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Holomorphic Rank of Hypersurfaces
with an Isolated Singularity

A. Lins Neto*

— Dedicated to the memory of R. Marié

Abstract. Let V be a germ at 0 € Cc",n > 3, of hypersurface with an isolated
singularity at 0. In this paper we prove that the maximal number of germs of vector
fields in V* = V — 0,"which are linearly independent in all points of V™ is two. In the
cases n = 3,4 and of quasi homogeneous hypersurfaces (Vn > 3), we prove that this
number is one.
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1. Introduction

In this paper we consider the problem of finding the maximal number
of holomorphic vector fields in a singular hypersurface with isolated
singularity, which are linearly independent in all points.

Let M be a complex manifold of dimension m and Xy,..., X} be
holomorphic vector fields in M. We say that they are linearly inde-
pendent (briefly 1i.) if for all peM the vectors Xi(p),...,Xx(p) are
linearly independent. The rank of M (denoted by Rank(M)) is the max-
imum number of holomorphic 1.i. vector fields in M. So, for instance
Rank(M) > 1, if there exists a holomorphic vector field in M without
singularities.More specifically we will consider a germ at 0 € C*™1 of a
analytic subset.

Definition 1. Let V be a germ at 0 € C"t1 of a hypersurface with
an isolated singularity at 0. Let V(U) be a representative of V in a
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146 A. LINS NETO

neighborhood U of 0. We denote by V*(U) the set of smooth points of
V(U) (in our case V*(U) = V(U) — {0}). The rank of V at 0 is by
definition

Rank(V) = max{Rank(V*(U)); V(U) is a representative of V}
Our main results are the following:

Theorem 1. Let V be a germ at 0 € C*M1 of hypersurface with an
isolated singularity at 0. Then 1 < Rank(V) < 2. If V is quasi homoge-
neous, or if n < 3 then Rank(V) = 1.

We would like to observe that recently J. Seade proved that V*
admits n C* vector fields which are linearly independent (over C) in all
points of V* ([Se]).

One of the main tools in the proof of Theorem 1 is the following:

Theorem 2. Let Xy,..., X be holomorphic vector fields in a complex
manifold M of dimension m > ]‘i‘, and let D(Xq,...,Xx) =D ={p €
M; X1(p), ..., Xg(p) are linearly dependent}.If D is not empty, then ev-
ery irreducible component of D has dimension > k — 1.

In §2 we will prove Theorem 2 and in §3 Theorem 1.

Theorem 1 motivates the following problems:

Problem 1. Generalize theorem 1, or give a counter example, for n > 4.

Problem 2. Calculate the rank of germs of analytic sets of codimen-
sion bigger than one, with an isolated singularity. The same for sets of
codimension one, bul with non isolated singular set.

I would like to thank J. Seade ,who motivated me in the subject, for
helpful conversations:

2. Proof of Theorem 2
Let X1,..., X% be holomorphic vector fields in M and

D=D(X1,...,Xp)=1{peM;X1(p),...,Xx(p) are Ld.},

(where 1.d. means “linearly dependent”).
Suppose D # @ and let us prove that all components of D have
dimension > k — 1. It is enough to prove that for any p € D there

Bol. Soc. Bras. Mat., Vol. 29, N. 1, 1998



HOLOMORPHIC RANK OF HYPERSURFACES 147

exists a neighborhood V' of p such that dim(DNV) >k —1. Fixp € D.
By taking a holomorphic coordinate system around p, we can suppose
that p = 0 € C™ and that Xq,..., X}, are holomorphic vector fields in
a neighborhood of 0.

Since X1(0),..., X% (0) are 1.d., the subspace of C™ generated by
them,

(X1(0), ..., Xp(0)) C (€1, s ep-1) = E,
where {e1,... ,en} is a basis of C™. Let r = dim(X7(0),... , Xx(0)).

