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Abstract. This work.generalizes for any non-solvable pseudo-groups of Diff0,C the 
existence of fixed points arbi t rar ly close to the origin already proved in the generic 
case [G-M,Wil]. An elementary proof of the Sherbakov-Nakai's density theorem [Na] is 
added with moreover some more precision about the derivative of a germ sending a 
point close to an other one. At last the topological entropy and the entropy of fixed 
points are strictly positive for such pseudo-groups as in [Wi] and [G-M, Wi2]. 
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Introduction 

Any finite collection of germs of holomorphic diffeomorphisms fixing the 

origin generates a pseudo-group. The orbit of any complex number is 

the set of all possible images of this complex number by the germs of 

the pseudo-group, while this complex number remains in the domain 

of the germs. Let the tangent group be the multiplicative sub-group of 

(C*, .) generated by the derivatives of the generator germs in 0. The 

tangent group contains a first topological information. Cerveau and 

Moussu [Ce,Mo] prove that if the tangent group is dense (generic case), 

any orbit is dense close to 0. Sherbakov and Nakai prove the property 

of sectorial density theorem for any non solvable pseudo-group. Franck 

Loray classifies pseudo-groups with discrete orbits [Loll. 

The second problem is the existence of periodic points arbitrarly 
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54 BRUNO WIRTZ 

close to the origin. Even for the iteration of one germ, there exists such 

points [P-M]. Some example of existence [Ya] and the generic existence 

of such fixed points [G-M,Wil] are a first step for some more general 

results. 

Thirdly, dynamical invariants of such pseudo-groups have to be eval- 

uated. By example, the topological entropy of pseudo-group is one. It 

is defined by Ghys, Langevin and Walczak [G,L,W]. The notion of en- 

tropy of fixed point, evoqued by Marie [Ma], Katok [K, H], Gomez-Mont 

and the author [G.M,Wi2] is a second one. In the generic case, theses 

entropies are strictly positive, and the entropy of fixed points is larger 

or equal to the topological entropy [G.M,Wi2]. We prove here three 

results for any non solvable pseudo-group: 

- the existence of fixed points arbitrarly close to 0, 

- the strict positivity of the topological entropy on any compact disk 

centered at 0, 

the strict positivity of entropy of fixed point on any compact disk 

centered at 0. 

The initial idea of proof of the existence of fixed points was esquissed 

by Paulo Sad during a discussion in Rennes. A first proof of Julio Rebelo 

[Re], using the notion of Nakai's field, is submit ted by Michel Bellard, 

Isabelle Liousse and Franck Loray [B,Li,Lo]. Nevertheless this proof is 

not sufficient to get the thermodynamieal  results of this paper. 

The existence and abundance of such fixed points is equivalent to 

the existence and abundance of loops on leaves of germs of singular non 

dicritical holomorphic foliations of C 2, as any pseudo-group is realized 

as projective holonomy of such foliations [L-N], [Ca, L-N], [Ca, Sa]. 

Some notations and definitions 

We fix al < a2 two strictly positive integers and we fix 91 and g2 two 

germs al-flat and a2-flat: 

g j ( Z ) • A j Z + p j z a j 4 - 1 + . . . ,  / ~ j , p j ~ O ,  j = 1,2. 

- 1  - 1  We denote by Hi the Set {Id, gl,g2,gl ,92 }- We denote H the set of 

all compositions of element of H~. Let n be a positive integer. We call 
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FIXED POINTS AND ENTROPY 55 

Hn the subset of H containing all compositions of n germs of H1. Let 

c~ > 0 be fixed, smaller than  any radius of convergence of any germ of 

H1. 

Definition 1. Domain of a germ of H~. 

Let j be smaller than  n and f = f j o f j_ l . . . o f l  , f~ E H1, k = 1, 2, .. . ,j  

an element of H~. Let z0 be a non zero complex number. Then we 

define the partial images of z0 by f the j + l-uplet (z0, zl, ..., zj) defined 

by induction " zk = f~(zk-1), 0 _< k < j .  Then  the domain of f ,  

denoted Dorn(f) is the compact {z0 such that  [ zk I_< ct, 0 _< k < j}.  

This domain depends on the external radius c~, but  this real number is 

supposed to be fixed and invariant. 

Definit ion 2. Fixed point of H. 

Let f be a g e r m  of H, f r  A fixed point z o f f  is a n o n  zero 

complex number z such tha t  z C Dorn(f) and f(z)  = z. If f is in H~ 

then z is a fixed point of index n. 

T h e o r e m  1. For any pair f ,  g of germs of Diff0,c generating a non solv- 

able pseudo-group there exist fixed points arbitrarly close to O. 

Sketch o f  the proof .  We suppose without any restriction that  f and 

g are tangent  to identity with different degrees of flatness [Na]. The 

angular derivative of iterations of any germ tangent  to identity is firstly 

assymptotically estimated. We deduce that  if f~(z) and g'~(z) have 

equivalent modulus, the sizes of the images of a small ball centered at z 

by these iterations are not equivalent. Hence exists a germ of H sending 

z close to itself with arbitrarly large derivative. By this way occurs a 

configuration of fixed point [G-M-Will ,  i.e a couple (f, O) where f is 

a germ of H, O an open disk of C, included in Dorn(f), and verifying 

0 C f(O) or f(O) C O. In this condition f admits a fixed point in the 

open disk O (Figure 1). 

