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Abstract .  Using among other tools an approach based on the variational concept of 
F-convergence, we manage to prove existence as well as stability and exhibit the geo- 
metric structure of a family of stationary solutions of a semilinear diffusion equation. 
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In particular,these oscillations depend on the signed curvature of a level curve of the 
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1. I n t r o d u c t i o n  

This paper will focus on existence, stability and geometric s tructure of 

some stat ionary solutions of the following problem: 

Ov _ a2 d i v [ k l ( X ) V v ]  + h 2 ( X ) f ( v )  ( t , X )  E R + • f~ 
Ot 
v(O, X )  = vo(X)  E HI(Ft) (PI) 

V v ( t , X ) . n l ( X ) = O '  for ( t , X )  E R + •  

where X (Xl, x2) C ft C R 2 ; ft bounded open region with C a bound- 

ary; ~1 : outward pointing unit normal vector to Oft, s : small positive 

parameter;  kl and k2 are strictly positive functions in C2(f~, R +) and f 

is a real c l - func t ion  which satisfies: 

(fo) I f ( v )  [ <- a + bl v [ ~, for some constants  a,b and cr, l _ < ~ < e c .  

(fl) f has three consecutive zeros a, 0 and /3 ,  - o c  < a < 0 < ,~ < 
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76 ARNALDO SIMAL DO NASCIMENTO 

+oo with f ' (a)  < 0 and f'(13) < O. 

// (f2) F ( a )  = F(/3), where F(v) : f .  

The question of how the diffusivity function kl (terminology bor- 

rowed from the reaction-diffusion context) can give rise to stable non- 

constant s tat ionary solutions of (P1), has been subject of research for 

some time. All the works though are restricted to the onedimensional 

spatial variable case. See [HR], [FH] and IN1]. Herein we manage to 

t reat  the two-dimensional spatial variable case using a technique known 

as F-convergence. Actually the aim of this paper is two-fold: first it pro- 

vides a procedure for obtaining existence as well as the geometric quali- 

tative s tructure and stability of a family of s tat ionary solutions of (P1). 

Second it describes the mechanism of interaction between the spatial 

inhomogeneities h] and k2 and the reaction term f which is ul t imately 

responsible for the existence and stability of the equilibrium solutions 

obtained. When k l ( X )  = const., k2(X) = const, and ft is convex then 

it has long been known that  (P1)possesses no nonconstant  stable sta- 

t ionary solutions if c is small enough. However when .q has "necks" or 

exhibts a "dumbbell-shape", such solutions do exist. See [M], [HV] and 

[KS]. Herein the functions kl and k2 play the same role the geometry 

of 0gt does in the references above. In IN11 this question was addressed 

for the case in which ~2 =/31 (0) : the unit ball with center at the origin, 

kl and k2 are radially symmetr ic  functions. When k2 --- const, and c 

smal l ,  a diffusivity function kl (l I x I I; c) was found so that  (P])possesses 

an uniformly asymptotically stable radially symmetr ic  s tat ionary solu- 

tion which develops boundary  or spike layer formation accordingly to 

whether  F(c~) > F(fT) or F(c~) < F(13). Note that  ]r depended on e.  

Herein due to the r-convergence approach, once a diffusivity function 

hl (X) ,  X E 9., satisfies hypothesis (H1) below, the existence of a family 

of stable s tat ionary solution {re} is guaranteed for all e ,  0 < e < e0, 

for some cO > 0. 

Next we describe our results as a theorem. 

T h e o r e m  1.1. Let: 

1.15) k(X)  A ( k l ( X ) k 2 ( x ) ) l / 2  ka and [;2 as in (P1), um some value in 
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the range of k and "7(s), 0 < s < L, 

simple closed curve such that 

77 

be an arc-length parametrized C 2 

"7 c k ~(..~) = { x  c ~ : k ( x )  . .~}.  

1.1.ii) n(s), 0 < s < L, be the signed curvature of'7 

1.1.iii) ~ = gtiUf~oU% where ~ stands for the open region in ~q enclosed 

by ~y and rio = ~2 \ (Ri U "7) 

1.1.iv) g2['7(s)], 0 < s <_ L, be the inward-pointing normal vector to "7 

and consider the following change of coordinates: E : Q~ --+ N~, given 

by 

x = (x l ,  x2) = r ( s ,  t) = ' 7 (4  + t ~ 2 b ( s ) ]  

0 < s < L, - 6  < t < 5, where N5 is a small tubular neighborhood of % 

Q6 = {(s , t )  E R 2 : 0 < s < L , - ( 5  < t < ~} with ~ small enough so that 

E is a diffeomo~phism. Set k(s, t) = k(E(s,  t)) and suppose that: 

- . .~  ~ ( s ) ,  o < s < L 
Ot 

02fc(s ,  o) 
Ot 2 > 2Umt~2(s), 0 < s < L 

(H1) 

Then there is a family of stationary solutions {ve}0<e_<co of (P1)such 

that: 

1.1) re is ZabIe, for  O < c <_ cO 

1.2) c~ < re (X)  </3, X ~ 

1.3) For any compact set K C ~ i ( K  C ~2o) it holds that vc ---+/3 (v~ ---+ 

(~), uniformly on K ,  as c ---+ O. In particular the level curve % = { X  E 

~2 : vc(X)  = O} satisfies % ---+ "7, uniformly, as c ~ O. 

