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Abstract .  We show that the loss of hyperbolicity of an Anosov diffeomorphism of the 
torus T 2 can be produced by a cubic tangency at a heteroclinic point. Such a first 
bifurcation is g~neric for 3-parameters families of diffeomorphisms. Our construction 
may also be applied to any basic set A of a surface diffeomorphism. Moreover, if the 
point q of cubic tangency corresponds to a lateral point of A then the bifurcation is 
generic for two parameters. In this case the point q may be a homoclinic intersection. 
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Introduction 
One of the basic problems in bifurcation theory is to unders tand ex- 

plicitly how structural ly stable systems become unstable. So far the 

examples for which such a loss of stability is unders tood fall into one of 

the two categories: 

(1) loss of hyperbolicity: one of the periodic points fails to be hyper- 

bolic (or some new nonhyperbolic periodic orbit is created) by an 

elementary bifurcation (saddle-node, flip or Hopf), and all other pe- 

riodic orbits are hyperbolic and their invariant manifolds intersect 

transversely, 

(2) loss of transversality: all periodic orbits are hyperbolic and their in- 

variant manifolds meet transversely except along one orbit. Then we 
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100 CH. BONATTI, L.J. DIAZ AND E VUILLEMIN 

say that  f exhibits a homoclinie or heteroclinic tangency. For surface 

diffeomorphisms Palls and Takens conjectured that  such (nontrans- 

verse) intersection is generically quadrat ic  and associated to a lateral 

(see definition below) periodic point, see [PW]. 

Related to this conjecture, our aim in this paper  is to unders tand 

bifurcations of low eodimension of Anosov diffeomorphisms of the two 

dimensional torus T 2, or more generally of hyperbolic sets of surface 

diffeomorphisms. 

Since Smale ([Sm]) it is known that  there is a submanifold of codi- 

mension one (in the space of diffeomorphisms) in the boundary  of the 

Anosov systems consisting of diffeomorphisms with a saddle-node. To 

get such a submanifold one considers the splitting of a hyperbolic pe- 

riodic point of an Anosov diffeomorphism into a saddle and a source 

via a generic saddle-node bifurcation. Under suitable hypotheses, after 

such a bifurcation one gets a hyperbolic diffeomorphism (so-called De- 

rived from Anosov diffeomorphism, see [W]) with a source and a global 

transitive at tractor.  

Now the question of the existence of diffeomorphisms exhibiting ho- 

moclinic or heteroclinic tangencies and lying in the closure of the Anosov 

ones arises naturally. 

Heuristically, one is led to believe that  such a tangency could not 

be quadratic.  This can be seen as follows: On one hand, Anosov dif- 

feomorphisms have global invariant stable and unstable foliations which 

are transverse. On the other hand, if one deformes by an isotopy these 

foliations to obtain a tangency, one gets a point in which the foliations 

are tangent but  topologicaly transverse, and so (assuming enough differ- 

entiability) the tangency is of odd order. We observe that  in this paper 

we do not deal with the case in which the invariant foliations are not 

globally defined at the bifurcation. 

In the case of Anosov diffeomorphisms our results can be formulated 

(avoiding technical details) as follows: First,  denote by Diff3(T 2) the 

space of C3-diffeomorphisms in the two-dimensional torus T 2 endowed 

with the usual topology. 
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TheoremA.  Let f be any Anosov diffeomorphism of the torus T 2. There 

exists a submanifold C of Diff3(T 2) of eodimension 3 contained in the 

boundary of the Anosov diffeomorphisms such that: 

(1) Every diffeomorphism g E C has a heteroclinie cubic tangency asso- 

ciated to hyperbolic periodic points, 

(2) Every 3-dimensional submanifold E C Diff3(T 2) transverse to C at 

some go contains a smooth a r c  {gt}tc[O,1] such that, for any t > O~ 

9t is an Anosov diffeomorphism isotopic to f (within the class of the 

Anosov diffeomorphisms). 

We say that  the submanifold C satisfying (2) in the theorem is well 

located in the boundary of the Anosov diffeomorphisms. 

In view of the theorem, a natural question is to determine if the 

g E C are topologically conjugate to the Anosov diffeomorphism f .  

To give an intuitive explanation of why the natural codimension of 

the bifurcation is 3 we only need the invariant foliations induced by 

the dynamical systems. Given two global transverse foliations the cre- 

ation of a tangency by an isotopy of the foliations is a phenomenon of 

codimension 1. This first tangency can not be quadratic and is gener- 

ically cubic. Moreover, the tangency is a priori associated to any pair 

of leaves. In our construction the tangency is related to two prescribed 

leaves of the foliation: the stable and the unstable manifolds of some 

periodic orbits. In this way we gain two new restrictions, bringing the 

codimension of the bifurcation to 3. 

Our construction also applies to any surface diffeomorphism f having 

a hyperbolic basic set A f: by a generic bifurcation of codimension 3, one 

creates a cubic tangency between the stable and unstable manifolds of 

two prescribed (different) periodic orbits of A/. 

In [NP], Newhouse and Palis proved that  any basic set Af of a surface 

diffeomorphism f (except if f is Anosov) has a lateral point. Roughly 

speaking~ a lateral point P is a point of the basic set Af such that  Af 

accumulates on the local stable/unstable manifold of P from one side 

only. These lateral points are in the unstable (or stable) manifolds of 

finitely many periodic points. 
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Let q be a lateral homoclinic point and consider a deformation of 

f by an isotopy creating a homoclinic cubic tangency at q. Since q is 

lateral the points at one side (say the right) of (for example) the local 

unstable manifold of q (Wloc(q)) do not belong to the locally maximal 

set. Thus to control the hyperbolicity of the diffeomorphisms before 

the creation of the tangency it is enough to focus our at tent ion on the 

points at the left of Wloc(q). This allows us to per turb  f to obtain a 

nondegenerate cubic tangency: all the turning points of the per turbed 

unstable foliation stay at the right of Wloc(q). Thus we get a bifurcation 

of codimension 2. 

T h e o r e m  B. Let f be a diffeomorphism defined on a surface M and 

A/ a basic set of f different from M.  There exists a submanifold Cz 

of Diff3(M) of codimension 2 in the boundary of the set of hyperbolic 

diffeomorphisms satisfying: 

(1) Every diffeomorphism g E C~ has a homoclinic cubic tangency asso- 

ciated to a lateral periodic point, 

(2) The submanifold Ce is well located: every 2-dimensional submanifold 

E C Diff3(M) transverse to Ce at some go contains a smooth arc 

{gt}tc[o,1] such that, for any t > O, 9l is isotopic to f (within the 

class of hyperbolic diffeomorphisms) and has a basic set that is the 

continuation of A f . 

Related to our results Lewowicz exhibited in [L] a class of transitive 

diffeomorphisms at the boundary  of the Anosov ones, that  do not satisfy 

the strong transversality condition: each diffeomorphism is conjugate to 

an Anosov one and has a nonhyperbolic fixed point P so tha t  its stable 

and unstable sets exhibit a cubic tangency at P itself. 

In view of all these results let us pose some questions. To state the 

first one let us observe that  to to prove Theorem A we use estimates 

on the products  of the eigenvalues of the periodic points P1 and P2 

involved in the creation of the heteroclinic cycle, see Proposition 3.5 for 

details. Actually, each inequality is the converse of the other one, thus 

they do not hold when P1 = P2 (i.e. in the homoclinic case). So the 

first question is: 
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Quest ion 1. Is there a submanifoId of codimension 3 in the closure of 

the Anosov diffeomorphisms consisting of diffeomorphisms with a cubic 

homocIinic tangency? 

In our construction an essential property  of the point q of cubic 

tangency is that  it is nonrecurrent:  its ~ and a-limit sets are periodic 

orbits. Thus a natural  question is 

Quest ion 2. Construct arcs of diffeomorphisms (of low codimension) 

bifurcating from Anosov systems through a tangency between invariant 

manifolds at some point with a dense orbit. 

Finally, there is the natural  problem: 

Quest ion 3. Is there a submanifold C in the boundary of the Anosov 

diffeomorphisms consisting of diffeomorphisms having cubic tangencies 

such that the codimension of C is (strictly) less than 37 

We end this introduction by saying a few words about the orga- 

nization of this article and the main steps of our proofs. The precise 

s ta tements  of results are in Section 1. 

On one hand, the proofs of Theorems A and B (corresponding to 

the nonlateral  and lateral cases, respectively) are conceptually similar. 

On the other hand, the Anosov case presents some extra technical diffi- 

curies.  So we first give all the details of the Anosov case (see Sections 

2-4). In Section 5 we briefly explain how to get advantage from the 

laterality in order to decrease the codimension of the bifurcation. 

The s tructure of the proof in the Anosov case is the following. In 

Section 2 for each # > 0 we define a family of diffeomorphisms {0t,~} of 

the square [ -# ,  #]2 so that  01,~ is the identity. Moreover, the image by 

00,u of the vertical foliation in [ -# ,  #]2 has a unique degenerate cubic 

tangency with the horizontal foliation at the origin. We estimate the ac- 

tion of the derivative of 0~,u on a conefield around the vertical direction. 

In Section 3 given a heteroclinic point q of an Anosov diffeomorphism f 

we per turb f to get a cubic tangency at q. More precisely, using a chart  

at q we consider the family of diffeomorphisms f~,~ = f o Ot,u. Then f0,u 

has a heteroclinic cubic tangency at q for each # > 0. To see that  ft,u is 
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hyperbolic for t > 0 we combine the hyperbolici ty of f (existence of in- 

variant conefields) with the est imates in Section 2. Finally, in Section 4 

we show that  the diffeomorphisms of the form 9o00,~, where g is C3-close 

to f ,  define locally a submanifold of codimension 3 of diffeomorphisms 

with a cubic tangency in the boundary  of the Anosov diffeomorphisms. 

Finally, let us observe that  simultaneously and independently H. 

Henrich has announced similar results for the boundary  of the Anosov 

diffeomorphisms, see [H]. 

1. Basic def in i t ions  and s ta tement  o f  the results 

Before presenting more precisely our results let us recall some definitions. 

An f- invariant  set A is hyperbolic if there exist a continuous splitting 

of the tangent  bundle over A, TAM = E s @ E u, a constant  l ,  0 < 

t < 1, and a norm I'1, such that  for every x E A there is n so that  

E ~ E s f * ( x )  C f(x)' (f-1)*(EzU) C Ef_l(x), I(P),(v)l < alvl if v C E s, and 

I(f ~)*(v)l < al~l if v E E~, where f .  denotes the derivative of f at x. 

