the dodecahedron. The spectrum of a regular polygon, the cube and 

the dodecahedron are given in [CDS]. 

3. Gosset polytopes 
In this section, we compute the spectra of the Gosset polytopes Gn. The 

solid G3 is the triangular prism in dimension 3 and the vertex figure of 
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Gn is Gn-1; Gn is thus a close relative of the root system En. Coordi- 

nates for the vertices of the Gosset polytopes are given in [G], [C] and 

[Cal. 
The polytope G~ has for faces simplices c~_1 and cross polytopes 

fl~-l.  Recall tha t  a cross polytope is a generalized octahedron, or 

{3, . . .  , 3, 4} in Schlgfli's notation; the vertices of fin consist of a nor th  

and south pole together  with the vertices of an equatorial fin-1. We 

make extensive use of Table 3.1 ([C], section 11.8). 

Number  of vertices 
Number  of fin-1 faces 

G4 G5 G6 G7 G8 

10 16 27 56 240 
5 10 27 126 2160 

T a b l e  3 .1  

A more combinatorial description of the graphs Gi, i = 4 , . . .  , 8, is 

given in [BCN] where the notation Ei(1) (reminiscent of the Lie algebras 

E~) is employed. 

Let r(G~) be the group of isometries of G~ and, for an arbi t rary 

choice of a vertex Pl of G~, call FI(Gr~) the subgroup of Y(Gn) fixing Pl. 

As explained in [C3], FI(G~) = P(Gn_l). Also, P(Gn) acts transitively 

both on the set of simplicial faces and on the set of cross polytope faces. 

The orbits of the action of r l  (G~) on the set of vertices of G~ are called 

suborbits in the terminology of association schemes and levels in [ST]. 

The vertex Pl forms a suborbit by itself; the next suborbit is a Gn-1. 

As we shall see, the number  of suborbits of G~ is 3, 3, 3, 4 and 5 for 

n = 4, 5, 6, 7 and 8. Thus, the method employed in [ST] for regular 

polytopes is well suited for the Gosset family. Actually, this method 

is a special case of the technique of regular partitions ([BCN]) for the 

computat ion of the spectrum of an association scheme. 

We briefly describe this special method.  Let v r 0 satisfy X v  = Av 

for the adjacency matr ix  X of a semi-regular polytope. Without  loss, 

the value of v at Pl is nonzero. Let S be the space of vectors which are 

constant on suborbits: S is invariant under X. The (nonzero) average 

s ~ S of v under the action of r l  is another eigenvector of X associated 
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to the same eigenvalue I. Thus, up to multiplicities, the spect rum of 

X equals the spect rum of its restriction /3 to S. For the basis of S 

consisting of vectors sk taking the value 1 at the k-th suborbi t  and 0 

elsewhere, the entry bij o f / 3  is the number of neighbours in suborbi t  j 

of a vertex in suborbi t  i. We now obtain the matrices B~ for G~, 7t _> 4. 

The 16 vertices of G5 are (4-1,. . .  , -+-1) with an even number of minus 

signs ([C]). Taking Pl = (1 , . . .  , 1), different sums of coordinates clearly 

imply different suborbits.  The 3 possible values of this sum, 5, 1 and 

-3 ,  correspond to sets of 1, 10 and 5 vertices which might, in principle, 

be the union of more than one suborbit .  The intermediate set is a G4, 

on which FI(G5) = F(G4) is transitive: this set is therefore a suborbit .  

Each of the five/33 faces of the second suborbi t  is an equator  of a/34 face 

of G5 with north pole Pl and south pole in the third set. Since F(G4) 

acts transitively on the cross polytope  faces of G4, this b o t t o m  set is a 

suborbit .  The 3 x 3 matrix B5 is 

with eigenvalues 10, 2 and 2. Let their multiplicities in X be 1, a and 

b (recall tha t  the largest eigenvalue is always simple). We must  then 

have 1 + a + b = 1 6  and 1 . 1 0 + a . 2 + b . ( - 2 ) = t r ( X ) = 0 ;  a a n d b a r e  

then 5 and 10. 

