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Abstract. Using among other tools an approach based on the variational concept of
I’-convergence, we manage to prove existence as well as stability and exhibit the geo-
metric structure of a family of stationary solutions of a semilinear diffusion equation.
The existence of these stable stationary solutions is solely due to suitable oscillations
of the functions characterizing the spatial inhomogeneities involved in the problem.
In particular,these oscillations depend on the signed curvature of a level curve of the
square root of the product of these functions.
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1. Introduction
This paper will focus on existence, stability and geometric structure of
some stationary solutions of the following problem:

% = 52 div [kl(X)VU] —I—kig(X)f(v), (t, X) € Rt x 0
v(0, X) = vo(X) € H'() (P1)

Vout, X)-A(X) =0 for (¢, X)eRT x o0

where X = (z1,29) € Q C R?; Q bounded open region with C3 bound-
ary; n1 : outward pointing unit normal vector to 91, £ : small positive
parameter; k) and kg are strictly positive functions in CZ(Q, RT) and f
is a real Cl-function which satisfies:
(fo) | f(v)|<a+b|v|°, for some constants a,b and. o, 1 < 0 < o0.
(f1) f has three consecutive zeros o, 0 and 8, ~c0 < a < 0 < 3 <
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76 ARNALDO SIMAL DO NASCIMENTO

+o0o with f'(a) < 0 and f/(5) f 0.

(f2) F(a)= F(8), where F(v) = / I

The question of how the diﬂ:usi\?ity function ki (terminology bor-
rowed from the reaction-diffusion context) can give rise to stable non-
constant stationary solutions of (P1), has been subject of research for
some time. All the works though are restricted to the onedimensional
spatial variable case. See [HR|, [FH] and [N1]. Herein we manage to
treat the two-dimensional spatial variable case using a technique known
as I-convergence. Actually the aim of this paper is two-fold: first it pro-
vides a procedure for obtaining existence as well as the geometric quali-
tative structure and stability of a family of stationary solutions of (Py).
Second it describes the mechanism of interaction between the spatial
inhomogeneities k1 and ko and the reaction term f which is ultimately
responsible for the existence and stability of the equilibrium solutions
obtained. When k;(X) = const., ko(X) = const. and  is convex then
it has long been known that (P1)possesses no nonconstant stable sta-
tionary solutions if ¢ is small enough. However when Q has “necks” or
exhibts a “dumbbell-shape”, such solutions do exist. See [M], [HV] and
[KS]. Herein the functions k1 and kg play the same role the geometry
of 0 does in the references above. In [N1] this question was addressed
for the case in which = Bjy(0) : the unit ball with center at the origin,
k1 and ko are radially symmetric functions. When kg = const. and ¢
small , a diffusivity function k(|| X ||;¢) was found so that (P)possesses
an uniformly asymptotically stable radially symmetric stationary solu-
tion which develops boundary or spike layer formation accordingly to
whether F(a) > F(8) or F(a) < F(8). Note that kq depended on ¢.
Herein due to the I'-convergence approach, once a diffusivity function
k1(X), X € Q, satisfies hypothesis (H1) below, the existence of a family
of stable stationary solution {v.} is guaranteed for all ¢, 0 < ¢ < ¢¢,
for some ¢g > 0.

Next we describe our results as a theorem.

Theorem 1.1. Let:
1.1.i) £(X) 2 (kl(X)kQ(X))1/2, k1 and ko as in (Py), vy, some value in
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the range of k and v(s), 0 < s < L, be an arc-length parametrized C?
simple closed curve such that

Y C k() = {X € Q1 k(X) = vm}.

1.1.ii) x(s), 0 < s < L, be the signed curvature of v

1.1.ii) ©Q = Q;UQ, U7y, where §; stands for the open region in Q enclosed
by v and Q, = 2\ (2 U7y)

1.1.iv) 7ia[v(s)], 0 < s < L, be the inward-pointing normal vector to ~y
and consider the following change of coordinates: ¥ : Qs — Ng, given

by

X = (z1,72) = 8(s,1) = 7(s) + thzly(s)]

0<s< L, =6 <t<d, where Ngs is a small tubular neighborhood of v,
Qs ={(s;t) ER2:0< s < L,—6 <t <6} with § small enough so that
Y is a diffeomorphism. Set k(s,t) = k(X(s,t)) and suppose that:

Ok(s,0)
ot
d%k(s, 0)
ot?

