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Abstract. We show that the loss of hyperbolicity of an Anosov diffeomorphism of the
torus T2 can be produced by a cubic tangency at a heteroclinic point. Such a first
bifurcation is generic for 3-parameters families of diffeomorphisms. Our construction
may also be applied to any basic set A of a surface diffeomorphism. Moreover, if the
point ¢ of cubic tangency corresponds to a lateral point of A then the bifurcation is
generic for two parameters. In this case the point ¢ may be a homoclinic intersection.
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Introduction

One of the basic problems in bifurcation theory is to understand ex-

plicitly how structurally stable systems become unstable. So far the

examples for which such a loss of stability is understood fall into one of
the two categories:

(1) loss of hyperbolicity: one of the periodic points fails to be hyper-
bolic (or some new nonhyperbolic periodic orbit is created) by an
elementary bifurcation (saddle-node, flip or Hopf), and all other pe-
riodic orbits are hyperbolic and their invariant manifolds intersect
transversely,

(2) loss of transversality: all periodic orbits are hyperbolic and their in-
variant manifolds meet transversely except along one orbit. Then we

Received 3 June 1996.
LPartially supported by CNPq (Brazil) and CNRS (France).
2Supported by CNRS (France), Rectorat Université de Bourgogne (France) and CNPq

(Brazil).



100 CH. BONATTI, L]. DIAZ AND E VUILLEMIN

say that f exhibits a homoclinic or heteroclinic tangency. For surface

diffeomorphisms Palis and Takens conjectured that such (nontrans-

verse) intersection is generically quadratic and associated to a lateral

(see definition below) periodic point, see [PT].

Related to this conjecture, our aim in this paper is to understand
bifurcations of low codimension of Anosov diffecmorphisms of the two
dimensional torus T2, or more generally of hyperbolic sets of surface
diffeomorphisms.

Since Smale ([Sm]) it is known that there is a submanifold of codi-
mension one (in the space of diffeomorphisms) in the boundary of the
Anosov systems consisting of diffeomorphisms with a saddle-node. To
get such a submanifold one considers the splitting of a hyperbolic pe-
riodic point of an Anosov diffeomorphism into a saddle and a source
via a generic saddle-node bifurcation. Under suitable hypotheses, after
such a bifurcation one gets a hyperbolic diffeomorphism (so-called De-
rived from Anosov diffeomorphism, see [W]) with a source and a global
transitive attractor.

Now the question of the existence of diffeomorphisms exhibiting ho-
moclinic or heteroclinic tangencies and lying in the closure of the Anosov
ones arises naturally.

Heuristically, one is led to believe that such a tangency could not
be quadratic. This can be seen as follows: On one hand, Anosov dif-
feomorphisms have global invariant stable and unstable foliations which
are transverse. On the other hand, if one deformes by an isotopy these
foliations to obtain a tangency, one gets a point in which the foliations
are tangent but topologicaly transverse, and so (assuming enough differ-
entiability) the tangency is of odd order. We observe that in this paper
we do not deal with the case in which the invariant foliations are not
globally defined at the bifurcation.

In the case of Anosov diffeomorphisms our results can be formulated
(avoiding technical details) as follows: First, denote by Diff3(T?) the
space of C3-diffeomorphisms in the two-dimensional torus 72 endowed
with the usual topology.
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Theorem A. Let f be any Anosov diffeomorphism of the torus T?. There
exists a submanifold C of Diffg(Tz) of codimension 3 contained in the
boundary of the Anosov diffeomorphisms such that:

(1) Ewery diffeomorphism g € C has a heteroclinic cubic tangency asso-
ciated to hyperbolic periodic points,

(2) Every 3-dimensional submanifold X ¢ Diff3(T?) transverse to C at
some go contains a smooth arc {gt}te[oyl] such that, for any t > 0,
g+ is an Anosov diffeomorphism isotopic to f (within the class of the
Anosov diffeomorphisms).

We say that the submanifold C satisfying (2) in the theorem is well
located in the boundary of the Anosov diffeomorphisms.

In view of the theorem, a natural question is to determine if the
g € C are topologically conjugate to the Anosov diffeomorphism f.

To give an intuitive explanation of why the natural codimension of
the bifurcation is 3 we only need the invariant foliations induced by
the dynamical systems. Given two global transverse foliations the cre-
ation of a tangency by an isotopy of the foliations is a phenomenon of
codimension 1. This first tangency can not be quadratic and is gener-
ically cubic. Moreover, the tangency is a priori associated to any pair
of leaves. In our construction the tangency is related to two prescribed
leaves of the foliation: the stable and the unstable manifolds of some
periodic orbits. In this way we gain two new restrictions, bringing the
codimension of the bifurcation to 3.

Our construction also applies to any surface diffeomorphism f having
a hyperbolic basic set A;: by a generic bifurcation of codimension 3, one
creates a cubic tangency between the stable and unstable manifolds of
two prescribed (different) periodic orbits of A.

In [NP], Newhouse and Palis proved that any basic set Ay of a surface
diffeomorphism f (except if f is Anosov) has a lateral point. Roughly
speaking, a lateral point P is a point of the basic set Ay such that A
accumulates on the local stable/unstable manifold of P from one side
only. These lateral points are in the unstable (or stable) manifolds of
finitely many periodic points.
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Let ¢ be a lateral homoclinic point and consider a deformation of
f by an isotopy creating a homoclinic cubic tangency at ¢. Since ¢ is
lateral the points at one side (say the right) of (for example) the local
unstable manifold of ¢ (W7 _(g)) do not belong to the locally maximal
set. Thus to control the hyperbolicity of the diffeomorphisms before
the creation of the tangency it is enough to focus our attention on the
points at the left of Wi¥ (q). This allows us to perturb f to obtain a
nondegenerate cubic tangency: all the turning points of the perturbed
unstable foliation stay at the right of W}¥ (g). Thus we get a bifurcation

of codimension 2.

Theorem B. Let f be a diffeomorphism defined on a surface M and
Ay a basic set of f different from M. There exists a submanifold C,
of Diff3(M) of codimension 2 in the boundary of the set of hyperbolic
diffeomorphisms satisfying:

(1) Ewvery diffeomorphism g € Cy has a homoclinic cubic tangency asso-
ciated to a lateral periodic point,

(2) The submanifold Cy is well located: every 2-dimensional submanifold
¥ C Diff¥(M) transverse to Cp at some gy contains a smooth arc
{gt}te[o,l] such that, for any t > 0, g is isotopic to f (within the
class of hyperbolic diffeomorphisms) and has a basic set that is the
continuation of Ay.

Related to our results Lewowicz exhibited in [L] a class of transitive
diffeomorphisms at the boundary of the Anosov ones, that do not satisfy
the strong transversality condition: each diffeomorphism is conjugate to
an Anosov one and has a nonhyperbolic fixed point P so that its stable
and unstable sets exhibit a cubic tangency at P itself.

In view of all these results let us pose some questions. To state the
first one let us observe that to to prove Theorem A we use estimates
on the products of the eigenvalues of the periodic points P; and P
involved in the creation of the heteroclinic cycle, see Proposition 3.5 for
details. Actually, each inequality is the converse of the other one, thus
they do not hold when P; = P, (i.e. in the homoclinic case). So the
first question is:
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Question 1. Is there a submanifold of codimension 3 in the closure of
the Anosov diffeomorphisms consisting of diffeomorphisms with a cubic

homoclinic tangency?

In our construction an essential property of the point ¢ of cubic
tangency is that it is nonrecurrent: its w and a-limit sets are periodic
orbits. Thus a natural question is

Question 2. Construct arcs of diffeomorphisms (of low codimension)
bifurcating from Anosov systems through a tangency between invariant
manifolds at some point with a dense orbit.

Finally, there is the natural problem:

Question 3. Is there a submanifold C in the boundary of the Anosov
diffeomorphisms consisting of diffeomorphisms having cubic tangencies
such that the codimension of C is (strictly) less than 37

We end this introduction by saying a few words about the orga-
nization of this article and the main steps of our proofs. The precise
statements of results are in Section 1.

On one hand, the proofs of Theorems A and B (corresponding to
the nonlateral and lateral cases, respectively) are conceptually similar.
On the other hand, the Anosov case presents some extra technical diffi-
culties. So we first give all the details of the Anosov case (see Sections
2-4). In Section 5 we briefly explain how to get advantage from the
laterality in order to decrease the codimension of the bifurcation.

The structure of the proof in the Anosov case is the following. In
Section 2 for each p > 0 we define a family of diffeomorphisms {6, } of
the square [—g, u]Q so that 07 , is the identity. Moreover, the image by
0o, of the vertical foliation in [—u, ()% has a unique degenerate cubic
tangency with the horizontal foliation at the origin. We estimate the ac-
tion of the derivative of 6; ,, on a conefield around the vertical direction.
In Section 3 given a heteroclinic point ¢ of an Anosov diffeomorphism f
we perturb f to get a cubic tangency at ¢. More precisely, using a chart
at ¢ we consider the family of diffeomorphisms f;,, = fo0;,. Then fy,
has a heteroclinic cubic tangency at g for each u > 0. To see that f; , is
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hyperbolic for ¢ > 0 we combine the hyperbolicity of f (existence of in-
variant conefields) with the estimates in Section 2. Finally, in Section 4
we show that the diffeomorphisms of the form gofly ,,, where g is C3-close
to f, define locally a submanifold of codimension 3 of diffeomorphisms
with a cubic tangency in the boundary of the Anosov diffeomorphisms.