Proof .  Let us recall briefly some properties of the angular derivative 

[Wi], [G-M,Wil].  For any germ f of Diff0,c and any z in the disk of 

convergence of f the angular derivative of f in z is denoted Af(z )  and 

is zf ' (z)/g(z) .  Its real part  is 0/00 Arg(f(z)) where Arg is the argument  
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5 6  BRUNO WIRTZ 

(justification of the qualificative "angular") .  This differential operator 

is compatible with the composition of germs: 

A ( f  og)(z) = Ag(z) Af(g(z) ) .  

We remember  first some properties of i teration of germs tangent  to 

identity. 

 l~ ) 
Figure 1 

Theorem. ([Le].) Given g an a-fiat germ tangent to identity there 

exists ~ strictly positive such that there exist 2a open sectors of the open 

disk {I z I< c~} such that for any z in such sector, one at least among the 

two sequences (gn(z))n~N and (g-n(z))n~r~ converges to 0 and remains in 

the initial sector of z. 

Any orbit draws petal and the reunion of petals is a flower with 2a 

petals. The top of a petal gets the maximum modulus of the orbit. It 

occurs where the difference between the argument  of z and the argument  

of the first non-linear te rm of g(z) is close to +7c/2. (Figure 2). 

Z 

etal 

~ " ~ n - ~  o 1+ #z a 
o O 

0 1 

Figure 2 
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FIXED POINTS AND ENTROPY 57 

Follows now the main argument of this paper. It is an asymptot ic  

proper ty  of the angular derivative. 

Lemma  1.1. Let  g be a germ tangent  to identity,  not  equal to identi ty,  

and z such that  the sequence (gn(Z))ne N converges ~o O. Then  the mod- 

ulus of  the angular derivative Agn(z )  is asymptot ical ly  comparable to 

?2 -1" 

Remark.  The degree of flatness of g does  not occur in this estimation. 

Proof .  Here "asymptotically comparable to n -1'' means that  there ex- 

ists some constant  K > 1 depending on z ang 9 such t ha t  for sufficiently 

large n we have: 
K -1  < I ~ A g n ( z )  I ~ [ (  

L e t a b e a n i n t e g e r a n d l e t g ( z )  = z + p z  a+l +. . .  , #  • O be an a-flat 

germ. As l i m ~ 0 g n ( z )  is 0, the modulus I z I is supposed small and 

the sequence (I gn(z)  ]), ,~ decreases to 0. Using Nakai's estimations 

of iterations of germs, the coordinate z is changed in ~ = z -a and 

by conjugacy the germ g is t ransformed in a quasi translation ~, (i.e. 

~](Z,) Z -- a/z + e12; 1/a + . . .  where cl is some complex number).  The n-th 

i teration of ~ verifies 

~ ( 5 )  = 2 -  n a #  + R~(5).  

The quant i ty  Rn(~) is controlled : R~(~) = O(]n(n)) if a - 1, and 

Rn(~:) = O(n  1-1/a) if a > 1. If n is large enough then the dominant  term 

is - n a p  in any case. As ~ ( ~ )  is equal to (g~(z)) -a  the est imation of the 

angular derivative of g in g ~(z). Let us remember the first coefficient of 

the angular derivative: 

z(1 + (a + ~)~z a + ...) 
A g ( z ) =  = l + a p z  a +  . . . .  

z(1 + / ~ z  ~ + ...) 

This implies a convenient control of the angular derivative of g in gn(z) .  

A g ( g n ( z ) )  = 1 § a # ( g n ( z ) )  a + ..., 

a# 
= 1 + _  +. . .  

z - n a p  + R~(5) 

As - n a p  is the dominant term of the denominator  there is a simplifi- 

cation by a# in the previous fraction. Then Ag(g~(z) )  is asymptot ical ly 
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58 BRUNO WIRTZ 

equivalent to 1 - 1/n. This point kills any dependance on the degree 

of flatness. The logarithm of this angular derivative is equivalent to 

-11/n. The partial sums of two positive asymptotically equivalent diver- 

gent series are asymptotically equivalent. Therefore the partial sums of 

index rn of the divergent series { ln(Ag(gn(z))) }~N are asympotically 

equivalent to - I n ( m ) .  As the angular derivative is compatible with the 

composition of germs, the exponential of the previous partial sums are 

Agm(z). They are comparable to m -1 if rn is sufficiently large. [] 

If n is sufficently large then ~ is relatively close to -nap .  It implies 

that  the modulus of gn(z) is close to I a# 1-1/a n l/a, then depends on 

the degree of flatness. The dependance of the modulus of gn(z) on the 

degree of flatness of 9 and the simultaneous independance of the angular 

derivative with this degree of flatness will generate local hyperbolicity 

of some special compositions. Let c be a strictly positive real such tha t  

the compact ball {I Y - z I<_ e}, denoted B(z,e), is in the open sector 

containing z. 