Istcase: r =% — 1

In this case we can suppose that (X1(0),...,X,_1(0)) = E, so that for
z in a neighborhood V of 0 the set {X(z),..., Xp_1(x),ex,... ,em} is
a basis of C™. On the other hand we can write Xy(x) = X,;(x) + XZ(:L‘),
where X,;(:z:) € (Xi(z),...,X_1(z)) and X];/(ZE) € (ex,.-.,em). Now,
observe that DNV = {z; X, (z) = 0}. Therefore DNV is defined by
m — k + 1 equations, which implies that dim(DNV) >k — 1.

2nd case: r < k —1
We can suppose that

(X1(0), ..., Xk(0) = (X1(0),... , X(0)) = (e1,... ,€r).
Observe that for A # 0 the vectors
X100),..., X0 (0), Xy 1 (0) + Aepg1, .o, X 1(0) + Aeg_q
are l.i., whereas the vectors
X100), ..., Xr(0), X;41(0) + Aepr1y oo s Xp_1(0) + Aeg_1, Xi(0)

are 1.d.. Let V be a neighborhood of 0 and ¢ > 0 be such that for x € V
and 0 <| A |< ¢, the vectors

X1(x), ..., Xr(2), X?"—I‘l(m) + )\-er+17 s 7Xk—1($) + Aep_1

are 1.i.. Let

DN = {z e V: Xy(@), .., Xo(@), Xpi1 (£) + Merat, ..
Xi_1(z) + Xeg_1, Xi(z) areld. }.

7
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It follows from the first case that all components of D(\) have di-
mension > k — 1 for 0 < A < e. By a classical result on hyperplane
sections, we must have dim(DNV) > k — 1. O

3. Proof of Theorem 1

3.1 - Preliminary results.
Let V be a germ at 0 € C"1 of hypersurface with an isolated singularity
at 0. Let f be a germ at 0 € C"T! of holomorphic function with an
isolated singularity at 0 such that V = f _1(0). We will use the following
notations:
1 — f; for the partial derivative 8f/0z;, j=1,... ,n+ 1.
2 — e; for the vector 8/0z;, j =1,... ,n+1, where (x1,... ,Zp41) IS &
fixed coordinate system around 0 € C*t1,
3 — A for the exterior product of forms or vectors.
Let us fix representatives of V and f in a polydisc P! = P around
0, which we will call still V' and f. We will use the notations V* = V\{0},
P* = P\ {0}, O(V*) for the ring of holomorphic functions on V* and
x(V*) for the set of holomorphic vector fields on V*.

Lemma 1. Ifn > 2, then any vector field X € x(V*) can be extended to
a holomorphic vector field X on P. The vector field X must satisfy the
following relations:

a) X(f) = g.f, where g is holomorphic on P.

b) X(0)=0.
Proof. It is well known that any h € O(V*) can be extended to a
holomorphic function A on P (cf. [G]). Denote by z = (z1, ... , Tntl) &

coordinate system in C*11 and set
Xj=X(@jlv)€OV"), j=1,...,n+1

Let h; € O(P) be a holomorphic extension of X;, j=1,...n+1. It
is not difficult to see that the vector field X = Z;-L:]_l hj.e; is a holomor-
phic extension of X.

Let us prove a). Observe first that X is tangent to V*. This implies
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HOLOMORPHIC RANK OF HYPERSURFACES 149
that the function h = X(f) = Z?ill fj-h; vanishes on V*. Since f is
irreducible we must have X(f) = g.f for some ge O(P).

Let us prove b). Suppose by contradiction that X (0) # 0. In this
case, after a change of variables near 0 we can suppose that X = ej.
From a) we get 0f/0x1 = g.f. As the reader can check easily, this
implies that the xj-axis is contained in the singular set of V' (unless 0 is
not a singular point of V'), which is a contradiction. O

Corollary 1. Let V C C*L, be as above, where n > 2. Then Rank(V) <
2.