Finally, let us observe that simultaneously and independently H.
Henrich has announced similar results for the boundary of the Anosov
diffeomorphisms, see [H].

1. Basic definitions and statement of the results
Before presenting more precisely our results let us recall some definitions.

An f-invariant set A is hyperbolic if there exist a continuous splitting
of the tangent bundle over A, ThAM = FE°* & E¥, a constant A, 0 <
A < 1, and a norm |-, such that for every x € A there is n so that
FAB) € By (FOES) € By, (7)) < Aol if v € By, and
|(f™).(v)| < Av| if v € E¥, where f. denotes the derivative of f at z.

An f-invariant (a priori noncompact) set A is nonuniformly hyper-
bolic if there are a continuous splitting of the tangent bundle over A,
TAM = E* & E*, a constant A, 0 < A < 1, and a norm ||, such that for
every € A there is n(z) so that f.(E)) C E;(I), (f“l)*(E;‘) C E}‘_l(m),
(£ ()] < Alo| if v € B3, and |(f @), (v)] < Aol if v € BY.

We define the stable, W*(z), and unstable, W¥(x), sets of a point x
by Wo(x) = {y € M:d(f™(x), f["(y)) — 0 as n — +oo} and W¥(z) =
{y € M: d(f"(z), ["(y)) — 0 as n — —oco}, where d denotes the distance
induced by the norm |-|.

A point x is nonwandering if for every neighbourhood U of x there
exists m,m # 0, such that f7({U) "YU # &. These points form the
nonwandering set Q(f). We say that a compact subset Ay of Q(f) is
a basic set if it is hyperbolic, transitive (i.e. it has a dense orbit) and
locally maximal (i.e. there exists a neighbourhood U of Ay such that
Ay =, fM(U)). Basic sets are locally stable, meaning that there is a
neighbourhood W of Ay such that for every diffeomorphism g Cl-close
to f the set Ay =, g*(W) (called the continuation of Ay) is a basic
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set. conjugate to Ay (i.e. there is a homeomorphism A from As to A, so
that ho f(x) = go h(z) for all z € Ay). We say that a basic set Ay is
nontrivial if it contains more than one orbit.

‘ A diffeomorphism f defined on a compact manifold is Anosov if
its nonwandering set Q(f) is hyperbolic and coincides with the whole
manifold. We observe that the only surface supporting Anosov diffeo-
morphisms is the torus.

Figure 1

We are now ready to state precisely our results.

Theorem A. Let M be compact surface and f be a C>-diffeomorphism on
M with a nontrivial basic set Ay = N,z f{ (W), where W is a neighbour-
hood of Ay. Denote by Hy(M) C Diff3(M) the arc-connected component
of f in the set of diffeomorphisms g for which Ay = iz g°OV) 15 a basic
set.

Let q € Ay be a point such that q € W*(Py, {YNV™(Qy, f) for some
hyperbolic periodic points Py and Q¢ of Ay with disjoint orbits.

Then there is a submanifold C C Diff3(M) of codimension 3 such
that every 3-manifold ¥ C Diff3(M) transverse to C at go contains an
arc {gt}te[o,l] with g1 = f such that
(1) g1 € Hp(M) for every t €]0,1], ‘

(2) the continuations {‘J(gt)}te}o,l] of the point q form a path in M that
converges to the point q(go). Moreover, the point q(gg) is a (cubic)
nontransverse intersection between the invariants manifolds of the
continuations Py and Qg, of Py and Q¢, respectively,

(3) the set Agy = Niez 95(W \ {q}) is nonuniformly hyperbolic.
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Let f be a surface diffeomorphism with a nontrivial basic set Ay.
We say that P € Ay is a lateral point of Ay if for every small enough
neighbourhood U of P either U\ Wi (P, f)) or U\ WT,.(P, f)) has a
connected component that does not intersect Ay. If Ay is different from
the ambient manifold the set of lateral points is nonempty. Newhouse
and Palis proved that the set of lateral points of Ay is contained in the
union of the invariant manifolds of finitely many lateral periodic points,

see [NPJ.

Theorem B. Let M be a compact surface and f be a C3-diffeomorphism
on M with a nontrivial basic set Ay =(;cy fiOV), where W is a neigh-
bourhood of Ar, and Ay is different from M. Denote by Hp(M) C
Diff3 (M) the arc-connected component of f in the set of diffeomorphisms
g such that Ay = ;cz g°(WV) is a basic set.

Let g € Ay be a point such that ¢ € W3( Py, fYZYW“(Py, f) for some
lateral hyperbolic periodic point Py.

Then there is a submanifold C; C Diff3(M) of codimension 2 such
that every 2-manifold % CDiﬁ3(M ) transverse to Cp at gg contains an
arce {gt}te[o,l} with g1 = f such that
(1) gt € He(M) for every t €]0,1],

(2) the continuations {Q(Qt)}te]o,l] of the point q form a path in M that
converges to the point q(gg). Moreover, the point q(go) is a (cubic)
nontransverse intersection between the tnvariants manifolds of the
continuation Py, of Py,

(3) the set Agy = Niez 5OV \ {a}) is nonuniformly hyperbolic.

We observe that Theorem B can also be stated in the heteroclinic
case, for that one takes the two points in the cycle being lateral of the
same type, i.e. the stable (resp. unstable) manifold of the hyperbolic
set does not accumulate on both sides of the stable (resp. unstable)
manifolds of the two points in the cycle.

2. Families of local deformations
We deal with diffeomorphisms 6 defined on the cube [~1,1)% x [0,1]
verifying:
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(HO) 0(z,y,t) = (6(x,y),t), where 0; is a diffeomorphism of the square
-1, +1]2 depending smoothly on ¢ such that 6 is the identity.
In other words, 8 is an isotopy between 6y and the identity.
For each t > 0 let

0 15} 0
(9t)*(a—x—) = a(x,y) - 9 bi(z,y) - oy

s} 15} I5]
(Qt)*(a—y) =c(z,y) - 9z +di(z,y) - 3_y

The diffeomorphisms 6 also satifies the following hypotheses:
(H1) For every ¢ the map 6, is the identity on a neighbourhood (inde-
pendent of t) of the boundary of the square [—1, 12,
(H2) 6p(0,0) = (0,0), _
(H3) dg(0,0) = 0, for every ¢ the function d; is strictly positive on
(-1 2\ {(0,00}) and 20,0 > 0,
(H4) dg(z,y) is a Morse function at (0,0).
We denote by © the set of C3-diffeomorphisms defined on the cube
[—1,1]2 x [0, 1] satisfying the hypotheses (H0-H4).

ol 1\
W

Lemma 2.1. For every 8 ¢ © there are a C3-neighbourhood D of 6 in

Figure 2

© and strictly positive constants «, § and v such that for every 0 in D
and (z,y,t) € [—1, 1]2 x [0,1] we have

(01).(Ce(, ) C Ci(O4(, ),
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where C; and Cy are the conefields defined on [—1,1]% by
Culz,y) = {(v1,v2): [or| < a2 - Junl},

Citoy) ~ (sl | < - e

0
Proof. Since dj is a Morse function at (0, 0), adt(o, 0} > 0 and d; is pos-
itive outside of (0,0) (see (H3-H4)) there are strictly positive constants
a, # and v with
dt(il?, y) >v-t+ |bt(xa y)| G 1‘2 +/6/ 'yza where gt(xa y) = (T7y) (21)

Take a vector (v1,v2) in the cone C¢(x,y). By definition,

()« (v, v2) = (U1,02) = (as(z, y)-v1+ce(2, ¥)-v2, b (2, y)-v1 +de(2,y)-v2).
Since (v1, v9) belongs to Ci(x,y) one has
1| < a-2? - |l (2.2)
Now, from (2.1-2),
[Ta] = |be(x,y) - v1 + di(z,y) - va
2 |de(2, y)| - [v2] = [be(a, y)] - 1| = (2.3)
> (|di(w, 9)| = [bi(@,9)] - - 2®) - Jva] > (v -1+ B -F7) - [val.
On the other hand, from (2.2) there is 5" > 0 with
o1] = las(z, y) - v1 + bi(@, y) - va| < 7+ |va| ¥ (v1,02) € Culw,y). (2.4)
Now, by taking o
gy
from (2.3—4) it follows that (6).(Ct) C C;.
To get the lemma it is enough to increase 8” and to shrink «, &

and vy to guarantee (2.1) and (2.4) for every # in some neighbourhood
D of b. O

Asgsociated with the arc of diffeomorphisms 8; above we define the
two-parameter family of diffeomorphisms {6}, u>0,tc0,1]3 BY

X
O =ty > — =y %, Ol y) = - bl %)-
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Lemma2.2. For every 6 in D take the family of diffeomorphisms {‘Z)u,t}uﬂf
above and the conefields {Cps}ut and {Cpitus, > 0 and t € [0,1],
defined on [—u,u]2 by

Cmdxy):{WLvﬂéWﬂ<i%'$zﬂvﬂh(wﬁné[—muﬁ},

— MZ./g

Cpt(z,y) = {(v1,v2): jv1| < 2t y? val}, (z,y) € [~ ul?, y # 0},

where a and 3 are as in Lemma 2.1. Then
(éu,t)*(c,u,t(xay)) C zu,t(éu,t(mvy)) fOT all 4 G]Oa 1[ and te [07 1}'

Proof. Given a point z and € > 0 define the cone of size € at z, C(z,¢),
by
Clz,e) = {(’Ul,vg): lv1] < e - |112|}.