Lemma 1.2. If  n is large enough, then gn ( B ( z, e ) ) contains a compact ball 
centered at gn(z) with radius asymptotically comparable to (e/c~)n -1-1/a 
and is contained in a ball with same center and equivalent radius. 

Proof .  Let x be fixed in B(z,e). As in the proof of lemma 1.1 the 

modulus of gn(x) is comparable to n-1/% Then as ] x I is close to c~, the 

rate I x/g~(x) I is comparable to nl/a/(~. As the derivative (gn)'(x) is by 

definition of the angular derivative the product  Ag~(x) (g~(x)/x). The 

estimation of Lemma 1.1 implies that  the derivative (gn)~(x) is asymp- 

totically comparable to (1 /a )n  1 1/a and this estimation is uniform on 

the compact ball B(z, e). [] 

For the final step four germs in H are used. They are denoted 

f l ,  .[2, f3 and f4 and possess four different degrees of flatness kl < 

k2 < k3 < k4. The coefficient of degree kj + 1 of fj  is denoted #j, 

j - 1, 2, 3, 4. The existence of these four germs is the consequence of the 

non-solvability of the pseudo-group [Lol], [Na]. Each germ will have a 

specific utility in the following construction: f2 and fa generates some 
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FIXED POINTS AND ENTROPY 59 

hyperbolicity, f l  is used for large correction of some trajectory, f4 is 

used for some fine correction. We suppose now tha t  the  a rgument  of z 

verifies s imultaneously three conditions: 

Arg(#jzkJ) 6 a r g ( z ) + T r + [ •  j = 2 , 3 .  (i, ii) 

These two condit ions assure tha t  the sequences (I f~(z)  I)~N, J = 2, 3 
decrease to 0. The  petals  corresponding to the i terat ion of f2 and f3 

arrive to 0 with two different tangencies. The  difference of angle is 

smaller t han  27c(1/k2 - l /k3)  (Figure 3). 

z 

o~ 0 

F igure  3 

The  thi rd  condit ion is 
7( 7r 

Arg(#l zkl) E Arg(z) -4- ~ + [-4-~1 ]. (iii) 

It implies tha t  for any complex in the sector between the two branchs 

petals, gl changes more the a rgument  t han  the radius. Therefore the 

first i terates of y by gl draw the top of a petal  (Figure 4). 

z 

etals 

c~ 0 

of fl  

F igure  4 

The  complex z is fixed with modulus  c~. The  germ f3 is i tera ted 

from z until  the asymptot ic  est imations of lemmas 1.1 and 1.2 hold. Let 
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60 BRUNO WIRTZ 

N3 be the number of iterations of .[3 and/3 the modulus of f.~ v3 (z) = z3. 

The lemma 1.1 implies that /~-k3 and Na are comparable. The same 

result induces that the angular derivative of f~ v3 in z is comparable to 

1/x3. 
The sequence f~(z3) progresses in the direction of the petal 

{f~(z)}m~r~. At any new iteration of f l  an argument comparable to 

~kl is added. The condition (iii) on the argument of z implies that 

the modulus of any iteration are in bounded rate while f{~(z3) remains 

between the two petals (f~(z)},~eN and {f~(Z)}pcr~. There exists a con- 

venient power of iteration N1 of f l  such that the argument of fNa (z3) 
n2 is O(/3kl)-close to the argument of some point 92 (z), and the distance 

] f~n(z ) _ fN1 o f~a(z) ] is  minimal for m = rt 2. The integer N1 is 

comparable to/~-kl and we denote zl the point f NI(z3). 

The condition (iii) implies that ] f~2 (z) l is comparable to/3. Then 

Lemma 1.1 implies that the angular derivative Af~ 2 (z) is comparable to 

1/n2 in modulus. Moreover Lemma 1.2 gives more precise information: 

The image f~2(B(z, e)) is contains a ball centered at f~2(z) with radius 
comparable e/c~n~ 1-1/k2. As n2 is comparable to/~-k2 and N 3 to/~-k3, 

as/3 is arbitrarly small, the radius of the ball contained in f~2 (B(z, e)) is 

arbitrarly much more than the radius of the ball containing f~ va (B(z, e)). 

The angular derivative of f l  is bounded by exp(Kfl ~1) on all points 

of the orbit of f~(z3). Follows that the angular derivative Af~V~(z3) 

is bounded by exp(K/3k~) ~ and then it is uniformly bounded. 

As the moduli of fN1 (z3) and za are both comparable to/3, their rate 

is uniformly bounded, and the derivative (fN1)'(z3) is also uniformly 

bounded. Then the image fN1 o fNa(B(z,e)) is contained in a ball 

centered at zl with radius equivalent to (e/a)Nf l-1/ka. As Zl is only 

O(/3~l+l)-close to f~2(z), the inclusion 

is not yet proved. 