=VUnK(8), 0<s< L
(Hy)
> 21/m/<;2(5), 0<s< L

Then there is a family of stationary solutions {ve}o<e<e, 0f (P1)such
that:

1.1) v. s stable, for 0 <e < ¢
IL.2Q))a<v(X)< B, X €

1.3) For any compact set K C (K C Qq) it holds that ve — 3 (v, —
«), uniformly on K, as € — 0. In particular the level curve v, = {X €
Q:v(X) = 0} satisfies ve — v, uniformly, as e — 0.

See Figure 1 for an illustration of how k should behave around v, as
k changes sign.
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TCO

v : asymptotic phase
transition curve

Figure 1

Remark 1.1. Note that &(s,0) = vy, , but 7 is not a curve of local minima
for k(s,t). Instead v will be a curve of local minima for the function
A(s,t) = (1 — tr(s))k(s,t). An example of such a function % can be
easily constructed. Take, for instance, v C @ C R? with v = {XeQ:
||X|| = 1}. Then the function k(s,t) = 1+t + 22, t € (—6,6), §: small,
s € [0, 2m), satisfies (Hy) with v, = 1.

Remark 1.2. When Q = (a,b), then it has long been known that the
roles played by ki and ko are interchangeable. Actually this can be
accomplished by performing the following change of spatial variable,

z 1
y=7(z) = /0 <%> dt.

Tt is clear from Theorem 1.1 that this feature is also carried on to the two-
dimensional case. As it will be seen later on, this is possible by virtue
of the special form of a limiting problem, in the sense of I'-convergence,

that will be crucial to our analysis.

Remark 1.3. It should also be emphazised that since all works up to now
deal only with the onedimensional case they provide no clue of the role
played by the limiting (when € = 0) transition layer curve v. Regarding
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this matter it is required through (Hj) that as a point X moves along
counterclockwise the directional derivative VE(X) - nig(X) changes sign
whenever the curvature of « does so while the concavity of k(X(s,t)),
seen as a function of ¢ alone, is always positive and becomes greater as
the absolute value of k does so.

Remark 1.4. Suppose, for the sake of argument, that k9 = 1 and that
(P1)governs the diffusion of a substance in a medium Q whose diffusivity
function is given by k1(X), X € Q. So in order to exist a stable sta-
tionary solution , induced by k1, (Hy) reflects the physically reasonable
requirement that & should properly increase (decrease) across the tran-
sition layer whenever the corresponding stationary solution decreases
(increases) along the same direction. It also shows how this variation
depends on the curvature of the limiting interface (¢ = 0) and actually
it is necessary to offset the tendency of the diffusing substance to spread
homogeneously in space and eventually setting down in a constant con-
centration over Q.

Next we make precise what we mean by stability of a stationary
solution of (P1). For simplicity, let ¥ = H(Q) and denote by || - | its
usual normi.

Definition 1.1. Let ¥ be a solution of (Pg)in X. We say that v is a
stable stationary solution of (P1)if for any € > 0, there exists § > 0 such
that for all vg € X, |lvg— 0| < 6 then the solution v(X, ) of (P1)so that
v(X,0) = vg exists for all £ > 0 and satisfies ||v(-, X) —9(X)|| < €.

If in addition to the property above it also holds that tlggo v(X,t) =
9(X) in Y, then ¥ is said to be strongly stable.

A few words about our approach: when.looking for stationary so-
lutions of (Py)it suffices to look for minimisers of a certain family of
functionals E. , defined in Ll(Q), through a penalization. By taking the
I-limit, as € — 0, we end up with a more tractable geometrical problem
of minimising the I-limiting functional £y in BV(€2). It turns out that
close, in the sense of the topology of L}(Q), to any isolated L!-local
minimiser of Iy there corresponds a minimiser of E., which by its turn
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is a stable stationary solution of (P1).

2. Preliminaries on BV (2) and I'-convergence

We need some definitions and notations about functions of bounded
variation in R”. For further background the reader is referred to [Z],
[EG] and [Giu], for instance. Let v € L1(9), with Q a bounded Lipschitz

domain in R™.

Definition 2.1. v is a function of bounded variation in Q if its partial
derivatives in the sense of distributions are measures with finite total
variation in 2.
In the sense of distribution Dv is a vector valued Radon measure
with finite total variation in Q given by
|Dvl|(Q) =  sup / v(X)dive(X)dX .
seCh(Qrm) /0
o<1
The total variation ||Dv] is a measure itself. A Borel set B C R™ has

finite perimeter in the open set Q if
Perq(B) = | DXg|(©) < oo,

where Xpg is the characteristic function of B.
If k € CH(Q,RT) and v € BV(Q), then the integral of k(X) with
respect to the measure [|Dv|| is defined as (see [Fe|, for instance)
/Qk(X)OHDUH(X) = sup / v(X)dive(X)dX .
Q .

