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Abstract. We consider skew-products with an arbitrary compact Lie group, when
the base map is a one-sided shift of finite type endowed with an equilibrium state of a
Holder continuous function. First we show that the weak-mixing property of the skew-
product implies exactness and exponential mixing. Then we address the problem of
classification under measure-theoretic isomorphisms. We show that for a generic set of
equilibrium states the isomorphism class of the skew-products corresponds essentially
to the cohomology classes of the defining skewing function and the isomorphism is
essentially a homeomorphism.
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Introduction
For many problems associated with endomorphisms in Ergodic Theory
it is appropriate to consider natural extensions and then to invoke, or
prove, results for automorphisms. This is valid, for example, when con-
sidering certain ergodic or mixing properties or when considering certain
entropy problems. However, this is not the case for, say, exactness, nor
for classification theory. Endomorphism problems are not always re-
ducible (extendable) to automorphism problems.

In this paper we restrict our attention to certain endomorphisms and
consider their skew-products with compact Lie groups. Specifically, our
endomorphisms will be one-sided aperiodic shifts of finite type equipped
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164 ZAQUEU COELHO AND WILLIAM PARRY

with an equilibrium state given by a Hélder continuous function. Such
shifts are known to be exponentially mixing (i.e. there is exponential
decay of correlations for appropriate functions) and exact [9]. More-
over, generically, these shifts can be classified by a countable number of
invariants (multivariate characteristic functions) and two such shifts are
measure-theoretically isomorphic if and only if the isomorphism (which
is unique) is essentially a homeomorphism [4].

We consider these properties for skew-products of one-sided shifts
with compact Lie groups and show that weak-mixing implies exponential
mixing and exactness (see Siboni [8] for a special case). We then take
up the problem of classification. We restrict our attention to shifts
with a generic equilibrium state and associated (ergodic) skew-products
with the same compact Lie group and clarify the problem of finding
isomorphisms when they exist. Our main result is that, again, such
isomorphisms are essentially homeomorphisms and are given as skew-
products. This is a kind of rigidity result and is based on the ‘super
rigidity’ of the shifts we consider and on the ‘smoothing’ of the solution
to a Livsic type problem for certain functions appearing in a cocycle
equation. This Livsic result will appear in a separate paper by the
second author and M. Pollicott [5].

1. Preliminaries
Let A be an aperiodic k& x k 0-1 matrix and define

X = {z¢€ H{l,--- kY A@n, @py1) =1, forall n=0,1,---}.
n=0

With respect to the Tychonov product topology, X is a zero dimensional,
compact, metrisable space. The shift transformation o given by (o), =
ZTpt1, forallm =0,1,--- is a continuous surjective map of X onto itself,
and is called a (one-sided) shift of finite type.

If w: X — C?is continuous and var,w/0" is a bounded sequence
(for a fixed 0 < 6 < 1) we define |w|g to be the least such bound. Here
var,w = sup{|w(@)—w()|: z; = yi,i < n}, where |-| denotes Euclidean
norm. We denote by Fy = Fy(C%) the space of continuous functions w
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with |w|g < oo and equip Fy with the norm [|wl||g = |w|p + |w]e (| * oo
is the supremum norm) making Fp into a Banach space.

If g € Fyp(R) satisfies > edW) =1 forall z € X, we say that g
is normalised. For such g we define the Ruelle operator L: F3(C%) —
Fp(C% given by (Lw)(z) = Lyyey
g 1is suppressed since g will usually be fixed in the discussion. For a

oy=x
eg(y)w(y). The dependence of L on

normalised g € Fp(R) there is a unique o-invariant probability m such
that

0 = hm)+ [gdm > i)+ [ g

for all other o-invariant probabilities y. (Here, h denotes entropy.) Such
a measure m is called the equilibrium state defined by g and we refer to
m as an Fy equilibrium state.

If G C U(d) is a compact Lie group and f: X — G is continuous
we define var,f = sup{|f(z) — f(W)]: = = vi, @ < n}, (where | -|
denotes the Euclidean operator norm) and write f € Fy(G) if var,, f/0"
is a bounded sequence (for a fixed 0 < 6 < 1). For a given normalised
g € Fp(R) and f € Fyp((G) we define the operator Lf:Fe((Cd) — Fp(C%
by Ljw = L(fw). '

Let o be a one-sided shift of finite type endowed with an Fy equilib-
rium state m and let f € Fyp(G). The skew-product transformation oy
of X x G onto itself is defined as o¢(z,y) = (o, f(x)y). We note that
of preserves the measure m x mg, where mg is the (normalised) Haar
measure on G.