The central suborbi t  of G5 gives coordinates (in IR 5) for G4 and, as 

above, it is easy to obtain the decomposit ion of G4 into suborbi ts  of 1, 

6 and 3 elements, yielding 

/34 = 3 2 , 
4 2 

from which the spect rum of G4 follows. 

From coordinates for G5, one obtains coordinates for a G6 inscribed 

in S 6 for which suborbi ts  are indicated by the first entry. Start  with 

Pl = (1 ,0 , . . .  ,0) and add the next suborbi t  of vertices, of the form 

(a, bGs), where a = 1/4 and b = (v/3/4); the coefficients are taken so 

that  the second suborbi t  lies in the unit sphere and all edges have equal 
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length. The vertices of a f15 face of G6 containing Pl are, besides Pl,  the 

vertices of a/34 face of t h e s e c o n d  suborbi t  (a Gs) and the reflection of 

Pl on the hyperplane containing this/34. We thus obtain 10 new vertices 

of G6, with first coordinate - 1 / 2 ,  associated to the 10 /34 faces of the 

second suborbit;  FI(G6) is transitive on the set of/34 faces of the second 

suborbi t  and these 10 points form a third suborbi t  of G6. Since G6 has 

27 vertices, these are the only suborbits;  adjacencies among suborbi ts  

are given by 

and we are done with G 6. 

/3 6 = 10 
8 

In a similar fashion, coordinates for G7 in which the first entry in- 

dicates the suborbi t  are 

(1, o , . . . ,  o), (1/3, (2~/5/3) G6), (-1/3, (2vS/a) G6), (-~, o , . . . ,  o). 

The polytope G7 then admits an involution taking v to - v  splitting VGr 

into two 28-dimensional subspaces V+ and V_, invariant under X,  and 

S into 2-dimensional subspaces S+ and S_, invariant under B7. The 

two restrictions of /37 are 

B+  = 26 ' 

with spectra  27, 1 and 9, - 3 .  Considered as eigenvalues of X,  27 and 

- 1  have multiplicities 1 and 27 since their eigenspaces are contained 

in V+. The two remaining multiplicities are now computed taking into 

account tha t  t r (X)  = 0. 

Finally, analogous coordinates for G8 are 

(1, 0 , . . . ,  0), (1/2, (v~/2) G7), (0, .), (-1/2, (v~/2) a7), -~, 0 , . . . ,  0), 

where the vertices of the central suborbi t  correspond to the 126/36 faces 

of the second suborbi t  (a G7). Again, G8 admits an antipodal  involution 

and B8 splits as 

/3+ = 28 27 , /3 = 56 
24 32 26 " 
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To compute the multiplicities, we only need the additional remark that, 

since antipodal points are never neighbours, the restrictions of X to the 

120-dimensional spaces V+ and V have trace zero. 

4. Groups, Cayley graphs and representations 
By using representations of groups, Lov~sz ([L]) described a method to 

compute the spectrum of a Cayley graph, or, more generally, of a graph 

with a transitive group of isomorphisms. Babai ([B]) modified Lovs 

method (and corrected a minor mistake in [L]) and obtained families 

of Cayley graphs with the same spectrum. We present yet another 

technique based on representations of groups which is more convenient 

for our purposes. 

For an undirected graph ~, the doubling ~ of G is the directed graph 

obtained by substituting each edge of G by two edges with opposite 

orientations. A Cayley structure for an undirected graph G consists of a 

choice of a vertex (to be the identity) and a colouring of the edges of 

the doubling ~ of G (to represent the set H of generators) such that 

becomes a Cayley graph, i.e., the group of isomorphisms of the coloured 

graph is simply transitive on vertices. Notice that h E H implies h 1 E 

H. Similarly, a Cayley structure for a polytope is a Cayley structure for 

its 1-skeleton. Most semi-regular polytopes admit Cayley structures: in 

dimension 3, only the dodecahedron and (3, 5, 3, 5} do not ([C1]). 