Let h,, be the homotethy of ratio x on [—1,1)2, i.e. hu(z,y) = (k-2,5-y).
Take z = (2(2),y(z)) and observe that

(h1)x(Clz, % -a(2)%)) =C(

zZ «
1 Z =
m

2y
u’u.x(Z) )= Z/:E:(M,M)' (25)
e paral@P), M

Write Z = 0(2'). Since p is less than 1, by Lemma 2.1

B.(C e a-az)D) € 0. C1 - 2(2)) € CE D). (2.6
t+y(@)
Arguing as in (2.5) one has
_ B . uB o
(hu)(C(z, W)) C C(z, m), Z=Z%u. (2.7)

From (2.5-7) and the definition of 6, ; one has
(B.0)« (Cut(2)) C Cpup(B0(2))-
This completes the proof of the lemma. O

We close this section by making the following remark whose proof is

immediate:

Remark 2.3. In the square [—1,1]% consider the symmetry s(z,y) =
(y,x). Then so p-losco.
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In what follows the main step of the proof is the construction of
the invariant stable and unstable conefields for the diffeomorphisms we
consider. The simmetry between the roles of 0 and #~! in the remark
above will allow us to restrict our attention only to the construction of
the unstable conefield.

3. Heteroclinic cubic tangencies

Let f be a C*°-diffeomorphism defined on a compact boundaryless sur-
face M having a nontrivial basic set Ay. For any pair of points = and
y in Ay one has Wé(xz, /)W (y, f) # @. Take any q € Ay so that
g€ W3 (P, f)nW*(Ps, f), where P; and P, are two periodic saddles of
Ay with disjoint orbits. In this section we construct a two-parameter
family of diffeomorphisms {f.:},50c[0,1]; isotopic to f and such that
fu,t coincides with f outside a neighbourhood of size i of ¢ (thus Py
and P are hyperbolic periodic points of f,;). Moreover, for small u
the invariant manifolds W*( Py, f, o) and W*(P, f,, o) have a cubic tan-
gency throughout the orbit of ¢ and f,,; has a basic set conjugate to Ay
for every ¢t €]0,1]. In other words, each f, ¢ is a diffeomorphism with
a heteroclinic cubic tangency which is the first bifurcation of the arc

{fu,t}-

3.1. Semi-local properties
In this paragraph we aim to prove some semi-local properties of the dif-
feomorphisms we consider (see Lemma 3.1-2 below). The perturbations
fuz of the diffeomorphism f we consider are far (in the Cl—topology)
from f. So it is not clear a priori that the locally maximal set of f,; in
W is compact (neither if such a set is hyperbolic). However, the region
were the perturbations are far from f is contained in a very small neigh-
bourhood of A;. This enables us to prove that the new locally maximal
set in W remains compact. Moreover, when such a set is hyperbolic it is
conjugate to Ay. These preliminary considerations hold trivially when
the diffeomorphism f is Anosov (i.e. Af =M = T2).

Let f be as above and W an isolating compact neighbourhood of
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the basic set Ay, i.e. Af = Niez Y W) and Ag = Niezg* (W) is a basic set
conjugate to A for every diffeomorphism g C Lnearby f.

We can choose W and a neighbourhood V of f in the C3-topology
such that there are a Riemannian metric || - ||, a constant p > 1 and
continuous conefields C* and C® such that for every g € V one has

9x(v) € C*(g(2)),

1) @)l = p- |lv]],
(g™h.(w) € (g7 (=),

g™ = p- o]l

for all ze WNg (W) and v € C¥(2) {
(3.1)
for all z € WNgW) and v € C*(2)) {

Lemma 3.1. There are a compact neighbourhood Wy of Ay contained in
the interior of W and a C-neighbourhood O of the restriction f|(W\W0)
such that for every diffeomorphism g such thal gI(W\WO) belongs to O
the compact set Ag = ;g 9'(W) s contained in the interior of W.

Proof. Take k so that .
wi= (1 F'o
i=—k
is in the interior of W. Observe that if z belongs to the closure of
W\ W) there is i(z) = 4, |i| < k+ 1, with fi(2) € W and fi(z) €
WAW)) forall 0 < j <iifi>0,orforal0>j>iifi<0. Now,
choose a neighbourhood Wy of Ay in the interior of Wj. ‘
By compactness of the closure of (W \ W) there is a neighbourhood
O of f in Diff (W \ Wp) such that for each z € (W \ W) and every
0<j<ifor0>j>1) g¢’(2) € Wy. Hence either ¢g/(z) ¢ W (and
then z ¢ Ay), or ¢7(z) € W\ W) (and then g’*1(2) remains close to
fIT1(2), hence ¢*(2) ¢ W. Now the maximal invariant set of g in W is
contained in Wj. O

From Lemma 3.1 we get:

Lemma 3.2. There is a neighbourhood V of f in Diff3(M) such that for

every g1 € V and every isotopy {gt}{te[o,l]} from g = g1 to gg satisfying
(1) e €0,
(2) Ay = Niczgi(W) is hyperbolic,
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for all t, one has that the restriction gtl/\gt is conjugate to f’Af-

Proof. For every t the set Ay is hyperbolic and locally maximal in
W. Thus there is &, > 0 such that Ay is conjugate to Ay for all
s €]t — &g, t + &t So Ay, is conjugate to Ag . Now, if V is small enough,
Ag, is conjugate to Ay. Thus, Ay, is conjugate to Ay. O

3.2. Choice of coordinates

Consider a diffeomorphism f as above. For simplicity we suppose that
the points P| and P are both fixed. To construct the diffeomorphisms
fu+ we begin by taking appropriate coordinates around the points P,
Pro,gandg=f ‘1(q). We assume that f is linearizable at P; and P and
that the linearizing coordinates can be taken depending continuously on
a small neighbourhood V of f in the €3 topology (for that it suffices to
demand a finite number of nonresonance properties on the eigenvalues of
P; and P, see [St]) . We denote by (z;,y;) such coordinates defined on
a neighbourhood I; of P; (i = 1, 2) independent of the diffeomorphism.
Here for notational simplicity we omit the dependence of the coordinates
on the diffeomorphism.

Given z € U; denote (x;(z),yi(2)) its coordinates. Then z;(z) = 0
(resp. y;(z) = 0) implies z € W3 (F;) (resp. z € WY (F;)). Without
loss of generality we can assume that g and ¢ are in Us N Uy . So in
some fixed neighbourhoods of ¢ and ¢ the functions (x2(2),y1(z)) are
coordinates. To avoid misunderstandings let (24, ys) and (x;, y.) be the
coordinates at ¢ and g, respectively. The expression of any diffeomor-
phisms g € V in these coordinates is linear:

rr(9(2)) = 02 - z5(z) and yr(g(2)) = A1 - ys(2), (3.2)

where A\; and o; denote the eigenvalues of g, at F; , ¢ = 1, 2. Note that
\Ail >'1 > |oy|. Again, we omit the dependence of the eigenvalues on
the diffeomorphism.

For small 7, § > 0 define the sets

RE = {(z1,51) € By: |21 < § and g1 € [£7,(£A; - 7))} C W,

Ry = {(z2,y2) € Ro: @ € [+7, (+o2 - 7)) and |ya| < 8} C W.

(3.3)
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U,
EaN| g
;

=
I
<

 — — |
:U ::w"U

Figure 3

Remark 3.3. There is § > 0 so that for every g € V

o C C*%(2), 9 CC%z) foreveryz€ RENW,i=1,2.
oY1 Oxo

Proof. Observe that the tangent space of the local unstable manifold of
3]
Py (spanned by %) is in the unstable conefield. The first part of the
1

remark follows from the continuity of C*. The proof of the second part

is similar, so we omit it. O

For every diffeomorphism ¢ in V and sufficiently small ;4 > 0 consider
the square S, centered at ¢ given in the coordinates (z,,ys) by S, =
[—u, 1], Notice that the segments [—p, p] x {0} and {0} x [—p, y] are in
the stable manifold of P; and the unstable manifold of Ps, respectively.
Let R, = ¢(S,). In the coordinates (z,y,) we have from (3.2),

Ry =[—0-p,o0-p] X [=A1p, A - p) CUY NU.

Now we are ready to define the arcs {gui}(,~0, te[0,1]; for every g € V
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as mentioned above.

3.3. The family of perturbations {g, .}

Notice that for each pair (i, ) the two-parameter family of diffeomor-
phisms {6, +} in Section 2 defines a family of diffeomorphisms from S,
into itself which is the identity on the boundary of S,,. So the formula be-
low defines a two-parameter family of diffeomorphisms {g,.,:} >0, t€[0,1]}

B glz)ifx ¢ S,
9ual®) = { (gof,4)(x) if z € S,

Clearly, 9,,0(q) = ¢ and the image g, +(5,) does not depend on ¢. So
R;L = g,u,O(Su) = gu,t(S;J‘

Lemma 3.4. By shrinking the neighbourhood Y of f in Diff? (M) if nec-
essary one gets ug > 0 such that for every g € V and p €0, ug| the
invariant manifolds W*(Pi(g),g,0) and W*(P2(g),9,0) have a cubic
tangency at ¢(g).