2. Exponential decay of correlations

Throughout we shall be concerned with an aperiodic shift of finite type
0: X — X, a function f € Fg(G) and an Fy equilibrium state m. Since
the equilibrium state will be fixed, the corresponding Ruelle operator on
Fp(C?%) will be understood, as will the operators Ly Fy(C% — Fy(CY),
for d dimensional unitary representations R.

Proposition 1. If G is a compact Lie group and f € Fy(G) is such
that o¢(x,y) = (ox, f(x)y) is weak-mizing on X x G then the spectral

Bol. Soc. Bras. Mat., Vol. 29, N, 1, 1998



166 ZAQUEU COELHO AND WILLIAM PARRY

radius of L R(f) 18 strictly smaller than 1 for each non-trivial irreducible

representation R.

Proof. Onmne can show that the essential spectral radius of LR( f) s f.
(Cf. [6] for the main argument which generalises to our situation.) This
means that the spectrum outside a disc of radius 6’ > 6 is associated
with a finite number of eigenvalues and the corresponding eigenspaces
have finite dimension. Hence if the spectral radius of Lps) is 1 (it
cannot be larger since g is normalised) there must be an eigenvalue of
modulus 1, i.e.
Lppw = aw, laf=1.

Using the unitary character of R and the convexity properties of L (again
since g is normalised) this equation can be rewritten as

weo = aR(flw .
If we define F'(z,y) = R(y 1)w(z) we see that
Fooy(z,y) = Ry HR(f(@) 'w(oz) = aR(y™yu()
= alF(z,y).
Since R is non-trivial this equation contradicts the weak-mixing hypoth-

esis. Thus we see that the spectral radius of L R(y) 18 strictly less than 1.
From this we are able to deduce

Proposition 2. The autocorrelations of functions of the form Ry~
w(x), for w € Fp(C% and R an irreducible representation on C%, con-
verge to zero exponentiolly fast.

Proof. We have to prove that
/(Fod?,F)dmme — 0

exponentially fast as n — oo, where F'(z,y) = R(y~YYw(z). This integral
equals

JBUm@)ww) dm,

where f™(z) = f(6™ 'z)--- f(ox)f(z), and this in turn equals
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Since the spectral radius of L R(J) is strictly less than 1, the result follows.
O

Remark. When G is abelian the result shows that autocorrelations of
functions of the form w(z)x(y) for w € Fy(C) and x a character in G,
converge to zero exponentially fast.

3. Exactness

Two sided aperiodic shifts of finite type are known to be Bernoulli with
respect to any Fy equilibrium state [1]. Combining this with a general
result of Rudolph’s [7], it follows that weak-mixing compact group ex-
tensions of such shifts are also Bernoulli. However, this does not imply
(a priori) that the same is true for one-sided shifts. Nevertheless we are

able to prové

Theorem 3. Let G be a compact Lie group and f € Fp(G). If oy is
weak-mizing with respect to m x mg where m is an Fy equilibrium state
on X, then oy is exact.

Proof. Let B = B(X) x B(G) and let By, = My 0;"B. Then we have
to prove that ., consists of sets of measure zero or one. We consider
the action of G on X X G given by g:(x,y) — (z,v)g9 = (x,yg) which
commutes with oy. The induced actions of (¢ and of o7 on L?(B) com-
mute and this implies that GG acts on each of U}LLQ(B) = LQ(UJZ”B) and
hence on LQ(B). Since G is compact the Hilbert space L?(B) decomposes
into a direct sum of finite dimensional subspaces Vg, each preserved by
the action of G [3]. Here R is an irreducible representation and for an

orthonormal basis wy, - ,wy of Vg we have

-1
w(z,yg) = R(g Jw(z,y),
where w is the column vector col. (wq,--- ,wy). Let V denote the inner
product space of all C? valued square integrable functions w defined
on X x G which are B, measurable and satisfying the above equation.
Note that for w,v € V we have (with respect to the Euclidean inner