An f-invariant  (a priori noncompact)  set A is nonuniformly hyper- 
bolic if there are a continuous splitting of the tangent bundle over A, 

TAM = E s | E u, a constant  l ,  0 < A < 1, and a norm I1, such that  for 
E S E ~ every x E A there is n(x) so that  f , ( x )  C f(x) ( f -1)*(E~)  C E ~ 

' f - l ( x  ) ' 

_< if  v and <_ t lv l  if v 

We define the stable, W~(x), and unstable, WU(x), sets of a point x 

by W~(x) : {y E M: d(f~(x) , f~(y))  ~ 0 as n --+ +oc} and W~(x) : 
{y E M: d(f~(x), f~(y)) --+ 0 as n --+ - o c } ,  where d denotes the distance 

induced by the norm I'[- 

A point x is nonwandering if for every neighbourhood b / o f  x there 

exists m , m  # O, such that  f'~(lg) N U r 25. These points form the 

nonwandering set ~(f) .  We say that  a compact  subset  AS of f t(f)  is 

a basic set if it is hyperbolic, transitive (i.e. it has a dense orbit) and 

locally maximal (i.e. there exists a neighbourhood 5/ of A/ such that  

Af = nz  f~(N)).  Basic sets are locally stable, meaning that  there is a 

neighbourhood ~A? of AS such that  for every diffeomorphism g all-close 

to f the set Ag = nzgi(]/Y) (called the continuation of Af) is a basic 
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set conjugate to Af  (i.e. there is a homeomorph i sm h from A/ to Ag so 

tha t  h o f (x)  = 9 o h(x) for all x ~ A f). We say tha t  a basic set Af is 

nontrivial  if it contains more than  one orbit. 

A diffeomorphism f defined on a compact  manifold is Anosov if 

its nonwander ing set f~(f) is hyperbolic and coincides with the whole 

manifold. We observe tha t  the only surface suppor t ing  Anosov diffeo- 

morphisms is the torus. 

J 
f 

C 

Figure 1 

We are now ready to state precisely our results. 

T h e o r e m A .  Let M be compact surface and f be a C3-diffeomorphism on 

M with a nontrivial basic set Af = Aiez i f (W) ,  where VV is a neighbour- 

hood of A/.  Denote by 7-if(M) C Diff3(M) the arc-connected component 

o f f  in the set of diffeomorphisms g for which Ag = Nicz 9i(W) is a basic 

set. 

Let q E A/  be a point such that q E Ws(P/ ,  f )~W~(Q/ ,  f )  for some 

hyperbolic periodic points Pf  and Q f of A f with disjoint orbits. 

Then there is a submanifold C C Diff3(M) of eodimension 3 such 

that every 3-manifold E C Diff3(M) transverse to C at go contains an 

arc {gt}tE[0,1] with gl = f such that 

(1) 9~ E 7-tf(M) for every t El0, 1], 

(2) the continuations {q(gt)}tc]O,l] of the point q form a path in M that 

converges to the point q(go). Moreover, the point q(90) is a (cubic) 

nontransverse intersection between the invariants manifolds of the 

continuations Pgo and Q~o of p f  and Q f ,  respectively, 
- i (3) the set 190 = A < z g 0 ( W  \ {q}) is nonuniformIy hyperbolic. 
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Let f be a surface diffeomorphism with a nontrivial basic set A/. 

We say that  P E Af is a lateral point of Af if for every small enough 

neighbourhood b /of  P either (b/\ W]oc(P, f)) or (5/\ W~oc(P, f)) has a 

connected component that  does not intersect Af. If Af is different from 

the ambient manifold the set of lateral points is nonempty. Newhouse 

and Palis proved that  the set of lateral points of Af is contained in the 

union of the invariant manifolds of finitely many lateral periodic points, 

see ENP]. 

Theorem B. Let M be a compact surface and f be a C3-diffeomorphism 

on M with a nontrivial basic set AI = Aicz fi(}3?), where )A2 is a neigh- 

bourhood of AI, and AI is different from M.  Denote by 7-if(M) C 
Diff3(M) the arc-connected component o f f  in the set of diffeomorphisms 

g such that Ag = Ni z gi(W) is a basic set. 

Let q E A f be a point such that q E Ws(Pf ,  f )MW~(Pf,  f )  for some 

lateral hyperbolic periodic point Pf.  

Then there is a submanifold de c Diff3(M) of codimension 2 such 

that every 2-manifold E C Diff3(M) transverse to de at go contains an 

arc {gt}te[0,1] with 91 = f such that 

(1) gt E Hs(M) for every t E]0, 1], 

(2) the continuations {q(gt)}te]0,1] of the point q form a path in M that 

converges to the point q(go). Moreover, the point q(go) is a (cubic) 

nontransverse intersection between the invariants manifolds of the 

continuation Pgo of Pf,  
i (3) the set Ag o = Niczgo()A2 \ {q}) is nonuniformly hyperbolic. 

We observe that  Theorem B can also be stated in the heteroclinic 

case, for that  one takes the two points in the cycle being lateral of the 

same type, i.e. the stable (resp. unstable) manifold of the hyperbolic 

set does not accumulate on both sides of the stable (resp. unstable) 

manifolds of the two points in the cycle. 

2. Famil ies  o f  local  d e f o r m a t i o n s  

We deal with diffeomorphisms 0 defined on the cube [--1,  1] 2 • [0, 1] 
verifying: 
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(H0) O(x, y, t) = (Or(x, y), t), where 0t is a diffeomorphism of the square 

[-1, +112 depending smoothly on t such that  01 is the identity. 

In other words, 0 is an isotopy between 00 and the identity. 

For each t _> 0 let 

O 0 0 
(Or).( ) = at(x,y)" Ox + bt(x, y ) .  Oy' 

o o (od.( ) = e ~ ( x , y ) . ~  + d~(x ,y ) .~y .  

The diffeomorphisms 0 also satifies the following hypotheses: 

(H1) For every t the map Ot is the identity on a neighbourhood (inde- 

pendent  of t) of the boundary of the square [-1, 1] 2, 

(H2) 0o(O, o) = (o, o), 
(H3) do(0,0) = 0, for every t the function dt is strictly positive on 

0 ([-1,1] 2 \ {(o, o)}) and ~d~(0, 0) > 0, 
(H4) do(x, y) is a Morse function at (0, 0). 

We denote by (3 the set of C3-diffeomorphisms defined on the cube 

[--1, 1] 2 • [0, 1] satisfying the hypotheses (H0-H4). 

Figure 2 

Lemma 2.1. For every 0 C 0 there are a C3-neighbourhood 79 of 0 in 

@ and strictly positive constants a, /3 and 7 such that for  every {3 in 7? 

and (x ,y , t )  e [-1,1] 2 x [0,1] we have 

(Od,(6(x, y)) a ~(bt(x, y)), 
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where Ct and Ct are the eonefields defined on [-1, 1] 2 by 

C~(x,y) = {(vl,v2): Ivll < Oz' x 2- Iv21}, 
/3 

~ t ( x , y )  {(Vl,V2): IVll < t + y  ~ " ]V2[}. 

0 
Proof.  Since do is a Morse function at (0, 0), ~d~(0,  0) > 0 and dt is pos- 

itive outside of (0, 0) (see (H3-H4)) there are strictly positive constants 

Oz,/3' and 7 with 

dt(x, y) >_ 7" t + [bt(x, y)[. Oz. x 2 +/3'. ~2, where Or(x, y) = (~, ~). (2.1) 

Take a vector (v!, v2) in the cone Ct(x, y). By definition, 

(0~),(Vl, v2) = (vl, v2) = (at(x, y ) .v l  +ct(x, y)'v2, bt(x, y) .v l  +dt(x,  y).v2). 

Since (vl, v2) belongs to Ct(x, y) one has 

IV1[ < Oz" X 2-  Iv2l. (2.2) 

Now, from (2.1 2), 

lv2l = [b~(x,y) .v l  + d t ( x , y ) ,  v21 

>_ Idt(x,y)l �9 Iv2l - Ibt(x,y)l . Ivll >_ (2.3) 

_> (Idt(z, y)] - Ib~(x, Y)I  Oz x2) �9 Iv2] _> ( ' y  t + 3 "  ~2).  Iv21. 

On the other hand, from (2.2) there is/3" > 0 with 

I~11 I~tCx, y) . v l + b t ( x , y ) v z [  _</3". [v2I V ( V l , V 2 ) E C t ( x , y ) .  (2.4) 

Now, by taking 
/3,,/3,, 

from (2.3-4) it follows that  (Ot),(Ct) C ~t. 
To get the lemma it is enough to increase /3" and to shrink Oz, /3' 

and ~/ to guarantee (2.1) and (2.4) for every 0 in some neighbourhood 

7~ of 0. [] 

Associated with the arc of diffeomorphisms 0t above we define the 

two-parameter family of diffeomorphisms {O#,t}{tt>O,tE[O,1]} by 

o~,t: [-~, #]2 __+ [_~,  ~]2, o~,~(x, y) = ~.  Or( z-, Y-). 
# P 
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L e m m a  2.2. For every 0 in D take the family of diffeomorphisms {Omt}~,t 

above and the conefields {C,,t}u,t and {Cmt}mt , # > 0 and t E [0,1], 

defined on [-#,  #]2 by 

oz. X2 O#,t(x,y) : {(Vl,V2)I Iv~l < - �9 Iv21}, ( ~ , y )  c I - ~ , ~ ] < } ,  
# 

u2 .  
~, ,~(~,  y) = {(va,v2): [vii < ~2 . t +  lyl 2 " Iv21} , (x,y) c [_p,p]2 ,  y r 0}, 

where c~ and .~ are as in Lemma 2.1. Then 

(O,,t).(Cu,t(x,y)) C Cmt(O,,t(x,y)) for all p C]0, 1[ and t E [0, 1]. 

Proof .  Given a point  z and c > 0 define the cone of size c at z, C(z, c), 

by 

I~(Z,C) ---- {(Va,V2): Ivll < e-Iv21}. 
Let h~ be the homote thy  of ratio ~c on [-1, 1] 2, i.e. h~(x, 9) = (t~.z, t~.y). 

Take z = (z(z), y(z)) and observe tha t  

~, e. x(z)2) = (hl) .(C(z,  ~ .  x(z)2)) =c( , : z = (x (z )v (z ) ) .  (2.5) 
=C(z',,. e. x(z')2), " " " 

Write ~ = O(z'). Since # is less than  1, by L e m m a  2.1 

5 (~t).(C(z', ~.  ~ .  z(z')2)) c (Od.(C(z', e .  z(z')2)) c C(~, t + y(~)2)" (2.6) 

Arguing as in (2.5) one has 

(hp).(d(~, t + y(y)2)) C C(~, #2 .  t + y(~)2)' z = z .  #. (2.7) 

From (2.5 7) and the definition of 0u,t one has 

(O,,d.(C,,~(z)) c ~,,t(O,,~(z)). 