This construction just needs some use of the fine correction germ 

f4 to be completed. As f4 is more tangent to identity that the other 
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FIXED POINTS AND ENTROPY 61 

germs, we can suppose k 4 > (];2 + 1)(k3 + 1). Hence, there exists at least 

one petal  of f4 between the petals of ( f ~ ( z ) ) , ~ z  and (f~(Z))p~z. As the 

angular  progression of f~(z3) is comparable  to the  small quant i ty /3kl ,  

some point  f f l , l ( z3 )  0 < NI,1 _< N1 is close to the top of this petal  of 

f4. Then  the a rgument  of f~l , l (z3)  is corrected by some iterations of 

f4, wi thout  sensitive per tu rba t ion  of modulus.  The  collection of points  

f~(fNl,1 (z3)) is const i tued with points with  0(/3kn)-calibrated differences 

of argument .  The  i terat ion of these points  by powers of f l  does not 

separe their a rguments  or their modul i  because f l  does not separe points  

in this region. Then  exists a composi t ion ~4 of f l  and f4 such tha t  the  

a rgument  of ~4 (z3) is O (/3k4)_close to the a rgument  of some point  fN2 (z), 
where [ f2n(z) - ~4 o f f3 ( z )  I is minimal  for n = N2 and the integer N2 

is necessary comparable  to n2 (Figure 5). 

petal of fl petal of f4 petal off1 
'.. i ...... ....[;:f f .... .:' 

!ii<i J 
fS2 (z) / .,. :: , /  

/~ o 

Figure 5 

This last es t imat ion of distance and the previous est imations of ra- 

dius induce the configuration of fixed point implied by the inclusion 

~4 o f ~ ( B ( z ,  c)) C ]f2(B(z,c)).  [] 

Let us denote  f the previous composi t ion of H and x the previ- 

ous fixed point  which is in the compact  ball B(z, e). The construct ion 

of f with  the  four germs f l ,  f2, f3 and f4 implies tha t  the  modulus  

of f '(x) is arbitrarly small if the internal radius /3 is arbi trarly small. 

As a corollary of the theorem we give now an elementary proof  of the  
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62 BRUNO WIRTZ 

Sherbakov-Nakai's density theorem with moreover some freedom in the 

choice of the derivative. Let H be a non solvable pseudo-group, f l ,  f2, 

fa and f4 four germs as above and c~ a radius small enough to get the 

dynamic of petal for any germ f j ,  j = 1,2,3,4. Let us remember  that  

kj is the degree of tangency of f j .  

Corollary. For any pair x, y of points in a same sector of f l  and a- 
close to O, there exists a germ f of H such that x is in the domain of f ,  
and f (x)  is arbitrarly close to y, and ] if(x) ] is either arbitrarly large, 
arbitrarly small or arbitrarly close to 1. 

Proof .  Given r] > 0 we consider the two compact ball B(x, r]) and 

B(y, rl). Then the images f22 (B(x, rl)) and f33 (B(y, rl)) have different 

size i f ] f ~ 2 ( x ) ] a n d l f ~ 3 ( y ) ] a r e  small and equivalent .  These images 

are in the same sector of f l -  As above, there exists a convenient compo- 

sition of f l  and f4 such that  p(f~ v3 (B(y, r]))) is included in fN2 (B(x, ~1)). 
Therefore f~ -jr2 o ~ o f~ v3 (y) is rl-close to x and the derivative of this germ 

in y is arbitrarly small. 

The same construction with a large derivative needs one computa- 

tional detail. We can suppose without any restriction that  the moduli 

of x and y are equivalent, and that  the small radius /3 is smaller than  

these two moduli. Then the derivative in y of this previous composition 

is equivalent to N2/N3, or/31/k2 1/k3. The image 

f f2 (B(x  '  (91/k2 1/k3)2)) 

contains a ball  with radius equivalent to rl(/3/a)(/31/k2-1/k3)2). The im- 

age f33(B(y,r]) is contained in a ball with radius equivalent to 

~](fl/a)C31/kz). A convenient composition of f l  and f4 sends the cen- 

ter of one ball O(/3kn+l)-close to the center of the other ball. If we 

have 
3 /~ 2/k2-2/k3 < /3 l/k3 i.e. k 3 > ~k2 

then exists a germ of H sending y r]-close to x with arbitrarly large 

derivative. This condition can be always satisfied because there exist, 

in a non solvable pseudo-group, germs with arbitrarly large degree of 

tangency to the identity. 
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To send x close to y with a derivative close to 1 in modulus we take a 

intermediary point G in the convenient sector of f l ,  and send x close to 

z with a large derivative, using the small radius/3 and ( close to y with 

a small derivative, using the small radius ill. Adjusting the two small 

radii /3 and /3' it is possible to compense almost exactly the largeness 

and smallness of the two previous derivatives. [] 

The following remark is a justification to give an other proof of the 

sectorial density of orbits. Nakai's construction needs three germs, f ,  

9 and their commutator .  The present construction needs a fourth one. 

The main consequence is some possible election of the derivative of a 

germ sending a point arbitrarly close to an other. It follows a direct 

consequence of the corrolary. This s ta tement  is just a bit more precise 

than the Sherbakov-Nakai's density theorem. 