Let V~ be the complex vector space of functions from the vertices 

of the Cayley graph G to C. Define ek by ek(9) = 6~g. The canonical 

left representation of F on Vg is given by Lgek = egk or, equivalently, 

( L h v ) ( g )  = v(h-lg). For a polytope with a Cayley structure, the canon- 

ical left action corresponds to an action by isometries. The canonical 

right representation is given by Rack = e k g - 1 .  The two canonical rep- 

resentations are equivalent, being intertwined by the linear involution 

ek ~-~ %-1, and commute: Lg~Rg 2 = I~g2Lg 1. Geometrically, this ac- 

tion can be interpreted in terms of the Cayley graph G as follows: for 

a generator h, the value of RhV at a vertex g is the value of v at the 

target vertex of the h-edge starting from g (which is, of course, gh), 
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i.e., (t~hv)(g) = v(gh). Thus, unless r is abelian, Rh does not preserve 

adjacencies among vertices. 

Prom representation theory for finite groups ([Se]), the space V~ 

splits as a direct sum, 

l < i < t , l  <_j<_d i 

where each Wi,j is invariant under the canonical right action and the 

restriction of the action to Wi,j is isomorphic to the i-th irreducible 

representation. 

As in Babai ([B]), the adjacency matrix X of the oriented graph 6, 

defined by x# = 1 if there is an (oriented) edge from the i-th to the j - th  

vertex, and 0 otherwise, satisfies 

X =  Z R h .  
h ~ H  

In particular, X commutes with the left canonical action. Invariant 

subspaces for the canonical right representation are therefore invariant 

under X and the restriction Xi,j of X to each Wi,j is the sum of the 

restrictions of the linear transformations corresponding to the elements 

of H. Thus, if we have matrices Mh,i for the generators in H in any 

representation isomorphic to the i-th irreducible representation of F, 

Xi,j is conjugate to 

X i  = Z M h , i "  
h E H  

Clearly, the spectrum or(X) of X is the union (as a multiset) of d~ copies 

of or(X0, i = 1 , . . .  ,t. 

Although we use the right canonical action to decompose V~, the left 

canonical action is geometrically more helpful in the identification of a 

Cayley structure for a polytope. Like Babai's method, this technique 

applies to polytopes with different weights for edges of different colours. 

Instead of computing X,i, Lovs and Babai have a formula for traces 

of powers of Xi ([B]): 

tr(X/e) A~,I + - - - +  A e = = i,di Z X i ( h l  . . . . .  ]~g), 
h 1 ,... ,hgEH 
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where Ai,1,. . .  , Ai,d i are the eigenvalues of Xi, with  dimensions di, and 

Xi, i = 1 , . . .  , t, are the characters of the irreducible representat ions of 

r .  The  traces of X[  for g = 1 , . . .  , di, de termine o-(X O. 

In our examples,  we find the explicit computa t ion  of the right hand  

side of the above formula cumbersome since it involves count ing special 

pa ths  and we prefer to specify matrices for each irreducible representa- 

tion. 

�9 2 

Figure 5.1 

5. Archimedean solids II 

In this section we compute  the spectra  of the six remaining Archimedean 

solids using the methods  of the previous section. 

As a first example, let P = (4,6,6}. The  cube and P have the 

same group of symmetr ies  (of order 48); the subgroup P of or ientat ion 

preserving isometrics acts simply transit ively on the  vertices of P ,  thus  

giving P a Cayley structure.  As is well known, F is isomorphic to $4, the 

permuta t ions  of {1, 2, 3, 4} (number pairs of ant ipodal  hexagons 1, 2, 3, 4 

as in Figure 5.1). Wi th  this nota t ion  for F, H = {(12), (1234), (1432)}: 

the first generator  corresponds in Figure 5.1 to the edge joining e to a, 

the second to the edge going southwest  from e to d and the  thi rd  to 

the remaining edge s tar t ing from e. Generators  for the five irreducible 
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represen ta t ions  of $4 are given in Table  5.2. The  cor responding  Xi  = 

M(12),i + M(1234),i + M(1432),~ , wi th  their  spect ra ,  are l isted in Table  5.3. 