This  completes the proof  of the lemma. [] 

We close this section by making the following remark  whose proof  is 

immediate:  

Remark  2.3. In the square [-i, 1] 2 consider the symmetry s(x,y) = 

(y,x). Thenso0 -losC@. 
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In what follows the main step of the proof is the construction of 

the invariant stable and unstable conefields for the diffeomorphisms we 

consider. The simmetry between the roles of 0 and 0 -I in the remark 

above will allow us to restrict our attention only to the construction of 

the unstable conefield. 

3. Heteroclinic cubic tangencies 
Let f be a dO~ defined on a compact boundaryless sur- 

face M having a nontrivial basic set A/. For any pair of points z and 

y in Af one has WS(z, f)chWU(y, f) r ~. Take any q E AZ so t h a t  

q E Ws(P1, f)/nW~(P2, f), where P1 and P2 are two periodic saddles of 

Af with disjoint orbits. In this section we construct a two-parameter 

family of diffeomorphisms {fu,t}{u>o,t~[0,1]} isotopic to f and such that 

fu,t coincides with f outside a neighbourhood of size # of q (thus P1 

and P2 are hyperbolic periodic points of fu,t). Moreover, for small # 

the invariant manifolds W~(P1, fu,o) and Wu(P2, f~,o) have a cubic tan- 

gency throughout the orbit of q and fu,t has a basic set conjugate to A/ 

for every t El0, 1]. In other words, each fu,0 is a diffeomorphism with 

a heteroelinic cubic tangency which is the first bifurcation of the arc 

{f#,t}. 

3.1. Semi-local properties 
In this paragraph we aim to prove some semi-local properties of the dif- 

feomorphisms we consider (see Lemma 3.1-2 below). The perturbations 

fu,t of the diffeomorphism f we consider are far (in the Cl-topology) 

from f.  So it is not clear a priori that the locally maximal set of fret in 

14/is compact  (neither if such a set is hyperbolic). However, the region 

were the perturbations are far from f is contained in a very small neigh- 

bourhood of A/. This enables us to prove that the new locally maximal 

set in }4/remains compact. Moreover, when such a set is hyperbolic it is 

conjugate to Af. These preliminary considerations hold trivially when 

the diffeomorphism f is Anosov (i.e. A / =  M = T2). 

Let f be as above and )/V an isolating compact neighbourhood of 
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the basic set Af, i.e. Af = •iezfi(W) and Ag •iczgi(W) is a basic set 

conjugate  to Af for every diffeomorphism g Cl-nearby f .  

We can choose W and a ne ighbourhood Y of f in the C3-topology 

such tha t  there are a Riemannian  metric I1 It, a constant  p > 1 and 

continuous conefields C ~ and C S such tha t  for every g E F one has 

z C W n g  l(W) a n d v E C ~ ( z )  { 
g,(v) E C~(g(z)), 

for all 
[ II(g),(v)ll _> ,o. Ilvll, 

(3.1) Y 
( g - l ) .  (v)  CS(g-l(z)), 

for all z E W N 9(142) and v C CS(z)) 
E 

( II(g-1).(v)ll _> p .  Ilvll. 

Lemma 3.1. There are a compact neighbourhood Wo of Af contained in 

the interior of W and a C~ 0 of the restriction f l(w\wo) 

such that for every diffeomorphism g such that gl(w\Wo) belongs to 0 

= AiEz 9 (W) is contained in the interior of W. the compact set Ag 

Proof .  Take k so tha t  
i = k  

W1 = (-'] i f (W) 
/ = - k  

is in the  interior of W. Observe tha t  if z belongs to the  closure of 

(W \ W1) there is i(z) = i, ]i] _< k + 1, with if(z) ~ W and i f (z)  c 

( W \ W 1 )  for a l l 0 _ < j  < i i f i >  0, or for a l l 0 _ > j  > i i f i  < 0. Now, 

choose a ne ighbourhood 1420 of Af in the interior of 1421. 

By compactness  of the closure of (W \ W1) there is a ne ighbourhood 

O of f in Diff~ \ W0) such tha t  for each z E (W \ W1) and every 

0 < j < i (or 0 > j > i) gJ(z) ~ W O. Hence either gJ(z) ~ W (and 

then  z r Ag), or gJ(z) r (W \ 142o) (and then  gj+l(z)  remains close to 

fJ+l(z)), hence gi(z) r 14). Now the maximal  invariant set of g in lad is 

contained in WI.  [] 

From L e m m a  3.1 we get: 

L e m m a  3.2. There is a neighbourhood F of f in Diffa(M) such that for 

every 91 E F and every isotopy {gt}{t~[o,1]} from g = gl to go satisfying 
(1) co ,  
(2) At - Niezg~(W) is hyperbolic, 
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for all t, one has that the restriction gtlAg t is conjugate to f]Af .  

Proof.  For every t the set Ag t is hyperbolic and locally maximal in 

l/Y. Thus there is ct > 0 such that  Ag t is conjugate to Ags for all 

s E]t - ct, t + ct[. So A9 t is conjugate to Ag~. Now, if F is small enough, 

Ag~ is conjugate to Af. Thus, Ag t is conjugate to Af. [] 

3.2. Choice o f  coordinates 

Consider a diffeomorphism f as above. For simplicity we suppose that  

the points P1 and P2 are both  fixed. To construct  the diffeomorphisms 

f~,t we begin by taking appropriate coordinates around the points P1, 

P2, q and 0 = f - l ( q ) .  We assume that  f is linearizable at P1 and P2 and 

that  the linearizing coordinates can be taken depending continuously on 

a small neighbourhood F of f in the C 3 topology (for tha t  it suffices to 

demand a finite number of nonresonance properties on the eigenvalues of 

P1 and P2, see [St]) . We denote by (xi, Y0 such coordinates defined on 

a neighbourhood 5/i of Pi (i = 1, 2) independent  of the diffeomorphism. 

Here for notational simplicity we omit the dependence of the coordinates 

on the diffeomorphism. 

Given z E 5/i denote (xi(z),yi(z)) its coordinates. Then  xi(z) = 0 

(resp. yi(z) = 0) implies z E W]oc(Pi) (resp. z E Wloc(Pi)). Without  

loss of generality we can assume that  q and 0 are in/g2 N b/1. So in 

some fixed neighbourhoods of q and 0 the functions (x2(z),yl(z)) are 

coordinates. To avoid misunderstandings let (x~, y~) and (xr, y,) be the 

coordinates at 0 and q, respectively. The expression of any diffeomor- 

phisms 9 ~ ]2 in these coordinates is linear: 

Xr(9(z)) = or2" x~(z) and y,(9(z)) = AI" y~(z), (3.2) 

where Ai and cri denote the eigenvalues of g. at Pi , i = 1, 2. Note that  

I~i[ > 1  > Icr,il. Again, we omit the dependence of the eigenvalues on 

the diffeomorphism. 

For small r ,  g > 0 define the sets 

R~ = {(Xl,yt)  ~ ~1: I~I < ~ a~d W ~ [• (• "~))} c W, 
(3.3) 

R~ = {(x2,y2) c R2:x2 ~ [+~, (• .r))  and ly21 < 5} c w .  
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Figure 3 

Remark 3.3. There is 6 > 0 so that f o r  every g E F 

0 0 
- -  c C " ( z ) ,  c C~(z)  f o r  every z C R~  N l/V, i = 1, 2. 

Proof.  Observe that  the tangent space of the local unstable manifold of 

~ )  is in the unstable conefield. The first part of the P1 (spanned by Oyl 

remark follows from the continuity of C ~. The proof of the second part 

is similar, so we omit it. [] 

For every diffeomorphism g in F and sufficiently small # > 0 consider 

the square S# centered at 0 given in the coordinates (xs,ys) by S~ = 

[_#,/,]2. Notice that  the segments [ -# ,  #] • {0} and {0} • [ -# ,  #] are in 

the stable manifold of P1 and the unstable manifold of P2, respectively. 

Let R~ - g(S#) .  In the coordinates (xr, yr) we have from (3.2), 

R #  = [ - - 0 -  2 - /4, 0- 2 �9 /4] X [ - - A  1 ' /.t, A i " /~] C / " / i  (-I ~A' 2 . 

Now we are ready to define the arcs {gu,t}{t~>o, te[o,1] } for every g E )2 
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as mentioned above. 

3.3. The family of perturbations {9u,t} 
Notice that  for each pair (#, t) the two-parameter family of diffeomor- 

phisms {0~r in Section 2 defines a family of diffeomorphisms from Su 

into itself which is the identity on the boundary of S#. So the formula be- 

low defines a two-parameter family of diffeomorphisms {gmt}{u>0, t~[0,1]) 

g(x) if x r Su, 

gu,t(x)= ( 9 ~  u. 

Clearly, 9u,0(q) = q and the image g#,t(Su) does not depend on t. So 

R~ = g , ,o (S#)  = g # A s # ) .  

Lemma 3.4. By shrinking the neighbourhood )2 of f in Diff 3 (M) if nec- 

essary one gets #o > 0 such that for every g E ~) and # E]0, tto[ the 

invariant manifolds WS(Pl(g),gmo) and Wu(P2(g),gp,o) have a cubic 

tangeney at 0(9). 

Proof. Take #o > 0 small so that  for every # ~]0, #o[ all the nega- 

Live (resp. positive) iterates of the segment of Wu(p2, f)  A S# (resp. 

Ws(P1, f) N S#) through 0 are disjoint from S#. If l) is small enough 

this holds for every g C V. In the (x~, y~)-coordinates one has 

{o} • [ -~ ,~]  c wu(p2 ,g . ,o ) ,  o~,~([-~,~] • {o}) c w~(P l ,g . ,o ) .  

Now the lemma follows from the definition of Op,t. [] 

We are now ready to state the key result about the arcs {gp,t}. 

Proposition 3.5. Let f be a C ~176 of a compact boundary- 

less surface M having a nontrivial basic set A f .  Suppose that there are 

fixed points P1 and P2 of Af, P1 ~ P2, such that f is C3-1inearizable 

at P1 and P2 and the eigenvalues of f .  at Pi, denoted by Ai and cri, 

IAil > 1 > I~1, (i = 1, 2), satisfy IA 2. ~11 < 1 < 1,\2. (721. 
Then there are a neighbourhood 12 o f f  in Diff3(M) and Po > 0 such 

that for every g E 12 the two-parameter family of diffeomorphisms {gp,t} 

defined as above satisfies 
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(1) for  every 0 < # <_ #o Lhe set 

Xg., 0 = \ {q(g)}) 
iEZ 

is nonuniformly hyperbolic and g~,o has a cubic tangency throughout 

the orbit of  q(g) (the continuation of q), 

(2) for  every 0 < # <_ Po and t > 0 the set 

i Ag,,  = N(g. , t )  (W) 
i c z  

is hyperbolic and conjugate to A 9. 