See Figure  1 for an i l lus t ra t ion of how k should behave  a round  '7, as 

changes sign. 
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78 ARNALDO SIMAL DO NASC1MENTO 

7 c f~ \ l/~(Sa,t) 
~: ~r~Ym~t~~ ic Puhrva: e ~ _  ~ ' ~ [ ~  

Pz 
~k P I ~  t k(P) :  c u r v a t u r e o f  7 

\ ~ k(~)< o 

Figure 1 

Remark  1.1. Note that /c(s ,  0) = u r n ,  but  7 is not a curve of local minima 

for /c(s, t). Instead 7 will be a curve of local minima for the function 

A(s, t) = (1 - t ~ ( s ) ) [ ~ ( s ,  t ) .  An example of such a function /c can be 

easily constructed. Take, for instance, 7 C ~t c R 2 with 7 = {X C f~ : 

I lxl[ = 1}. Then the function/c(s,  t) = 1 + t + 2 t 2, t E (-(~, ~), & small, 

s E [0, 27c), satisfies (H1) with urn = 1. 

Remark  1.2. When  ft = (a, b), then it has long been known that  the 

roles played by kl and k2 are interchangeable. Actually this can be 

accomplished by performing the following change of spatial variable, 

y = r ( x )  = d t .  

It is clear from Theorem 1.1 that  this feature is also carried on to the two- 

dimensional case. As it will be seen later on, this is possible by virtue 

of ~he special form of a limiting problem, in the sense of F-convergence, 

that  will be crucial to our analysis. 

Remark  1.3. It should also be emphazised that  since all works up to now 

deal only with the onedimensional case they provide no clue of the role 

played by the limiting (when e = 0) transition layer curve 7-  Regarding 
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this mat te r  it is required through (H1) that  as a point X moves along -y 

counterclockwise the directional derivative Vk(X)  �9 ~2(X) changes sign 

whenever the curvature of 7 does so while the concavity of k(E(s,  t)), 

seen as a function of t alone, is always positive and becomes greater as 

the absolute value of ~ does so. 

Remark  1.4. Suppose, for the sake of argument,  tha t  k2 -- 1 and that  

(P1)governs the diffusion of a substance in a medium ~ whose diffusivity 

function is given by kl(X) ,  X E ft. So in order to exist a stable sta- 

t ionary solut ion,  induced by k l ,  (H1) reflects the physically reasonable 

requirement that  kl should properly increase (decrease) across the tran- 

sition layer whenever the corresponding stat ionary solution decreases 

(increases) along the same direction. It also shows how this variation 

depends on the curvature of the limiting interface (e = 0) and actually 

it is necessary to offset the tendency of the diffusing substance to spread 

homogeneously in space and eventually setting down in a constant con- 

centrat ion over ft. 

Next we make precise what we mean by stability of a s tat ionary 

solution of (P1). For simplicity, let Y = HI(Ft) and denote by I1" II its 

usual norm. 

Definition 1.1. Let ,8 be a solution of (P2)in X. We say that  ~ is a 

stable stat ionary solution of (P1)if for any c > 0, there exists (5 > 0 such 

that  for all v0 E X, ]iv0- 511 < (5 then the solution v (X ,  t) of (P1)so that  

v(X,O) = vo exists for all t > 0 and satisfies IIv(., X) - 5(X)11 < c. 

If in addition to the property above it also holds that  lira v ( X ,  t) = 
t-+co 

~(X) in Y,  then ~ is said to be strongly stable. 

A few words about our approach: w h e n  looking for s tat ionary so- 

lutions of (P1)it suffices to look for minimisers of a certain family of 

functionals E~, defined in L 1 (ft), through a penalization. By taking the 

F-limit, as e --+ 0, we end up with a more tractable geometrical problem 

of minimising the F-limiting functional E0 in BV( f t ) .  It turns out that  

close, in the sense of the topology of LI(~Q), to any isolated Ll-local 

minimiser of E0 there corresponds a minimiser of Ee,  which by its tu rn  
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is a stable stat ionary solution of (P1). 
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2. P r e l i m i n a r i e s  o n  BV(f~) and r-convergence 

We need some definitions and notations about functions of bounded 

variation in R n. For further background the reader is referred to [Z], 

[EG] and [Giu], for instance. Let v E Ll(f~), with f~ a bounded Lipschitz 

domain in R n . 

Definition 2.1. v is a function of bounded variation in f~ if its partial 

derivatives in the sense of distributions are measures with finite total 

variation in g~. 

In the sense of distribution Dv is a vector valued Radon measure 

with finite total variation in f~ given by 

(f2) = sup f v(X) div G(X)dX. liDvll 
n) 

Ic, l_<l 

The  to ta l  var ia t ion  IIDvll is a measure itself. A Borel  set B C R~ has 

finite perimeter in the open set f~ if 

Perf,(B) = IIDX II( ) < oo, 

where We is the characteristic function of 19. 