Proof. Let X1, X2, X3 be vector fields in x(V*). It follows from Lemma
1 that they can be extended to holomorphic vector fields on P, which
we call still X1, X2, X3, and such that X;(0) =0, j =1,2,3. Since 0 €
D(X71, X9, X3) we get that dim(D(X1, Xo, X3)) > 2, so that, dim(D(X7,
X9,X3)NV) > 1, because dim(V) = n. This implies that the vector
fields cannot be Li. on V*. O,

Now we consider the case of vector fields which have f as first inte-
gral.

Definition 2. We say that X is a first integral for f if X(f) = 0. We
will set

I(V)={Y € x(V*) ;Y can be extended to a first integral ¥ of f }

Corollary 2. Let X,Ye I(V). Then X and Y are not l.i. on V*,

Proof. Let X and Y be extensions of X and Y respectively, which are
first integrals of f. Since X(f) = Y(f) =0, X and Y are tangent to the
level hypersurfaces of f, f‘l(c) ,c € C, small.

Since 0 € D(X.Y), we get that D(X,Y) contains a non constant
holomorphic curve v such that v(0) = 0. If v C V we are done. Sup-
pose v ¢ V. In this case v cuts the hypersurfaces f1(c) for small
| ¢ |> 0. Since X and Y are both tangent to these hypersurfaces we get
that dim(D(X,Y) N f~(¢)) > 1, for small | ¢ |> 0. This implies that
dim(D(X,Y)) > 2. Therefore dim(D(X,¥)N'V) > 1, which implies the
Corollary. O
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Lemma 2. Rank(V) > 1.

Proof. Let us suppose first that n is odd, so that n+1=2k. In this case
the vector field X on P defined by
k
X = fae1—frea+- -+ fop-op_1— for—1.ek = Y (f2j.€2j-1— faj—1.€2;)
=1

is tangent to V (because X(f}=0) and in some neighborhood U of 0 it
vanishes only at 0. This proves the lemma in this case.

Let us suppose now that n is even, so that n +1 = 2k 4+ 1. It is well
known that there exists a hyperplane E through 0 € C**! such that 0
is an isolated singularity of the restriction f |png. After a linear change

of variables we can suppose that E = {z9; 11 = 0}. Consider the vector
field

k
=Y (f2j.€2i-1— faj_1-€2;)
=1

Since X(f) = 0, X is tangent to V. It is enough to prove that for
some neighborhood U of 0 we have Sing(X)NVNU = {0}. Suppose by
contradiction that X vanishes in points of V* arbitrarily near 0. This
implies that V' N Sing(X) contains a non constant holomorphic curve
Y(t) = (z1(t), ... , x2541(t)) such that v(0) = 0. Now, X (v(t)) = 0 implies
‘that 9f/0xz;(v(t)) = 0 for all j = 1,...,2k. Since f(7(¢)) =0 we get

2k+1

0= Z fi(v = far1(3(8)) @1 (1)

This implies that x5,  ;(f) = 0, because 0 is an isolated singularity for
f. It follows that the curve 7 is contained in the hyperplane {zo;+1 =
0} = E, which is a contradiction, because 0 is an isolated singularity for
flenp and f1,..., for vanish along . O

In the next results we will use the so called “De Rham’s division
theorem”, which we state bellow (cf. [M]).

De Rham’s division theorem. Let 0 € P be a polydisk in C™ and w
be a holomorphic I-form with an isolated singularity at 0. If n is a
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holomorphic p-form in P, 1 <p <m — 1, such that
wAn=20
then there exists a holomorphic (p — 1)-form [ such that

n=wAp
As a consequence we obtain the following:

Lemma-3. Let V C P ¢ C* and f be as before and n be a holomorphic
p-form on P, where 1 <p <n —1. Thenn |, =01, and only if,

n=df NG+ f.u
where 8 is a holomorphic (p — 1)-form and i is a holomorphic p-form.
Proof. It is not difficult to see that n = df A6+ f.ju implies that 5 ||, = 0.
We leave the proof for the reader.