Given rl and K strictly positive, there exists an integer N,,,K depend- 

ing on r 1 and K such that for  any couple (x, y) in the same sector, there 

exists a germ of H with length smaller than Nv,K such that 

x C Dora(f), ] f ( x ) - y ]  < v and ] f ' ( x ) ]  _< K. 

Two notions of entropy are now defined before the proof of some new 

results of non nullity of entropies. These definitions refer to [G,L,W], 

[Ma] and [K, H], [Wi] and [G-M,Vr 

Definition 3. Topological entropy of pseudo-groups of germs of Diff0,c. 

Let H be a pseudo-group of Diff0, c with a finite generator set //1, 

containing id and stable by inversion. Fixed 0 < a,/3 < a, a smaller 

than  any radius of convergence of any germ of H1, and n a positive 

integer, two complex numbers x and y are (a,/3, n, e)-separated if and 

only if there exists g in H~ such tha t  the partial images of x and y by g 

are in the compact crown {/3 <] z ]_< a}, and the distance between g(x) 

and g(y) is at least e. A part  A of {/3 _<[ z [_< a} is (a,/3, n, a)-separated 

if and only if two distinct points of A are (a,/3, n,a)-separated.  Re- 

mark  that  the cardinal of A is necessarily finite. It is a consequence 

of the theorem of Bolzano Weierstrass. The maximum cardinal of any 
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(c~,/3, n, e)-separated set is denoted Jg(c~,/3, n, e). The topological en- 

tropy of the pseudo-group H relatively to its generator set H1 and re- 

stricted to {/3 _<1 z 1_< c~} and denoted htop(H, H1, c~,/3) is 

1 
htop(H, Hl,ct,/3) = lim l imsup-ln(N'(ct , /3,  n,e)) .  

a--~0 n ~ + o o  n 

Definition 4. Entropy of fixed point of pseudo-groups of Diff0, c. 

Fixed H, H1, 0 < fl < c~ and n as above, a complex number x is an 

(c~, fl, n)-fixed point if and only if there exists g in H~ - {id} such that  

the partial images of z by g are in {fl -<t z I_< c~} and g fixes z. The 

cardinal of the set of (c~, fl, n)-fixed points is denoted A//(a, fl, n). The 

entropy of fixed point of the pseudo-group H relatively to its generator 

set H1 and restricted to {fl <-I z 1< c~} and denoted hfix(H, Hl,c~,fl) is 

1 
]Z/ix(H, HI, ct, fl) = Iimsup - ln(J~/(ct, fl, n)). 

n~§ n 

We claim the two last results. Their proof is a direct consequence 

of Theorem 1 and a general lemma about separation. Let H be a non 

solvable pseudo-group. 

Theo rem 2. The topological entropy h~op(H, H1, a,/3) is strictly positive 
for any radius c~ if/3 is small enough. 

T h e o r e m  3. The entropy of fixed point hfix(H, H1, c~,/3) is strictly pos- 
itive for any radius ~ if/3 is small enough. 

Proof  of  theo rem 2. The idea refers to [G-M, Wi2]. YVe know by 

the demonstrat ion of the theorem 1 that  there exist a complex z with 

modulus c~, a real c strictly positive, and a real A > 2 such that  for any 

y in {I z - x 1_< e}, exists gv such tha t  

B(z ,c)  C Dom(gy), 

l g y ( y )  - z l <- e ,  
l I gy(Y) l >- A. 

As the derivative 9y(Y) can be chosen arbitrarly large or small in mod- 

ulus, this one is fixed larger larger than 3. Then by continuity of gy, 
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FIXED POINTS AND ENTROPY 65 

there exists a small open ball B~ ev) (: {It - y I< cv}) where 

V x l , x 2  E B~ ey), ] 9y (X l ) -gy (x2 )  [ >2.  
x I - x 2 

The compact bah B(z, s) is covered not with the open bails B~ Sy), 

but with open bails B~ Sv/2 ). There exists a finite sub-covering by 

the theorem of Bolzano-Weiertstrass. Let so be the smaller radius of 

the balls of this finite sub-covering, and N its cardinal. The center of 

the open bails of the finite sub-covering are denoted Yl, Y2,, ..YN, their 

radius are now Sl/2, s2/2, ... , SN/2 and fl, h, -.. , fN the locally 

expansive germs associated to Yl, Y2, ... , ~/N. Let L be the maxima] 

length of the compositions fl, f2, ... , fN. Let/3 be the minimal modulus 

of any partial  image of B(z,  s) by any germ f l ,  f2, ... , fN. Assume Zl 

and z2 are in the  compact  ball B(z,  e) and assume I zl - z2 I = e0 2-~. 