If k E CI ( fLR +) and v E BV(f~), then the integral of k(X) with 

respect to the measure llDvll is defined as (see [Fe], for instance) 

fa  (x)dllDvll(X) = sup v(X)div  cr(X)dX. 
~cc~(a,a ~) 
i.(x)l_<k(x) 

If A c t2 has smooth boundary  OA then the divergence theorem implies 

k ( X ) d l i D X A I I ( X )  = (X)  

where ~ n - 1  stands for the (r~- 1)-dimensional Hausdorff measure. This 

provides a geometrical idea of the kind of integral we will be dealing 

with. 

Above references supply definitions of approximate continuity, ap- 

proximate differentiability, bounded essential variation, etc., which will 
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be used later  on. 

Def in i t ion  2.2. A family {Ee}~>0 of rea l -ex tended  funct ionals  defined in 

Ll(f~) is said to P-converge, as z --+ 0, to a funct ional  E 0 ,  at  v and we 

wri te  

( L l ( f ~ ) - ]  - lim Ee(v ) = E0(v ) F 
\ / e-~0 

if: 

- For each v E L I ( ~ )  and for any sequence  {ve} in Ll(f~) such tha t  

ve --+ v in Ll(f~), as e ~ 0, implies Eo(v ) <_ lira infEe(ve) 
e-~0 

- For each v E LI(~Q) there  is a sequence  {w~} in Ll(f~) such tha t  

we --+ v in Ll(f~), as e --+ 0, and Eo(v) >_ lira supEe(we)  
e ~ 0  

Def in i t ion  2.3. We shall call v0 E L 1 (f~) an L l - loca l  minimiser  of E 0 if 

there  is # > 0 such tha t  

Eo(vo) <_ Eo(v) whenever  0 < IIV - -  V0llLI(f~) < p .  

Moreover  if EO(VO) < Eo(v) for 0 < fly - vollL~(f~) < # ,  then  v0 is called 

an isolated L l - loca l  minimiser  of E0 .  

The  following theo rem is due  in its abs t r ac t  form to De Giorgi [Clio] 

and in its var iat ional  form can be  found in [KS]. 

T h e o r e m  2.1. Suppose that a sequence of real-extended functionals { E~ }, 

F-converges to a real-extended functional E 0 and also that the following 
hypotheses are satisfied: 

2.1.i) Any sequence {vc}e>0 such that Ee(ve) <_ C < oc for all e > 0, is 
compact in Ll( f t ) .  

2.1.ii) There exists an isolated L l-local minimiser vo of E 0 

Then there exists an co > 0 and a family {ve}0<e_<co such that: 
- v~ is an Ll-local minimiser of Ee. 

- l ive  - v 0 1 1 L l ( a )  0 ,  a 8  c 0 .  

Forseeing a fu ture  appl ica t ion  to our case, we define a family of 

funct ionals  E~ : Ll(t2) --+ ]R U {ac} by: 

E e ( v ) :  { foo~{2kl(X) otherwiseif v E H l ( f ~ )  
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where W satisfies any growth condition that makes Ee well defined. We 

will come to this point later in the beginning of Section 3. There this 

condition will be satisfied by virtue of (f0). 

The following theorem can be found in IS]. The presence of the func- 

tion kl (X) adds no additional difficulties to the proof. See also [OS]. 

Theorem 2.2. Suppose that in the above-defined family of functionals 

Ee , the potential function W(v) satisfies: 

2.2.i)  W E C 2, W > 0. 

2.2.ii) W has exactly two roots c~ and/3, with a </3. 

2.2.ii i)  W'(~)  = W'(/3) = O, W"(~) > O, W'(/3) > O. 

Then P (LI(~)-'~ - lim Ee(v) = NO(V) where 
k / ~--+ 0 

co f~ (kl(x) ~2(x)) 1/2 d I[DX<~=9} II, 
Zo(v)= v(X)~{c~,/~} a.e. in~,O<]{X:v(X)=fl}l<]~[ 

if v ~ Bv(~), 

otherwise 

w h e r e  

Co = s  W1/2(s)ds. 

In order to apply Theorem 2.1 we have to exibit an isolated Ll-local 

minimizer of E0. This is the core of our analysis and the object of our 

next theorem. 

Theorem 2.3. Suppose that hypotheses i . l . i )  - i . l . iv) and (HI) of 

Theorem 1.1 hold. Then the function 

vo(X) = fl x ~  o + ~ x ~  

is an isolated Ll-local minimiser of Eo, given above. 

The following lemmas whose proofs are straightfoward will be needed 

in the proof of Theorem 2.3. 

Lemma 2.1. Let A(s, t) = k(s, t)JE(s, t), (t, s) E Q~, where k is as in 

(1.1.iv) and Jr(s , t )  = (1- t~(s ) )  the Jaeobian ore  as in (1.1.iv). Then 
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it holds that A(s, t) > A(s, 0) = u,~, for any (t, s) E Q~, t r o. Moreover 

i f6  small enough, Jr,(s,t) > 0 in Q~. 

L e m m a  2.2. Let % E and ~ be as in Theorem 2.3 and ME(s, t )  stand 

for the Jaeobian matrix orE .  I f  w E C I ( N ~ , ~ )  and ~ ( s , t )  = w ( E ( s , Q )  

then 

3/[El(s't)Vs't(v = Oss ( 1 - t e e ( s ) )  2 +  Or- 

where (1 - the(s)) = JE(s, t) > 0 in Q~. 