Proof. Take pg > 0 small so that for every u €]0, ug| all the nega-
tive (resp. positive) iterates of the segment of W¥*(Py, f) N S, (resp.
W3(Py, f)N'S,) through ¢ are disjoint from S,. If V is small enough
this holds for every g € V. In the (s, ys)-coordinates one has

{0} X [—pt 1) € W(Pa,90)s 00— ] X {0}) € W*(PL, g,0)-
Now the lemma follows from the definition of 0, ;. O
We are now ready to state the key result about the arcs {g,+}.

Proposition 3.5. Let f be a C*™-diffeomorphism of a compact boundary-
less surface M having a nontrivial basic set Ay. Suppose that there are
fized points Py and Py of Ay, Py # Py, such that f is C3-linearizable
at P1 and Po and the eigenvalues of f. at F;, denoted by A\, and oy,
Xl > 1> |ay], (i =1, 2), satisfy | X2 -o1] <1< |\y- a3l

Then there are a neighbourhood V of f in Diff3(M) and pg > 0 such
that for every g € V the two-parameteér family of diffeomorphisms {gu+}
defined as above satisfies
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(1) for every 0 < pu < pg the set

Agpo = (1m0l W {a(9)})
i€z
is nonuniformly hyperbolic and g,, o has a cubic tangency throughout
the orbit of q(g) (the continuation of q),
(2) for every 0 < u < pg and t > 0 the set

Mg = (gt V)
1€Z

is hyperbolic and conjugate to Ag.

To prove the proposition for g > 0 and ¢ € [0, 1] we analize the first
return map of g, in R, and we show that for small x> 0 this map is
hyperbolic (uniformly if £ > 0 and nonuniformly if £ = 0). From now on
we fix ¢ and so we omit the dependence on g.

More precisely: For py > 0 consider the subset Rit of R, defined by
Rit = {z € R, such that gfm(z) € R, and g}, ,(z) € W for every 0 <
j < i}

We remark that the set RIt is nonempty: the set Ay is transitive
and ¢ € Ay, thus there are points of Ay in R,. In particular, there are
points of Ay in R, whose forward orbit is contained in W that return
to R,. That implies that th + .

Given z € R;r,t the return time of z to Ry, nys(2), is

n,,,t(2) = min{s > 0 such that gfl)t(z) €R,}.

Note that by construction g,,; = g outside S,,, so that gz7t(z) = g'(2) for
all 0 <14 < ngt(2z) — 1. Therefore n,¢(z) = ny(z) does not depend on ¢.
Finally, the relation

n z
Ty Bt — Ry, 2 g“f;( )(2)

defines the Poincaré return map Tg# . assoctated with g, and Ry,.
Proposition 3.5. follows from the lemma below which we prove in
the next section. Let

At = (T3, (Bo)):

€L
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Lemma 3.6. Under the hypotheses of the Proposition 3.5 there are a
neighbourhood Vg of f and pg > 0 such that for every g € Vy one has
(1) for every p €]0, uo[ and t €]0, 1} the set A, is hyperbolic,

(2) for every p €]0, uo[ the set A, o is nonuniformly hyperbolic.

3.4. Hyperbolicity of the Poincaré map Tgu, . proof of Lemma 3.6

For the sake of clarity we first prove the lemma for the diffeomorphism
f. To prove the hyperbolicity of the Poincaré return map Tfﬂ, o =Tyt
we shall write T),; as composition of several functions of the type f/ .
We use that f) ,(z) = f'(2) for all 0 <4 < n,(z) and the fact that the
orbit of any z € R/Jj’t must visit some fixed regions we list below before
coming back to R,,. Recalling the definitions of R;" and R; (see (3.3))

one has immediatly:

[ &
fu,t Ru

Figure 4

Remark 3.7. There is 1 > 0 such that for every z € th and [ €]0, p1]
there are positive integers m = m(z) and r = r(z) for which the forward
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orbit {z,--- ,f:y’;(z) (z)} may be split as follows:

f™(z) € Ry and (UZ5' fi(2) C Uy,
fmir(z) e RQi, and

fUz) €Uy for everym+r <i< nu(2).
Hence
Tyi(z) = fmof‘s(z) of’"(z) ofm(z)(z) where s(z) = nﬂv(z) —1—r(z)—m(z).

To prove the hyperbolicity of T}, ; we exhibit a (1}, ;),-invariant ex-
panding conefield in R;Zt (the unstable conefield) and a (7, 1) .-invariant
expanding conefield (the stable conefield) as above, see (3.1). Here we
construct the unstable conefield. By Remark 2.3 this will imply the
existence of the stable one. Our proof deals with the four different
coordinates systems defined in Section 3.2 and six conefields. So, for
simplicity, in the sequel C(w) means that the conefield C is expressed in
the w-coordinates. Before going into the details let us give the scheme
of the construction of the (T}, ;).-invariant expanding conefield:

(1) We begin with a conefield Ci (2, y-) on R,, coinciding with C,, +(z, y)
as defined in Lemma 2.2. We exhibit a conefield Ca(z1,¥1) on R, C
U1 containing C.

(2) By using the linear expression of f,; in U] we construct a conefield
C3(x1,y1) on Rf so that the derivative of the transition fm(z) from
R:Zt to Rli maps Cy into Cs.

(3) From the hyperbolicity of f we get C4(x2,y2) on RZQ'E so that the
derivative of f’"(z) from Rli to Rét maps C3 into Cy4.

(4) Having in mind that (in the (mg,yg)—coordinateé) fue = f is lin-
ear, we prove that the derivative of fs(z) maps C4 into a conefield
Cs(z9,y2). This conefield satisfies:

(5) The conefield C5(z2,y2) on S, is contained in the conefield Cg(xs, ys)
defined exactly as C,; in Lemma 2.2. So Lemma 2.2 implies that
(fu)-(Co) C C1.

Clearly, (1)-(5) give the (T, ;).-invariance of the conefield C;. Now
we go into the details of our construction. '
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Remark. Throughout the proof of the lemma all the constants k; and
¢; we will introduce do not depend on p > 0.

First step: conefields on R,,.
Let C1(zr, yr) be the conefield on R, which is (in those coordinates) the
image by the linear map (z,y) — (o2 - 7, A1 - y) of the conefield C,; in

Lemma 2.2:
2

g}

— . -1 —
Cl(x'rayv“) = {(Ulvv2)' lU1| < Ty ')\1 /'L2 t+ 2

Claim 1. There exists o constant ky > 0 such that the conefield Co defined
on R, by
2

|lua| }

Calw1,y1) = {(v1,v2): [o1] <~y -
(@1,91) = {(v1,v2): [v1] R

contains Cy.

Proof. The coordinates (z,,y,) on S, satisfy z,(2) = z2(2) and y,(z) =
y1(2z). Hence 8/0z, and 8/0x; are colinear. Now the claim follows from

an easy calculation. O

Second step: transition from R, to Ric.
Using the coordinates (x1,y1) on RT let

C3(z1,y1) = {(v1,v2): [oa] < ko - pi° - [wa}-
Claim 2. There is a constant ko > 0 such that for every z € R;ryt
(" .Cal2) € 3 (2)).
Proof. Given a vector v = (vy,v2) in Ca(x1(2),y1(2)) let

(w1, w2) = (f)4)=(v1,v2) = (07" - v1, AT" - va).

Thus

o] k- p? o] k1 -y
|>\1| t-u2—|~y1(z)2 | | |>\1 yl(z)2 ‘ ’ ( )

The definitions of m(z) and 7 (see 3.3) give
T <A @) = [ ()] < (M -7 (3.5)

jwi| = |o7*-v1] <
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Now, by (3.4-5) and |01 - A1] < 1 one gets ko such that
fwr] < kp - 107 - AT 1wl < ka - i - ).

This ends the proof of the claim. O

Third step: the transition from Rf to R%:
Define the conefield C4 on RQi by

Ca(z2,y2) = {(v1,v2): [v1] < k3 - Jug|}.

Notice we can assume that C4 contains the unstable conefield C¥%(z, €) in
(3.1). Now, for each point z € R let

r(z) = sup{i € N: f'(2) € Ry and f/(z) ¢ S, for all 0 < j < i}.

If the forward orbit of z does not meet Rét we let r(z) = oo. Having
in mind that the unstable foliation is transverse to the horizontal lines
{yi(z) = k} (Remark 3.3), it follows that

Claim 3. There exists a constant ks > 0 such that for every z € Rf with
r(z) < 00 '

(STEN.(Ca(2)) € Ca(fT)(2)).

Proof. For every point z & Rli the vertical vector field 0/dys is con-
tained in the interior of the conefield C* defined on W (see Remark 3.3).
Thus there exists pg > 0 such that the cone C3(z) = {(v1,v9): [v1] <
ko - u? - [ug|} is contained in C%(z) for all p €]0, o] and any z € R;. On
the other hand, for z € R% the horizontal vector field 8/0x2 is in the in-
terior of C* in (3.1) (see Remark 3.3). So it is transverse to the unstable
conefield C*. Thus there is a constant k3 > 0 such that for each z € R:;
the cone C%(z) is contained in C4(z). Now using the (f).-invariance of
C" one has:

(f1):(C3(2)) C (fN:(C*(2)) C C*(f"(2)) C Ca(f"(2))-
This completes the proof of the claim. O

Fourth step: transition from Ry to S,.
In S, define the conefield C5 by

C5(x2,y2) = {(v1,va): [v1] < ka - 23 - [vo]}.
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Given z € R¥ let
s(z) = inf{i € N: fi(2) € S, and f7(2) € Uy for all 0 < j < i}
As above we let s(z) = oo if the forward orbit of 2z does not intersect .S,.