M(12),l = 1 M(1234),1 = 1 

M(12),2 = - 1  M(1234),2 = - 1  

( )  < ) M(12) ,3=  0 1 - 1  0 
1 0 M(1234), 3 = - 1  1 

0 1 0) 
M(12],4 = ,  , I 0 0 

0 0 1 

(zo 1) 
M(1234],4~j = 0 --1 

1 --1 

M(12),5 = -M(12)  A M(1234),5 = -M(1234),4 

Table 5.2 

x l  = ~ ~ ( x l )  : {3} 

x2  = - 3  ~(x2)  = { - 3 }  

X 4 =  0 0 
1 1 0 

~(x3)  = { + v ~ }  

~(x4) = {1,-1 • v~} 

x5 = - x 4  o(X5) -- {-1 ,1  • vS} 

Table 5.3 

Consider  now <3, 3, 3, 3, 4}, which admi t s  a Cayley  s t ruc tu re  for its 

full s y m m e t r y  group  r = $4. Compar ing  Figures  5.1 and 5.4, we see 
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two addit ional  generators (234) and (243), so 

H = {(12), (1234), (1432), (234), (243)}. 

From Table 5.2 we have M(12),i and M(12a4),i and thus we have also 

M(234), i -= ]F[(12),iM(1234),i 
and 

- 1  
M(243), i = M(234), i. 

The  restrictions Xi and their  spectra  follow immediately.  

Figure 5.4 

To handle  (3,4, 5,4}, consider the planes containing the t r iangular  

faces: they  form the faces of a circumscribed icosahedron. The  group r 

of orientat ion preserving isometries of these two polyhedra  is therefore 

the  same. It is well known tha t  this group can be identified with AS, 

the even permuta t ions  of {1, 2, 3, 4, 5}. The  polytope  {3, 4, 5, 4} admits  

a Cayley s t ructure  since A5 acts simply transit ively on its 60 vertices. 

Wi th  an appropr ia te  identification of A5 with the  group of isometries 

of the  icosahedron, H = {a, a -1, b, b 1}, for a = (12345) and b = (253). 
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Generators  for the five irreducible representat ions of A5 are given in 

Table 515 where, again, T = (1+v/5) /2  and Y = (1 -v /5 ) /2 .  The  matrices 

Xi and their  spectra are easily obtained.  

Ma, 1 : 1 

1 

1 
Ma,3 

Ma~ 4 

Ma,5 = 

1 T--I 

T--I ~- 

T --i 

1 ~ - - 1  

~--I 

-i 

0 0 0 --I 

1 0 0 --i 

0 1 0 --i 

0 0 1 --i 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 ! 0 

0 0 0 1 

1 
T--I 

1 

~ - 1  

Mb, 1 = 1 

Mo,2 = ~ - ~- 1 

1 ( - 1  
Mb,3= ~ - ~  + 1  

1 -I 0 

0 -I 1 
Mb'4 = 0 - 1  0 

0 - 1  0 

- 1  0 0 

- 1  0 1 

Mb, 5 : -- 1 0 0 

-i 1 0 

-I 0 0 

T a b l e  5 . 5  

\ 

w --  1 --7- 

) 7 1 

J_ - 7 - + 1  

) 1 

i --~+ I 

~ o 

1 

o 
o 

The  three solids (5, 6, 6}, (3, 10, 10} and (3, 3, 3, 3, 5} admit  Cayley 

s t ructures  for the same F = A5 with H in each case being {a, a 1 ab}, 
{b,b-l,ab} and {a,a-l,b,b-l,ab}. The rest of the procedure is analo- 

gous. 

The  polyhedron (4, 6, 10}, unlike the previous four examples, has 120 

vertices and admits  a Cayley s t ructure  for its lull isometry group, which 

is isomorphic to A5 | Z/(2),  where the  generator of Z/(2) is the (ori- 

enta t ion reversing) ant ipodal  map.  The  characters and representat ions 

for this larger group are trivially obtained from those of A5 ([Se]) and 

the ten Xi matrices are thus easily obtained. We prefer, however, to 

consider X 2, the square of the adjacency matrix.  Since (4, 6, 10} is bi- 

part i te ,  X 2 has two obvious invariant subspaces corresponding to the  

white and black vertices. The  white vertices are natural ly  identified 
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with those of {3, 3, 3, 3, 5} and admit a simply transitive action of A 5. 