To prove the proposition for # > 0 and t E [0, 11 we analize the first 

return map of g#,t in/~# and we show that  for small p > 0 this map is 

hyperbolic (uniformly if t > 0 and nonuniformly if t = 0). From now on 

we fix g and so we omit the dependence on g. 

More precisely: For p > 0 consider the subset R + of Rp defined by 

R + {z ~ R~ such that  i = g~,~(z) E R ,  and j , , t  g~,t(z) E }4; for every 0 _< 

j _ < i } .  
We remark that  the set R + is nonempty:  the set Af is transitive t~,t 

and q E A f, thus there are points of Af in / ~ .  In particular, there are 

points of Af in R~ whose forward orbit is contained in 142 that  return 

to R~. That  implies that  R + 

Given z E R,+,t the return time of z to R , ,  n,,~(z), is 

nt~ , t ( z  ) min{i > 0 such t h a t  g#,t(z)i E l~tL } .  

Note that  by construction g # , t  = g outside S~, so that  g~,~(z)i = g i ( z )  for 

all 0 < i < n#,t(z) - 1. Therefore n#,t(z) = nt~(z ) does not depend on t. 

Finally, the relation 

�9 + Tg~, t. R.,~ --+ R , ,  

defines the Poincard return map Tg~, t 

np ( z )  , , 
z ~ gp, t  I z )  

associated with 9#,t and R~. 

Proposit ion 3.5. follows from the lemma below which we prove in 

the next section. Let 

iEZ 

Bol. Soc. Bras. Mat., VoL 29, N. 1, 1998 



116 CH. BONATTI, L.J. DIAZ AND F. VUILLEMIN 

Lemma 3.6. Under the hypotheses of the Proposition 3.5 there are a 

neighbourhood 12o of f and #o > 0 such that for every 9 E 17o one has 

(1) for  every # El0, #o[ and t E]0, 1] the set h,,~ is hyperbolic, 

(2) for  every p E]0, #o[ the set Au, 0 is nonuniformly hyperbolic. 

3.4. Hyperbolicity of  the Poincar~ map Tgu, t: proof of  Lemma 3.6 
For the sake of clarity we first prove the l emma for the diffeomorphism 

f .  To prove the  hyperbolici ty of the Poincar6 re turn  map  Tf#,t = T~,t 

we shall write T~,t as composi t ion of several functions of the type  )'~,t. 

We use tha t  J~,t(z) = f i ( z )  for all 0 _< i < n~(z) and the fact tha t  the 

orbit of any z E R + must  visit some fixed regions we list below before # , t  

coming back to R , .  Recalling the definitions of R + and R (  (see (3.3)) 

one has immediat ly:  

U 

P~ 

Figure 4 

Remark 3.7. There is #1 > 0 such that for  every z E R + and # c]0, #1] 

there are positive integers m = re(z) and r = r(z)  for  which the forward 
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orbit {z, nu(z) ~,1 follows: "'" ,fu,t (zJS may be split as 

( m - l  i fro(z) E R~ and Ui= 0 f (z)) C/11, 
f'~+~(z) ~ R~, and 

i f (z)  E H2 for every m + r < i < n . (z) .  

Hence 

T~,t(z) = fu,to f ~(~) o f  ~@) o f~(~)(z)  where s(z) = nl%(Z ) -- 1 --r(z) --re(z). 

To prove the hyperbolicity of Tu,t we exhibit a (T.,t).-invariant ex- 

panding conefield in R+.,t (the unstable conefield) and a (T, 1).-invariant 

expanding conefield (the stable conefield) as above, see (3.1). Here we 

construct the unstable conefield. By Remark 2.3 this will imply the 

existence of the stable one. Our proof deals with the four different 

coordinates systems defined in Section 3.2 and six conefields. So, for 

simplicity, in the sequel C(cJ) means that the conefield C is expressed in 

the cd-coordinates. Before going into the details let us give the scheme 

of the construction of the (T~,t).-invariant expanding conefield: 

(1) We begin with a conefield Cl(X~., y~) o n / ~  coinciding with C,,t(z, y) 

as defined in Lemma 2.2. We exhibit a conefield C2(xl, Yl) on R~ < 

/gl containing C1. 

(2) By using the linear expression of f~,t in/11 we construct a conefield 

C3(xl, Y]) o n / ~ :  so that the derivative of the transition f,~(z) from 

R + to R{ maps 02 into C3. 

(3) Prom the hyperbolicity of f we get C4(x2, Y2) on R$ so that the 

derivative of if(z) from R~: to R~ maps C3 into Q4- 

(4) Having in mind that (in the @2,Y2)-coordinates) fu,~ = f is lin- 

ear, we prove that the derivative of if(z) maps C4 into a conefield 

C5 @2, Y2)- This conefield satisfies: 

(5) The conefield C5(z2, Y2) on S~ is contained in the conefield C6(zs, ys) 
defined exactly as Cu,t in Lemma 2.2. So Lemma 2.2 implies that 

(fmt).(C6) C C1. 
Clearly, (1)-(5) give the (Tu,~).-invariance of the conefield C1. Now 

we go into the details of our construction. 
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Remark .  T h r o u g h o u t  the  proof  of the  l e m m a  all the  cons tants  ki and  

ci we will in t roduce  do not  depend  on # > 0. 

First step: conefields on R~. 
Let C1 (xr, yr) be . the  conefield on R~ which is (in those coordinates)  the  

image by the  l inear map  (x, y) ~-~ (or 2 �9 x, )'1 " Y) of the  Conefield C,,t in 

L e m m a  2.2: 

9 3 
G(x~, y~) = ((vl, v2): Ivll < ~ f f l  A1 " / -t2. t + y2 " Ivsl) 

Claim 1. There exists a constant kl > 0 such that the eonefleld C2 defined 

on Ru by 

kl �9 #2 

C2(zI,Yl) = {(Vl,V2): Ivll __< ~2.  t + y~ " Iv21} 

contains C1. 

P roo f .  The  coordina tes  (x~, y~) on S~ satisfy xr(z) = x2(z) and  y~(z) = 

Yl (z). Hence O/Oxr and  O/OXl are colinear. Now the  claim follows f rom 

an easy calculation. [] 

Second step: t rans i t ion  f rom R~ to R E- 

Using the  coordina tes  (Xl, Yl) on R~: let 

C3(Xl,Yl) = {(Vl,V2): IVll _< ];2"/z2. Iv2l} �9 

Claim 2. There is a constant k2 > 0 such that for every z E R~+,t 

(f'~(z)).(C2(z)) C C3(f~(1)(z)). 

Proof .  Given a vector  v = (Vl, v2) in C2(Xl(Z), yl(z))  let 

(Wl, W2 ) : (f~,mt), (Vl ' V2 ) : (o_~n . Vl ' /~n .  V2). 

Thus 

Iwll = I~Fvl l  < I ~ l  kl./~2 I~1 / C 1 " / z 2  --IAr~l't.p2+yl(z) 2"1w21 <-IAr~ yl(z)  2 

The  definit ions of re(z) and  ~- (see 3.3) give 

_< IAT.  y l ( z ) l  = ly l( f~(z)) l  <_ IAll ~-. 

- - 1 ~ 2 1 .  (3.4) 

(3.5) 
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Now, by (3.4-5) and -All < 1 one gets k2 such that  

Iwll _< k2. IATI Iw21 _< ];2 Iw21. 
This ends the proof of the claim. [] 

Third step: the transit ion from R [  to R~ 

Define the conefield C4 on R~ = by 

C 4 ( x 2 , Y 2 )  = { ( V l , V 2 ) :  IVll ~ ] ;3" Iv2 l}  . 

Notice we can assume that  C4 contains the unstable conefield C~(z, e) in 

(3.1). Now, for each point z E R[ let 

r(z) = sup{i C N: if(z) E R~ and if(z) • Su for all 0 < j < i}. 

If the forward orbit of z does not meet R~: we let r(z) = oc. Having 

in mind that  the unstable foliation is transverse to the horizontal lines 

{yi(z) = ];} (Remark 33) ,  it follows that  

Claim 3. There exists a constant ];3 > 0 such that for every z C R~ with 
< oo 

(fr(~)).(C3(z)) c C4(ff(Z)(z)). 

Proof .  For every point z C R~: the vertical vector field O/Oy2 is con- 

tained in the interior of the conefield C ~ defined on W (see Remark 3.3). 

U?hus there exists #0 > 0 such tha t  the cone C3(z) = {(vl,v2): Ivll _< 

];2 9 Iv21} is contained in C~(z) for all # E]0,#O] and any z E R~:. On 

the other hand, for z E R~: the horizontal vector field O/Ox2 is in the in- 

terior of C ~ in (3.1) (see Remark 3.3). So it is transverse to the unstable 

conefield C ~. Thus there is a constant ];3 > 0 such that  for each z E R~: 

the cone C~(z) is contained in C4(z). Now using the (f) . - invariance of 

C ~ one has: 

(ff).(C3(z)) c (ff).(g~(z)) c C~(ff (z)) c C4(ff (z)). 

This completes the proof of the claim. [] 

Fourth step: transit ion from R~- to S~,. 
In S# define the conefield C5 by 

C5(x2, Y2) ---- {(Vl, V2): Ivll --< ];4" X2" [V2J}. 
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Given z E/g~: let 

s(z) = inf{i E N: i f (z)  r S~ and i f ( z )  E ~ for all 0 _< j _< i}. 

As above  we let s(z) = c~ if the  forward orbi t  of z does not  intersect  S , .  

Claim 4. There exists k4 > 0 such that .for each z ~ R~ 'with s(z) < oo 

one has that 
(fs(z)),(C4(z)) C Cs(fS(Z)(z)). 

P r o o f .  Take z E R ~  wi th  s = s(z) < cx~. Take v = (v l ,v2)  E 

C4(x2(z), y2(z)). Let 

(Wl,W2) (ff),(Vl,V2) = (cr~- Vl,/~ ~ -V2). 

Thus,  since [or 2 - A21 > 1, 

i ~ l  : Io-~. ~11 < 1~ �9 k3.1~21 < (141) 2 k3" 1~21. (3.6) 
- I ~ 1  

By definit ion of R~ ,  

1~21 " ~ -< [x2(z)l _< ~, 

therefore  

Ix2(fs@)(z))l = Icr~" x2(z)l > Io-~' (a2 .  r)l .  (3.7) 

So from (3.6-7) one has tha t  

I~ll  _< h .  Ix2(f~(~)/I 2 .  

This  implies the  claim. 

k3 
Iw2l, w h e r e k 4 -  [I l)'cr2" 7-)2" 

[] 

Fifth step: transition from ;~ to R#. 
To end the proof of Lemma 3.3 it remains to show that (fmt).(Cs) C Cl. 