Claim 4. There exists kg > 0 such that for each z € Réc with s(z} < 00
one has that

(FE.(Ca(2) € Cs(£P) ().
Proof. Take z ¢ Réb with s = s(z) < oo. Take v = (v1,v9) €
Cy(z2(2), y2(2)). Let

(w1, wa) = (f*).(v1,v2) = (05 - v1, A5 - va).

Thus, since [og - Ag| > 1,

o3 s
lwi| = |0 - v1] < :)\21 k3 - Jwa| < (Jo8))? - ks - Jwal. (3.6)
5

By definition of Rfrf,
|oa] - 7 < lza(2) < 7,

therefore
o2 (@)] = |05 - w2(2)] = |o§ - (02 - 7)]. (3.7)
So from (3.6-7) one has that
wi| < kg - |m2(f5(2)|? - lwal, where ky = A—Q
(o2l - 7)
This implies the claim. O

Fifth step: transition from S, to R,.
To end the proof of Lemma 3.3 it remains to show that (f,).(Cs5) C C;.
For that consider the auxiliary conefield Cg defined in S, by

(64
Co(xs, ys) = {(v1,v2): [v1] < " -22 - foal}.

Claim 5. There exists ug > 0 such that Cy(z) C Cg(2) for all p €]0, ug]
and z in S,.

Proof. The coordinates (zs,ys) satisfy x5(2) = z2(2) and ys(2) = y1(2).
Thus the vector fields 9/0ys and 9/0ys are colinear. Now the claim is
clear. O
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Finally the (T}, ¢).-invariance of C; follows from the next claim.

Claim 6. For every p €0, ug| the conefield C1 defined on R, is (Ty,1)«-
invariant. In other words,

(T (€1(2)) = (@) < P (@) = L)
for all p €]0, gl and every z € RIt.
Proof. The Claims 1-5 imply (f#()-1) (Ci(2)) C Ce(f™(H)1(z)).
Moreover, the conefield Cg coincides (in the (zs,ys)-coordinates) with
Cuy in Lemma 2.2. The expression of f,: = fo0,;:5, — R, in the
coordinates (zs,ys) and (Zr,yr) is given by

zr(f(2)) = 02 - 25(2) and y,(f(2)) = A1 - ys(2).

Lemma 2.2 claims that (f,,¢).(Cg) is in the conefield that (in the (x,,y,)-
coordinates) is the image by the linear map (x,y) — (o2 - ,A1 - y) of
the conefield Eu,t in Lemma 2.2. This means that

(fu):(Ce(2)) C Ci(fut(2)-
This ends the proof of the claim. O

The proof of the (7}, ).-invariance of C; is now complete. To finish
the proof of Lemma 3.6 (for f) we need to show that the vectors in Cy(z)
are expanded by (7},+). for every z € ﬂieNT/it(Ru).

Sixth step:. (7),;). expands every vector in Cj.
First we prove that:

Claim 7. There is ug €]0, u1] such that for every p €]0, us] and z € R:Zt
one has )
|Vr (D) ()] = ;

where vp(u) ts the vertical corﬁponent of the vector u in the (xy,yy) co-

Nop(u)| for all u € C1(2)

ordinates.

Proof. For simplicity take u = (h,,v,) any vector in Cy(z) with |v,| =
1. Since (z,,yr) = (x2,y1) the coordinates (hi(u),vi(u)) of u satisfy
{v1(u)| = |vr(u)| = 1. Thus there is a constant cg with

™)@l 2 co - or((F™)w(u))] = co - [Ar]™. (3.8)
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Now, from (3.8) and the fact that (f). expands the vectors in the cone-
field C* (see (3.1)), f™*"(u) is in the conefield C4 and its norm is greater
than ¢g - |\T*|. Hence, there exists a constant ¢ such that

o ((F)(w)] > ex - M ™. (3.9)

Lﬁ?zaﬁ?%“@):ﬁ%@%l&)ZﬁhOﬂM@ﬁmdﬂ:(f””+54w=:

(fl;% 0Ty ¢)«(u). From (3.9), one has that
lva(w)] > co + |AT - A3

for some constant ca. The change of coordinates gives that vy(@) is a
function of kg and vy. Now, one gets c3 such that

[us(@)] > c3 - |AT - A3 (3.10)

The coordinate vp(T), ¢(u)) = v ((fu,)+(@)) is given by the following for-
mula:

Ur((fue) (@) = Az - po - [ba(Z2 ) - he(U)+
o) w (3.11)
+dy( S ) - vs(u)],
I
see Section 2 for the definitions of b; and d;. Since % is in the conefield
Cg one has
=\2
a2 (Z
haw] < 25 )
7
Hence, from (3.11)
_ 2 _
_ Z -z z -
vr((fut)«(@)] = |A2] 'M'(Idt(; ) - TT b ( ;)l) Jos(w)]. (3.12)

From properties (H3-H4) of d; and (2.1) in Lemma 2.1, one gets positive
constants ¢4 and ¢5 with

dy(z,y) —ca- 22 |bel(m,y)| > e5 - 22

In our coordinates this inequality is read as follows

2 =\2
2 O = - (313)

z
di(—) —cq -
i
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Take a small po such that
o ¢y

— < — for every p €]0, pa). (3.14)
T
From (3.12-14), there is c¢g > 0 with
=\2
_ Tslz w
o)) 2 6+ 225 - ). (315)

From (3.15), (3.7), the definition of Z and (3.10) one gets constants c7—cg
with »
2 2s

B Ts(Z _ o _
o (Fu)e@)] = les - 220 - fon(@)] = fer - |- foul@)] >
K H (3.16)
. }0_8')‘71”'2)‘3'035 |
- 7
By hypothesis, Ay > 052. Thus, by (3.16) one has that
_ AT
[or((fu)+@)] = les - 5. (3.17)

1
Notice that ol ~ |AT*| (recall the definition of m, see also (3.5)). From
z € R, one has |y,| < cg - u for some constant cg. Finally, from (3.17)

we get c1p and us with:

_ AT C10 1
[or (el > les - 5| > [—3[ > = for every u €]0, pal.
I T
The proof of the claim is now complete. O
Claim 8. Let pug > 0 be as in Claim 7. There is a metric ||| -||| such that

Jor every p €10, ua[ one has
(1) for everyt > 0 there is Ny with

N,
T, 0@ > 2 [[Jo]]| for all v € C1(2) and z € Ay,

(2) for each z € A, p there is N(z), N(z) — 0o as z — q, such that
N
Tl > 2 ol for alt v e Co(2).
Proof. Define the metric ||| - ||| by

[[ull] = max{|h(w)], [vr(u)]}.
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For every u € Cy one has

gt M| -p? -8
< ' : u)|, |vr(u)|}- 3.18
[[luf]] < max{ g CAOINCAOI (3.18)
Let us first suppose that ¢ > 0. Since p < po < 1 there is N; with
1\t 3 u?- B

Claim 7 and (3.18) imply that

Ny
bl = () - ertwl =

o3t M| 28

> 2 - (max{
P2ty

v, [or(uw)]}) >

= 2-|lloll].
This completes the proof of the claim when ¢ > 0.
Ift=0and z = (z:(2),y-(2)) € A, take N(z) with

1\ 03" M- 8-
<;> >2- (max{ o) 5 1}) : (3.20)

The definition of C; gives

o3t M-8 4]
Yr(2)?
From Claim 7 and (3.20-21) one has

lulll < max{ ve(w)l; for(u)]}- (3.21)

2 1 N(z) '
). )l = (;) o] = 2 ]l
This ends the proof of the claim. O

The proof of Lemma 3.6 is now complete for arcs of the form fof,, ;.
For arcs of the form g, = go 0,4, g €V, it is enough to observe that
the constants k; and ¢; above can be taken uniformly on g € V if V is
small. This ends the proof of Lemma 3.6. a

4. Proof of Theorem A
Let f be a C*-diffeomorphism with a nontrivial basic set A; as in Propo-
sition 3.5. Consider a diffeomorphism fy derived from f by the defor-
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mation in Section 2, i.e. fo = fof, o where 8 € D. For simplicity let us
assume that p = 1. Thus fy = f o fy. So we write R and S in the place
of R, and S,.

For any gg in a small C3-neighbourhood &£ of fy denote by P; 4, the
continuation of the hyperbolic fixed point P; of fg, by A; 4, and o; g, the
eigenvalues of gg at B 4., and by (g, ¥i,4,) the linearizing coordinates
of gg in the neighbourhood U; of P;, i = 1, 2. By the choice of f we can
take, and we do, these coordinates depending C3 on go.

Denote by R, the connected component of {z € Ui NUs, (x24(2),
Y1,4(2)) € [~024,024] X [=A1,4, A1 4]} containing ¢. Similarly, S, is the
component of {z € Uy NUy, (21 4(2),y2,4(2)) € [1, 1}2} containing g§.

Notice that the pair of functions (22 g,,%1,4,) does not define a coor-
dinate system on Sy and R,;. But they define coordinates out of a small
neighbourhood of ¢. In R, the vector field 3/0ys 4, is given by

0 0 0
Z) = 2)—— + 6, (2)=——.

(4.1)

Recall that the coordinates (w;,g,,¥iq,) depend ¢ on gy and by, 1s a
Morse function at (0,0). Therefore, ¢4, depends C? on gy. Thus b4, has
a unique minimum at the point zy, which depends differentially on gg.
Moreover, such a minimum is also of Morse type. These remarks imply
that

$:E =R Blg) = (55(29), 22,4(24), Y1.(29))s

is a C2 function. Consider the set

r={¢"10,0,0}NE.

