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Abstract. We estimate various aspects of the growth rates of ergodic sums for some
infinite measure preserving transformations which are not rationally ergodic.
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0. Ergodic sums of infinite measure preserving transformations
Let T = (X7, By, mr,T) be a conservative, ergodic measure preserving
transformation of a o-finite, infinite, nonatomic standard measure space.
It is known ([Hol, see also [A],[Kr|) that for

§ € Lmr)y = {f € Lma): 20, [ fdmr >0},

n-1

Su(f)@) = S5(f) = f(T*z) — o0 for ae. z € X,
k=0

and for f g € Lﬂr:

Salf)@) _ Jy fdm
Snlg)(x) [x gdm

forae. x € X,

whence,
Sn(f) =o(n) a.e.
On the other hand, for any sequence of constants (g, )nen,

Sn(f) # an ae.
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182 JON AARONSON AND BENJAMIN WEISS

as was shown in [A2] (see also [A]).
A rationally ergodic transformation T' = (X7, By, my, T) satisfies a
kind of ergodic theorem :

Smf

Vg —oo, dmp=mng, — 00 2 — E
ame

/ fdm a.e. v fert (1)
where a,, = a,(I) are constants ([Al], see also [A]). This sequence of
constants, called the return sequence, is determined by (1) uniquely up
to asymptotic equality, and can therefore be considered to represent the
absolute rate of growth of S,(f) asn — oo for f € L}r.

In order to study the rate of growth of S.(f) — oo for general T,
define as in [A3] the median sequences o, (P, f, 6) for P a mp-absolutely
continuous probability on X, f € Ll(mT)+, 0< 8 <1by

an(P, f,0) := max{t >0: P([S.(f) >t]) > 6}.

For example if 77 : R — R is Boole’s transformation defined by
Tr =2— %, then T is a conservative, ergodic, measure preserving trans-
formation of R equipped with Lebesgue measure (see [Ad-W]) and is
rationally ergodic with return sequence a,,(T") ~ @ ([A3], see also [A]).

It is also shown in [A3] that

(e B2 ot

asneoofortZOandeL}r, fx fdm = 1; whence

ontP, 1,0~ YO [ gy

2 [ _g2
~/ e *ds=40.
T JIn()

A different kind of behaviour is exhibited by a conservative, er-

where

godic, measure preserving transformation T = (Xq, By, mp,T) which
is squashable (see [A]) in the sense that it commutes with a non singular
transformation @ which is not measure preserving).
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ON THE ASYMPTOTICS OF A 1-PARAMETER FAMILY 183

In this case (as shown in [A3]) there is no ergodic theorem of type (1),
aﬂ(P:f79)
an(Q7919/)
probabilities on X7, f, g € Ll(mT)+, 0<8 <0<1.

Suppose that R : W — W is a non-singular transformation of the
probability space (W, B, i) and that
d,ud;; R _
where 0 <c<land ¢: W — Z.
The Maharam Z-extension of R is the skew product transformation
T: W xZ — W xZ defined by T(x,n) = (Rx,n— ¢(x)) considered with

respect to the invariant measure my defined by mp(A x {n}) = p(A)c".

and moreover — 0asn — ooV P, @ mp-absolutely continuous

The Maharam Z-extension of R is ergodic if, and only if R is of type
111, (see [A], [W]); and in this case it is squashable commuting with the
transformation Q(z,n) = (x,n + 1) (for which my o @ = cmr).

In this paper we look at the 1-parameter family of Maharam Z-
extensions considered in [H-I-K] proving a logarithmic pointwise ergodic
theorem as in [Fi] and evaluating their median sequences.

It turns out that a limiting transformation of our 1-parameter family

is actually boundedly rationally ergodic with return sequence
n

Viegn

This latter phenomenology was also obtained for some analogous

an =

transformations in [A-K], but by rather different methods.