Then  exists a integer Jl in {1, 2, ..., N}  such tha t  

I zl -~ / J l  I ~ s and lz  2 - Z l l  <_ s 

The  t r iangular  inequality implies tha t  I z2 -YJl  I is smaller than  a jl and 

then  I fJl ( z l ) -  f h  (z2) ] is str ict ly larger than  s2 -n+ l .  An immedia te  in- 

duct ion proves tha t  zl and z2 are (a,/3, Ln,  ao)-separated. The  maximal  

cardinal of c-separated set included in the  unit  square is approximatively 

1/c 2. It implies 

a 2 1 22n. 
2 2a 2 N(a ,  3, L. ,  co) > 

This minora t ion  gives immedia t ly  

htop(H, H1, a,/3) >_ 
2 ~n(2) 

> 0  [] 
L 

The  chore of the previous a rgument  is as follows: the minora t ion  of 

the  distance between two points  induces their  mutua l  separat ion by the 

pseudo-group.  Hence we get a minorat ion of the maximal  cardinal of 

seperated set, and hence of the  topological entropy. Symmetr ical ly  if two 

points  are separated by the  pseudo-group,  then  their mutua l  distance 

is minorated,  and tha t  implies a 'majoration of the topological entropy. 

This  is a general result valid for any pseudo-group of Diff0,c. 
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Lemma 2. ([Wi].) For any pseudo-group of Diff0,c exists a radius c~ 

small enough, a constant Is and an integer d only depending on the gen- 

erator set such that for any inner radius/3 < c~, for any pair x, y of the 

compact crown {/3 <l z I < - c~} such that l z - y  I<_ (c/3/oz)exp(--nKad),  

x and y are not (a,/3, n, c)-separated by the pseudo-group. 

Proof. Let [ / ]  be a finite collection of germs {~=1, "-'gk-• id} such that  

~j(z) = )~jz + # j z  d+l + ..., where #j r 0 for some index j E {1, 2, ..., k}. 

If the radius c~ is small enough then we have for any complex numbers 

x and y of modulus smaller than  c~ 

~ ; I ( x )  --I-1 _:1:1 gj (x)-Igj  (y) exp(-Ko2) -<1 ),J:]x I,I I _  < exP(+K~ 

where K is some constant number depending only on H1. Let 0 < 

c,/3 < a be real numbers and x and y (n, c)-separated b y / / ,  g a germ 

of H~ separating x and y, such that  all partial images of x and y by 

9 remain in the compact crown {/3 <-I z I_< oz}. The majorat ion of 

any rate of increasing ({lj(x) - {Tj(y))/(x - y) implies the minoration of 

I x - y I by c ] 9'(0) I exp(-nK~ �9 The control of {Tj(x)/Ajx induces the 

minoration of ] g'(0) I b y / 3 / a  exp(--nKc~d). Finally the distance I x - y  I 

is larger than (e/3/c~)exp(-2nKad). By contraposition, if the distance 

between x and y is smaller than the previous bound then they are not 

(oz,/3, n, e)-separated. [] 

P r o o f  o f  t h e o r e m  3 

Fixed points are directly constructed from separated points, using the 

s ta tement  of density which is a more technical version of the Sherbakov- 

Nakai's density theorem. Moreover the main idea of [G-M, Wi2], based 

of the exponential control of the distance between two separated points 

is largely the chore of the proof. The real number  r] is now fixed. There  

exists an integer N~ such that ,  for any couple z, y in a same sector, 

a germs of HN~ sends x r/-close to y with a derivative less than 1 

in modulus. Lemma 2 induces that  this derivative is also more than 

/3/o~exp(-NvKoLd), where K and d depend only on the generator set 
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{f l ,  f2, f3, f4}. 

Let m be an integer (think it is very large, more precisely m > >  

L, N,) ,  x and y be in the initial compact ball B ( z ,  e) and verify moreover 

and I x - y  I= ~2 -'~, m > >  N, .  As in the proof of theorem 2 the complex 

numbers x and y are (c~, fl, mL,  rj)-separated. Moreover the sequence 

of partial images of x and y can be qualitatively and quanti tat ively 

described. Firstly some iterations of some k2-flat germs f2 put  x and y 

close to 0, in some neighbourough of the circle centered at 0 with radius 

ft. Then  some combination of germs f l  and f4 respectively less and 

more tangent  to identity than f2 changes the argument  of the previous 

point. At last the point comes back close to the circle of radius 

by some iterations of a ka-flat germ f3. The number of elementary 

composition of this first part  of the partial images is less than L. Then 

we compose by identity until the length of the composition is exactly L. 

This composition with length exactly equal to L is denoted elementary 

cycle. 

The distance between corresponding partial images of x and y dur- 

ing this part  of the t ra jectory  called elementary cycle is always at most 

equivalent to the distance between their final images I XL --YL I, because 

with the estimations of Lemma 1.2, the partial images of x and y are 

closer one to the other when they are close to the inner Circle of radius ft. 

It follows tha t  the sum of the distances between corresponding partial 

images during an elemetary cycle is dominated by O ( L  I XL- -YL  I ), be- 

cause it is a sum of at most L terms and each term is at most equivalent 

t o  I x c  - Yc I. Let us recall the inequality. 

IXL--YLI > 2 I x - - Y l .  