Proof  o f  Theorem 2.3: It  suffices to prove tha t  if 0 < II v -  v011L~ (N~) < ~ ,  

for su i tab le  # ,  then  Eo(vo) < Eo(v), t ha t  is, 

/N~ k(X)dllDvll(X) > J;6 k(X)dllDvoll(X) , 

where  the  coarea  formula  was used  to ob ta in  the  above  expression.  

In order  to c o m p u t e  Eo(vo), set 

z~ : {x e X~: vo(X) > ~} 

and note  tha t  0 { X  : vo(X) > c~} • Ne = ~y 

formula  yields: 

k(X)dlIDvoll(X) = 
0(3 

is C 2. Hence  the  coarea  

Let " ~ " denote, 

(/N~nOZ~ k ( X ) d ~ l ( X ) ) d ~  

= (/3 - a) f k (X)d~(x )  
r 

= (/3 - a)  f A(s, t)dT@(s, t) 
J{ (s,O),O_<s<L} 

= (8 - c~)u,~L = Eo(vo). 

as before,  a funct ion  in the  new coord ina tes  (s, t). 

Since v E BV(Na)  it follows tha t  ~ E BV(Q6). For a fixed t E ( -5 ,  (5) 

define 

h = { ( s , t ) ,  0 < s < L } .  

Let L 1 s t and  for the  one d imensional  Lebesgue  measure .  

Hence  the  t race  of ~(-, t) is well defined on gt,  for a.e. t E ( -5 ,  6), see 

[Z], for instance.  In wha t  follows the  equal i ty  be tween  two funct ions,  
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along each gt, should be unders tood  in the sense of equality between 

the traces of the two functions along gt �9 

Suppose now that:  

i-) 5 = 5o along g~ U g_~, for some t E ((5/2, 6). 

Consider a sequence {vj}j~=l in C ~ ( N e ) N B V ( N e )  such tha t  vj --+ v 

in LI(N~) and 

/ ;  k(X)dllDvll(X) = lim f k(X)lVvjldX. 
j .] N 5 

For the case k -= const, this can be found in [Giu], for instance, and in 

IN2] for the  case above. See [Fei, for a more general case. Next take a 
V oo oo subsequence of { )-}3=1, still denoted by {v j } j= l ,  such tha t  vj ---+ v, a. 

e. inN~.  

Using Lemmas  2.1 and 2.2 and Fatou's  l emma we obtain: 

/N k(X)dlIDvlI(X) .lira fN5 k(X)lVvjldX 

= ffv(s,t)a (s,t) it/f{l(s,t)V(sr did s 

Q5 

~ ' o L / 5 / 2  O v j  
> lira inf A(s. t) dt ds 
-- j+oo .J-5/2 ' 01; 

- 3 - ~ o ~  J o  J - 5 / 2  Ot d tds  

_> Um .lirn inf f L  ~-~oo J0 essv-5/25/2 [Sj(s,.)] ds 

f L  , ~5/2 
>_ u,~JO essv_u  2 [5(s, .)] ds 

> u.~(/3 - c~)L = Eo(vo). 
. 5/2 

Here e s sv_u  2 [5(s, .)] s tands for the total  essential variation of 5(s,-) 
5/2 on ( - 5 / 2 ,  (5/2) and from the theory of B V  functions e s s v s / 2  [5(s,-)] is 

Lebesgue integrable on [0, L] for a.e. t E ( - (5/2 ,  b'/2) and 

�9 o . 5/2 ~, 5/2 
.lim mtessv_5/2 [vj(s, .)] > essv_6/2 Iv(s, .)] 

]---+oc 

fora .e ,  s ~ [ 0 ,  L]. 
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We claim that Eo(v ) > Eo(vo) for if it were not the case then the 

above chain of inequalities along with the eoarea formula would yield: 

(/3 - ~)~,,,~L =/N~ k(X)dllDvll(X) 
u 

) = k(X)dllDv]l(X) de 
, ~ nO{v>~} 

) = A(s,t)dTY l(s,t) d E 
co 5n0"{5>~} 

= (/~ - ~) f A(s, t )d~l ( s ,  1) JQ 5nO*{v=~}nO*{v=a} 
where the change of variables E was used. Note also tha t  since O{v > ~} 
has locally finite per imeter  in N~, then  

IIO{v > ~}11 -- ~1 L O*{v > ~},  

where O*E stands for the reduced boundary of E (see [EG] for instance). 

Setting for convenience S = O*{v -- ~}  r] a*{v : / 9 }  it follows that 

Is t) = (2.2) t)dT-{l(s, A(s, / /mE. 
nQ~ 

Hypothesis  i-) above means tha t  

1 
/9 = ~(~, ~) = ~ (ffs(s,Z) + ;~(~, ~)) 

~ L a . e .  along g[ , where #~ and/k~ are the upper  and lower approximate  

limits of 9. See [Z], p.258, for instance. 

But ~ takes on only the values (~ and/3 on Q~ and therefore 

/3=#5 =As, ~I_ a.e. along g~. 