UEC(%(Q,]RH)
lo(X)|<k(X)

If A C © has smooth boundary 04 then the divergence theorem implies
| RCOADXAICO = [ w0
Q QnaA

where H" 1 stands for the (n — 1)-dimensional Hausdorff measure. This
provides a geometrical idea of the kind of integral we will be dealing
with.

Above references supply definitions of approximate continuity, ap-
proximate differentiability, bounded essential variation, etc., which will
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be used later on.

Definition 2.2. A family {£.},. 4 of real-extended functionals defined in
Ll(Q) is said to -converge, as £ — (, to a functional Eg, at v and we
write
r (Ll(sz)—) ~ lim Ex(v) = Eo(v)
if:
— For each v € LY(Q) and for any sequence {ve} in LY such that
ve — v in LY(Q), as € — 0, implies Eg(v) < hr% inf B (ug)
£—
— For each v € LY (Q) there is a sequence {ws} in Ll(Q) such that
w, — v in L}(Q), as € — 0, and Eg(v) > }11% sup Fe (we)

Definition 2.3. We shall call vg € L1(Q) an L'-local minimiser of Eq if
there is ¢ > 0 such that

Eo(vo) < Eo(v) whenever 0 < |jv—vollp10) < p-

Moreover if £g(vp) < Ep(v) for 0 < [lv —vgl[p1(q) < p, then vg is called
an isolated L!-local minimiser of Ej.

The following theorem is due in its abstract form to De Giorgi [Gio]
and in its variational form can be found in [KS].

Theorem 2.1. Suppose that a sequence of real-extended functionals { E.},
[-converges to a real-extended functional Fqy and also that the following
hypotheses are satisfied:

2.1.1) Any sequence {ve}eso such that E.(ve) < C < oo for alle > 0, is
compact in LY(Q).
2.1.ii) There exists an isolated L'-local minimiser vy of Ey .
Then there exists an €9 > 0 and a family {veo<ec<s, Such that:
- v is an LY-local minimiser of E. .
= |lve = voll 1) = 0, as €—0.
Forseeing a future application to our case, we define a family of
functionals . : L}(©) — R U {co} by:

[ 2, -1 ) 1
Ea(v):{_/glzkl(Xva +e k?2(X)W(U)}dX, if ve H (Q)

00, otherwise
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where W satisfies any growth condition that makes F. well defined. We
will come to this point later in the beginning of Section 3. There this
condition will be satisfied by virtue of (fy).

The following theorem can be found in [S]. The presence of the func-
tion k1(X) adds no additional difficulties to the proof. See also [OS].

Theorem 2.2. Suppose that in the above-defined family of functionals
E. |, the potential function W (v) satisfies:

2.24) We C2, W >o.
2.2.ii) W has ezactly two roots o and 3, with o < 3.
9.2.il) W'(a) = W'(8) =0, W"(a) >0, W(8) >0,

Then T (Ll(Q)‘) - lim F,(v) = Eo(v), where

Co Jo, (kn(X) ka(X)'? d || DXy | if ve BV(Q),
Eg(v) = ¢ v(X) € {a,8} ae inQ,0< [{X:v(X)=75}<|Q
0, otherwise

where

8

Co = / W2(5)ds .
[e3

In order to apply Theorem 2.1 we have to exibit an isolated L-local

minimizer of Fg. This is the core of our analysis and the object of our

next theorem.

Theorem 2.3. Suppose that hypotheses 1.1.1) - 1.1.1v) and (Hy) of
Theorem 1.1 hold. Then the function

vo(X) = [ Xq, + akg,

is an isolated LY -local minimiser of Eq, gwen above.
The following lemmas whose proofs are straightfoward will be needed
in the proof of Theorem 2.3.

Lemma 2.1. Let A(s,t) = k(s,t)Jx(s,t), (t,5) € Qs, where k is as in
(1.1.9v) and Jx(s,t) = (1 —tr(s)) the Jacobian of & as in (1.1.1v). Then
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it holds that A(s,t) > A(s,0) = vy, , for any (t,s) € Qs, t # 0. Moreover
if 6 small enough, Jx(s,t) >0 in Qs .
Lemma 2.2. Let v,% and & be as in Theorem 2.3 and Mx(s,t) stand
for the Jacobian matriz of .. If w € Cl(N5,R) and W(s,t) = w(X(s,1))
then
1/2

ds ot
where (1 —tr(s)) = Jx(s,1) > 0 in Qs .