Lemma 4.1. The map ¢ is a submersion at fo. In particular, T is a
submanifold of codimension 3 of Diff3(M).

Proof. Take isotopies A, and G, defined on the square § = [—1, 1]2, and
H. defined on R = [—09,09] X [~A1, A1] such that:
e h, is the identity on a neighbourhood of the boundary of [—1,1]?
and in a vicinity of (0,0) is given by (z,y) — (z + 7,1),
e (3. is the identity on a neighbourhood of the boundary of S and its
derivative at (0,0) is a rotation of angle 7,
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e H, is the identity on a neighbourhood of the boundary of R and in
a vicinity of (0,0) is given by (z,y) — (z,y + 7).
Consider the map ¥:R3 — R3 defined by ¥(r, 19, 73) = ¢(Hr o fgo
GT2 0 hrg). Now the lemma follows from the fact that ¥ is a submersion
at (0,0,0). 0

Proposition 4.2. There is a neighbourhood Vy of fq in Diff3(M) such

d
that every arc {hi}e>0 with hg € TNV and %(éht(zht)) > 0 satisfies
the following properties ‘
(1) there is tg > 0 such that the set Ap, = ez hi(OWV) is hyperbolic and
congugate to Ay for every t €]0,%p],
(2) the diffeomorphism hg has a heteroclinic cubic tangency associated

to the continuations of P, and Py.

Proof. To prove the proposition we will see that ks = g; o 0; for some
g € V and 6; € D. From Proposition 3.5 this will imply the proposition.

For i = 1, 2 denote by (;,%;) the linearizing coordinates of fy in
U;. Remark that (£1,91) (resp. (Z2,%2)) coincides with (z1,y1) (resp.
(z2,y2)) in the complementary of a small neighbourhood of § (contained
in §) in U (resp. in the complementary of a small neighbourhood of ¢
(contained in R) in Us).

Lemma4.3. For everyt > 0 there is a function To; (resp. 1) C3-close
to &g in Uy (resp. g1 inUy) which coincides with xoy, (resp. y1,n,) on a
neighbourhood of (U \ R) (resp. of (U1 \ S)) and such that Zo;(2p,) =0
(resp. (b (zn,) = 0).

Proof. Just notice that T2, s C3-close to 9 and that Zo(2n,) is close
to 0. O

Remark 4.4. The pair of functions (o, ¥1+) defines coordinates on R
and S. Furthermore, there is a neighbourhood of S such thot in such
coordinates hy is given by

To4(he(2)) = o2p, - Z24(2),  U14(Re(2)) = A, - J1,4(2)-
Proof. The first assertion follows from the proximity between Z; and
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Zo and §1, and §;. The second one follows by recalling that Zs, and
71+ are linearizing coordinates outside a neighbourhood of (0, 0). O

Lemma 4.5. Consider g; with gi(z) = hi(z) for every z ¢ S and such
that in the (Tg 4, §1,:)-coordinates g; is giwen by:

T2,4(g(2)) = oo n, - Toy(2),  Y1,4(9e(2)) = A1, - U1,6(2).

Then for small t > 0 one has g € V. Moreover, 0; = gt'1 oh; €D.

Proof. To prove the first part of the lemma observe that h; is C3_close
to fo and f(x) = fo(x) for every x ¢ S. Moreover, the eigenvalues of
f. at P; and (h;). at P;p, are close, f (resp. g:) is linear on S in the
(Z9,91)-coordinates (resp. (%24, 91+)), and (&2,%1) and (Zo,,91,) are
C3-close. Finally, since g¢(z) = hs(z) if z ¢ S one gets that g; is C3-close
to fon M and g: € V.

The proximity between 6y and 0, follows from Og = f -l fo and
0, = g; 16 hy as well as from the proximity between f and g;, and fo
and h;.

By construction, ; is the identity in a neighbourhood of the bound-
ary of § = [—1,1]2 and 64(0,0) = (0,0) (hypotheses (H1-H2)). Write

- 0 0 ~ 0

0:) (— = ¢(Zay, Y c—— + di(Zot, U C AT 4.2
(6¢) (8y1,:) (T2, U1t) Fy (T4, 1,t) Bt (4.2)

It remains to see that d; satisfies the inequality (2.1) (that defines the
set D, see the end of the Lemma 2.1). In particular, dp is Morse at (0,0).
By construction in a vicinity of (0,0) one has Ay = g¢ © 0, where g; is
linear in the (&34, ¥1,+)-coordinates. On one hand, from (4.2) one has

0
851'2715

(he)s(—(2)) = ke(2) (he(2)) + A1 p, - delz) - %lt(ht(@), (4.3)

0 ¢+

for some function k:. On the other hand, in the (22,h, > Y2,h, )-coordinates
(that from now on we denote by (z24,y2+)) h¢ is linear, i.e.

0 0

(ht)*(%(z)) = A2 %(ht(?:))-
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Having in mind (4.1) this means that

o 9
(he)x (g —(2) = Aaye - 5 = (Iu(z)) =
(X Y2t
5 5 (4.4)
= Aot (Xn(2) - aTM(ht(Z)) + 8py (2) - %(ht(z)))-
The vector fields (z) and ——(z) are colinear. So there exists a
Y2t Oy

function p:(2) which is uniformly bounded from below with pe(z) £ 0
such that

J d
3—?]1; z) = p(2) - 819’2,t<2)'
In particular, from (4.3)
0 1 9
hy). = (he)w (== =
(1)=& = o5 - (05— 2) .
1 . - 0 '
= g R g (i) M (o) e (u(2))
From (4.4-5)
ey = P22 g () (46)
ALt

The functions p;, Az, and Ap; satisfy
0< Cl < |Pt|7 l)‘2,t|7 ‘)\l,t’ < 02‘

d d
Finally from Eéht (2n,) > 0 it follows —(-ﬁdt(zht) > 0 for small £ > 0. This
implies the proposition. O

End of the Proof ot Theorem A

Take any diffeomorphism F with a basic set Ap = Nz F*OV) satisfy-
ing the hypotheses of the theorem. Then there is a diffeomorphism f
- satisfying the hypotheses of Proposition 3.5 and an arc {I}},. [0,1] With
Fy = f and F1 = F such that the set Ay = (), FY(W) is conjugate to
A = N, FYW) for every t. The theorem follows from Propositions 3.5
and 4.2. O

5. Cubic tangencies at lateral points

5.1. Introduction.
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In this section we will prove Theorem B. This result will follow essen-
tially from the arguments in the proof of Theorem A. So we will omit
some technical details and focus our attention on the main differences
between their proofs.

Let f be a surface diffeomorphism and A; be a nontrivial basic set
of f different from the whole manifold. Assume that Af is either of
saddle type or an attractor (otherwise we replace f by f~1). Then
there is a lateral periodic point P € Ay such that the set U\WT (P, f))
has a connected component that does not intersect Ay for every small
neighbourhood U of P.

From now on we suppose that P is a fixed point of f. By deforming
f by an isotopy we can assume that f is C3-linearizable in a neighbour-
hood U of P and that the linearizing coordinates (x,y) at P depend
continuously in the C3-topology. Finally, we take a homoclinic point q
of P such that ¢ and f‘l(q) =g are in Y.

Take an open set W in which A; is locally maximal. Since P is a
lateral point of Ay we can take a neighbourhood U of P and coordinates
(z,y) such that the backward orbit of any point z € {z > 0} leaves W
straightforwardly, meaning the following: Let j = inf{k € N such that
f*(z) ¢ U}. Then there is i such that f~%(z) € W and f~*(2) ¢ U for
every j < k < ¢. Notice that this assertion holds for every diffeomor-
phism nearby f. »

In what follows, to get a diffeomorphism with a cubic tangency at ¢
which is a first bifurcation, we will perturb f in a square S, of size p
centered at ¢. Asin the nonlateral case we will consider diffeomorphisms
0, from S, into itself and local perturbations f, = f o8, of f.

The property about lateral points above plays a key role to check the
hyperbolicity of the diffeomorphisms before the bifurcation. It will allow
us to focus our atention on the points (z,y) with x < 0. More precisely,
and bearing in mind the proof of the nonlateral case, it will be enough
to consider the first return map from S, N {x < 0} into itself. That
will allow us to consider generic perturbations 6, in the following sense.
The image by f,, of the vertical foliation in S, has a nondegenerate
cubic tangency at ¢ with the horizontal foliation defined on the square
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f(S,) = R,. Such a nondegenerate cubic tangency is accumulated by
quadratic tangencies between the image by f,, of the vertical foliation
and the horizontal foliation. However, all the tangencies correspond to
leaves f,({zo} x [~1,1]) with g > 0, see the figure below.

oS
e VR
, N

Figure 5
The possibility of using generic perturbations 6, with a nondegen-
erate cubic tangency justifies why in the lateral case the submanifold
Cy of diffeomorphisms with cubic tangencies has codimension 2 instead
of 3. In the proof we see that using such a perturbation one does not
need to use the condition [\ - 1| < [Ag - 02| on the eigenvalues, such a
possibility allows us to consider also homoclinic tangencies.