For that consider the auxiliary conefield C6 defined in Su by 

ct 2 C6(x~,ys) = {(Vl,V2): Ivll < -- "xs " IV21}. 
P 

Claim 5. There exists Po > 0 such that Cs(z) C C6(z) ]or all # El0, #0] 

and z in S~. 

P r o o f .  The  coord ina tes  (xs, Ys) sat isfy x~(z) = x2(z ) and  ys(z) = yl(Z). 

Thus  the  vector  fields O/Oys and  O/Oy2 are colinear. Now the claim is 

clear. [] 
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Finally the  (T#,t).-invariance of C1 follows from the next claim. 

Claim 6. For every # El0, #0[ the conefield C1 defined on t ~  is (Ts, t) . -  

invariant .  [n other words, 

(T~,t) . (CI(Z))  = ~a.,~ ) . (CI(Z))  C Cl(f~,t (z)) = C l (T#r  

+ 
f o r  all # C]0, #0] and every z C R~, t. 

Proof .  The  Claims 1-5 imply ( f nu ( z ) - l ) . (C l ( z ) )  C C6( fnu(z ) - l ( z ) ) .  

Moreover, the conefield C6 coincides (in the (zs,ys)-coordinates) with  

Cu,t in L e m m a  2.2. The  expression of fu,t = f o Or,t: S t --+ R u in the  

coordinates (x~, y~) and (x~, y~) is given by 

x~( f ( z ) )  = o-2. oct(z) and y~(f(z))  a l "  y~(z). 

L e m m a  2.2 claims tha t  (f~,t).(C6) is in the conefield tha t  (in the  (x~, y~)- 

coordinates) is the image by the linear map  (x, y) ~-+ (or 2 �9 x, A1 " Y) of 

the conefield C~,t in Lemma  2.2. This  means tha t  

( f . , t ) . (C6(z))  C Cl ( f . , t ( z ) ) .  

This ends the proof  of the claim. [] 

The  proof  of the (T#,t).-invariance of C1 is now complete.  To finish 

the proof  of L e m m a  3.6 (for f )  we need to show tha t  the vectors in Cl(z) 

are expanded  by (T~,t). for every z C Aicr~T~,t(R~). 

Sixth step:. (Tu,t). expands every vector in C1. 

First  we prove that :  

Claim 7. There is #2 El0, #1] such that for  every # El0, #2] and z E R~+,t 

one has 
1 

>_ iv~(u)l for  all u C Cl(z)  

where vr(u) is the vertical component  of  the vector u in the (x~., y~) co- 

ordinates.  

Proof .  For simplicity take u = (hr, vr) any vector in Cl(Z) with Ivrl = 

1. Since (x~,y~) = (x2,yl)  the coordinates ( h l (u ) , v l ( u ) )  of u satisfy 

Ivl(u)l = Ivr(u)l = 1. Thus  there is a constant  co with 

[l(f'~).(u)l[ >_ co.  [Vl((f '~).(u))[ = co.  [All "~. (3.8) 
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Now, from (3.8) and the fact t ha t  ( f ) .  expands the vectors in the  cone- 

field C ~ (see (3.1)), f.~+~(u) is in the eonefield ~4 and its norm is greater 

than  co -Ik~l.  Hence, there exists a constant  Cl such tha t  

1~2((f~+~),(~))l _> ~ , .  IA~I ~.  

Let ~ = f~,+~+*(z) = f ~ ( ~ )  l(z)  = f p ) o T ,  t(z), and 

(f,-1 t o T, , t ) , (u) .  From (3.9), one has tha t  

(3.9) 

= (f'~+~+~).(u) = 

for some constant c2. The change of coordinates gives that v~(~2) is a 

function of h2 and v2. Now, one gets c 3 such that 

I~(~)t >- c a - l a 7 - ~ I .  (3.1o) 

The coordinate vr(Tu,t(u)) = vr ((f~r (g)) is given by the following for- 

mula: 

v~((f.,t).(~t)) = A2 "#" [bt(x*(2~) , Y*(~--) ) . h~(~)+ 

# " (3.11) 
+dr(xs(~) , Y~(Z) ) . Vs(U)], 

P # 
see Section 2 for the  definitions of bt and de. Since ~ is in the  conefieid 

C6 one has 
~ .  x~(~) 2 

Ih~(~)l _< �9 Iv~(~)I. # 

Hence, from (3.11) 

Iv~.((f#,t).(~))l _> IA21-~. (Ide(~)r - o~. x ~ ( ~ )  2 . ib~(_~)l)- Ivs(~)l. (3.12) 
# P P 

From propert ies (H3-H4) of de and (2.1) in Lemma  2.1, one gets positive 

constants  c4 and c5 with 

dt(x, y) - c4" x 2" Ibe(x, y)l >_ c5" x 2. 

In our coordinates this inequality is read as follows 

- xs(z)2 ~ xs(z)2 (3.13) dr( z)# - c 4 "  # ~ ' l b t (  )[ >_c5" p ~  
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Take a small #2 such that  

(t c 4 - <  for every # E]0, #2] (3.14) 

From (3.12 14), there is c6 > 0 with 

Iv~((f.,d,(~))] _> c a - - -  
~(z)2  

~2 -I~(~)1- (3.15) 

From (3.15), (3.7), the definition of~ and (3.10) one gets constants c7 e8 

with 
~(~)2 

Iv~-((L,~),(~))l _> lea �9 #2 I I~ (~) l  _> Ic7 - # l Iv~(~)l _> 

> [ 9  ~T :~  ~1  (3.16) 
- -  # 2  

By hypothesis, ~2 > or2 2. Thus, by (3.16) one has that  

]v~((f~,t),(~))[ _> Ics �9 ~ - I .  (3.17) 

1 
Notice that  ~ - [  ~ IAFt (recall the definition of m, see also (3.5)). From 

z E R .  one has lye[ ~< c9 -~ for some constant c9. Finally, from (3.17) 

we get c10 and #2 with: 

A~ c101 > 1 for every # E]0,#2[. Iv~((/~,e).(~))l > lc8- ~ - I  > 1~2 - 

The proof of the claim is now complete. [] 

Claim 8, Let  ~2 > o be as in CZai~ ~. There is a ~ e t r i e  II1" III s~eh that  

f o r  every  # El0, #2[ one has 

(1) f o r  every  t > 0 there is N t  wi th  

I(TZ~),(v)tll > 2. IIIvlll f o r  all v E Cl(Z) and z E A,,t, 

(2) f o r  each z E Am0 there is N ( z ) ,  N ( z )  --~ oo as z --~ q, such  that 

IIl(z~}Z)),(v)lll > 2-IIIvlll f o r  aZZ v ~ Cl ( z l .  

Proof.  Define the metric Itl' lie by 

II1~111 = m~x{Ih~(~)l, Iv~(u)l}. 
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For every u C C1 one has 

max{ l%<~_ "~1}" / z2" /~  
II1<11 <_ , _~+v2 .Iv~(~)l, I~'~(~)l}. (3.18) 

Let us first suppose that t > 0. Since # < #2 < 1 there is Nt with 

> 2. (max{ , 1}) > 2. (max{/~2-_~+-y , 1}). (3.19) 

Claim 7 and (3.18) imply that 

II 

> 2- (max{ -11 "3 

_> 2 II1~111. 
This completes the proof of the claim when t > 0. 

If t = 0 and z (x,.(z),yr(z)) e A~,0 take N(z) with 

(~)N(z)  ( [cr21"A1'/3"#21 1 } ) >  2.  max{ ~/77-z~ ff , . (3.20) 

The definition of C1 gives 

rll~ll[ -< max{ I~'G1 ~ 1 . 9 - 9 1  >(z)2 �9 Iw(~)l, r~.(~)l}. (3.21) 

From Claim 7 and (3.20-21) one has 

(0-, 
,,, T{v~ ,, ,,,( ~,~z)).(~),l,-> �9 Iv~(~)l-> 2. IIl~tll. 

This ends the proof of the claim. [] 

The proof of Lemma 3.6 is now complete for arcs of the form f o O~,t. 

For arcs of the form g~,t g o 0~,~, g E I), it is enough to observe that 

the constants ki and ci above can be taken uniformly on g C V if ]2 is 

small. This ends the proof of Lemma 3.6. [] 

4. P r o o f  o f  T h e o r e m  A 

Let f be a C~176 with a nontrivial basic set A /as  in Propo- 

sition 3.5. Consider a diffeomorphism f0 derived from f by the defor- 
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mat ion  in Section 2, i.e. fo = f o 0~,0 where 0 E 7). For simplicity let us 

assume tha t  # = 1. Thus  fo = f o 00. So we write R and S in the  place 

of R~ and S~. 

For any 9o in a small C3-neighbourhood $ of fo denote  by Pi,go the 

cont inuat ion of the hyperbolic fixed point  Pi of fo, by Ai,g 0 and (Ti,go the 

eigenvalues of go at Pi,go, and by (xi,~0, Yi,go) the linearizing coordinates 

of go in the ne ighbourhood/1i  of Pi, i = 1, 2. By the choice of fo we can 

take, and we do, these coordinates depending  C 3 on go. 

Denote by Rg the connected component  of {z ~ b/1 A//2, (x2,g(z), 
yl,g(z)) E [-~2,g, cr2,g] x [-Al,g, A1,9]} containing q. Similarly, Sg is the 

component  of {z C/gl A L/2, (Xl,g(z), y2,g(z)) E [-1, 1] 2} containing q. 

Notice tha t  the pair of functions (x2,9o, Yl,g o) does not define a coor- 

dinate  system on Sg and Rg. But  they define coordinates out of a small 

ne ighbourhood of q- In Rg the vector field O/Oy2,go is given by 

0 0 0 
- -  . ( 4 . 1 )  Oymg ~ (z) = Xgo (z) ~xl,go + 6g~ (z) Oyl,go 

Recall tha t  the coordinates (xi,9o, Yi,9o) depend C a on g0 and 6f0 is a 

Morse function at (0, 0). Therefore, 6g 0 depends C 2 on g0- Thus  590 has 

a unique min imum at the point  zg 0 which depends differentially on g0. 

Moreover, such a m in imum is also of Morse type. These remarks imply 

tha t  

r g ---+ R 3, r  = ((Sg(Zg), X2,g(Zg) ,  Y l , g ( Z g ) ) ,  

is a C 2 function. Consider the set 

r =  {r o, o)} n E. 

L e m m a  4.1. The map r is a submersion at fo. In particular, F is a 
submanifold of codimension 3 of Diff3(M). 