Mil(s,t)vs,ta)‘ - ‘(6—w>2(1 — tr(s)) 2+ (Q@—Y

Proof of Theorem 2.3: It suffices to prove that if 0 < ||”_”0||L1(N5) < p,
for suitable p, then Fy(vo) < £g(v), that is,

[ RCOIDYX) > [ k| Duo0),
Ng Ng

where the coarea formula was used to obtain the above expression.
In order to compute Fy(vg), set
Zg = {X € N5 : vg(X) >f}

and note that 9{X : vg(X) > a} N Ns = v is C?. Hence the coarea
formula yields:

o>

[ k)l Dugi0) / (/ fc(X)dH%X)) e
Ny —oo \JNgn8Z,

= (8- ) L k(X)dH (X)

_ _ 1
~ (8- a) /{ N GO AT
— (6 — a)vmL = Eglvn).

Let “ ~ " denote, as before, a function in the new coordinates (s, t).
Since v € BV (Nj) it follows that © € BV (Qs). For a fixed t € (-6, 6)
define

b ={(s,1),0<s<L}.

Let L' stand for the one dimensional Lebesgue measure.

Hence the trace of 9(-,¢) is well defined on ¢, , for a.e. t € (-6, 6), see
[Z], for instance. In what follows the equality between two functions,
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along each ¥, should be understood in the sense of equality between
the traces of the two functions along ¢; .

Suppose now that:
i-) ¥ =g along ;U {_;, for some ¢ € (§/2,6).

Consider a sequence {v;}32 in C*°(Ns)N BV (Ns) such that v; — v
in L'(Njs) and

/ k(X)dHDUH(X):,lim/ k(X)|V,|dX .
N5 J—00 N6

For the case k = const. this can be found in [Giu], for instance, and in
[N2] for the case above. See [Fe], for a more general case. Next take a
subsequence of {v;}32;, still denoted by {v;}%2,, such that v; — v, a.
e. in N5

Using Lemmas 2.1 and 2.2 and Fatou’s lemma we obtain:

/ k(X)dHDvH(X):,nm/ k(X)) |Vo;|dX
N(S J—00 N§

— lim //k (s,0)J5:(s, 1) 'Z\/[il(s,t)v(s7t>®j‘dtd§

J—0

5/2
> lim inf / / ‘ dtds
00 52 ot
§/2
> Uy, lim inf/ / 87}] 5:1) ‘dt ds
jo0 8/2

> Uy, lim inf/ essV_é?Z [0(s,-)] ds
0

J—r00

L
> Vm/o ess\'/%?? [0(s, )] ds
> vm(B — a)L = Ey(vg) -

Here essVéé?Q [0(s, )] stands for the total essential variation of ¥(s, -)

(—6/2, 6/2) and from the theory of BV functions essV g/2 [0(s,-)] is

Lebesgue integrable on [0, L] for a.e. t € (—6/2, 6/2) and

lim infessV é/2 [0;(s,)] > essvﬁg2 [(s, )]

J—oo

for a.e. s€[0,L].
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We claim that Eg(v) > Eg(vg) for if it were not the case then the
above chain of inequalities along with the coarea formula would yield:

(6 — 0)mL = /N k(X)d| Do (X)

&
_ / h ( / k(X)dille(X)) de
J—o0 Ngno{v>¢}
/°c (/ k:(X)d’Hl(X)> de (2.1)
—co \/Ngnd={v>¢}

:/m </ A(s,t)dHl(s,t)> dé
—o0 \JQgno{i>€)

A(s, t)dHl(s, t)

- [
Qsno* {v=0Ind* {v=a}

where the change of variables ¥ was used. Note also that since d{v > £}
has locally finite perimeter in Ng, then

lo{v > €}l = H' L 0" {v > €},

where 0" IV stands for the reduced boundary of E (see [EG] for instance).
Setting for convenience S = 0*{v = a} N d*{v = G} it follows that

/ As, )dH (s, ) = v L. (2.2)
SnQs

Hypothesis i-) above means that

a1 - -
/B = 'U(S-/ t) = 5 (,LL@(S?t) + )\{)(S,t))
H!-a.e. along 4; , where pz and A; are the upper and lower approximate
limits of ©. See [Z], p.258, for instance.
But © takes on only the values o and 3 on Qs and therefore

B=ps;=2X, H- ae. along /4;.

Hence, o = py = A, Hi-a.e. along 43, ie., ¥ is approximate contin-
uous H'-a.e. along ¢; and as such there follows the existence of a set
B C Qs, |B| > 0, such that 4 C B and 9(s,t) = 8 for any (s,t) € B.