5.2. Families of local perturbations

As in Section 2 we consider diffeomorphisms 6 defined on the cube
[—1, 1]2 x [0,1], O(x,y,t) = (6:(z,y),t), that satisfy hypotheses HO-H2
in Section 2 and

H3b: dy(0,0) = 0, d(z,y,t) is strictly positive on ([—1,0]2 x 0,1]) \

Ody Ody ddy
—_— > R = _— =
[0,0,01), FH0,0) = ko > 0, 52(0,0) = di < 0, S1(0,0)
2

Ay
3 dy
dty - O, and aTy(O, 0) - dtyy > 0.
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Figure 6
We denote by ©, the set of C3-diffeomorphisms of [—1,1]% x [0,1]
satisfying the hypotheses (H0-H2) and (H3b).

Lemma 5.2. For every § € O, there are a C3-neighboubrhood D of 6§ in
0y and strictly positive constants ., 3 and v such that for every 6 € D
the conefields

Ce(z,y) = {(v1,v2): |v1] < - |z] - |ual},
Celz,y) = {(v1,v9): |u1] < |vgl Ly #0}

Y
t+ |yl

satisfy

(094 (Ce(z, 1)) C Cy(Bs(z,y)) for every z <0 and t > 0.

Proof. Write 0:(z,y) = (Zt,7;). The proof of the lemma follows from
the next result:

Lemma 5.3. There is a constant K such that
di(x,y) > K-(t+|7:|+|z]) for allt > 0 and (T, 7y,) = 0:(x,y) with z < 0.

Proof. Write
U= Tul,y) = T,(0,) + 0e(0,0) - ¢ + Hy(x,y) - w,

(5.1)
Hyz,y) —0asy — 0.
Having in mind (H3b) in the definition of ©, we have
d
7:00,9) = % P+ Gily), Guly) —»0asy —0. (5.2)
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From (5.1-2) there is a constant k7 > 0 such that for every (x,y) nearby

(0,0) one has

dt diyy
6

Notice that bg(0,0) # 0 (recall that dg(0,0) = 0 and that fg is a diffeo-
morphism). Thus

|be(z,y) + He(x, y)| - =] = |7, — +Gey) 93 = Tl — K1 P

] > k- 7] — k3 - 1y°), (5.3)
for some strictly positive constants ko and k3. Finally, from (5.3), dgyy >

od s
0, dtz <0,z <0,¢2>0, and —t(0,0) > 0 (see (H3b)) we get positive
constants k4—kg such that

d
di(z,y) > kg -t + t;)’ P2 hm' z) >
dt ‘dtac|
> k .t “tyy 2 .
> + —= A cy© 4+ 3 ||+ (5.4)
dig| - ko diz| - k3 3
+%'\ytlw%-—-lyl >

2 kgt + ks - |zl + ke - [T,
for every small y and |z|. The map d; is strictly positive outside a

neighbourhood of (0,0) in {z < 0}. Therefore by shrinking k4—kg the
inequality (5.4) holds for all (z,y) with z < 0 and ¢ > 0. O

As in the nonlateral case for each p > 0 we consider the two-

parameter family of diffeomorphisms 6, ; defined on [—pu, u]2 by
Oui(@,y) = 1 O/, y/ ).
Arguing as in Lemma 2.2 one gets the following result:

Lemma 5.3. For every 6 in D define the two-parameter family of diffeo-
morphisms {0,,:} as above. For each pp > 0 consider the conefields C,,
and Cpz defined on [—p, u]? by

- [val},

Cuala) = {01, o] < - 2

- /3!

t+‘| < |va|, for all y # 0}.

Cup(z,y) = {(v1,v2): Ju1] <
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Then
<9y,t)*(cu,t($: y)) C au,t(eu,t(x7 )
for every sufficiently small 1 > 0 and x < 0.

5.3. Choice of coordinates

Consider a nontrivial basic set Ay of a diffeomorphism f having a lat-
eral fixed point P. To construct the diffeomorphisms f,; we begin by
taking coordinates at P, ¢ and § = f _1{q). Recall that f is lineariz-
able at P and that the linearizing coordinates depend continuously on
a small neighbourhood V of f in the C3-topology. Moreover, there are
neighbourhoods U and Uy of P where f is linearizable so that Uy (resp.
Us) contains the segment [P, q]° in W?*(P) (resp. the segment [P, ¢]* in
W“(P)), see figure.

ﬁ ”

Figure 7

Denote by (z;,y;) the linearizing coordinates in U; (i = 1, 2). Pick
neighbourhoods of ¢ and § where the pair (z2(2),y1(2)) defines coordi-
nates. As in the nonlateral case we call such coordinates (x,,y,) and
(xs,ys), respectively. In these coordinates any g € V is linear:

rr(g(2)) = 0 -x5(2) and y-(g(2)) = A ys(2), (5.5)
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where A and o (|A| > 1 > |o|) are the eigenvalues of g, at the continua-
tion Py of P.

In what follows given any z € U; we will analize the returns of the
forward orbit of z to U;. For that as in the nonlateral case we will
consider the exit and entry boxes R’f below. Recall that we are only
interested on the points such that their first coordinate is negative. For
small 7 and ¢ > 0 define the sets

RY ={(z1,y1) €Uy: =6 <z1 <0and yj € [£7, (X 7))} CW. (5.6)

For every g in V and small o > 0 consider the square S, centered at
4(g) (the continuation of ¢) that in the coordinates (zs,ys) is given by
S, = [, )%, The segments [-p, 4] x {0} and {0} x [—pu, ] are in the
stable and the unstable manifolds of P, respectively. Let R, = g(S,).
From (5.5) in the coordinates (z,,%) we have

Ry=[-0-p,0 p] x[=XA-p,X-p] ClU N.

Now for each g € V we define the two-parameter family of diffeo-
morphisms {gu,t}{u>0,te[0,1]} by

fe@) it ¢ S,
9utl®) = { (gob,)(@) if z €S,

Clearly, g,.0(4(9)) = q(g) (the continuation of ¢). Moreover, by construc-
tion g,:(S,) does not depend on t. So we let R, = g, 0(Su) = gpu,t(Su).
Finally, if the neighbourhood V of f is small there is pg > 0 such that
for every g € V and p €]0, pp[ the invariant manifolds W*(Py(g), g,,0)
and W*%(Pa(g), 9.,0) have a nondegenerate cubic tangency at ¢(g).

Proposition 5.4. Let f be a C®-diffeomorphism, Ay a nontrwial basic
set of f, and P a loteral fized point of Ay as above.

There are a neighbourhood V of f in Diﬂ'?’(M) and pg > 0 such
that for every g € V the two-parameter family of diffeomorphisms {g,.+}
satisfies
(1) the set

Ao = [(90) W\ {a(a)})

1€Z
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is nonuniformly hyperbolic for every 0 < u < pg and g,0 has a

nondegenerate cubic tangency at g(g),
(2) the set

Mgy = (gt OV)
1€

is hyperbolic and conjugate to Ay for every 0 < u < pg and t > 0.

As in the nonlateral case to prove Proposition 5.4 we will study the
first return map of g, defined on R,,.

5.4. The Poincaré return map in R,
Notice that here we are not concerned with the returns of those points
whose forward orbit meet {z; > 0} before intersecting R,: by con-
struction such points do not belong to the locally maximal set of g, ; in
W.

For g#)t, we consider the subset R:—,t of R, of points such that their
forward orbits return to R,, before leaving W. More precisely,

gl+(2) € Ry, and
gi7t(z) c W for every 0 < j <.

+
Ry, =

{z € R, such that there is i with

Given z € th the return time of z to Ry, n,(z), is defined by
ny,(z) = min{i > 0 so that gz7t(z) € R,}.

The Poincaré return map Tgmt associated with g, and R, is given
by
IJ'(Z) (

n
th R —>Ru, Zng,t Z)

By the comments above the image Tguyt(R;r,t) is in g, ({zs < 0}).
Given any g,¢, with g C3-close to f and p > 0, consider the set
= (115, (Biy)-
€L

Proposition 5.4 follows from the next lemma. This lemma plays the role
of Lemma, 3.6 in the nonlateral case.

Lemma 5.5. Under the hypotheses of Proposition 5.4, there are a neigh-
bourhood Vy of f and pg > 0 such that for every g € Vy,
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(1) Ay is hyperbolic for every u € (0, pug) and t €]0,1],
(2) Auq is nonuniformly hyperbolic for every p € (0, po).

From now on we fix a diffeomorphism g € V and we write T,; in
the place of Tgu, .- Since the orbit of any point z € RIt visit some fixed
sets before returning to R,, we write T, ; as the composition of some
transition functions we will define below:

Remark. Take z € R;r,t and p small. Define m = m(z) < n,(z) by
m—1
gis(2) € BY and | g, 4() C U,
i=0
where g'(z) € Rf’ if yr(2) > 0 and g;4(2) € Ry if y,(2) < 0.
Let v =r(z) be the biggest integer less than ny,(z) such that g;, 4(z) €
Rf. By definition, th(z) € Uy for all v <1 < ny,(z). Notice that there
are points with y,(z) > 0 and m =r.
For every z € R/"Zt the forward orbit {z,... ,gZ”é(z)(z)} splits as fol-
lows:
Ty (%) = gui 0 9" 0 gF&) 0 g (2),
s(z)=nu(z) —r—1, and
k=Fk(&z)=r—m,

see the figure below.

Ry
Ry
R — gu,0 k
N S| 2R j g
g \_
{ q P
%

Figure 8
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The proof of the lemma follows essentialy as in the nonlateral case.
We will exhibit a (7}, ;).-invariant expanding conefield in R:,t (the un-
stable conefield) and a (T, 1),-invariant expanding conefield (the stable
conefield). The proof will involve 6 conefields which are expressed in
different coordinates. So for clarity, C(w) will mean that the conefield C
is given in the w-coordinates. Now, let us sketch the construction of the
(1,,+)+-invariant unstable conefield.