1. The l-parameter family
Let Q = {0,1}", and B is the o-algebra generated by cylinders. Define
the adding machine 7: Q — Q by
7(1,..,1,0, €pt1, €p42, ) = (0,..,0,1, €41, €p 12, ---)-
For p € (0,1), define a probability u, on Q by
n
pp(let, - €nl) = ] pler)

k=1
where p(0) =1 —p and p(1) = p.
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184 JON AARONSON AND BENJAMIN WEISS

It is not hard to show that p, o7 ~ pp, and

dppor <1—p>¢’
d pp p

where
oo

$(x) =Y (2n — (T2)p) = min{n € N: 2, = 0} — 2.
n=1
This means that 7 is an invertible non-singular transformation of
(2, B, up) and a measure preserving transformation of (Q, B, y12).
It is well known that 7 is ergodic on (Q, B, pp), (indeed, 7-invariant
sets are tail-measurable and hence trivial by the Kolmogorov 0 —1 law).
Set,
X =QxZ, T(Z‘,TL) = (7'$,7‘L - ¢($))7
and, for p € (0, 1),
1-p\"
my(A x {n}) = Mp(A)< D ) .

Our 1-parameter family is {7, :p € (0,1), 0 <p < %} where
Ty = (X,B,myp, T).

Even though 7, is defined for % <p <1, we”stop” at p = % because
Tp*1 is isomorphic with T1_, by (z,n) < (7, —n) where (72)n := 1 -y,
As above, m, o T~! =m, and TQ = QT where Q(z,n) = (z,n + 1).

It was shown in [H-I-K] (see also [A]) that T, is ergodic V p € (0,1),
whence T}, being an ergodic Maharam Z-extension, is squashable for
1

pF# 5 .
It follows from results in [A4] (see [A]) that the representation of T,
for p # %as a Maharam Z-extension of a transformation of type I1T 2
-

is unique (up to isomorphism of the type I17 2 transformation).
-p

2. The results

Theorem 1. For every p € (0, 1),
log Sn(f)

logn — H(p) mp-a.e. ¥ f € L}%(mp) ' (2)
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ON THE ASYMPTOTICS OF A 1-PARAMETER FAMILY 185

where H(p) = ~plogp — (1 — p) log(1 — p) and H(p) = 1)
Theorem 2. For p # %;
an(P, f,8) = n®)ept(0)/logn(1+0(1)) 3)

as n — o0 ¥ P a my-absolutely continuous probability on X, f €
LYmyp)+ and 0 < 0 < 1 where

t2
1— 1— © o7
Cp = p(l —p) log P and / S T ;
log 2 P £(6) V2m
lim Sn(f) _ { 0 t>—cp
n—co 1y H(p) gt/ lognlog®) n oo t< —¢p
and S, 0 t
= > ¢
lim — nlf) = { P (4)
oo f(p) gt/ lognlog® n 00 t<gp

a.e ¥V f&e Ll(mp)+ where log(3) n = logloglog n.
Theorem 3. forp = %, T is boundedly rationally ergodic, and

an(T1) = —

2 Viegn'

3. The Main Lemma
For x = (xz1,29,...) € Q, and n € N, let

pn(r) =min{l <r <n:z,_, =0}, on(x)= min{s > 1: Zpis = 0},

n .
Sn(‘r) = Z Ty Pn = —) Nn(x) = S2n(1Q><{O})(:E7O)'
k=1 n

Note that

o 1

Sp ~np, & limsup Pr = lim sup L —T  pp—ae.
n—oo 10N n—oo logn  log > .

Main Lemma.

n

Np(z) = @n(r)( )
Sp(x)
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186 JON AARONSON AND BENJAMIN WEISS

where

|log @, = O(logn) pp — a.e.,
and

Ve>03aM=M, ne > pp(l|log®,| > M) <eV n>n..