Hence, ~ = #~ - A 5 , 7-{1-a.e. along g~, i.e., ~ is approximate  contin- 

uous 7-{1-a.e. along ~ and as such there follows the  existence of a set 

B c Q~, IBI > 0, such tha t  g~ c B and 5(s, t) = /9  for any (s, t) E B. 

The  very same argument  applied to g ~ ,  implies the existence of a 

set A, IAI > 0, such tha t  g_~ c A and 5(s, l) = c~ for any (s, t) C A. 
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Thus it follows rather  easily from previous considerations that  there 

are points P1 = (0, tl),  P2 = (L, t2) where - t  <_ t l  G t2 _< t ,  such that  

{P1, P2} C Cgc26S, where Cgc2~S stands for the closure of S in Q~. 

But S has locally finite perimeter in Q~ and therefore S is l-rectific- 

able, i.e., 

saUs~, 
i=0 

w h e r e  7-{1 (S0) = 0 and each Si, i = 1, 2 , . . .  is an 1-dimensional embedded 

C 1 submanifold of R 2. See [Z], for instance. This along with the fact 

that  Pi E CgQ~S, i = 1, 2, implies 

s dT-tl(s't) >- L. (2.3) 
nQ& 

Recall that  L is the total length of ~y, the asymptotic  interface curve. 

Inequality (2.2) along with equality (2.3) and Lemma 2.1 implies that  

S = {(s,0), 0 < s < L}, i.e., ~ = v0 a.e. in Q~. 

This is a contradiction for we required that  

-  011Ll(q ) > 0 

and our claim follows. Summing up, in case hypothesis i-) holds, we 

have E0(v ) > EO(VO) for 

0 < IIv - v011Ll(Ne) < 

If i-) does not hold then one of the following cases would occur: 

ii-) 5 is not constant 7-tl-a.e. along g~, for a.e. t E ((5/2, 5). 

iii-) 5 is not constant 7-tl-a.e. along g_~, for a.e. t C (5/2, 5). 

iv-) 5 ~ a 7-Ll-a.e along g~ and ~ ~- fl, 7-tl-a. e. along g-b  for a. e. 

Define A C (0, 5) by 

A =  t e (0,5) : {l~-5ol(s,t)J~(s,t)+l~-5ol(s,-t)J~(s,-t)}ds> 

with # and 5 given above. Therefore ILxl < 5/4. 
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If iv-) holds then  by choosing # < ~SL we obtain: 

~0 L 4~t {I ~ - % l ( < t ) & ( < t ) + l  ~ 5 0 1 ( s , - t ) J r ( ~ , - t ) } d s = 2 L ( ~ - ~ )  > T ' 

tha t  is, t ~ A. Hence for a.e. t ~ ((5/2,(~)\A, either ii-) or iii-) 

holds. Fu thermore  if k,~ = minx~ ~ k(X) then  with ~j the approximant  

functions given above: 

0s + ~(s , -~)  Os ] ds >_ 

_> {ess ,0 + ess ,0 

For a.e. t E ((5/2, 5) \A it follows from the fact tha t  either ii-) 

iii-) holds tha t  

Hm ~fVo  L [~o(,~)1 -> ess Vo L [~(.,~)] _> (~ - ~) j ---+ c<) 

with a similar inequality if t is replaced by - t .  

In order to obtain an es t imate  in Ne\Ne/2, 
(5/2, 6)\A and take limit as j --+ oo: 

{///0L[ .lim k(s, ~) 
3 --+oo /2 

or 

we integrate over 

O V j ( 8 ~ )  0@j(S~--~) I } Os + ~(s,  -~ )  0 s  ds d~ > 

> k~(~s/~)(;~ - ~) .  

Taking into account the definition of ~0 we have: 

[~(s,Z)  - ~ ( s , - t , ) l  -> ( / ~ -  cO - { [~o  - ~ l (s ,  Z) + I~o - Ol( s, - t ) }  . 

Since [(0,6/2)\A1 > (5/4 and ~ E BV(Q~) it follows tha t  there is 

E (0 ,5 /2) \A such tha t  (s,t) and ( s , - t )  are points  of approximate  

cont inui ty  of 9(s, t) for Ll-a.e.  s ~ [0, L]. Thus  'by using Lemmas  2.1, 
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2.2 and Fatou's Lemma we obtain the following estimate on NU2 : 

L k(X)<lD,o l l (X)  = lira k(s,  t) I M E  I (s, t )Vs  t vJl JE (s, t) dt ds 
k-.ec J - g /2  5/2 

> lira inf k ( s , t )  J z ( s , t ) d t d s  

- k - ~ o ~  a - U 2  O t  dt ds 

fo L 612 _> um lim inf essV 5/2 (~j(s,t)) ds 
k--+ec 

L 
L ~/2 

_> u,~ ess ~e /2  (~(s, t)) ds 

"f0  L 
> .~ I~(s,7) -~(s,-7)l ds 

J0 
[ 4 ~  ] 

where 

Jm(-d ,  ~) = min_5<t<6 {min0<s<L JE(s, t ) ,  min0<s< g JE(s, --t)}. 