The very same argument applied to £ ;, implies the existence of a
set A, |A| > 0, such that £ ; C A and 9(s, 1) = « for any (s,t) € A.
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Thus it follows rather easily from previous considerations that there
are points Py = (0,t1), P» = (L, 19) where —f < t; < 9 < f, such that
{P,P} C Clg,S, where C’EQés stands for the closure of S in Q5.

But S has locally finite perimeter in (05 and therefore S is 1-rectific-
able, i.e.,
S5 C U Si,
=0
where H1(Sg) = 0 and each S;, 7 = 1,2,. .. is an 1-dimensional embedded
C' submanifold of R2. See [Z], for instance. This along with the fact
that P; € C’EQ(SS’, i=1,2, implies

/ dH (s,8) > L. (2.3)
SnQs

Recall that L is the total length of =y, the asymptotic interface curve.
Inequality (2.2) along with equality (2.3) and Lemma 2.1 implies that
S={(s,0),0<s< L} ie, v=10p ae. in Qs.

This is a contradiction for we required that

10— Bollpr(q,) >0

and our claim follows. Summing up, in case hypothesis i-) holds, we
have Eg(v) > Eg(vg) for

0 < [lv—vollp1(y) < po-

If i-) does not hold then one of the following cases would occur:
ii-) ¥ is not constant H'-a.e. along 4, for a.e. € (6/2,6).
iii-) ¥ is not constant Hl-a.e. along £_;, for ae. te (6/2,9).
iv-) V=« H'-a.e along 4z and ¥ = B, H -a. e. along £ 3, for a. e.
te (5,6).
Define A C (0,6) by

. L N . . N 4
A = {t €(0,6): / {\f) — vol(s, t) (s, t) + |0 — f)o|(s,—t)Jg(s,—t)} ds > ?'LL}
0

with p and é given above. Therefore |A| < §/4.

Bol. Soc. Bras. Mat., Vol. 29, N. 1, 1998



STABLE EQUILIBRIA 87

If iv-) holds then by choosing p < §L we obtain:

L
L/{w—%m@h@@+w7%mﬁak@~MMﬁﬂuﬂ—®>%ﬁ
0

that is, £ € A. Hence for a.e. ¢ € (§/2,6)\A, either ii-) or iii-)
holds. Futhermore if £y, = min, & k(X) then with ¥; the approximant
817]- (S, *%)

>
Js }ds -

> ki, {ess Vi [0;(,D)] + ess Vi [95(, —i)]} :

functions given above:

Bﬁj(s, %)

0s

+ k(s,—)

- For a.e. ¢ € (6/2,6)\A it follows from the fact that either ii-) or
ili-) holds that

lim inf Vi [9;(-,1)] > ess Vi [0(-,1)] > (8 — o)
j—o0
with a similar inequality if £ is replaced by —¢.
In order to obtain an estimate in N5\N5/2 , we integrate over

(6/2,6)\A and take limit as j — oco:
QU_L(S’__UH } ds df >
0s

P {/5/2 / {

(%J s, 1)
Os

+ k(s, —1)

km(6/4)(0 —a) .
Taking into account the definition of ¥y we have:
(s, ) = 8(s, ~D)| = (8 — ) — {[0 — 8l(5,8) + |50 — B(s, =D} .

Since [(0,6/2)\A| > 6/4 and © € BV(Qs) it follows that there is
t € (0,6/2)\A such that (s,f) and (s,—%) are points of approximate
continuity of @(s,%) for Ll-a.e. s € [0, L]. Thus by using Lemmas 2.1,
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2.2 and Fatou’s Lemma we obtain the following estimate on N9 :

§/2
/ E(X)d||Dv]|(X) = Jim / / k(s,t) | Mg (s,t)Vs 75| Jx(s,t) dids
Ns/a 8/2
8/2 8%,
> lim mf / / A(st i— JIx(s,t)dtds
5/2 | Ot
8/2 .
> U lim inf / / 0% | 4 U g
k—oo Jq ~5/2 at

k—o0

L
> v lim _inf / ess V2T, (9(s,1)) ds
0
L
zum/ ess V7, (o(s,1)) ds
0
, L
> vm / [o(s,1) — v(s, —1)| ds
0

L
> m/ (8= a) = [15 = Bol(s,T) + 5 — 0l(s, D) | } ds
0

4 L vm ]

> I it L
8 Jm(—6,8) |

(5 —a)vm L —

where
i (—=6,6) = min_sci<s {ming<s<r, J5(s,1), mingcs<p Jni(s, —1)} .
Summing up the previous inequalities:
B = [ K0P = tim [ 0Vl
Ng 7= JNg