Proof .  Take isotopies h~ and G~ defined on the square S = [-1, 1] 2, and 

H~ defined on R - [ -a2 ,  ~2] • I-A1, A1] such that :  

�9 h~ is the  identi ty on a ne ighbourhood of the boundary  of [-1, 1] 2 

and in a vicinity of (0, 0) is given by (x, y) ~-+ (x + % y), 

�9 G~ is the identi ty on a ne ighbourhood of the boundary  of S and its 

derivative at (0, 0) is a rota t ion of angle % 
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�9 H~- is the identity on a neighbourhood of the boundary of R and in 

a vicinity of (0, 0) is given by (x, y) ~-+ (x, y + ~-). 

Consider the map ~: R 3 --~ IR 3 defined by ~(T1, ~-2, T3) = r o f0 o 

G~2 o h~a ). Now the lemma follows from the fact that  9 is a submersion 

at (0,0, 0). [] 

Proposit ion 4.2. There is a neighbourhood ]20 of fo in Diff3(M) such 
d 

that every arc {ht}t_>0 with h0 ~ F ~ 12 0 and -d~((~ht(Zht)) > 0 satisfies 

the following properties 

(1) there is to > 0 such that the set Ah t = Niez h~(14~) is hyperbolic and 

conjugate to Af  for every t 6]0, to[, 

(2) the diffeomorphism ho has a heteroclinic cubic tangency associated 

to the continuations of P1 and P2. 

Proof.  To prove the proposition we will see that  ht = gt o Ot for some 

gt 6 ]2 and 0t 6 D. From Proposition 3.5 this will imply the proposition. 

For i = 1, 2 denote by (2i, ~)i) the linearizing coordinates of f0 in 

5/i. Remark that  (21,91) (resp. (22,92)) coincides with (xl,Yl) (resp. 

(x2, Y2)) in the complementary of a small neighbourhood of ~ (contained 

in S) in N1 (resp. in the complementary of a small neighbourhood of q 

(contained in R) in/1/2). 

Lemma 4.3. For every t >_ 0 there is a function 22,t (resp. fll,t) C3-close 
to 22 in lg2 (resp. f]l in b[1) which coincides with x2,ht (resp. Yl,ht ) on a 

neighbourhood of (5/2 \ R) (resp. of (5/1 \ S)) and such that 22,t(Zht) = 0 

(resp. fll,t(htl(zht)) = 0). 

Proof.  Just notice that  x2,ht is C3-close to 22 and that  ;g2(Zht ) is close 

to 0. [] 

Remark  4.4. The pair of functions (x2,t, Yl,t) defines coordinates on R 

and S. Furthermore, there is a neighbourhood of OS such that in such 

coordinates ht is given by 

22,t(ht(z)) = Cr2,ht " 22,t(Z), ~lr = A1;h~ " ~)l,t(z). 

Proof .  The first assertion follows from t h e  proximity between 22r and 
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x2 and 91,t and Yl. The second one follows by recalling that  x2,t and 

Yl,t are linearizing coordinates outside a neighbourhood of (0, 0). [] 

Lemma 4.5. Consider gt with 9t(z) = ht(z) for every z r S and such 

that in the (22,t, ~l,t)-coordinates 9~ is given by: 

J C 2 , t ( g t ( z ) )  = Cr2,h t  " ffC2,~(Z), Y l , t ( g t ( z ) )  = / ~ l , h  t ' Y l , t (Z ) .  

Then for small t > 0 one has gt E V. Moreover, Ot = g t  1 o ht E 7?. 

Proof.  To prove the first part of the lemma observe that  ht is C3-close 

to f0 and f (x )  = fo(x) for every x ~ S. Moreover, the eigenvalues of 

f .  at Pi and (ht). at P4h t are close, f (resp. gt) is lineal" on S in the 

(22,91)-coordinates (resp. (X2,t,91,t)) , a n d  (22,~)1) and (x2,t, Yl,t) are 
Ca-close. Finally, since gt(x) = ht(x) if x r S one gets that  gt is ca-close 

t o f o n M a n d g t C F .  

The proximity between 00 and Ot follows from 00 = f -1  o fo and 

[gt = 9[ -1 o ht as well as from the proximity between f and gt, and f0 

and hr. 

By construction, 0t is the identity in a neighbourhood of the bound- 

ary of S = E-l, 1] 2 and 0t(0, 0) = (0, 0) (hypotheses (HI-H2)) .  Write 

) = 0 0 (4.2) 

It remains to see that  c/t satisfies the inequality (2.1) (that defines the 

set 79, see the end of the Lemma 2.1). In particular, d0 is Morse at (0, 0). 

By construction in a vicinity of (0, 0) one has ht = gt o Or, where gt is 

linear in the (x2,t, ~)z,t)-coordinates. On one hand, from (4.2) one has 

(z)) = 0 a 
oy],t ~ ( h t ( z ) )  + Al,h t �9 ~[t(z) . O~l,t(ht(z)), (4.3) 

for some function kt. On the other hand, in t h e  (X2,ht , Y2,ht)-coordinates 
(that from now on we denote by (x2,t, Y2,t)) ht is linear, i.e. 

(ht).( Y2r (z)) = )~2,t" ~O~(ht(z)).  O 0  oY2,t 
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Having in mind (4.1) this means that  

' uy2,t (4.4) 

0 0 
The vector fields ~ (z) and ~ (z) are colinear. So there exists a 

function pt(z) which is uniformly bounded from below with pt(z) ~ 0 
such that 

0 0 

In particular, from (4.3) 

( h t ) , (  0 ( z ) )  = 1 
oY2,t pt(z~ " (ht),( ~ (z)) = 

(4.5) o 
-- p t ( Z )  " ( ~ t ( Z ) "  ( h t ( z ) )  + / ~ l , h  t �9 c l t ( z ) "  ,,_ ( h t ( Z ) ) ) .  

o y l , t  

From (4.4-5) 

~ ( z )  = p t ( z )  . ;~2,t . ~ h ~ ( z ) .  (4.6) 
Al,t 

The functions pt, A2,t and At, t satisfy 

o < c~ < Ip~l, IA2,~I, I-%~1 < c2. 
d d 

Finally from ~ h t ( Z h t  ) > 0 it follows ~ d t ( z h t  ) > 0 for small t > O. This 

implies the proposition. [] 

'End of  the Proof ot Theorem A 

Take any diffeomorphism F with a basic set AF = N z F i ( W ) s a t i s f y -  

ing the hypotheses of the theorem. Then there is a diffeomorphism f 

�9 satisfying the hypotheses of Proposition 3.5 and an arc {Ft}te[O,11 with 

F0 = f and F1 = F such that  the set At = []z F~(FF) is conjugate to 

A = I~lz F i (W)  for every t. The theorem follows from Propositions 3.5 

and 4.2. [] 

5. Cubic tangencies  at lateral points  

5.1. Introduction. 
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In this section we will prove Theorem B. This result will follow essen- 

tially from the arguments in the proof of Theorem A. So we will omit 

some technical details and focus our at tent ion on the main differences 

between their proofs. 

Let f be a surface diffeomorphism and Af be a nontrivial basic set 

of f different from the whole manifold. Assume tha t  Af is either of 

saddle type or an a t t rac tor  (otherwise we replace f by f - l ) .  Then 

there is a lateral periodic point P E Af such tha t  the set (U\W~oc(P  , f ) )  

has a connected component  tha t  does not intersect Af for every small 

neighbourhood L/of  P.  

From now on we suppose tha t  P is a fixed point of f .  By deforming 

f by an isotopy we can assume that  f is C3-1ineariza,ble in a neighbour- 

hood b/ of P and tha t  the linearizing coordinates (z, y) at P depend 

continuously in the C3-topology. Finally, we take a homoclinic point q 

of P such that  q and f - l ( q )  = 0 are in 5/. 

Take an open set 142 in which Af is locally maximal. Since P is a 

lateral point of Af we can take a neighbourhood N of P and coordinates 

(z, y) such that  the backward orbit of any point z ~ {z > 0} leaves YV 

straightforwardly, meaning the following: Let j = inf{k E 1N such that  

f-k(z) ~ 5/}. Then there is i such that  f-i(z) r 141 and f-k(z) ql bt for 

every j < k _< i. Notice that  this assertion holds for every diffeomor- 

phism nearby f .  

In what  follows, to get a diffeomorphism with a cubic tangency a,t q 

which is a first bifurcation, we will per turb f in a square Su of size > 

centered at q. As in the nonlateral case we will consider diffeomorphisms 

0~ from Su into itself and local perturbat ions f~, = f o 0u of f .  

The property about lateral points above plays a key role to check the 

hyperbolicity of the diffeomorphisms before the bifurcation. It will allow 

us to focus our atent ion on the points (:r, y) with z _< 0. More precisely, 

and bearing in mind the proof of the nonlateral case, it will be enough 

to consider the first re turn map from S ,  A {z _< 0} into itself. Tha t  

will allow us to consider generic perturbat ions 0u in the following sense. 

The image by fu of the vertical foliation in S~ has a nondegenerate 

cubic tangency at q with the horizontal foliation defined on the square 
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f(Su) = R~. Such a nondegenerate cubic tangency is accumulated by 

quadratic tangencies between the image by f~ of the vertical foliation 

and the horizontal foliation. However, all the tangencies correspond to 

leaves f~ ( {x0}  • [ -1 ,  1]) with z0 > O, see the figure below. 

: .1(),  

I t 
I i 
I I 
I ' 

I A I i I i I 
t f t  t t t , 

t t t t r ' 
/ - T - - - i -  F 7 7 - I  - t  J 

Ii - r - - - i - r  T 7 - 1 -  ! 
- - - [ -  I -  �9 - I -  ~- . . . . .  ~ , _  - - <  

\ \ x  *- - - - / 
_ I_ _ __I_L-I J_l_ __ 

i I I I i I i 
- r - - - , -  c T - , - i - ~  

. . . . .  s 

/ 

t 

Figure 5 

The possibility of using generic perturbations 0~ with a nondegen- 

crate cubic tangency justifies why in the lateral case the submanifold 

Ce of diffeomorphisms with cubic tangencies has codimension 2 instead 

of 3. In the proof we see that using such a perturbation one does not 

need to use the condition [A12. ~11 < [A2' ~21 on the eigenvalues, such a 

possibility allows us to consider also homoclinic tangencies. 

5.2. Families o f  local perturbations 
As in Section 2 we consider diffeomorphisms 0 defined on the cube 

[-1,  1] 2 x [0, 1], O(z,y, t)  = (Ot(z,y),t), that satisfy hypotheses H0-H2 

in Section 2 and 
H3b: d0(0, 0) = 0, d(z, y, t)  is strictly positive on ([-1,  0] 2 x [0, 11) \ 

Odt Odt 00@ { ( o , o , o ) } ) ,  _> ko > o, ( o , o )  = dtx < o, ( o , o )  = 

02dr . 

dry = 0, and ~ ( 0 ,  0) = d~yy > O. 
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Fig~are 6 

We denote by Oe the set of C3-diffeomorphisms of [-1, 1] 2 • [0, 1] 

satisfying the hypotheses (H0 H2) ~nd (H3b). 