Let n _< m be the minimal index of separation of x and y, i.e x and 

y are (nL, r/)-separated but not ((n - 1)L, ~)-separated by such compo- 

sition of elementary cycle. Then  the separation does not occur by any 

concatenation of n - 1 elementary cycles. The three following techni- 

cal lemmas show that  the local action of separating composition is very 

comparable to an homothecy with exponentially large rate. 
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L e m m a 3 . 1 .  The sum 

Z Ix,- yjJ 
0<j<(n-1)L 

is dominated by 2L~(a//~)exp(LKad). 

Proof.  The mutual  distance between corresponding partial images of x 

and y during the last elementary cycle is dominated by 

~l(a//3) exp( nKad) 

where d and K depend only on H1. The sum of the distances between 

the last elementary cycle is dominated by L multilplied by the previous 

distance. The distance between x(n_2) L and Y(n-2)r is dominated by 

some 7/2 because ] X(n_I)L - - Y ( n  1)L I iS larger than 2 I X(n-2)L - -  

Y(n-2)L [ by definition of an elementary cycle. Therefore, the sum of 

mutual  distances between corresponding partial images of x and y during 

the penu]tian elementary cycle is smaller than Nrl/2(a//3)exp(L/(c~d). 
An immediate induction gives 

1 1 1 
E ] x j - y j  ] < Z~?(a/fl) e x p ( L K a d ) ( l + ~ + ~ + . . . + 2 ~ _ l )  , 

o<j<(n 1)L 

_< 2Lr](~/~) exp(LKad) 
[] 

If the process of separation is completed by a last elementary cycle 

between x(~ 1)L and X~L, Y(~-I)L and YnL, then the L last distances are 

dominated by r](~//3)exp(L/(ctd). As r] can be chosen arbitrarly small, 

the same result persists, and the sum of mutual  distances between the 

corresponding partial images of x and y during the whole process of 

separation (i.e. the n elementary cycles) remains arbitrarly small if 

is arbitrarly small. More precisely it is at most comparable to r]. 

The composition of HnL separating x and y is now denoted g, and 
= S~--1 ~-• • 1, g g~cog~L- lO . . . og l  whereg j  i s a g e r m o f t j 1  ,J2 ,f3 , f 4  id}. 

Twin consequences (lemma 3.2 and 3.3) of this fact are now accessible. 

Lemma 3.2. If  ~l is small enough, then g'(x)/9'(y) is O(r])-elose to 1. 

Remark. The previous rate is a complex number, and the statement has 
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to be unders tood as a result in C, not only a result about  modulus of 

the rate 9'(x) /g ' (y) .  

Proof .  The derivative g'(x) is the product  of all derivative 95.(Xj_l), 

j E {1, 2, nL} .  The difference 9 } ( x j - 1 ) -  9} (Y j -1) i s  a convergente series 

of valuation at last one with complex coefficients >z in factor with l X j _  1 - -  

YS"-l" The factor Xj ] - -  Y j  1 is common to any polynomial x}_ 1 - Y}-I 

because we have the identity 

X l _ yZ = (X - Y) (X  z-1 + X 1 - 2 Y  + ... + y l - 1 )  

As the moduli  of xj  and Yj-1 are smaller than c~, the modulus of 

1 - 1  1 - 2  1 - 1  
(xj_ 1 + Xj_lY  j 1 + '"Y)-I) 

is smaller than Ic~ l 1 and the modulus of xjl _ yjl is smaller than I x j -1  - 

Yj-1 I (lo}). Therefore the series 

- vJ_1) 

converges absolutely. Hence g] (x j_ i) - g] (Yj- i) is the product of xj_ 1 - 
Yj-I by some uniformly bounded holomorphic function. 

The derivative g].(xj_l) is close to 1 because g](O) is exactly I, thus 

g ] ' ( X j - 1 )  - -  ~(Yj 1) 

is a]so the product of X j _ l  - Y j - 1  by some uniformly bounded ho]omor- 

phic function. Therefore, since the identity 

g~(xj_]) -- .@(Yj_l) = 1 9j(Yj-1) 

holds, it IbIlows 

i X gj( j i) 
-- I § (xj_ 1 -- Yj_l)4 ' (Xj_l ,  Yj-1).  

where ~ is uniformly bounded and holomorphic. Since for X close to 

0 the map 1 + X is an approximation of the map exp(X) we prefer an 
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exponential expression of the previous identity : 

g (xj_l)/gj(yj_l) = exp(( j_  - y5-1)) 

where q~ is uniformly bounded and holomorphic. Let B be an uniform 

upperboud valid for any function r on the domain {I X I<_ c~} • {I 

Y I_< c~}. Hence f ' ( x ) / f ' ( y )  is the product  of all elementary terms 

9~j(zj 1)/gh(Yj-1) and consequently 

g'(x) 
= exp( ~ ( x j - 1 - Y j - 1 ) ~ ( X j _ l , Y j - 1 ) ) .  