=lim inf / / k(s 1) |M§1(s, Vst 05(s, t)' Je{s, t)dsdt
J—00
Qs(s,t)

o9;\” 89, \"
—lim i i J(2Y%Y -2 oYj
=lim JI—I)IEO / /k(s,t) Is(s,t) (85) Je s, 0) + ( 8t) dsdt

Qs(s,t)
- - | 08;(s,— .
> lim _inf/ / { 81}7( )—O—k(s?—t) M'} ds di
j—00 5/2 Js Js
+lim inf // 9%;(5t) Js(s,t)dtds
J—oe 5/2 8t
4 U vm

(8= )vm L+ km (8 —a)(6/4) — ] > (f = c)vm L = Eo(vo)

5 Jm(—5,0)
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as long as we take

» mm{kmw— @) 6% Jun(=6,6) (8- ‘%L}.
16 vy, 2

The conclusion can now be established by extending vg to be con-
stant on each connected component of Q\y and observing that

[Duoll( 2\y ) =o.

3. Existence and Stability
With the reaction term f(v) in (Py), satisfying (f1) and (f2), given in
the Introduction, we define the following C''-function
flla)v—a), for —oco<v<a
felv)y =4 f(v), for a<v<p
f'(B)w—0), for f<v<oo

and the corresponding functional

0, otherwise

- (v)_{/p{akl(X)]Vv|2+e1k2(X) [F(a) ~ Fo(v)]}dX, if ve HY(Q)

v

where F,(v) = / fc. Note that by virtue of (fg), E: . is well defined.
0

See [Fi2], for instance. Clearly the potential function
Ge(X,v) = ka(X) [F(a) — Fe(v)]

satisfies Go(X, @) = Go(X,8) =0, Go € C?(AxR, RT) ie., Go(X,v) >
OQforany X e Qandv e R, v£aand v#£73.

This is crucial to our analysis which involves results about I'-
convergence and explain why we have to work with f. instead of the
original function f.

Throughout this paper we set for simplicity,
Le(v) =2 div [k1(X) Vo] .

Any local minimiser v, of E. ., v. € H 1(Q), is a weak solution of the
following problem:

Le(v) +ka(X) fe(v) =0, X €Q

p
Vo -y (X) = 0,X € 00 (P2c)
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Applying the results of Section 2 to the above defined functionals
E. . we conclude that

P(L'®)7) - i Beel(v) = Bo(w),

£E—
where
Co [ KX dIDXp—p]l, if v e BV(®), v(X) € {a.5)
Eo) =9 4ein 0, 0 < [{X :u(X) =8} <|9|
00, otherwise

¢
and CO:/ (F(a) — Fut) Y2 dt

Applying Theorem 2.3 to Ey above we obtain an isolated L'-local
minimiser vg of kg .

Lemma 3.1. With the above notation it holds that:

8.1.i) There is a family {ve}o<e<e, Of L'-local minimisers of Ee . such
that v € C%*(Q), 0 < a < 1, v, is a solution of (Poc). Also
||ve — UO”Ll(Q) — 0, ase—0.

3.1.ii) For any X € Q, a < v.(X) < .

3.Liii) With Q; and Q, given in the Introdution, it holds that for any
compact set K C (K C Qq), ve — B(v: — a), uniformly in K, as

£—0.

Proof: 3.1.i) The existence of the minimiselrsb6 , as described is a direct
application of Theorem 2.1. As for condition (2.1.i) of that theorem
it has been proved in [FT], [S] and [M]. By a standard argument, v,
is a weak solution of L.(v) + ko(X) fo (v) = 0 in HY(9). A bootstrap
argument yields v, € 0270‘((_2), 0 < a < 1. Then as usual we conclude
that v; is a solution of (Pg ), for 0 < e < &.

3.1.ii) This is a direct consequence of the maximum principle. Indeed, let
UM = maXy g ve(X), ve(Xnr) =vpy and suppose that vy > 3. Hence
Je(var) < 0. Note that since [ve —vgl| 1) — 0, as € — 0, if &g is small

enough then sup fi(ve) = K > 0 and f.(t) + Kt is monotone increasing
g e
xz€
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in the image of v.(X), X € Q. So (L: — koK) ve = —ka [fe(ve) + Kve]
and since Lovy = 0 < —ko(X) fe(vpr) we obtain

(Le — koK) vy < —ka(X) [felom) + Kup] -
Subtracting the two inequalities,
[Le —ky(X)K] (w) >0 on Q, where w=(.—vpy)<0.