Let Y be the restriction o f X  2 to the white vertices: in the notation of 

section 4, Y = 3i--/~a+/r~a-1 q-l~bq-J~ b 1 q-2l~ab. Thus,  the computation 

of a(Y) reduces as usual to the computations of spectra of matrices in 

each irreducible representation of AS. Finally, a(X) contains the two 

square roots of each element of a(Y). 

6. Three discrete subgroups of S 3 

Among the six regular polytopes in four dimensions, three of them, 

{3,3,4}, {3,4,3} and {3,3,5}, have a most remarkable property ([C], 

[C2]): when suitably inscribed in the unit quaternionic sphere S 3, their 

vertices form finite groups. In this section, we briefly describe these 

three groups, to be called Q8, Q24 and Q120. 

Following [C], we display appropriate choices of unit quaternions for 

the vertices of these polytopes. We identify (a, b, c, d) to a + bi + cj + dk. 

The elements of Q8 are the vertices of {3, 3, 4} with coordinates --1, 4-i, 

--j and • In order to obtain the vertices of {3, 4, 3}, add to the above 

list all 16 points of the form (• • i • j • k)/2, producing Q24- Finally, 

consider the 96 points obtained by even permutations of the coordinates 

of (iT, • • 0)/2: adding these to the 24 points already defined, we 

obtain the vertices of {3, 3, 5}, i.e., the elements of Q120. 

The four groups S 3, Qs, Q24 and Q120 have the same centre {• 

As is well known ([MT]), the quotient $3/{• is isomorphic to SO(3). 

The quotient Q8/{+1} = Z/(2) x Z/(2), as a group of isometrics in 

IR 3, is generated by 180 ~ rotations around the three axis. Similarly, 

Q24/{• = A4 and Q120/{• = A5 are the groups of orientation 

preserving isometries of a tetrahedron and an icosahedron, respectively. 

Conjugacy classes in S 3 are determined by the first coordinate, i.e., 

the real part; in the groups Q~, thereforel points with different real parts 

are never conjugate. The eonjugacy classes of Q8 are {1}, {• {• 

{• {-1}. Representatives for the conjugacy classes of Q24 are 1, 

(l + i + j  +k)/2, ( 1 + •  i, ( - l  + i + j  +k)/2, ( - 1 + •  

and 1; these classes have 1, 8, 8, 6, 81 8 and 1 elements, respectively. 
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For Q120, the real part determines the conjugacy class: there are thus 

9 conjugacy classes denoted by 1, b, c, d, e, - d ,  - c ,  -b,  -1  (decreasing 

real parts) with 1, 12, 20, ' 12, 30, 12, 20, 12, 1 elements, respectively; 

the order of an element in each conjugacy class is 1, 10, 6, 5, 4, 10, 3, 

5, 2. The conjugacy class b consists of the 12 neighbours of the vertex 

1 and these 12 points form the vertices of an icosahedron. 

The irreducible representations of S 3 are well known ([Su]): we call 

them ~n ,  where ~ has dimension n +  1. The representation T~ 0 is triv- 

ial and 7~1 corresponds to the identification S 3 = SU(2). A basis for the 

space where T~ acts is given by monomials of degree n in two variables 

el and e2, identified with the basis of C2; for a homogeneous polyno- 

mial ~b of degree n, define T~n(g)(~b(el, e2)) = O(~l(g)(e1),7~l(g)(e2)). 
Restrictions of T~n to Q~ are still representations, but are usually not 

irreducible. Call an irreducible representation of S 3 or Qn even (resp., 

odd) if - 1  is taken to I (resp., - I ) ;  T~n is even if and only if n is even. 

The number of even (resp. odd) irreducible representations of Qs, Q24 

and Q120 are 4, 4, 5 (resp. 1, 3, 4); character tables for Q8 and Q24 are 

easy to obtain and that  of Qt20 is in [CCNPW]. 