Lemma 5.2. For every 0 E Oe there are a C3-neighbourhood D of  0 in 

Oe and strictly positive constants o~, /3 and ~/ such that for  every 0 ~ 7P 

the conefields 

C ~ ( x , y )  : {(vl,v2): IVll < ~ '  I~1" Iv2[}, 

~(~ ,y )  : {(v~,v2): Iv~l < ~ .  IVNI ,y r 0} 
+ lyl 

satisfy 

((~t),(Ct(x,y)) C Ct(Ot(x,y)) .]:or every x <_ 0 and t >_ O. 

Proof .  Write Or(x, y) = (St ,yt) .  The proof of the lemma follows from 

the next result: 

Lemma 5.3. There is a constant K such that 

d~(x,y) ~ K.( t+[~l+lxl)  for all t ~ 0 and (~,~tD = Ot(x,y) with x ~ O. 

Proof .  Write 

Yt = Y t (x , y )  = Yt(O,y) + bt(O,O), x + H t ( x , y ) .  x, 
(5.1) 

Ht(x ,  y) ---+ 0 as y -+ 0. 

Having in mind (H3b) in the definition of Og we have 

Yt( O, Y) = d ~ y y  . y3 + y3 .  Gt(y),  Gt(y) ~ 0 as y ---+ O. (5.2) 
6 

Bol. Soc. Bras. Mat., Vol. 29, N. 1, 1998 



132 CH. BONATTI, LJ. D[AZ AND E VUILLEMIN 

From (5.1-2) there is a constant  kl > 0 such tha t  for every (x, y) nearby 

(0, 0) one has 

d~yy 
Ib~(x, y) + H~(x,y)l .  Ixl = I~ - ( - -U  + C~(y)). y3i _> l~l - k~. ly31 . 

Notice tha t  b0(0, 0) r 0 (recall tha t  d0(0, 0) = 0 and tha t  00 is a diffeo- 

morphism).  Thus  

Ixl _> k2. [Ytl-  k3" ly3l, (5.3) 

for some strictly positive constants k2 and k 3. Finally, from (5.3), dtyy > 
Odt 

O, dt~ < 0, x < 0, t _> 0, and ~ - ( 0 , 0 )  > 0 (see (H3b)) we get positive 

constants  k4 k6 such t ha t  

d ~  v2 Id~xl .  I~1 > d t ( x , Y ) > _ k 4 " t + ~ -  + 2 '  3 _ 

d ~ .  y2 J ~  Ixl+ (5.4) >_ k 4 . t +  ~ -  + . 

Id~xl " k2 Idt~l " k3 
+ - -  �9 I~tl . . . .  lYl 3 > 

3 3 

for every small y and Ixl. The  map  dt is strictly positive outside a 

ne ighbourhood of (0,0) in {x < 0}. Therefore by shrinking k4-k6 the 

inequality (5.4) holds for all (x, y) with  x _< 0 and t _> 0. [] 

As in the  nonlateral  case for each U > 0 we consider the two- 

parameter  family of diffeomorphisms O,,t defined on [-U, #]2 by 

o,, t(z ,  y) = u" Ot(x/u, y /u) .  

Arguing as in Lemma  2.2 one gets the following result: 

L e m m a  5.3. For every 0 in 7? define the two-parameter family of diffeo- 

morphisms {0~,t} as above. For each U > 0 consider the conefields C~,t 
and C~,t defined on I-p, pl 2 by 

C,,~(z, y) = {(vl,v2): Ivll < ~" Ix l. Iv21}, 

Pu GI. Iv21 f o r  aZl y r 0}. ~ # , t ( x , y )  = { (Vl ,V2) :  lu l l  < t + lY-~ ' 
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r h c n  

(b,,d. (C,,t(Z, y)) C C,,t(O,,t(x, y)), 

.for every suff iciently small  # > 0 and x < O. 

5.3. Choice of  coordinates 

Consider a nontrivial  basic set Af of a diffeomorphism f having a lat- 

eral fixed point  P.  To construct  the diffeomorphisms f~,~ we begin by 

taking coordinates at P ,  q and 0 - f - l ( q ) .  Recall tha t  f is lineariz- 

able at P and tha t  the linearizing coordinates depend  continuously on 

a small ne ighbourhood )2 of f in the Ca-topology. Moreover, there are 

ne ighbourhoods  5/1 and b/2 of P where f is linearizable so tha t  [//1 (resp. 

5/2) contains the  segment  [P, 0] s in W s ( P )  (resp. the  segment  [P,q]~ in 

w ~ ( P ) ) ,  see figure. 

Figure 7 

Denote by (xi, Yi) the linearizing coordinates in 5/i (i = 1, 2). Pick 

ne ighbourhoods  of q and ~ where the pair (x2(z) ,  yl(z)) defines coordi- 

nates. As in the nonlateral  case we call such coordinates (x~, Yr) and 

(xs, ys), respectively. In these coordinates any g E 12 is linear: 

x~.(g(z)) = (7. x~(z) and y~(g(z))  = A . ys(z) ,  (5.5) 
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where )~ and (7 (1~1 > 1  > I~1) are the eigenvalues of g. at the continua- 

tion P9 of P.  

In what follows given any z C b/i we will analize the returns of the 

forward orbit of z to /tl.  For that  as in the nonlateral case we will 

consider the exit and entry boxes R~ below. Recall that  we are only 

interested on the points such that  their first coordinate is negative. For 

small 7 and (5 > 0 define the sets 

/~= = {(xl, Yl) E / / / 1 : - 5  < xl  _< 0 and Yl E [+7, (-4-k �9 7))} C W. (5.6) 

For every 9 in 12 and small > > 0 consider the square S .  centered at 

O(g) (the continuation of q) tha t  in the coordinates (x., y~) is given by 

S .  = [ ->,  #]2. The segments [ ->,  >~ x {0} and {0} x [ -# ,  #] are in the 

stable and the unstable manifolds of Pg, respectively. Let R .  = g(S.). 

From (5.5) in the coordinates (x~, y~) we have 

Now for each g E F we define the two-parameter  family of diffeo- 

morphisms {g.,t}{.>O, tc[o,1]} by 

9(x) if x ~ S. ,  

g.,t(x) = (9~ if x E S..  

Clearly, 9.,0 (0(9)) = q(g) (the continuation of q). Moreover, by construc- 

tion 9mt(S.) does not depend on t. So we let R .  = g.,o(S.) = 9.,t(S.). 

Finally, if the neighbourhood 12 of f is small there is #0 > 0 such tha t  

for every g E F and # E]0, #0[ the invariant manifolds Ws(pI(g), 9.,0) 

and W~(P2(g), g.2) have a nondegenerate cubic tangency at 0(9). 

Proposit ion 5.4. Let f be a C~-diffeomorphism, Af a nontrivial basic 

set of f ,  and P a lateral fixed point of Af as above. 
There are a neighbourhood 12 of f in Diff3(M) and Po > 0 such 

that for every 9 E 12 the two-parameter family of diffeomorphisms {9.,t} 

satisfies 
(1) the set 

= \ {q(g)}) 
iCZ 
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is nonuniformly hyperbolic for every 0 < # < #o and gu,0 has a 

nondegenerate cubic tangency at q(g), 

(2) the set 
i W = ) 

i C Z  

is hyperbolic and conjugate to Ag for every 0 < # <_ #0 and t > O. 

As in the nonlateral  ease to prove Proposition 5.4 we will s tudy the 

first re turn map of g~,t defined on Rp. 

5.4. The Poincar6 return map in Ru 

Notice that  here we are not concerned with the returns of those points 

whose forward orbit meet {Xl > 0} before intersecting R~: by con- 

struction such points do not belong to the locally maximal set of g~,t in 

W. 

For gu,t, we consider the subset R + of Ru of points such that  their # , t  

forward orbits re turn to Ru before leaving 142. More precisely, 

R + g~,t(z) c R~, and 
. , t =  z E R~ such that  there is i with g~t( z) C w f ~  

Given z E R + the return time o f z  to R~, n~(z), is defined by #,t 

n~(z) = min{i > 0 so that  9i~,t(z) E 1~}. 

The Poincard return map Tg~, t associated with g~,t and R~ is given 

by 

Tg~,t: t~+~ ~ R , ,  z ~ g~,t ~z). 

By the comments  above the image Tgp,t(l~#+,,t) is in gu,t({xs <_ 0}). 

Given any g~,t, with g C3-close to f and # > 0, consider the set 

A~,t ~ i + 
iEZ 

Proposition 5.4 follows from the next lemma. This lemma plays the role 

of Lemma 3.6 in the nonlateral  case. 

L e m m a  5.5. Under the hypotheses of Proposition 5.4, there are a neigh- 

bourhood Vo of f and Po > 0 such that for every g E )2o, 
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(1) hp,t is hyperbolic for  every # E (0, P0) and t E]0, 11, 

(2) hu, 0 is nonun i fo rmly  hyperbolic for  every # E (0~ #o). 

From now on we fix a diffeomorphism g E V and we write T~,t in 

the place of Tg~, t. Since the orbit of any point z C R+t  visit some fixed 

sets before returning to R~, we write T~t as the composit ion of some 

transition functions we will define below: 

Remark.  Take z E R~+t and p small.  Def ine m = re(z) < rip(z) by 

m-1 
and U m gu,t(z) C b[l~ 

i=0 

"~ "~ ~ Ri- i f  yT(~) < o. where g, , t (z)  E R+I i f  yT(z) > 0 and g~,t(~) E 

Let r = r(z)  be the biggest integer less than n , ( z )  such that g~,t(z) E 

R ~ .  By  definition, gp,t(z)i E bt2 for  all r < i < nu(z  ). Notice that there 

are points  with y~(z) > 0 and m = r. 

For  every z C R+t, the forward  orbit {z,  . . . ,  ~,,~-n'(Z)(z)} splits as .fol- 

lows: 
r , , d z )  = g , , t  o f ( ~ )  o gk(~)  o g < ~ ) ( z ) ,  

s(z) = nu(z  ) - r - 1, and 

k - k ( z )  = r - m ,  

see the figure below. 

g8 

fq 
f 

gk 

"1 

< 

P 
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The proof of the lemma follows essentialy as in the nonlateral case. 

We will exhibit a (T,,t),-invariant expanding conefield in R + (the un- tt,~ 
stable conefield) and a (T~l),-invariant expanding conefield (the stable 

conefield). The proof will involve 6 conefields which are expressed in 

different coordinates. So for clarity, C(c~) will mean that the conefield C 

is given in the w-coordinates. Now, let us sketch the construction of the 

(T~,t),-invariant unstable cone field. 