Let us suppose that 7 [, = 0.Fix z € V*. Tt follows from 7 .= 0
that dfy A ne = 0, so that df An = f.a, for some (p+1)-form a. This
implies that df A a = 0, and so by De Rham’s Theorem we have that
a = df A (3, for some p-form 3, because p+ 1 < n. From this we get
df N(n— f.0) = 0. Again by De Rham’s Theorem we get n = df AO+ f.3,
for some (p — 1)-form 6. O

Corollary. Let V C P and f be as before. Let X and Y be holomorphic
vector fields on P, tangent to V™, and @ =dx1 A--- Ndz,41. Then

ix iy Q) =df NO+ f.u
where 6 is a (n-2)-form and p a (n-1)-form.
Proof. Immediate from the fact that ix iy (Q) |>V* =0. O

Lemma4. Let 0 ¢V C P C C"! and V* be as before. If n > 3 then
HY\(V*,0)=0.

Proof. Let U; = {z € P; fj(z) #0}and V; =U;NV*, 1 <j<n+1
and consider the coverings U = (Uj)1<j<p+1 and V = (Vj)1<j<n41 of P*
and V* respectively. Since the Uj; and Vj, are Stein U and V are Leray
coverings, and so it is enough to prove that H1(V, 0) = 0. We will set
Vij = V;;ﬂ%, V;jk = %ﬂV}ﬂVg, Uij = UiﬂUj and Uz’jk = UiﬂUjﬂUk.
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Let g:(gij)vij be a cocycle in C1(V, ). Since the Uj s are Stein
we can extend g;; to g;; € O(Uy;) (cf.[G]). Consider the coboundary
G=(8ijk = Jij + Gk + Gra)U, 5, 1D C*U, 0). Now, g Iv;;,= 0, s0 that
g:ik=f.hy;1, where H:(hijk)Uijk is a cocycle in H2(U, ©). Since n > 3 we
have H2(P* ©) = 0 (cf.[F]), and so H = §(K) for some K e CL(U,0),
which means that h;j, = kij + ks + ki, kij € O(V45). This implies that
L = (i = is — f-kij)y;, is a cocycle in Cl, ©). On the other hand,
HY(P*,0) =0, and so £ = §(M), for some M = (mj)u,; € cOu, o). It
we set N = (n; = m;lv;)v;, then it is not difficult to see that G = S(N).
This proves Lemma 4. O

Lemma 5. Let V and V* be as before. If n > 2 then there exists a
holomorphic n-form v on V* such that v, 0 Vp € V*.

Remark. It is possible to prove that v extends to P if, and only if, 0 is

a smooth point of V.

Proof of Lemma 5. Let us consider the coverings U = {U;; j =
L..o,n+1} and V = {V}; 7 = 1,...,n+1}, used in the proof of
Lemma 4. Let v; be the n-form in U; defined by v; = (fj)‘1 iej(Q),
where Q = dxq A--- Adx,y1. We have,

Q= fildey Ao Aoy Ndf A Adpgy = df Ay

From the above relation we get that df A (; — v;) =0o0n U;NU;,
and so y; ’ViﬂVjE vj IVzﬁvj This implies that we can define a n-form
v on V* such that v |Vj: v;. We leave for the reader the proof that v
does not vanishes on V*. O

Corollary. Let X,Y € x(P) be tangent to V and 0,1 be such that
ix iy (Qy=df N0+ f.u
where Q = dxy A+« ANdxpy1.. Then

0

ve= ix iy (V)
where v is as in Lemma 5.
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Proof. Since X and Y are tangent to V we have X(f)=g.f and Y(f)=h.{,
g he O(P). Now for j =1,... ,n+ 1 we have Q = df A v; (see the proof
of Lemma 5), so that

iy () =hfy; — dfA(lyv;)) =
dx iy (@) =hi(ix v;) — gfly v;) + dfA (ix iy vy)

This implies that on V we have

dfA G =df A (ix iy v;) = dEA(@ — ix iy(y)) =0

Since v |, = v;, it follows from the above relation that 0 |y«=
j

tx 1y (v), as we wished. O

3.2 — Proof of Theorem 1 in the cases n=2 and n=3

3.2.1 - Proof of Theorem 1 in the case n=2.
Let X, Y € x(V*) and suppose by contradiction that they are 1.i. on V*.
It follows from Lemma 1 that X and Y extend to holomorphic vector
fields on P, which we call still X and Y. Since X(0)=Y(0)=0, we get that
0€ D(X,Y), and so D(X,Y) contains some non constant holomorphic
curve (1) such that v(0) = 0. Observe that the curve v ¢ V.