We show how to obtain a matrix form for Adi(G), the i-th irre- 

ducible representation of G (even representations come first; within each 

parity, representations are ordered by dimension). By restrictions, 7~1 

yield Ms(Q8),  MS(Q24) and J~16(Q120 ). Also, 7~2 yields M4(Q24) and 

M2(Q120); T~3, 7~4 and 7~5 yield Ms(Q120), M5(Q120) and M9(Q120). 
The other representations can be obtained by algebraic conjugation 

and tensor products: Ma(Q120) and M7(Q120) are the conjugates of 

M2(Qz20) and M6(Q120), respectively. Also, AA6(Q24) = M2(Q24) | 

M5(Q24), M7(Q24) = M3(Q24)| and Jkd4(Q120) = M6(Q120) 

| 
In our examples, we frequently consider isometry groups in N 4. As 

is well known ([MT]), SO(4) = (S 3 x $3)/(-1,--1) by unit quaternion 

bilateral multiplication: (q, r) �9 v = qvr -1. Thus, the finite groups (Qn x 

Q . 0 / ( - 1 , - 1 )  act on R 4 by isometries. The irreducible representations 

of such groups are obtained by tensoring representations of each factor 
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having the same parity. 

7. P96 
In this section, we compute  the spec t rum of P96 (Coxeter 's s{3, 4, 3}), 

one of the three semi-regular polytopes  of dimension 4. Each of its 96 

vertices is sur rounded by three icosahedra and five te t rahedra ,  arranged 

according to the vertex figure shown in Figure 8.9A of [C]; each vertex 

has nine neighbours.  Our main task is to obtain a group r of isometrics 

of P96 acting simply t rans i t ive ly  on vertices. 

We remind the reader of a construct ion for P96, detailed in [C], 

section 8.4. Edges of {3, 4, 3} can be oriented so that ,  given any vertex 

p, there are four edges point ing outwards from p, no two of which belong 

to the same (triangular) 2-cell. Now, divide each oriented edge in two 

segments a and b (in this order) satisfying b/a = T; the points  thus  

obta ined are the vertices of a P96. Alternatively, the 120 vertices of 

{3, 3, 5} are the disjoint union of the  24 vertices of a {3, 4, 3} and the 

96 vertices of a P96; from the coordinates for {3, 3, 5} in the  previous 

section, we thus obtain,  as in [C] (section 8.7) coordinates for P96- 

The  finite group (Q24 • Q24)/( - 1 ,  -1 )  acts on {3, 4, 3} by isometrics 

preserving edge orientation,  therefore acting also on P96. This  group 

is too large to act s imply transit ively on the vertices of P96: the  sub- 

group r = (Q24 • Q 8 ) / ( - 1 , - 1 )  has the right order. Clearly, r acts 

transit ively on the  vertices of {3,4,3} by elements of the form (q, 1). 

Also, le acts transit ively on oriented edges: by the t ransi t ivi ty on ver- 

tices, it is enough to show tha t  it acts transit ively on the four edges 

s tar t ing from 1, which is done by elements of the form (r ,r) .  Adding 

up, F acts simply transit ively on the vertices of P96 and this polytope  

therefore admits  a Cayley structure.  The  set H of generators has 9 el- 

ements;  we explain how to obtain it. We begin by identifying vertices 

of P96 with oriented edges of {3, 4, 3} as in the const ruct ion above. Let 

PO be the vertex (1, (1 + i + j + k)/2): by simple geometric considera- 

tions, its nine neighbours are (1, (1 + i - j - k)/2), (1, (1 - i + j - k)/2), 

(1, (1-i-j+k)/2), ((l+i+j-k)/2, 1), ((l+i-j+k)/2, 1), ((1-i+j+k)/2, 1), 
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( ( l + i + j + k ) / 2 ,  ( l + i + j - k ) / 2 ) ,  ( ( l + i + j + k ) / 2 ,  ( l + i - j + k ) / 2 )  and 

((1 + i + j + k)/2, (1 -- i + j + k)/2). The (unique) elements of r taking 

Po to its nine neighbours are (i, i), (j, j),  (k, k), ((1 + i - j + k)/2,  k), 

( ( 1 -  i + j + k ) /2 , j ) ,  ( (l + i + j -  k)/2,  i), ( ( - l  + i + j - k) /2,  i), ( ( - l + i -  

j + k)/2,  k) and ((-1 - i + j + k) /2, j ) .  Thus, if we choose PO to be the 

identity for the Cayley structure, the nine elements of F above are the 

nine elements of H. From the previous section, we have explicit matri- 

ces for the 19 irreducible representations of F; their dimensions are at 

most 4. The spectrum of the adjacency matrix X can now be computed 

as in section 4. 