(1) We will begin with a conefield CI(x~,y~) in R~ coinciding with 

Cu(x, y) in Lemma 5.3. We will verify that C1 is contained in a 

conefield C2(Xl, Yl) with equivalent size. 

(2) Using the linearity of g~,t in/21 in the (xl,Yl)-coordinates, we will 

construct a conefield C3(xl, Yl) in R~ such that the derivative of the 

transition g "~(z) from R+t to R] ~ maps C2 into C3. 

(3) By the hyperbolic behaviour of g in l/f, the derivative of the transi- 

tion g/~(z) from R~: to R + maps Ca into C5 (xl, Yl) {I vll -< I xll. Iv21}. 

(4) From the linearity of g in///2, after a change of coordinates, we will 

get that ~,~gS(Z)L~C5)j~ is in the conefield C6(xs, y~) in & defined as C~ 

in Lemma 5.3. 

(5) Finally, Lemma 5.3 will imply that (g~,t),(C6) C C1. That will give 

the (T~,t),-invarianee of C1. 

Next, we fill the details in the outline of the proof of the lemma 

above. This proof will follow along the ideas of the proof of Lemma 3..6. 

So we will just emphasize the differences between the lateral and the 

nonlateral cases. 

First step: conefields in R~. 
Let Cl(xr, yr) be the conefield on R~ which is the image by the linear 

map (x, y) ~-+ (or. x, A- y) of C~,t in Lemma 5.3: 

C l ( X r ,  y r )  = { (Vl ,V2) :  IV1[ < 
I ~ - l 2 ~ f l l  

t + ly l 
�9 1 21, r 0}.  

0 0 
Since ~ and ~ -  are col!near, there is a constant kl independent of 

OXl 
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# with Cl(Z) c C2(z), where 

C2(xl,Yl) = {IVll _< - -  

CH. BONATTI, L.J. DIAZ AND F. VUILLEMIN 

kl "# 
t + ly21' Iv21, ly21 r o}. 

Second step: transit ion from Ru to R~. 

In R + consider the conefield C3 

G ( x l , y l )  = {Ira[ ~ k2 .~ .  I x l l .  Iv21}, 

where k2 > 0 is some fixed constant we define below. 

Claim 1. There is k2 > 0 so that (gm(Z)),(C2(z)) C C3(gra(Z)(z)) for every 
z E R  + # , t  " 

m 77~ Proof.  Let m = re(z) and gu (z) = (xl(g~(z)) ,y l(g,  (z))) = (21,91). 

From the definition of m and the linearity of f one gets constants such 

tha t  

k a - I ~ 1  ~ 1211 ~ k4. I~1  and ka ~ I~TI" lY2(z)l ~ k6. (5.7) 

Take a vector (Wl, w2) = (gm),(vl, v2), (vl, v2) E C2(z). From (5.7) 

Iwll ~ k] "/~'G~-" Iw21 ~ k2 .~ .  1211. Iw21, 
I~ ~ .  y2(~)l 

for some constant k2 > 0. Now the proof of the claim is complete. [] 

Third step: transit ion from R~ to R +. 

If r = r(z) ~ re(z) = m, we split the orbit of z as follows. 

Consider the rectangle D tha t  is equal to [G. x0, x0] x E-l, 1] for 

some x0 in the (xl ,yl)-coordinates .  Take j = j(z) maximum so tha t  
m + j  g~,t (z) E D and m + j  < n~(z). Pick a conefield C4 of constant size, say 

k6, in D. Due to the hyperbolicity ofg  on W, one has (gJ),(C3(g'~(z))) c 
C4(gm+j(z)) for small #. See the figure. 
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s~ 

9z 

> 

P 
< 

F i g u r e  9 

Consider  the  conefield C5(Xl, Yl) = {Ivll <_ Ix l l .  Iv21}. Clearly, if # is 

small  Cs(z) contains  Ca(z). In par t icular ,  C3(9r(z))  c C5(g~(z)) if r = m. 

Claim 2. Le t  h = h ( z )  = r ( z )  - re(z )  - j (z ) ,  where j ( z )  is def ined as 

above. There  is #o > 0 such  tha t  

(gh),(C4(g.~+j (z)) c 65(g~(z)), 

f o r  every  0 < # <_ #o.  

Proof .  Let  

(~1, ~1) = (x](g '~+~+h(z)) ,  y l  (g '~+J+h(z))) .  

Define u > 0 by I~1 = I~-~1 �9 Given v = (vl ,v2) E C4(9"~+J(z)) let 

w = (Wl, w2) = (gh) . (v )  = (ahv{ ,  Ahv2).  Notice t h a t  n u ( z )  - re(z )  - j ( z )  

is un i formly  bounded.  Thus  I~11 _< k7 �9 # for some k7 > 0. As in the  

claim above one gets posit ive c o n s t a n t s  ks and  k9 wi th  

Iwel _< k6. I~ 
1~21 ~ -< ~8" I:~l '  (o-~) ~ <- k9. 1211 �9 #'.. 

Now the  claim is obvious if # is small. [] 
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Fourth step: transition from R + to S~. 

Define the conefield C6 in S~ coinciding with Cu in Lemma 5.3, i.e. 
OL �9 IX2] 1 

C6(x~,y~) = {IVll _< - - .  Iv2l}. Since 1 < <  - if # is small and 
P P 

I = rip(z) - r - 1 is uniformly bounded, 

(gl),(C5(gr(z)) C (C6(g n#(z) l(z))). [] 

Final step: transition from S ,  to Ru. 
By the definitions of C1 and C6 and Lemma 5.3, one has 

(glz,t),(C6(gnU(z)-l(z))) C CI(gu, t (z)). 

Then, the (T~,t),-invariance of C1 follows from Claims 1-2. [] 

In the sequel we fix p > 0 such that  Claims 1 2 hold. Now, we 

prove the expansion of the vectors in C1 by (Tu,t),. Notice that  it is 

equivalent to see that  the return map in Sp, say Tp,t = 9~,~ o Tu, t o 

gig,t, expands the vectors of the (Tp,t),-invariant conefield C6. Since the 

calculations for the transition from Sa into itself are easily unders tood 

than  the transit ion from Ru into itself, let us consider T~,t instead of 

T~,t. As in the nonlateral case, the result follows from the expansion of 

the vertical component of the vectors in 66 by (2P~;t),, see Claims ? and 

8 in Section 3.4. 

Claim 3. There is #2 E]0, #1] such that f o r  every # E]0,#2] and every 

z E S ,  such that T~,t is defined one has: 

where %(u) is the vertical component  of  u in the (x~, y~)-coordinates. 

Sketch o f  the proof .  Take u = (hs(u), vs(u)) E C6(z) with Ivs(u)l = 1. 

Since g,, t  is a diffeomorphism and w - (g, , t ) , (u)  E C2(gu,t(z)), there 

is k > 0 (independent of p and z) such that  Ivl(w)l _> k. I 11, where 
# 

m + l  Yl = Yl(gp(z)) .  Now, gu,t (z) is in R~:. Thus, IA ~ .  ~)1] -> k' for some 

constant k' > 0 independent of p and z. Then, the vertical component  
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v](g) of g ig~,t ). / ) satisfies 

IVl(~)l  - I ~ ' ~  '~  ~x] _> ,~./c~ 
# # 

To end the proof  of the claim, just  remark  tha t  if # is small, then  the 

vertical component  Vl(5) is arbitrarily large. Hence, the derivative of 

the t ransi t ion from R~: to S~ expands such a vertical component .  [] 

The  proof  of the existence of a (Tp,t).-invariant expanding unstable  

conefield is now complete.  

Now, we are left to construct  the stable bundle. For this we consider 

the re turn  map  T~ 1 of f ~ l  in R , .  We take the stable conefield d~ as 

the complementa ry  of Cl. The  (Tj l ) . - invar iance  of d~ follows from the 

(T~).-invariance of all. So it remains to show tha t  (T~I) .  expands the 

vectors in C~. For this just  observe tha t  the complementary  of C~,t in 

L e m m a  5.3 is a conefield d'~,t wi th  size equal to the size of d~,t, w h e r e  

the coordinate x is in the place of y. Conversely, the complementary  

of C,,t is a conefield C~, t wi th  size equal to the size of C,,t. Now the 

expansion follows as in the unstable case. 

The  proof  of Lemma  5.5 is now complete.  [] 

5.5. End of  the proof of  Theorem B 

The  theorem follows arguing as in Theorem A. We recall tha t  in the 

lateral case the  codimension of the submanifold Ce is 2 instead of 3. 

Now let us outline the  construct ion of Ce. 

Take a C~-diffeomorphism f with  a nontrivial  basic set  Af as in 

Proposi t ion 5.4. Consider a diffeomorphism f0 derived from f by the 

deformat ion Section 5.1, i.e. f0 = f o 0m0 , where 0 E D. Since from now 

on # is fixed, let us omit  it. 

Pick any g in a small C3-neighb0urhood g of f0- Denote  by Pg the  

cont inuat ion of the fixed point  P of f ,  by Ag and cry the  eigenvalues 

of g at Pg, and by (Xi,g, yi,g) the  linearizing coordinates of g in the 

ne ighbourhood Hi of P ,  i = 1, 2. Recall tha t  these coordinates depend  

C 3 on 9. 
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Denote by Rg the connected component of 

{z c U 1 • l/[2, (X2,g(Z), Yl,g(Z) ) E [-1,112]} 

containing q(g). Similarly, Sg is the component  of O(g) in {z E hi1 N 
0 

bt2, (Xl,g(z), y2,g(z)) E [-1,112}. In Rg the vector field - -  is given by 
Oy2,g 

0 0 0 
Oy2,g (z) = Xg(Z) OZl, 9 6g(Z) Oyl,g 

For each x0 E [-1, 11 consider the function A9 0 (y) = r y). If g is 

small there is a unique Xg nearby 0 so tha t  Agg has a unique zero at, 

say, yg, see the figure. 

( xg,vg) 

Z9 I 
Figure 10 

Define functions v, g: g -+ [-1, 1] by v(g) = xg and g(g) = Yg. Since 

the coordinates (xi,9 , Yi,g) depend C 3 on g, the functions v and ~ are C 2. 

Hence 

E R 2, = (v(g) ,  

is also C 2. Define 

Fg = { ~ - 1 ( 0 , 0 ) }  N g .  

By construction, every g E re has a (nondegenerate) homoclinic cubic 

tangency related to Pg. 

Arguing as in Lemma 4.1 one has 

Lemma 5.6. The map ~ is a submersion at fo. In particular, re is 
submanifold of codimension 2 of Diff3(M). 
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Now Theorem B follows from the arguments in Section 4 (see Lem- 

mas 4.1 5). 
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