Now consider the I-form ix iy () where Q = dxy A dxo A dzs. Tt
follows from the Corollary of Lemma, 3 that there exists a holomorphic
function g and a 1-form p such that

ix ity () =g-df + [ p (1)
Assertion- g(0) # 0 - In fact, it follows from the Corollary of Lemma
5 that g |y+= ix iy (v), where v is as in Lemma 5. This implies that
Vx € V* we have g(z) # 0, because X and Y are 1.i. on V*. It follows
that g(0) 0, because g(0) = 0 would imply that ¢~ 1(0) N V* +# @.
Now, X and Y are L.d. along v, and so {1) implies that
Gy - Ay + Jypy = ixy by, 2=0 (2)
If we set F(t) = f(v(t), G(t) = g(y(t)), we get from (2) that,

G(t) F'(t) = G(t) dfy ) -7 (1) = =F () ey - 7' (1) = F(1) k(t)  (3)
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Since G(0) # 0 we can divide both members of (3) by G(t) (for
|t |< €€ small), getting F'(t) = h(t) F(t), where h(t) = ( )/G(t). T
follows that
t
F(t) = F(0) exp( / h(s) ds) = 0
0
so that the curve v C V, which is a contradiction. |

3.2.2 — Proof of Theorem 1 in the case n=3.

Let X,Y € x(V*) and suppose by contradiction that they are 1.i. on
V*.The idea is to prove that there exists Z € x(P) such that Z(f) =
1+g.f, where g€ O(P), which is not possible if 0 is singular point of f.

As before consider the 1-form ix iy () where Q = dzy A dxa A
dxs A dxg. Let 8 and p be such that ix iy () = df A0+ f.u. Set
6= Z?:l 0;.dz;, and for p € P, K, = ker(6p).

Assertion 1. Vp € V* we have 6, # 0 and K, LT,(V*) (where 1 means
transversal), so that df, A 0, # 0.

Proof. It follows from the Corollary of Lemma 5 that 8 |y«= ix iy (V).
Since X and Y are Li. on V* this implies that Vp € V* we have 8, # 0
and that K, N T,V* is the subspace of T,V* generated by X(p) and
Y(p). Therefore K, LT,(V*) as we wished.

Assertion 2. There exist functions Z1,... ,Z4 € O(V*) such that

4 4
Z f’LZ’L =1 and Z QQZZ =0
i=1 i=1

This means in other words that the vector field Z defined along V*
by Z = 2?21 Z;.e; satisfies the following relations

2 (df) =1 and iz 6 =0

This will imply the result, because if we extend the functions Z;; to
functions hq,...,hy € O(P) then we get a vector field W:Z?=1 h;.e;
on P such that iy (df)=1+g.f, as desired.

Proof of assertion 2. For all p € V; we have df, A 6, # 0. This implies
locally the existence of the vector field Z, so that there is a covering
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W = {Wy; a € A} of V* by open sets and a collection {Zy}qea of
vector fields such that foralla € 4

ize (df) =1 and iz, (6)=0

Let o, 8 € A be such that W, 53 = Wo N W3 # @& and consider
Zag =23 — Zy. We have izaﬁdf:O and so Z, 5 € x(Wa,g), that is,

it is tangent to V*. Since iz, 0 =0and 0 |y+= ix iy (v) we get that

8
Zog = Ga,8-X + hapY ,where g, and hqpg € O(Wyp)

Now, since X and Y are Li., the collections {ga’ﬁ}Waﬁ?:@ and
{hOl,/B}Wa g#@ are cocycles in CHW, ©). Hence by Lemma 4 they are

coboundaries, and so there exist collections {gq }w, and {hq}w, where
Gas hee € O(W,,) such that

a8 = 98 — 9o and hapg = g — ga

This implies that Zo — go- X —ha Y = Zg—gs- X —hg-Y on Wy,
so that we can define Z along V* by