Summing up the previous inequalities: 

Eo(v) = [ k(X)dllD~ll(X) -- lira f k ( X ) i V v j l d X  
JN 6 3-+00 JN6 

i 

D6(s,t) t J~(s,t)&~t 
j ----+ O0 

j--+oo 
Qa(s,t) 

~ '  L L {  0~j(s,') O~j(s, 7) } 
> lira inf h(s,t) Os + k(s.-t) dsdt 
- j ~ o o  1 2 .  ' Os 

f L  /6 /2  O~j(s,t) + lim inf k(s, t) Jz (s, t) dt as 
j---*oc JO ~ 6 / 2  

I > (13-~ 6Jm(-6,6) > (t3-~ " 
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as long as we take 

# < min { k~(/3 - c~) 62 j~(-6, 6) ( /3 -c~)6L } 
16 Pm ' 2 ' 

The  conclusion can now" be established by extending vo to be con- 

s tant  on each connected component  of ~2\7 and observing tha t  

HDvol l (  a \ 7  ) = o. 

3 .  E x i s t e n c e  a n d  S t a b i l i t y  

With  the reaction te rm f(v) in (P1), satisfying (fl)  and (f2), given in 

the Int roduct ion,  we define the following Cl - func t ion  

{ f'(o~)(v-o~), for - c c < _ v <  

.[~(v) = f(v), for c~ < v < /3  

f ' ( / 3 ) (v - /3 ) ,  for / 3 < v < o c  

and the corresponding functional  

Ee,c(v) { ocL{eki(X)lVvl2+a, lkz(XD[F(aD-Fc(vD]}dX' otherwise if v E H I ( a )  

J0 where F~(v) f~. Note tha t  by vir tue of (f0), E~,~ is well defined. 

See [Fi2], for instance. Clearly the potent ial  function 

Gc(X, v)  = k 2 ( X ) I F ( c 0  - 

satisfies G~(X, c~) = Gc(X, /3) = O, G'~ E C2(ft x IR, R +) i.e., Gc(X, v) > 
0 for any X Ef t  and v E R,  v r a and v r  

This is crucial to our analysis which involves results about  F- 

convergence and explain why we have to work with f~ instead of the  

original function f .  

Throughou t  this paper  we set for simplicity, 

go(v) = a 2 div [kl(X) Vv] . 

Any local minimiser  v~ of Ee,~, v~ C Hi(t2), is a weak solution of the  

following problem: 

s + k2(X) f~ (v) - 0, X E f~ 
(P2,c) 

V v .  ~ l (X)  = o, X c 0f~ 
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Applying the results of Section 2 to the above defined functionals 

Ee,~ we conclude that  

(LI(ft)  - )  - lim Ee,c(v) = E o ( v ) ,  F 
e---~0 

where 

Co f~ k(X)dllDX<~=~>ll , if v E B V ( a ) ,  v ( X )  c {c~,8} 

E0(v) = ~e. in a ,  0 < I { x :  v ( x )  = 8}1 <1 ~1 
oo, otherwise 

// and Co = [F(c~) - F~(t)] t/2 dt .  

Applying Theorem 2.3 to E0 above we obtain an isolated Ll-local 

minimiser v0 of E0.  

Lemma 3.1. With the above notation it holds that: 

3.1.i) There is a family {ve}0<e_<e0 of Ll-loeal minimisers  of Ee,c such 

that ve E C2'~(~), 0 < o: < 1, ve is a solution of (P2,c). Also 

l ive  - -  V 0 1 1 L I ( a  ) ----+ 0, as 5 --~ O. 

3.1.ii) For any X E f~, c~ < re (X)  < 8 .  

3.1!iii) With f~i and f~o given in the Introdution, it holds that for  any 

compact set K C f t i (K  C fro), ve ~ 8 (re ~ c~), uniformly in K ,  as 

e--+O. 

Proof: 3.1.i) The existence of the minimisers ve, as described is a direct 

application of Theorem 2.1. As for condition (2.1.i) of that  theorem 

it has been proved in [FT], [S] and [M]. By a s tandard argument,  ve 

is a weak solution of s + k 2 ( X ) f c  (v) 0 in Hl(f t ) .  A boots t rap  

argument yields v~ C C2'~(ft), 0 < c~ < 1. Then as usual we conclude 

that  ve is a solution of (P2,c), for 0 < e _< eo. 

3.1.ii) This is a direct consequence of the maximum principle. Indeed, let 

vM = maxxe ~ v~(X) , ve(XM) = vM and suppose that  VM >_ 8 .  Hence 

fc(vm) <_ O. Note that  since live - v 0 l l L ~ ( a )  -~ 0,  a s  e -~ 0, if eo is small 
t V enough then sup f f ( e )  = K > 0 and fc(t) + K t  is monotone increasing 

x c f ~  
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in the image of v~(X), X E ~ .  So (s - k2K) v~ = - k 2  [fc(v~) + Kv~] 

and since s = 0 <_ -k2(X)fc(vM) we obtain 

(/2e - k2K) vM <_ - k 2 ( X )  [fc(vM) + KvM] . 

Subtract ing the two inequalities, 

[ /2~-/~2(X)K](cJ)_>0 on f~, where c v = ( v ~ - v M ) _ < 0 .  