Sublemma 1.

n— pn(z) =1
S

n—pn(m)—l(x) —1

R A
= (@@ \a(@) + pala) + onl2) 1)

Proof. We first establish the lower bound. Letting

) < Np(z) <

n~pn(a:)
ko(z) = 2n7en(@ 5™ ghelg,
k=1

we see that

0 1<73<n—pup(z) —1,
(tn @), =8 1 = pal@) < j <t oulm) — 1,
rp else.

It follows that

Nn(z) > # {kn(r) <GS ha@) + 27O 1Y () — ) = 0} =

t=1
n—pn{z)—
= #{(61, e p(w)—1) € {0,137 Z €k = Sp—pp(z)—1(T) — 1}
k=1

_ ( n—pn(z) -1 )
Sn—pn(x)—1() =1/
To check the upper bound, set K,(z) = ky(z) + on—pn(2)=1 " and note
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that
Ni(@) = #0 < § < Knlz) — 1 g5(x) = 0}+
+#{Eal(@) 52"~ 11 65(0) = 0}
< #{c € {0,1}*Pnl®) . Snpn(2)(€) = Sp_pp () (@)}
+ #{e € {0,1}" : sp(€) = sn(2) + pulx) + on(x) — 1}

(R (o
Sn—pn(x)(x) $n () + pn(z) + on(z) — 1 ‘

Sublemma 2. Suppose that 0 <k <n, and 0 < k+b<n+a, then

| n+a . ) ‘<
Blk+n)  Blp) =

) b b
< (al + 18D (T1ogtp — ) 4 g p - 1217

where p = %
The proof of sublemma 2 is straightforward, and is left to the reader.

Proof of the main lemma. Define ®,, by

N, :@n(”>.
Sn

N> [Tt
Sn—pn-1— 1
and by sublemma 2,

(TL—PTL— 11> > [(pn_ an+bn)(l_pn_ an+bn)}an+bn<n>

Sp—pp-1— n n Sn,

By sublemma 1,

where a, = p, + 1, and b, = 5, — 8,_p,_1 +1 < pp + 2, whence

20p +3 20n + 3 12om+3
e ek (5)

<I)n 2 [(pn

Again by sublemma 1,

n— pn(x) "
Anfe) = (sn-pnu) (x)) " <sn(a:) + pn() + on(@) = 1>’
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188 JON AARONSON AND BENJAMIN WEISS

and again by sublemma 2,

n— pn - 1 an+bn n
S - —_— M 1— _ M) S
n—pn (pn n )( Pn n n

where a,, = ppn, and by, = sp, — Sp—p, < Pn,

o) s ()
Sn(x) + pr(z) + on(z) — 1/ — (pn—b;")(l—pn~%“) s

where b, = o, + py, and it follows that

1 2(Pn+0n)
(pn, — Zetondyq —p, — 2enton),
It follows from (5) and (6) that
|log @n| <
2(pn n)+3 2(pn n)+ 3
< (2pn +n) +3) log(@n NS A “—T)i)) ‘
By the SLLN, pu,-a.s.,
2 +0on)+3 2(pn +0pn)+3
(P — M)(l — pn — i—”)—) — p(1 - p),
n n
also,
(pn +0n) = O(logn),-
whence

|log ®,,| = O(logn).

Also, given € > 0, if K = 2[logp(1 — p)|, and pk2? < 4> then,

)

i((2(pn+0w) +3 2 2L+3]) < piy((pn = L)+ pipllom > L) < 2" <

and by the WLLN, for n large enough,

2oy + 0n) + 3 2pp + o) + 3 ¢
Mp({log((pn _ M—L)(l — pp — _Q_)_)) > K]) < =
n n 2

It follows that, for n large enough, p,([|log ®5,| > K2L+3]) < e. O
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ON THE ASYMPTOTICS OF A 1-PARAMETER FAMILY 189

4. Proofs of the Results
By Stirling’s formula, and the SLLN, we have that

(sn> V(1= py)lim) T SEE

where
1
Cp=———=——, and H(p) = —plogp — (1 — p) log(1 — p).
Combining this with the main lemma, we obtain that

endl (pn)

where

log ¥p,| = O(logn) pp — a.e.,
and

Ve>03IM=M, n. > pp([|[log¥,| > M])<eV n=>ne.