product) (w,v) is G-invariant and therefore it is measurable with re-
spect to B N (B(X) x N) where A is the trivial o-algebra of G. This
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intersection o-algebra is easily shown to be Npo™"B(X) x N, which is
trivial since, as we have said, o is exact. Thus the function (w,v) is
constant a.e. and equals [(w,v)dmxmg = {({(w,v)), the inner product
of w,vin V. If we choose n vectors vy, -+ ,v, in V we therefore have
((vi,v5)) = (vi(z0,%0), vi(x0,¥0)) 4, = 1,--- ,n where zg,yp are suit-
ably chosen. Hence there is an isometry of the span of vy, , v, into
C®. Hence n < d showing that V is at most d dimensional.

Returning to our original w = col. (wy, - - , wq) we note that w, weoy,
woa]%, --+- €V, a finite dimensional space. Since o; is weak-mixing, by
Lemma 4 below, this implies that w is constant a.e. and d = 1. Thus
VR contains only the constant functions and the same is true of L?(B),

i.e. By, consists only of sets of measure zero or one. O

Lemma 4. [If ¢ is weak-mizing and w, weo, woa?, - €V, where V is
a finite dimensional vector space, then w is constant.

Proof. By subtracting integrals there is no loss in assuming [wdm =
0 and showing w = 0 in this case. There is a largest n such that

w, Weo, - - -, woo™ ! are linearly independent. Hence there are constants

a; such that

woo = agw + -+ + CLn_lwoO’n_l )
and for some matrix A we have
voor = Av,

where v is the column vector col. (w, - - - , weo™ ). Let A be a non-zero
eigenvalue of A with left eigenvector £, i.e. £A = A¢. Then

(€,ve0) = A, v),

and, by weak-mixing of o and integration with respect to m, we conclude
that A = 1 and (§,v) = 0. The latter shows that there are complex
numbers &; (not all zero) such that

fow + -+ + €pqweo™ =0,

and this contradicts the fact that w, - - , woo™ ! are L.i. Hence all eigen-
values of A must be zero, and there exists k such that A* = 0. Therefore
voo® = ARy = 0 and since ¢ is onto it follows that v = 0. O
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4. Classification

In this section we are concerned with the measure-theoretic classification
of skew-products o; where o is a one-sided aperiodic shift of finite type
and f € Fp(G), G a compact Lie group. The underlying probability
measure, preserved by o, will be taken to be m x mg where m is the
equilibrium state of a normalised g € Fy(R) and m¢ is the normalised
Haar measure of G.

As usual, we say that two such transformations oy, o’ are (measure-
theoretically) isomorphic if there is an invertible measure-preserving
map ¢ between their respective spaces X x G, X’ x (G such that the
diagram

xx¢ L xx¢
ol Ly
X'xG L X'x¢

commutes a.e.

Our aim is to clarify this diagram, under the circumstances when the
functions g € Fy, ¢’ € Fy satisfy the condition that they each separate
points. We say that g separates points if, when z,y € X and z # y,
there exists n € N such that g(o”z) # g(c™y). This condition, though
simplifying, is generic in the relative Fy topology for normalised func-
tions [4]. In fact such functions form an open dense set. Our first step
is the following

Proposition 5. ([4].) Let 0,0’ be two one-sided aperiodic shifts of fi-
nite type with equilibrium states m,m’ corresponding, respectively, to
the normalised Fy functions g,¢'. If g, g separate points and if p is a
(measure-theoretic) isomorphism belween o and o' then there exists a
measure-preserving homeomorphism ' such that ¢ = ¢’ (a.e.). More-
over, @' is unique.

The proof of this result is based on the fact that the information
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functions for o, ¢’ are related by
I(BX)|lo1B(X)) = I(B(X")o 1B(X"))op ae.

which simplifies to

and therefore

It is at this point that the separation condition is invoked to produce a
unique homeomorphism ¢’ = ¢ (a.e.).