(1) We will begin with a conefield Ci(z,,y,) in R, coinciding with
Cu(z,y) in Lemma 5.3. We will verify that Cj is contained in a
conefield Co(x1,y1) with equivalent size.

(2) Using the linearity of g, in U in the (21, y1)-coordinates, we will
construct a conefield C3(z1,¥1) in Rf such that the derivative of the

+

transition gm(z) from R, to Rf maps Co into Cs.

(3) By the hyperbolic behaviour of g in W, the derivative of the transi-
tion ¢*(#) from Riﬁ to Rf maps Cg into Cs(z1, y1) = {|v1| < |z1|-|v2l}-
(4) From the linearity of g in Uy, after a change of coordinates, we will

get that (gz(z))*(C5) is in the conefield Cg(zs,ys) in S, defined as C,

in Lemma 5.3.

(5) Finally, Lemma 5.3 will imply that (g.:).(Cs) C C1. That will give

the (1), ).-invarianee of C;.

Next, we fill the details in the outline of the proof of the lemma
above. This proof will follow along the ideas of the proof of Lemma 3.6.
So we will just emphasize the differences between the lateral and the
nonlateral cases.

First step: conefields in R,,.
Let Ci(z,,yr) be the conefield on R, which is the image by the linear
map (z,y) — (0 -z, A-y) of Cuy in Lemma 5.3:

o™t N B

“|v2l, Y 7é0

C1(xr,yr) = {(v1,v2): |v1| <

0 . .
and —— are colinear, there is a constant k| independent of
Lo T .

Since
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1 with C1(z) C Ca(z), where

kq
t+|y2\

Co(x1,y1) = {|u1] < - |val, lya| # 0}

Second step: transition from R, to Ri‘.
In RT consider the conefield C3

Cs(@1, 1) = {|v1l < ko~ p-|za] - val},
where ko > 0 is some fixed constant we define below.

Claim 1. There is ko > 0 so that (gm(z))*(Cg(z)) CCs (gm(z) (2)) for every
A R;_A‘_,t

Proof. Let m = m(z) and g;'(z) = (z1(g,;'(2)), y1(g,’ (2))) = (&1,91)-
From the definition of m and the linearity of f one gets constants such
that

k307" < |21] < ka - |oT"] and ks < [AP] - [y2(2)] < ke (5.7)
Take a vector (w1, w2) = (¢™)«(v1,v2), (v1,v3) € Ca(2). From (5.7)

ki-p-o™

- (wa| < ko p- |21 |wal,
o] ol

lwy | <

for some constant k9 > 0. Now the proof of the claim is complete. O

Third step: transition from Ry to Rf.
If r = r(2) # m(z) = m, we split the orbit of z as follows.

Consider the rectangle D that is equal to [o - zg,xg] x [—1,1] for
some zg in the (x1,y1)-coordinates. Take j = j(z) maximum so that
gZﬁ‘j'J( z) € D and m+j < ny(z). Pick a conefield C4 of constant size, say
kg, in D. Due to the hyperbolicity of g on W, one has (¢7).(C3(g™(2))) C

C4(g™ 1 (2)) for small p. See the figure.
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Figure 9

Consider the conefield C5(z1,y1) = {|v1| < |z1] - |va]}. Clearly, if u is
small C5(z) contains C3(%). In particular, C3(¢"(2)) C C5(g"(2)) if r = m.
Claim 2. Let h = h(z) = r(z) — m(z) — j(z), where j(z) is defined as
above. There is pug > 0 such that

(g™ (Calg™H(2)) C C5(g" (2)),
for every 0 < p < .
Proof. Let

(&1,91) = (@1(g™ 7 (2)), y1 (g™ T (2))).

Define v > 0 by |o| = |[A7Y|. Given v = (vy,v9) € Ca(g™ 7 (2)) let
w = (w1, ws) = (¢").(v) = (6"v1, \Pvg). Notice that nu(z) —m(z) — j(z)
is uniformly bounded. Thus |Z1| < k7 - p for some k7 > 0. As in the
claim above one gets positive constants kg and kg with

wi || . h "
— < kgt < kg-|T1l (o™ <kg-lZ1] 1.
Now the claim is obvious if p is small. O
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Fourth step: transition from R{L to S,.

Define the conefield Cg in S, coinciding with C,, in Lemma 5.3, i.e.
a - |z

CG(CESays) = {‘Ul| <

I =n,(z) — 7 —1is uniformly bounded,

1
- |val}. Since 1 << — if p is small and
©

(0).(C5(9"(2)) C (Calg™ D) L(2))). C

Final step: transition from S, to R,.
By the definitions of C1 and Cg and Lemma 5.3, one has

(900)-(Ca(g™ D1 (2))) < Cutgi ' 2)).
Then, the (7}, ;).-invariance of Cy follows from Claims 1-2. O

In the sequel we fix 4 > 0 such that Claims 1-2 hold. Now, we
prove the expansion of the vectors in C; by (7,:).. Notice that it is
equivalent to see that the return map in S,, say Tu,t = g;% ol o0
9ut, expands the vectors of the (1), ;).-invariant conefield Cg. Since the
calculations for the transition from S, into itself are easily understood
than the transition from R, into itself, let us consider Tmt instead of
T, Asin the nonlateral case, the result follows from the expansion of

the vertical component of the vectors in Cg by (7},¢)., see Claims 7 and
8 in Section 3.4.

Claim 3. There is pg €]0, 1] such that for every p €]0, uo] and every
z € S, such that TW is defined one has:

|vs((Tp)« (W) 2 2+ |vs(u)| for every u € Co(2),

where vg(u) is the vertical component of u in the (xs,ys)-coordinates.

Sketch of the proof. Take u = (hs(u),vs(u)) € Cg(z) with |vs(u)| = 1.
Since g,,; is a diffeomorphism and w = (gu¢)«(u) € Ca(gu(2)), there

is k > 0 (independent of p and z) such that |vy(w)| > & - @, where
1

71 = y1(gu(2)). Now, gfﬁjl(z) is in RE. Thus, [\™ - ;1] > k' for some
constant &' > 0 independent of i and z. Then, the vertical component
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v1(@) of & = (gl’zfl)*(u) satisfies

_ ATk zk-kﬁ"
7 1

|v1 (@)

To end the proof of the claim, just remark that if g is small, then the
vertical component v1(#%) is arbitrarily large. Hence, the derivative of
the transition from Rf to S, expands such a vertical component. O

The proof of the existence of a (1), ;).-invariant expanding unstable
conefield is now complete.

Now, we are left to construct the stable bundle. For this we consider
the return map T, L of fu Lin R,,. We take the stable conefield C| as
the complementary of C1. The (T}, 1y, -invariance of Cy follows from the
(Ty)s-invariance of C;. So it remains to show that (7}, 1y, expands the
vectors in Cy. For this just observe that the complementary of C,; in
Lemma 5.3 is a conefield hC_;?t with size equal to the size of 5M7t, where
the coordinate z is in the place of y. Conversely, the complementary
of C,t is a conefield C},, with size equal to the size of C,;. Now the
expansion follows as in the unstable case.

The proof of Lemma 5.5 is now complete. O

5.5. End of the proof of Theorem B

The theorem follows arguing as in Theorem A. We recall that in the
lateral case the codimension of the submanifold C; is 2 instead of 3.
Now let us outline the construction of Cy.

Take a C*°-diffeomorphism f with a nontrivial basic set A; as in
Proposition 5.4. Consider a diffeomorphism fy derived from f by the
deformation Section 5.1, i.e. fo = fo0,, where # € D. Since from now
on p is fixed, let us omit it.

Pick any ¢ in a small C3-neighbourhood & of fp. Denote by P, the
continuation of the fixed point P of f, by A; and o, the eigenvalues
of g at Py, and by (zi4,¥i4) the linearizing coordinates of g in the
neighbourhood U; of P, i = 1, 2. Recall that these coordinates depend
C3 on g.
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Denote by R, the connected component of

{2 € Uy NUs, (22,4(2), 11 4(2)) € [-1, 1]}

containing ¢(g). Similarly, S, is the component of ¢(g) in {2z € U1 N

Ua, (21 4(2),y2,4(2)) € [-1, 1}2}. In R, the vector field is given by
Y2,9
0 0 0
2) = Xg(2) 7 + 64(2)=—.
ayQ’g( ) Xg( )81’179 g( )8y]_,g

For each zp € [—1,1] consider the function A (y) = d¢(x0,y). If € is
small there is a unique x4, nearby 0 so that Agg has a unique zero at,
say, Yg, see the figure.

Figure 10

Define functions v, g: £ — [—1,1] by v(g) = 4 and 0(g) = y4. Since
the coordinates (x4, yi,g) depend C? on g, the functions v and g are C2.
Hence

v:€ = R% (9) = (v(g), e(9))
is also C2. Define
Ty = {7 1(0,0}N€E.
By construction, every g € T’y has a (nondegenerate) homoclinic cubic

tangency related to Fj.
Arguing as in Lemma 4.1 one has

Lemma 5.6. The map v is a submersion at fo. In particular, Ty is
submanifold of codimension 2 of Diff>(M).
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Now Theorem B follows from the arguments in Section 4 (see Lem-
mas 4.1-5).
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