Proof of theorem 1. It follows from (x) that

logs N
282 _ H(py) + O(1) — H(p) a.s. as n — oo,

whence, since N, = Son(1g),

log Sn(lQ)

— H(p) a.s. asn — o0,
logmn

and theorem 1 follows from the ratio ergodic theorem. O

The other results are established by considering the Taylor expansion
of H around p, and the asymptotic behaviour of p, —p as n — oo.

Let
Sp — NP

sf =8P = —
o p(1—p)n

then

*

Pn— D= \/p(l—p)j%-
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190 JON AARONSON AND BENJAMIN WEISS

By the central limit theorem (CLT),
p(ls, > EO]) — 0¥ 0 <0< 1,

and by the law of the iterated logarithm (LIL)

* *

S : S
lim —f—=-1, lim —L—=1 pu,— ae.
e log(2) n e \/log(2) n

Expanding H around p, we obtain that

H(pn) = H(p) + (pn —p)H'(p) +

for some y between p and py;

(pn — )2 H"(y)
2

1-p s, pl—p) 82
= H(p) + log Vp(l —p)—2 — ——
) » VI v y(l-y) n
Proof of theorem 2. It follows from the Taylor expansion of H around
p, (%) and LIL that

log N, = nH (py,) + O(log n)
P sy + Oflogn). )

From (1) and the CLT, we obtain that
e)zzdui@}ﬂmv%ﬂ9X1+dln

= nH(p) +log

a2”(mplQX{O}a Loy g0y

as n — oo, whence

an((mp‘Qx{0}> 1Q><{0}79) = né'(p)ecpg(.e) Vicgn{l+o(l))

and (3) follows from lemma 1 of [A3].

To establish (4), choose ¢ € R and note that by (1),
R(n,t) = NV = e\/ﬁ(cps;b—t\/lzg;@—)n)—{—()(logn)

ent (p)+tv nlog@) n
[p-8.€. as n — 00.
It now follows from LIL that

0 t>-—c — 0 t>c¢
hmRmﬂ:{ p,&hmmez{ v
oo o0t =gy n—00 oo t<g
Statement (4) follows from this and the ratio ergodic theorem. 4
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Proof of theorem 3. The proof of theorem 3 is slightly different.
To prove bounded rational ergodicity, we show that 3 M > 0 such
that

Sp(1 <M Sp(1 dm
n( QX{O}) Qx (0} n( QX{O}) i
for n > 1 and to obtain the return sequence, we show that

n

S,(1 dmi = .
/QX{O} n( QX{O}) 2 yJlogn

These follow from

Nn§2<z>x2 and Ii_mM>07
(5] Vvn 2n

n n—oo

which latter we prove.

By sublemma 1,

n — pn(z) n
No(@) < < Snpr( (g;)) (sn(aj) 4 pul@) + onlz) — 1)
n — pn(%)
= ([%J) i

9(@1)‘

To conclude, by (x) and the Taylor expansion of H around %,
log N, = nH(p,) — log v/n + log ¥y,
+3
s
=nlog2 — log\/n + log ¥,, — *2+0< ”),

Vvn
whence lim inf;,_, o % > 0. O

We conclude with the remark that there is no sequence of constants

a, — 0o such that
Ty
Sn2(f)

Up,
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192 JON AARONSON AND BENJAMIN WEISS

converges in measure on sets of finite measure. If there were such a
sequence, then for some ny — oo,
. 2"k
agny, o< \/_Tk
and
log N"k — nylog 2 + log v/ny,

would converge in probability to a constant.

However
8*3
%2 "k
log N”k — ng log 2 +log v/ny = log \Ilnk — Sn, + 0<—)
ng

whence by CLT,

lim 41 ([log N, — nilog2 +logv/n, < —M]) >0 V M > 0.

k—-)OO
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