Z lwe = Za — gaX — haY

It is not difficult to see that iz (df) =1 and iz(#) = 0, which prcves
assertion 2. O

Remark. The above argument could be applied in the general case,
n > 4,if we could obtain the form 6 in such a way that for any p € V*
the equations % Z(p) (df) =1andiq Z(p) (#) = 0 were solvables,for some
Z(p) € T,V*. In this point we have used that 0 is a 1-form if n = 3.

3.3 — Proof of Theorem 1 in the quasi homogeneous case
In this section we will suppose that V is quasi homogeneous, that is
V = f~1(0), where f is quasi homogeneous. We say that f:C™ — C is

quasi homogeneous if there are k1,... , kn, k € N such that V¢ € C and
V{z1,...,Zm) € C™ we have
FEM oy, ) = f(2, . 2 (1)
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It is not difficult to see that a function f which satisfies condition (1)
must be a polynomial. The following result,due to K. Saito, is known:

Saito’s Theorem (cf. [S]). Let f be a germ at 0 € C™ of holomorphic
function, with an isolated singularity at 0. Then the following are equiv-
alent:

(a) There exists a coordinate system (x1,... ,Ty) around 0, such that f
in this coordinate system is a germ of a quasi homogeneous polyno-
maal.

(b) There exists a germ of holomorphic vector field Z such that Z(f) = f.
Moreover the coordinate system in (a) can be chosen in such a way

that the vector field Z is linear and diagonal with all eigenvalues rational

and positive.

For instance if f satisfies a relation like in (1) then the vector field
Z can be chosen as Y ;- A;.xz;j.e; where \; = k;/k. Observe that if
Z' =7 + X, where X is a first integral of {, then Z'(f) = f.

From now we fix the quasi homogeneous polynomial f in C™, where
m = n+ 1, with an isolated singularity at 0.

Given a neighborhood U of 0 and two holomorphic vector fields
X,Y € x(UNV*) we will say that they are Ld., if D(X,Y) contains
a non constant holomorphic curve v C V such that v(0) = 0. Two
germs X and Y of holomorphic vector fields at 0 € V will be L.d. if they
have representatives X,Y € x(U N V) which are 1.d. (for some U). If
they have representatives X,V € x(UNV) which are Li. in UNV™* then
we will say that they are 1.i. on V. '

We will use the following notations:

X = the set of germs of holomorphic vector fields at0 € C™
Xy. = the set of germs of holomorphic vector fields at0 € V
D(V) ={X € xy. ;VY € Xy, then X and Y are 1.d.}

Lemma 6. Let X,Y, A and B be germs of holomorphic vector fields at
0€V, such that X and Y are Li. on V. There exists € > 0 such thal if
|s|,|t] <e, then X +s.A and Y +t.B are Li. on'V.

Proof. Let us consider representatives X,Y, A and B of the germs
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defined in a ball U = B(0,r) around 0, in such a way that X and
Y are Li. on U N V*. Consider extensions of these vector fields to a
neighborhood U of 0 € C"t1, which we call again X,Y, A and B. Set
Xs =X +s8A Y; =Y +t.B and D(s,t) = D(Xs,Y:). Observe that
A ={(p,s,t) € UxC?% pec D(s,t)} is an analytic subset of U x C2.
Since X and Y are 1i. on V, D(0,0) is a curve passing through 0 and
such that D(0,0) N V* = @. On the other hand, if the Lemma was
false, there would exist sequences (rp, = (Sp,tn))n and (pn)n, such that
limp ry =0, py € V*ND(ry,) and | p, |= € for some small € > 0. We can
assume that (p,), converges to some p € V*. By continuity, it follows
that p € D(0,0) N V*, which is a contradiction. O