8, P720 
Following Coxeter ([C]~ sections 8.1 and 8.9), we take for vertices of 

P720 = 3,5 the midpoints of the edges of the regular polytope {3, 3, 5}. 

Each vertex of P720 is surrounded by two icosahedra and five octahedra; 

its vertex figure is a pentagonal prism. 

We now describe the group G14400 C 0(4) of all isometrics of P720. 

The group G7200 of orientation preserving isometrics of {3, 3, 5} has or- 

der 120 • 60, since it is transitive on the 120 vertices and the subgroup 

of such isometrics keeping a given vertex fixed equals the group of orien- 

tation preserving isometrics of  the vertex figure, an icosahedron. Thus, 

G7200 = (Q120 • Q120) / ( -1 , -1) .  The group G14400 is generated by 
G7200 together with a reflection on a hype~'plane preserving the vertices 

of {3, a, 5}. 
Unfortunately, the technique of the previous sections does not apply 

directly. 

Proposition: The polytope P720 admits no Cayley structure. 

Proof." Let G720 be an arbitrary subgroup of order 720 of G14400: we 

prove that  G720 does not act simply transitively on edges of {3, 3, 5}. Let 

G25 be a 5-Sylow subgroup of G720. Clearly, G25 is contained in G7200 = 

(QI20 x Q120) / ( -1 , -1)  and, by lifting, we obtain a 5-Sylow subgroup 
of Q120 • Q120 which is conjugate to {1, q, q2, q3, q4} x {1, q, q2, q3, q4}, 

where q is some quaternion of order 5. Thus, G720 contains some element 
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g conjugate  to (q, q), whose action keeps some vertex v E {3, 3, 5} fixed 

(since (q,q) does). The  element g permutes  the 12 neighbours of v, 

spl i t t ing t h e m  into orbits of size 1 or 5; hence, there is a neighbour  w 

of v, and hence an edge vw, which are kept fixed under  g, as we wanted 

t o  s h o w .  []  

Lovgsz describes a me thod  ([L]) to reduce the problem of comput ing  

the  spec t rum of a graph with a transit ive group F of isomorphisms to 

each irreducible decomposi t ion of F, which could be applied to this ex- 

ample. As before, instead of count ing paths,  we prefer to work with the  

matrices for representat ions in a modified version of Lov~isz's technique. 

For simplicity, we start  by applying the procedure to {3, 5,3, 5), which 

also admits  no Cayley structure,  since its isometry group, A5 | Z/(2),  

has no subgroup of order 30 (the number  of vertices). 

As i l lustrated in Figure 8.1, the  vertices of {3, 5, 3, 5} are the mid- 

points  of edges of a dodecahedron.  If instead of taking midpoints  of 

edges we take two suitably spaced points  per  edge, we obtain {3, 10, 10), 

which admits  a Cayley s t ructure  described in section 5. Recall tha t  

a = (12345), b = (253) and H = {b,b-l,ab}. Edges between decagons 

correspond to the  generator  ab = (ab) -1. For each vertex of {3, 5, 3, 5) 

there are two elements of A5 (counting the identity) which keep it fixed. 

// 

Bol. Soc. Bras. Mat., Vol. 29, N. 1, 1998 

Figure 8.1 



4 8  NICOLAU C. SALDANHA AND CARLOS TOMEI  

Define a linear injection A1 : V(3,5,3,5) --+ V(3,10,10) such that the value 

of Al(v) at a vertex p of (3, i0, i0} is the value of v at the midpoint of 

the only edge between decagons containing p (recall that Vp is the set of 

complex valued functions on the vertices of the polytope F). Conversely, 

define A 2 : V(3,10,10 ) --+ V(3,5,3,5 ) so that the value of A2(w) at a vertex 

q of (3, 5, 3, 5} is the sum of the values of w at the two ends of the edge 

of (3, 10, 10) containing q. Thus, A2A 1 - 2I and AIA 2 = [ + l~ab , where 

R is the  right mult ipl icat ion action. We claim tha t  

X3535 = A2(R b + Rb-1)A1; 

Figure 8.2 illustrates the equality at a basis vector of V(3,5,3,5 }. The  

matr ix  Y = (Rb + Rb 1)AIA2 = (Rb + Rb i)(I + Rab) has the same 

spec t rum as X3535, up to 30 extra zero eigenvalues. It is now clear 

tha t  Y splits into the irreducible representat ions and its spec t rum is 

computed  in the usual manner .  