If ¢ is an isomorphism between oy and 0’}/ then exactly the same
conclusion is reached, namely

9(af(@,y)) = (o) (e, y)  n=01,--
where we interpret g(z,y) = g(z) and ¢'(z,y) = ¢'(x). Thus g(c"x) =
g9'((0")*p1(z,y)) where p(z,y) = (#1(2,9), p2(2,y)). We conclude from

this that 1 is independent of the second variable, i.e. p1(x,y) = p1(x).
In short we have

Proposition 6. Let 0,0’ have equilibrium states m,m’ corresponding
to normalised Fy functions g,q which separate points, and let ¢ be a
(measure-theoretic) isomorphism between oy and o%,. Then ¢ has the
form
elz,y) = (p1(z), v2(2,9))
where ©1 s a measure-preserving homeomorphism.
We shall use this proposition in combination with the following to

prove our main result.

Proposition 7. ([5].) Let o have an equilibrium state m corresponding
to a normalised Fy function and suppose f, f' € Fyp(G). If there exists a
measurable h: X — G such that

= (heo) L f R ae
then there exists b’ € Fy(G) such that h =h' a.e. and
f(x) = W(oz) ! f (@)K (z)
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everywhere.

Proposition 8. If ¢: X x G — G is measurable and

plox, f@)y) = f@)p(z,y) ae
where f, f' € Fo(G). Then ¢ has the form

p(r,y) = h(z)ay)
where h: X — G is measurable and « is an automorphism of G.

Proof. For each ¢ € G we have

oloz, f(z)yg) = f(x)p(z,yg) ae.

Inverting this equation and multiplying the original we get

1

(g @)oo = (0,1 @) ae.

where @ (1,y) = ¢(x,yg). Since oy is ergodic this means that (gpg_l Q)
is a constant depending on g, i.e.
e(z,yg) = ez, y)alg) a.e.

and it is clear that « is a continuous automorphism of G. This equation
holds for all g € G and almost all (z,y) € X x G. Let T' C G be a
countable dense subgroup. For each g € T there exists a null subset
Ny € X x G such that, for all (x,y) & Ny,

plz,yg) = elz,y)alg) .

Defining N = Uy Ny we see that for all (z,y) ¢ N and for all g € T we
have ¢(z,yg9) = ¢(z,y)a(g). By Fubini there exists yg € G and a null
subset M C X (M independent of g € T') such that

o(r,y09) = ©(T,y0)a(g) ,

for all x ¢ M and all g € I'. Since « is uniformly continuous on I' we
conclude by taking limits that o(x,y09) = ¢(z,yp)a(g), for all x & M
and all g € G. Writing y = ygg we have

plz,y) = elz,y0)alyy aly)
Hence we define h(x) = ¢(x, yo)oz(ygl). O
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We now proceed to our main result:

Theorem 9. Let 0,0 have equilibrium states m,m’ corresponding to
normalised Fy functions g,q" which separate points, and suppose @ is
an isomorphism between oy and O‘},, where f, ' € Fp(G). Then ¢ = ¢’
a.e. where @' is a measure-preserving homeomorphism between X x G
and X' x G of the form

o', y) = (p1(z), h(z)a(y))
and ‘where @1 is a homeomorphism, h € Fp(G) and o is an automor-
phism of G.
Proof. We use Proposition 6 to simplify the statement. In other words
we compose ¢ with the homeomorphism (z,y) — (cp[l(az),y) where 1
is the measure-preserving homeomorphism between ¢ and o’. In this
situation we have an isomorphism ¢(z,y) = (z, p2(z,y)) between two
skew-products o, oy with the same base transformation o (preserving
m). We need to prove that 9 takes the form po(z,y) = h(z)a(y)
where h € Fy(GG) and « is an automorphism. The isomorphism gives a
commutative diagram

(z,y) — (oz, f(x)y)
l l
(@, p2(x,y)) — (0x, p2(0p(x,y))) -

In other words
(PQ(O'ZIL f(x)y) = f/(ZC)(IOQ(LC,y) .

Here we use Proposition 8 to see that p9(x,y) = h(x)a(y) where h: X —
(G is measurable and « is an automorphism of G. Thus

hox)o(f(x)aly) = f(2)h(@)aly),
or equivalently
a(f(z)) = h(ox)™' f'(z)h(z) .

By Proposition 7 we conclude that = h' a.e. where b’ € Fy(G), and
the theorem is proved. O
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5. Two examples

As an illustration of what can happen when the equilibrium state m
corresponds to a normalised g € Fy where g does not separate points
(an exceptional case), we take the most extreme example.