Lemma 7. Let f be as before and Z € xuy be such that Z(f) = u.f,
where u is a unity (that is u(0) #£0). Then Z |y~€ D(V).
Proof. Dividing Z by u if necessary, we can suppose that u=1. Let
X ¢ Xy. and let us prove that X and Z are 1.d.. Let us consider
representatives of X and Z , which we call still X and 7, in a polydisk
P around 0 and a holomorphic extension X of X. From Lemma 1 we
have X(f) = g.f for some holomorphic function g. Let Y = X —g.Z. It
is not, difficult to prove the following facts:
i) X and Z are 1.d. on V if, and only if, Z and Y are 1.d. on V.
ii) Y(f) =0, so that Y is a first integral of f.

We need a Lemma. 0

Lemma 8. For 1 < i,j < m setY;; = fj.e; — fi.e;. Let Y be a first
integral of f. Then there exists a antisymetric-malriz

1<j<m
A = (ai,j)lgggm , where a; ; € Op,

such that
Y = > aig Yy
i’j

Proof. Let Q = dxy A -+ A drsm and consider the n = m — 1 form
w =iy {(Q). We have df Aw = df(Y).Q2 =0, and so De Rham’s Theorem
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implies that w = df A 0, where 8 is a n — 1 form. Set

ij=m
=2 a0,
i,j=1
where o; ; = z'ej iei(Q) and a; ; = —a;;. From df A Q =0 it is possible to
prove that
& Nigie (@) = iy, ()
so that
iy( Q) =df N0 =D aiji, ()
— 1,7
27‘7
which implies the Lemma. O

End of the proof of Lemma 7. Let Z,Y be such that Z(f) = f, Y(f) =0,
and Y = 32, a;;.Y;;, where A = (ai’j)ﬁg;n‘ We will consider two
cases.

Ist case: m = n + 1 is even. Suppose first that the matrix A(0) =

(a¢7j(0))15j =™ is non singular. In this case 0 is an isolated singularity

1<i<m
for Y.
In fact
Y = Z Y;.e; = Zai7j.(fj.€7; — fi.ej) = Y, =2. Z ai,j.fj
i=1 i j=1

Since A(0) is non singular, then A(p) is non singular for p in a neigh-
borhood B of 0. This implies that if p € B is a singularity of Y, then
filp) =+ = fm(p) = 0, and so p = 0.

Now, it follows from Theorem 2 that D(Y, Z) contains a non constant
holomorphic curve ~ such that v(0) = 0. It is enough to prove that
v C V. Let us prove this fact.

Since v C D(Y,Z) and 0 is an isolated singularity for Y, we have
that for a small fixed ¢ # 0 there exists ¢ € C such that:

Z’y(t) = C'Y'y(t) = f(’y(t)) = df'y(t)'Z'y(t) = c'df'y(t)'Y'y(t) =0

so that v C V,as we wished.
Now suppose that A(0) is singular. Suppose by contradiction that Y
and Z are L.i. on V. Since m is even there exists a antisymetric matrix
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K= (ki,j)lgjsm such that for small s # 0 the matrix A(0) + s.K is non

1<i<m

singular. We leave the proof of this fact for the reader. Set

Y, = Z(a@',j —!—S.k’i’j).Y;’j = Y +s.W
2
It follows from Lemma 6 that if s is small enough then Z and Y; are
Li. on V. On the other hand this contradicts the fact that A(0) + s. K

is non singular for s # 0. This contradiction implies that Z and Y are
l.d. on V.

2nd case: m = n+1 is odd, say m = 2k+1 . In this case A(0) is
singular because it is antisymetric. Let us suppose first that A(0) has
rank m — 1 = 2k. Fix a neighborhood B of 0 such that A(p) has rank
2k for any p € B.
Consider the 2-vector ® = 3, ; a;;.€; A e;. Since A(p) has rank 2k
for any p € B, the 2k-vector ©F does not vanishes on B. It follows that
there exists a 1-form w = 3 w; dz; such that
m

2) 0F = Y ()M wierA A 1A IA Al = du(e1A. . Aem)
=1

where w does not vanishes on B.