Suppose tha t  there is P E f~ such that  a~(P) 0. Since clearly a~ ~ 0, 

the maximum principle implies that  P E 0f~ and there it holds tha t  
O~(P)  0~(P)  

> 0. Since - 0  on 0t2 we conclude that  cJ < 0 o n t ~ ,  
0~I 0~1 

i.e., v~(X) < vM in f~, which is a contradiction. Therefore v~(X) </3  in 

~ .  Similarly it can be proved tha t  ve(X) > a in ~ .  

3.1.iii) This is a consequence of a result of Caffarelli and Cordoba [CC] 

and (3.1.ii), for it can be checked tha t  the potential function Gc(X, v) 

k2(X) [F(a) - F~(v)], by virtue of hypotheses ( f l )  and (f2), satisfy the 

requirements in [CC]. These, for the reader's convenience, are presented 

below, where for simplicity in notat ion we write G instead of G~ and 

take 0 = 0, c~ = - 1 , / 3  = -1 .  The requirements are: 

O _ < G < I .  

G ( X ,  - i )  = O ( x ,  ~) = o, V X  c f~. 

inf G(X, t )  >_ ~y(/~), where 7(A) is a decreasing, strictly positive 
Itl<A 
xEf~ 
function in the interval [0, 1). 

There exists 6, 0 < ~ < 2 and A, 0 < A < 1, such that:  

a-) G(X, >_ C(1 if 1 > > 
b-) In the case0  < 6_< 2, Gv(X,v)  is continuous o n t 2 x  ( -1 ,  1) and 

satisfies the est imate 

G . ( X ,  - 1  + t) > C t  ~-1 

G~(X ,  l - t) > C t ~ ~ 

if t < A .  

c-) In the case 6 = 2, Gv(X,t)  

decreasing near 1). 

is increasing f o r t  near -1 (respect. 
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Under these conditions, the uniform convergence of the level sets 

of the minimisers v, to the limiting curve 7,  is proved. Hence (3.1.iii) 

follows. [] 

For future reference we define: 

s + k2(X) f (v )  = 0 , X E f~ 
(P2) 

V v . ~ I ( X )  = 0 , X  E O~ 

and also 

Ee(V) = { OO ~,{2  kl(X)IVvl2-~-s (Y(ct) F(v))}dX, otherwiseif v c  Hl(ft) 

It is clear from Lemma 3.1 and the definition of fc that  the distinguished 

solution ve is a weak solution of (P2)and hence a critical point of Ee.  

It turns out however that  ve is actually a local minimiser of Ec above. 

The following theorem follows ideas set forth in [Fill about the use of 

variational techniques for some t runcated  functions. 

T h e o r e m  3.1. With the above notation it holds that the local minimiser 

ve of E~,c is also a local minirniser of Ee.  

Proof .  For simplicity in the computat ions we rescale the functional. 

Define E~(v) = eEl(v) and note tha t  v~ is a minimiser of Ec if and only 

if ve is a minimiser of Ec.  For simplicity in notat ion we drop the "tilde" 

and therefore keep the same notation. 

By hypothesis there is #0 > 0 such that  Ee,c(v) >_ Ee,c(v~) for all 

v C Hl(f~) such tha t  Htv - v~]llHl(f2) _< #0, where for convenience we 

shall use the norm 

IIIvll 2 ]Hi(a) = 2 (s IVvl 2 + v2)dX, 

which is equivalent to the usual one in Hl(t2).  Note that  by (3.1.i) and 

(3.1.ii) of Lemma 3.1, each v~, 0 < e _< r is not only a C2'~-solution of 

(P2,r but of (P2) as well. Define 

D,o(Vz ) = {v c H i ( a ) :  l i l y -  velIIHl(a) <_/to}- 

Then it suffices to show that  Ee(v~) _< Ee(v) for all v E D,o(ve).  
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If this were not the case then  since E~ is weakly lower semicontinuous 

and Duo is weakly compact  in the H l(ft) topology we would infer the 

existence of ~c E Dft, for some/~, 0 < / z  <_ #0 such tha t  

Ee(ve) - inf {Ee(v),  v E Dft(ve)} < Ee(ve).  

2 - #) .  Then  5e We define A: Hl(f t )  ~ II{ by A(v) = (lily - v~lllHl(f~) 

minimizes Ee on 

M - {v c Dft(v~) : a(v) = 0}. 

Morever M is a Cl -submani fo ld  of codimension 1 and since Ee is C 1 it 

follows tha t  there is a Lagrange multiplier  Aft < 0 (see [Fi2]) such tha t  

(E'~(5~), ()s*,sx = Aft(A'(Ae), (),  V( E H1(9)  

where H* stands for the  dual of H l(f~). 

Keeping in mind  tha t  ve satisfies (P2) we obtain: 

: AftfQ [-s (~lVVe) + ue](dX, V ( C  H 1. 

This means tha t  9E satisfies in the Hi-sense:  

- -s2(Aft-  1)V. (klVvc) + Atzve = - k 2 ( X ) f ( v e )  + Atz[k2(X)f(ve ) + ve]. 