Let o be the full two shift (i.e. X = [[,20(0,1)) equipped with the
Bernoulli (1/2,1/2) measure m, which is the equilibrium state of the
normalised function g(x) = —log(2). Clearly g does not separate points
since it is constant.

Now let G = N,, = N/nN = {0,1,--- ,n — 1} with addition modulo
n, and define f(z) = f(zg) where f(0) =0 and f(1) = 1. Then we have

Theorem 10. The skew-product oy is measure-theoretically isomorphic
to o itself.

Proof. Let B = B(X) x B(N,), then it suffices to produce a two set
partition « of X x N,, with the properties
(i) B=avo,'B
(ii) « is independent of 0;18 and
(ili) o is a strong-generator for oy.
If we have such an « then the map ¢(z,y) = (29,21, ) where a =
(Ap, A1) and aljﬁ(:p,y) € AZ:{c for all k, will be an isomorphism between
of and o.
Let [i] denote the cylinder corresponding to the points of X with
initial coordinate xg = i. Define

Ay = ([0}><{0})L4([1]><{0,1,-~-,n—z}),
A = (I x{n—-1}u(o] x{1,2,--- ,n—1}).

This is illustrated in the case n = 5 by Figure 1 where the bold lines
represent Ag and the rest 4.
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[0] [1]
Figure 1

It is a simple matter to check that o satisfies (i) and (ii), from
which it follows that 04,0]?105, --+ are independent. To conclude the
proof we have to show (iii), that « is a strong-generator. To do this it
suffices to show there is a set N C X x N,, of measure zero such that if
(z,9), (&', y') & N and

of(zy),0f@y) € A, k=01,

then (z,y) = (2/,y'). We shall also consider the 2n set partition 8 =
(Bg, B1,- -+, B9,_1) where each B; consists of points (z,y) all of which
having the same y coordinate and the same zg coordinate.

B, | By
B, 1 By
B, | B,
B, | B
B, ' B,
[0] [1]
Figure 2

It is clear that 8 > «. For ease of presentation we shall refer to a set of
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the form

U;kEk N U;(kJrl)Ek_H N---N O‘;EEE
as a word (Ey, Ex+1, -+, Ep). Notice that if (z,y) begins with the
word (Ag, Ag, -+, Ag, A1) (with n Ag’s) then we know that (z,y) € By

ie. zg =0, y = 0. And notice also that a v 01?16 > 3. Therefore
avVoltavei?g > aveils > 8,
f f f
which implies
avolave?s > Bvor's.
Iterating this inequality we get
_ _ —(k+1 _1 —
a\/afla\/---VJfkoz\/af( )ﬁ > ﬁ\/af ﬁ\/--~\/afkﬁ.

This means that if a point (z,y) has the word (A, - ,Azk7B) then
its 8 word (B, By, . By,) (in the same position) is known. (Here
Bej.)

Let (z,y) be such that the word (Ag, Ag, -+ , Ag, A1) (with n Ag’s)
occurs infinitely often in its « itinerary. Then, as we have said, By occurs
2 Ao, Ag, -+, Ag, A1) to
be the initial a word for (z,y) implies that the initial 5 word for (x, y) of
length N +2is (Byg, -+, Biy, Bo). Hence for such (z,y) the o itinerary
for (x,y) determines the 3 itinerary for (z,y), i.e. (z,y) is determined.
Let N be the null set of (x,y) for which (Ag,- -, Ag, A1) occurs only
finitely often. If (z.y) ¢ N then the a sequence of (z,y) determines the

in the same position and knowing (A4,,, -+, 4

[ sequence of (z,y) and the theorem is proved. O

Remark. We note that the assertion in Theorem 10 cannot hold if
m corresponds to a normalised ¢ € Fy which separates points. The
reason being that the property of separation of points is invariant under
measure-theoretic isomorphism between the corresponding equilibrium
states.

Corollary 11. For every n > 1 there is a cyclic group Ny, of invertible
measure-preserving transformations commuting with the full one-sided
two shift endowed with the Bernoulli (1/2,1/2) measure.
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This is because N, commutes with oy and oy ~ 0.

Corollary 12. If f(0) = 0 and f(1) = £ (where gcd(¢,n) = 1) then oy ~ 0.

It is easy to show all such o; are mutually isomorphic using an iso-
morphism of the form (z,y) — (x, fy). (Here we note that the condition
ged(4,n) = 1 implies that ¢ +— fy is an automorphism of N,.)