Observe that w and © satisfy the following properties:

(a)i,(0) = > Gij(wies —wj.e;) =237 5 a4 5.wi.ej = 0.

(b)iy (w) = 0.

(c)igr(©) = —Y.

In fact, (c) follows from Y = 37, a;;.Y;;. Let us prove (a). For
any fixed p € B there is a base V = (v1,...,v941) of C™ such that
O = v Ava+- - +vop_1 Avgg. Let (aq,. .., ager1) be the dual basis of V.
We have ©F = kl.ug A...Avgy. Since v1A.. ANVl = Aer AL ./\éng,
where A # 0 we get from (2) that w, = c.agry1, where ¢ # 0. This
implies (a). It is easy to see that (a) implies (b). We leave the proof of
this fact for the reader.

Now, since wq # 0 there exists a vector e € C™ such that wq.e # 0.
By taking a smaller B, if necessary, we can suppose that wy.e # 0 for all
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p € B. Consider the analytic sets
E={peB; Zp)ANY(p)Ahe=0} and F={pe B; w,.Z(p) =0}

Observe that I has codimension one, E has dimension > 2 (Theorem
2) and 0 € EN F. This implies that ¥ = E N F has dimension > 1, and
0 € ¥. Therefore ¥ contains a non constant holomorphic curve 7 such
that v(0) = 0. The following assertion will finish the proof:

Assertion - ¥ C VND(Y, Z)

Proof. Let p € X. Since Z(p) A Y (p) N e = 0, it follows that there are
a,b,c € C, not all zero, such that

a.Z(p)+bY(p)+ce=0 (%)

Since p € F and wp.Y(p) = 0, if we apply wp to (*) we get c.wp.e =
0 = c¢=0,s0that a.Z(p)+b.Y(p) = 0, which implies that p € D(Y, Z).
Suppose first that a # 0. In this case if we apply df, to a.Z(p)+b.Y (p) =0
we get a.f(p) = a.dfp.Z(p) =0, and so p € VN D(Y, Z) as we wished.

Let us consider the case a = 0. In this case we must have Y (p) = 0.
On the other hand (b) implies that:

Gu(e1 A Nem) =08 = ig(ig(er AL Aew)) = —kY AOFT

The above relation implies that if Y (p). = 0 then df, A w, = 0, and
so dfp, = a.wp. Hence f(p) = dfy,.Z(p) = a.wp.Z(p) = 0, because p € F.
Therefore p € VN D(Y, Z), as we wished.

Let us suppose now that the rank of A(0) is less than 2k. The
proof is similar to that we have done in the case m even. Suppose by
contradiction that ¥ and Z are l.i. on V. Since m is odd there exists
a antisymetric matrix K = (k”)Eff:;‘ such that for small s # 0 the
matrix A(0) + s.K has rank 2k. We leave the proof of this fact for the
reader. Set

’ Y, = Z(ai,j —f—S.ki?]‘).Yg’j = Y +s.W
0,

It follows from Lemma 6 that if s is small enough then Z and Y} are
Li. on V. On the other hand this contradicts the fact that A(0) + s. K
has rank 2k. This contradiction implies that Z and Y are l.d. on V.
This ends the proof of Lemma 7.
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End of the proof of Theorem 1.
Let X,Y ¢ Xy and let us prove that they are 1.d. on V. Suppose by
contradiction that they are 1.i. on V. Consider holomorphic extensions
X and Y of X and Y respectively. We have X(f) = g.f and Y(f) = h.f.
It follows from Lemma 7 that ¢(0) = 0 and h(0) = 0. Let Z be such that
Z(f) = f. Lemma 6 implies that there exists € > 0 such that if s <€
than Y =Y +s.Z and X are L.i. on V. On the other hand Ys(f) = u.f
where u = g + s, so that w(0) = s # 0. Hence Lemma 7 implies that
Ys; € D(V), which is a contradiction. This ends the proof of Theorem 1.
|
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