Suppose that there is P € Q such that w(P) = 0. Since clearly w # 0,

the maximum principle implies that P € 9Q and there it holds that
Ow(P) . Ow(P)
———= > 0. Since

ony onq

i.e., v:(X) < vps in Q, which is a contradiction. Therefore v.(X) < §in
Q. Similarly it can be proved that v.(X) > o in Q.

=0 on 0Q we conclude that w < 0 on Q,

3.1.iii) This is a consequence of a result of Caffarelli and Cordoba [CC]
and (3.1.i1), for it can be checked that the potential function G (X, v) =
ko(X) [F(a) — Fe(v)], by virtue of hypotheses (f1) and (f2), satisfy the
requirements in [CC]. These, for the reader’s convenience, are presented
below, where for simplicity in notation we write GG instead of G, and
take 6 = 0, o = —1, # = —1. The requirements are:

-0<G <.

-GX,-1)=G(X,1)=0, VX €Q.

- inf G(X,t) > v(\), where y()\) is a decreasing, strictly positive

[E|<A
Xe

function in the interval [0, 1).
- There exists §, 0 <6 <2and A, 0< A <1, such that:
a) G(X,v)>CA—u)?, if 1>]v >
b-) In the case 0 < § < 2, G,(X,v) is continuous on © x (—1,1) and
satisfies the estimate

Gu(X,—1+1) > Ct5 !
Go(X,1—1) > —Ct°!

it ¢t <A,
¢-) In the case § = 2, G,(X,t) is increasing for ¢ near —1 (respect.
decreasing near 1).
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Under these conditions, the uniform convergence of the level sets
of the minimisers v, to the limiting curve -y, is proved. Hence (3.1.iii)
follows. a

For future reference we define:
Le(v)+ke(X)f(v)=0,X€Q

_ (P2)
Vo -n1(X)=0,X € 09

and also

Fe(v) = { /Q{g’“l(X)IWIQH‘lkz(X) (F(a) *F(v))}dX, if veH(Q)

0, otherwise

It is clear from Lemma 3.1 and the definition of f. that the distinguished
solution v, is a weak solution of (Ps)and hence a critical point of E. .
It turns out however that v, is actually a local minimiser of E. above.
The following theorem follows ideas set forth in [Fil] about the use of
variational techniques for some truncated functions.

Theorem 3.1. With the above notation it holds that the local minimiser
Ve of Ee o 15 also a local minimiser of B .

Proof. For simplicity in the computations we rescale the functional.
Define Eg(v) = ¢E,(v) and note that v, is a minimiser of E, if and only
if v, is a minimiser of E. . For simplicity in notation we drop the “tilde”
and therefore keep the same notation.

By hypothesis there is pg > 0 such that E. .(v) > E..(ve) for all
v € HY(Q) such that ||jv — Velllpi(q) < mo. where for convenience we
shall use the norm

o) = 5 | 20100 Vo + )X

which is equivalent to the usual one in F1(€). Note that by (3.1.i) and
(3.1.i1) of Lemma 3.1, each v, 0 < £ < £, is not only a C2%* golution of
(P2,c) but of (P2) as well. Define

Dyg(ve) = {v € HYQ) : Il = velll () < po} -

Then it suffices to show that F.(v.) < Eg(v) for all v € D, (v:).
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If this were not the case then since E. is weakly lower semicontinuous
and D, is weakly compact in the H 1((2) topology we would infer the
existence of ¥, € D,,, for some 1, 0 < g < pg such that

E.(v.) = inf {E.(v), v € Dy(ve)} < Ee(ve).

We define A : H(Q) — R by A(v) = (|||U - ’UEHﬁ{l(Q) — ,u,). Then o,
minimizes E. on

M ={v € Dy(v:) : A(v) =0} .

Morever M is a C1-submanifold of codimension 1 and since E. is C! it
follows that there is a Lagrange multiplier A\, < 0 (see [Fi2]) such that

(BL{T), C) o gt = AN (5), ), V¢ € HN(Q)

where H* stands for the dual of H* ().
Keeping in mind that v. satisfies (Py) we obtain:

[ [0 = D O85C + e+ ka(X0S(20)C] dX -

_ )\,_L/Q €2V - (Vo) + ve| CdX, Ve € HY.
This means that 7, satisfies in the H 1_sense:
2\~ DV - (k1Y) + A\ube = —ko(X) f(De) + Aulk2(X)f(v:) + vel.