9'(Y) l <_j<nL 

The majorat ion of the sum of mutual  distances of corresponding partial 

images of x and y of Lemma 3.1 and the uniform upperbound of any 

function r induces that  the rate g'(x)/g~(y) is the exponential of some 

quantity, absolutely maj%rated by 2LB~]exp(LKc~d). Hence g'(x) /g ' (y)  

is O(r])-close to 1. [] 

L e m m a  3.3. I f  ~] is small  enough, then (g(x) - g (y) / (g ' (x ) (x  - y)) is 

O(rl)-elose to 1. 

Proof .  The rate of increasing (g(x) - g (y ) / ( x  - y) can also be wri t ten 

as the product  of elementary terms depending on xj  and yj. Then the 

following identity holds : 

g ( x ) - g ( y )  _ I I  x J -  yj g'(x)(x  - y) g j ( x j_ l ) ( x j -1  - Yj-1)" 
l < j < n L  

Some Taylor's formula applied to each elementary te rm of the product  

shows once more that  each elementary te rm is O(I Xj_l  - Yj-1 ])-close 

to 1. The end of the proof is similar to the previous one. [] 

Since g separates x and y, the rate (g(x) - 9 (y ) ) / (x  - y) is at least 

2 m is modulus. If r] is chosen small enough, then Lemma 3.2 induces 

that  g'(x) is larger than  2 m-1 in modulus. Hence the g e r m  g-1 send the 

open disk centered at g(x) with radius r] in an open set contained in the 

open disk centered at g(x) with rad ius  r/2 - rn+ l  exp(+2LKc~ d) by lemma 

2, 3.2 and 3.3. Using now the corrollary about density of pseudo-orbits, 

there exists a germ ~ such that  I )(x) - g(x) I -< r]/2. Moreover the 

derivative O'(x) is less than I in modulus. 
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Then the image of g-I(B(g(z), r])) by ~ is contained in an open disk 

centered rl/2-close to 9(z) with radius strictly smaller than r]/2 if m is 

large enough. Then we get a configuration of fixed point and ~ o g -1 

admits a fixed point close to z 

The same construction for y gives also a fixed point close to y. But  

we can not assume now that  the two fixed points are different. We 

refine the previous construction as follows, and precise that  the sym- 

bol g is the function integral part.  Given z and y (nL, r/)-separated 

but  not ( ( n -  1)L, ~/)-separated, and separating x and y we choose :~ 

close enough to z so that  G(2 is (g(x/~)L, ~]) separated from x, but  not 

( ( g x / ~ -  1)L, r/)-separated from x. Given G separating G(x) from G(~), 

we construct  as above a fixed point close to x. The symmetrical  con- 

struction with such y and ?) gives also a fixed point close to y. The two 

fixed points are necessary different because their images by G are differ- 

ent. As the cardinal of separated points increases at least exponentially 

with n, the cardinal of fixed points of index n + gv /n  -~ 2N n increases 

also exponentially with n. As n is the principal part  of the previous 

sum, the result is proved. [] 
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A numerical  est imation o f  entropies 
In the generic case (i.e the tangent  group is dense in (C*, .)) the topolog- 

ical entropy is equivalent to o~ d, where a is the radius and d the minimal 

degree of tangency to identity of the commutators  of the generator germs 

[Wi]. As the condition of density disappears in the present hypothesis, 

this estimation is no longer valid. It only subsists the majorat ion of the 

entropy by some equivalent of c~ d. It is a direct consequence of Lemma 

2. As we have seen in Theorem 2 the topological entropy is larger than  

ln(2)/L, and the integer L is now est imated relatively to a. 

The integer L is the length of an elementary cycle. An elementary 

cycle is decomposed in three phases. During the first an initial point is 

t ransported from the circle of radius ~ to the circle of radius/3 by some 

iterations of the k3-flat germ f3. The number of iterations N 3 has to 

be large enough if we want that  the estimation of the angular derivative 

A f f  3 of Lemma 1.1 holds. The change of variable give for z of modulus 

(~ ~ of modulus ~ k3. As in the demonstrat ion of Lemma 1.1 we replace 

a #  
1 + _  +. . .  

z -- n a p  + R n ( Z )  
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by 1 - 1/n. The error in proportionnal to e if n is O(~/e).  The change of 

variable implies tha t  I 5 I is equal to c~-h. The partial sums 1/1 + 1/2 + 

...1In and 1/(~ + 1) + 1/(2 + 2) + ... + 1/(~ + n) are in a rate controlled 

by 1 • 2G if 

ln(n + oz -k3) - ln(ct -ka) 
1 - - c  < < i+~. 

- - 

Then n is larger than  a -~3/e. The length L we need in the previous 

construction (especially for the proof of Theorem 1), is comparable to 

some power c~J/~. The real number  c is supposed to be small enough to 

get hyperbolicity when we compose some positive power of f3 with some 

negative power of f2. As minorat ion of the derivative of the contraction 

f 3  3 is 0(/3 l+3~+ka) and like the minoration of the derivative of f~-N2 it 

is O(/3-1+3~-h). It is sufficient for e to be smaller than  (ka - h2)/10, 

smaller than 1/10 for example. Therefore the entropy is minorated by 
o(~l~ 'j=1'2'3'4}) of the previous estimation. 
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