We show next that Theorem 9 does not hold without the assump-
tion of separation of points. Let o be the skew-product in Theorem 10
and take f'(x) = f'(zp,z1) where f'(0,0) = f'(0,1) = f(1,0) = 0 and
f/(1,1) = 1. Then oy is weak-mixing and it is not topologically conju-
gate to oy. The latter is because, for instance, the number of periodic
points of period 2 for these maps are different. However, we have the
following result:

Theorem 13. The skew-product o is measure-theoretically isomorphic

to oy. (Therefore it is also measure-theoretically isomorphic to o itself.)

Proof. The strategy here is the same as in the proof of Theorem 10,
i.e. we produce a two set partition o of X x N, enjoying the properties
(i), (ii), (iii) and then the corresponding map ¢ will be an isomorphism
between o5 and o. Hence by Theorem 10 we obtain oy ~ oy.

Let [¢7] denote the cylinder corresponding to the points of X with
initial coordinates (zg,x1) = (4, 7). Define the elements of a by

Ap = ([o0] x {0}) U ([01] x {0,1,2,--- ,n —2})
U ([10] x {n —1}) U (11] x {0,1,2,--- ,n —2}),
A = ([o0] x {1,2,- - ,n—1}) U ([01] x {n — 1})
U([10] x {0,1,2,-+ ,n—2}) U ([11] x {n ~ 1}) .

We illustrate this partition in the case n = 5 by Figure 3, where the
bold lines represent Ay and the rest A;. Here again it is not difficult to
check that (i) and (ii) are satisfied, and then it suffices to prove (iii).
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| |- ]

A | - L

[oor o1y [1oj [11]

Figure 3

We consider the 4n set partition 8 = {B;;: i = 0,1, j =0,1,--- ,2n—
1} where each B;; consists of points (z,y) with the same y coordinate
and the same (xg,x1) coordinate.

By,  Boo By Big
Bys Bos B3 Big
By, Bor By,  Bi7
By,  Bos B Bis
By Bos By  Bis

(oo0] roryp (101 [11]

Figure 4
Then clearly 8 > « and it is not difficult to see that o Vv Jj?/lﬁ > .
From this it follows that

avoplav.vofav a]?,(kﬂ)ﬂ > BVop BV Varfs.
Now we note that if (z,y) has initial o word given by w = (Ag, Ao, - -,
Ap, A1) (with n+1 Ag’s) then necessarily (z,y) € Bog. Therefore taking
the set of (z,y) such that w appears infinitely often on its « itinerary,
we conclude that the 3 itinerary is uniquely determined. Hence « is a

strong-generator for o . ]
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Problems

1. If o is the full (one-sided) k shift with the Bernoulli (1/k,---,1/k)
measure and f:{1,2, - ,k} — N, is it true that oy ~ o if oy is weak-
mixing?

2. Can such results be achieved for f:{1,2,---,k} — [0,1) (addition
mod 1)? Even for k£ = 2 and f(0) =0, f(1) = ¢, € being an irrational?
This should be provable, in which case it would follow that there is a
circle action commuting with o.

3. What can be said about the centraliser of ¢, i.e. the group of invertible
measure-preserving transformations of the full 2-shift? What Lie groups
does it contain? Which finite groups? (Compare Hedlund [2], for a
discussion of homeomorphisms which commute with the two-sided full
shift. There are only the obvious two.)

Postscript

After writing this paper we realised that our illustrations are subsumed
by a much more general result of Adler, Goodwyn & Weiss (Israel Jour-
nal of Maths 27, 49-63, 1977), who prove that any aperiodic shift of finite
type with a constant number d of edges exiting each state is isomorphic
to the full d shift (with respect to measures of maximal entropy). Al-
though they are primarily interested in two-sided shifts, their result has
the consequence that if each state has the same number d of entrances
then the one-sided shift is isomorphic to the one-sided full d shift.

This leads immediately to:

Proposition. If o is a topologically mizing skew-product of the one-
sided full d shift o with o finite group, where f is a continuous function,
then with respect to measures of mazimal entropy oy is isomorphic to
0.

This result only affects our illustrations and not the main body of
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our paper. It also solves problem 1 in the affirmative.
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