By virtue of (f0), f(vc) and f(v~) are in L2(gt) and since Au _< 0 

(essencial here) a s tandard  regulari ty a rgument  yields vc E H2(~2) and 
0 ~  

as such the  directional derivative ~ n l  is defined a.e. on 09  since 09  is 

C 3 . 

in tegra t ing  by parts,  

r 1) fort (klVge.A1ds+/af~ [-e2('kt~ 1 ) V ' ( k i V g & ) + A l f f v z + I ~ 2 f ( g v e ) ] ( d X =  

As usual now we take ( E H 1(9) to conclude tha t  5~ satisfies 

- e 2 ( A .  - 1 ) v .  ( h v e ~ )  + ~2f (e~)  - - e 2 A ~ v  - (k~vv~)  + a~(v~ - e~) 
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and subs t i tu t e  back to obta in  Vv6 �9 n l  = 0 on Of~. 

Since ve satisfies (P2), after  some c o m p u t a t i o n  we fur ther  obtain:  

c2(AU -- I)V" [klV(va - re)] - lu(ga - re) = k2(X)[f(vs) - f(v~)] 

V ( ~  - v~) - %  = 0 on 0 0  

By vi r tue  of (f0) the  Nemitski  opera tor  v ~ f (v)  from L 2 to L 2 

is cont inuous and  then  we evoke Schauder  es t imates  to conclude t h a t  

II ~e - ve ]]H2(f~) can be made  as small  as desired by making  # smaller,  if 

necessary. Bu t  ft C R 2 and  then  the  Sobolev inclusion W22(Ft) ~ C(ft) 

allows us to conclude t h a t  a < O~(X) < /3, VX C 9, if # is t aken  

sufficiently small. 

This  implies t h a t  E<c(Se) = E~(5~). 

Fina l ly  from our hypothes is  and  the  fact t h a t  c~ < ve < / 3 ,  we ob ta in  

< 

where I Il~e - v~lllH,(a) -< #0 ,  which is against  our hypothesis .  [] 

Le rnma  3.2. Let {ve}0<~_<e0 be the family of minimisers of Ee , provided 

by Theorem 3.1. Then: 

3.2.i) ve is a classical solution of (P2). 

3.2.ii) If {An}n=1&... is the sequence of eigenvalues of the problem: 

12~(W//) + k2(X) f ' (ve )r  = A~ , X E D 
( L e )  

V J . ~ l ( X )  = 0 , X  E 0 n  . 

Then A,~ <_ O, n = 1, 2 , . . .  and t l  is a simple eigenvalue of the operator 

s + k2(X)f ' (ve)  . 

Proof :  3.2.i) I t  follows from the  fact  t ha t  ve is a Ll - loca l  minimiser  of 

E~ t h a t  v~ is a weak solution of (P2)and thus  a classical solut ion since 

E 0 < < 1. 

3.2.ii) I t  follows from the  fact t h a t  
ii 

< E  e(v~)~b,~b> _>0,  for all ~ b E H I ( 9 )  

and  from the  var ia t ional  charac ter iza t ion  of the  eigenvalues of (LP) t ha t  

k~ _< 0, n = 1, 2, . . . .  As for the  second s t a t emen t  it is a well known 
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result that  follows from an application of the Kre in-Rutman theorem. 
[] 

We should not expect  to have kl  [he + k2(X)f'(ve)] < 0 unless some 

additional symmet ry  hypothesis either on the function f or on the do- 

main f~ are required. 

However even in the case in which /~1 = 0, a fairly complete picture 

of the stabil i ty of ve can be given, as the proof of the next lemma shows. 

Lemma 3.3. Let {v~}0<~<~0 be the family of stationary solution of 
(P1)provided by Theorem 3.1. Then 

3.3.i) I f  kl < O, ve is strongly stable in H l(ft). 

3.3.ii) If  k l  = O, ve is stable in H l(f~). 

Proof .  While (3.3.i) is well k n o w n ,  (3.3.ii) is just  an application of 

Theorem 6.2.1. in [H] along with the existence of a Lyapunov function. 

Although in [HI the proof of this theorem is rendered for sectorial oper- 

ators in the fractional power space it also holds for our case. Actually 

(P l )wr i t t en  in an abstract  form, defines a smooth dynamical  system in 

Specifically if kl = 0 then by Lemma 3.2 it is a simple eigenvalue. 

Thus there is a local one-dimensional critical manifold Wc(v~), tangent  

to {~bl}, ~bl : principal eigenfunction corresponding to kl  = 0 of (LP), 

such that  if v~ is stable in W~(v~) then it is also stable in HI(FI). 

As for the (local) stabili ty of v~ in W~(v~), it suffices to note tha t  if 

v(t, X) is a solution of (P1)with v(to, X)  = vo E Wc(ve) then 

E~(v(t ,X)) <_ v2t(t ,X)dX, for t_> to . [] 

Summing up, all of these results establish the proof of Theorem 1.1. 

Remark  3.1. Due to the local nature, in the spatial variable, of the 

argument used in the proof of Theorem 2.3, our result can be easily 

used to treat  some cases in which "y is a simple but  not closed curve. 

For instance, let ~y(s), 0 _< s _< L, be a simple curve satisfying "y(0) = 

P1 E Oft, 7(L) = P2 E 0f~, with 0f~ locally concave at P1 and P2 and 
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4(0) (~/(L)) normal to 0~  at PI(P2). In particular 0~2 can be a segment 

of line in a neighbourhood of P1 and\or PS. 
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