By virtue of (fp), f(9:) and f(ve) are in L2(Q) and since Ay L0
(essencial here) a standard regularity argument yields ¢, € H 2(Q) and

v
— is defined a.e. on 99 since 99 is
Ny

as such the directional derivative
3.
integrating by parts,

2(Au—1) gklvagmdsju/ [—e*(A\u — DV - (k1VTe) + Aule + ko f ()] CdX =
o0 Q

-y /Q €2V - (k1 V02) + ] C dX, ¥ € HY (@),
As usual now we take ¢ € H&(Q) to conclude that ¥, satisfies

—2(My — DV - (k1VDe) + kaf(Te) = —°2,V - (k1Vve) + Au(ve — )
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and substitute back to obtain Vo, - i1 = 0 on 9.

Since v, satisfies (P), after some computation we further obtain:
e = DV - [k V(B — v2)] = Az — ve) = ka(X)[ () — f(ve)]
V(e — ve) - iy = 0 on 900

By virtue of (fy) the Nemitski operator v — f(v) from L? to L2
is continuous and then we evoke Schauder estimates to conclude that
|| Te — ve || m2(q) can be made as small as desired by making y smaller, if
necessary. But © C R? and then the Sobolev inclusion W22(Q) — C(©)
allows us to conclude that o < 0.(X) < 8, VX € Q, if p is taken
sufficiently small.

This implies that E, .(0.) = E.(0e).

Finally from our hypothesis and the fact that o < v. < 8, we obtain

Ea,c(@s) < Ea,c(va) )
where [|[0e — ve|||g1(q) < po, which is against our hypothesis. O
Lemma 3.2. Let {ve}o<c<e, be the family of minimisers of E. , provided
by Theorem 3.1. Then:
3.2.1) ve is a classical solution of (Pa).

8.2.i) If {\n}n=12,. is the sequence of eigenvalues of the problem:
Lo(th) + ka(X) F/ (0% = b, X €0
Vi - n(X)=0,X € 09 .

Then Ap, <0, n=1,2,... and A1 s a simple eigenvalue of the operator

Le + ko (X)f"(ve) -

Proof: 3.2.i) It follows from the fact that v. is a L'-local minimiser of

(LP)

E. that v, is a weak solution of (Pg)and thus a classical solution since
ve € C24M), 0 < < 1.

3.2.i1) It follows from the fact that
CE (v, > >0, forall o e HYQ)
and from the variational characterization of the eigenvalues of (LP) that

A <0, n=1,2,.... As for the second statement it is a well known
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result that follows from an application of the Krein-Rutman theorem.
]

We should not expect to have A1 [L. + ko(X) f'(ve)] < 0 unless some
additional symmetry hypothesis either on the function f or on the do-
main Q are required.

However even in the case in which A\; = 0, a fairly complete picture
of the stability of v, can be given, as the proof of the next lemma shows.

Lemma 3.3. Let {v:}o<e<s, be the family of stationary solution of
(Py )provided by Theorem 3.1. Then

3.3.1) If A1 <0, v is strongly stable in Hl(Q).

3.3.ii) If AL = 0, v, is stable in H'(Q).

Proof. While (3.3.1) is well known , (3.3.ii) is just an application of
Theorem 6.2.1. in [H] along with the existence of a Lyapunov function.
Although in [H] the proof of this theorem is rendered for sectorial oper-
ators in the fractional power space it also holds for our case. Actually
(P1)written in an abstract form, defines a smooth dynamical system in
HY ().

Specifically if A\; = 0 then by Lemma 3.2 it is a simple eigenvalue.
Thus there is a local one-dimensional critical manifold W, (v.), tangent
to {11}, ¥1 : principal eigenfunction corresponding to A; = 0 of (LP),
such that if v is stable in W,(v,) then it is also stable in H1(Q).

As for the (local) stability of v, in W,(ve), it suffices to note that if
v(t, X) is a solution of (Py)with v(tg, X) = vg € We(ve) then

d
EEE(U(t,X))g—/Qv%(t,X)dX, for ¢t>1g . O

Summing up, all of these results establish the proof of Theorem 1.1.

Remark 3.1. Due to the local nature, in the spatial variable, of the
argument used in the proof of Theorem 2.3, our result can be easily
used to treat some cases in which v is a simple but not closed curve.
For instance, let v(s), 0 < s < L, be a simple curve satisfying v(0) =
Py € 09, v(L) = Po € 09, with 9Q locally concave at P and P, and
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4(0) (4(L)) normal to 0Q at Py(F%). In particular 0Q can be a segment
of line in a neighbourhood of P; and\or Ps.
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