X3535 Rb + Rb-~ 

A 2 1 1 

1 1 

F i g u r e  8 . 2  

We are ready to consider P720. As with (3, 5, 3, 5}, take two points  

in each edge of {3,3, 5} to obtain a (non-semi-regular) polytope  P1440 

with 1440 vertices. Call edges of P1440 contained in edges of {3, 3, 5} 

special. The  group G7200 of orientat ion preserving isometrics of {3, 3, 5} 
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does not act simply transitively on the vertices of P1440. Happily, its 

subgroup G1440 = (Q120 x Q 2 4 ) / ( - 1 , - 1 )  does; in other words, P1440 

admits a Cayley structure.  Indeed, the first factor Q120 guarantees that  

G1440 acts transitively on the vertices of {3, 3, 5}. The subgroup of G1440 

keeping the vertex 1 fixed consists of the 12 elements of the form (q, q), 

where q E Q24. These act simply transitively on the 12 neighbours in 

{3, 3, 5} of the vertex 1, as can be checked using the coordinate system 

in Section 6. The identity for the Cayley structure of P1440 is chosen 

to be the vertex between 1 and (~-+ i - y j ) / 2  which is closer to 1. 

Using coordinates and quaternion multiplication, the reader may check 

that  H = { g o , g l , g 2 , g 3 , g 4 , g s } ,  where g0 = ( i , i ) ,  91 = ((1 + i + j + 

k ) / 2 ,  + i + j + k ) / 2 ) ,  g2 = + i + j - k ) / 2 ,  + i + j - k ) / 2 ) ,  ga = 

( ( 1 - - i - j + h ) / 2 ,  ( 1 - - i - - j + 1 r  g4 = ( ( 1 - i - - j -  k)/2, ( 1 - - i - - j -  h)/2) ~ 

and gs • ( ( - 7 i  - j + T k ) / 2 ,  k); special edges correspond to gs. Notice 
1 that  go 1 = go, g{-1 = g4, g2 = g3 and 921 = g~. 

Again, define linear transformations A1 : VP720 --~ VP144o and A2 : 

VP144o --+ VP720: Al(v) at a vertex p of P1440 is the value of v at the 

midpoint of the special edge containing p and A 2 ( w )  at a vertex q of 

P720 is the sum of the values of w at the two ends of the special edge 

containing q. Thus, A 2 A 1  - 2 I  and A 1 A 2  = I + Rg~. Also, 

Xp72 o = A2(T~g o + Rg z + Rg 2 + R93 + Rg4)A1 .  

In order to prove this equality, we relate the adjacencies of P720 and 

P1440- A vertex p of P720 has 10 neighbours and is the midpoint of 

a special edge of /31440 with vertices q and q'. The vertex q has six 

neighbours: q g o , . . . , q g 4  and q' = qgs. Similarly, the six neighbours 

of q~ are q ~ g o , . . . , q ~ g 4  and q = ql9~. Omitt ing the repetitions of q 

and q', the special edges containing the remaining 10 points have as 

midpoints the 10 neighbours PO,.. .  ,P9 ofp.  The process p ~-+ {q, ql} ~-+ 

{ qgo, . . . , qg4, q' 90, . . . , q' g4 } H {Po,- -- , P9} corresponds the successive 

application on a basis vector of 17720 of the transformations A1, Rg o + 

�9 �9 �9 + R94 and A2, finishing the proof of the equality. The rest is routine 

by now: Y = (Rg 0 + - - - +  Rg4)(I + Rg~) has the same spectrum as XP720, 

up to 720 extra zero eigenvalues. Finally, split Y into the 32 irreducible 
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rep resen ta t ions  of G1440 to  c o m p u t e  its spec t rum.  
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