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1. Introduct ion 

Correlation integrals were originally introduced in order to analyse time 

series generated by nonlinear deterministic dynamical systems. It was 

proved in [T,1981], [GP,1983], [T,1983] that some dynamical character- 

istics, like dimension and entropy of the relevant attractor, can be de- 

fined in terms of these correlation integrals. So the estimation of these 

characteristics can be done in terms of estimates of the correlation inte- 

grals. If the estimates of dimension and entropy do not 'converge', this 

is an indication that the time series is not generated by a deterministic 

dynamical system, at least not by such a system with sufficiently low 

dimension and entropy. For the precise meaning of 'converge', in this 

context, and other notions, see the next section. 

Apart from this, the correlation integrals of a time series contain 

information about the predictability by nonlinear methods, compara- 

Received 9 June 1998. 



198 FLORIS TAKENS 

ble with the information contained in the autocorrelations about  the 

predictabil i ty by linear methods.  This means that  the correlation inte- 

grals are relevant, independent of the fact whether  we have a time series 

which is generated by a deterministic system or not. This is important  

because real and experimental  systems are never strictly deterministic. 

In the deterministic case, there is a considerable redundancy in the val- 

ues of the correlation integrals: the values of dimension and entropy 

contain in a concise form the most important  (asymptotic)  information 

about  these correlation integrals. It is the purpose of the present paper  

to obtain an analogous reduction of the information for a large class of 

time series which are generated by stochastic systems. Such a reduction 

will be obtained by using ideas from extremal value theory. Wi th  this 

method we succeeded to interpret the est imated correlation integrals of 

time series from fluid bed reactors generated at the Technical University 

of Delft. The analysis of these time series was the start ing point of the 

research reported in this paper. 

2. Correlation integrals 

In this section we give a review of the use of correlation integrals in the 

analysis of time series. We illustrate these with two examples, one from 

a (stochastic) autoregressive system and one from the (deterministic) 

H6non-system. 

2.1 Time series, stationarity, reconstruction distributions and order 

Time series. In what  follows we consider real valued t ime series. One can 

consider these as (potentially infinite) sequences of measurements  which 

we denote by {xi}i>l. In probabil i ty theory it is often convenient to 

consider an observed time series as a realization of some random process 

(in the case of a deterministic system, the only ' randomness '  consists of 

the choice of the initial state,  which determines the entire realization) in 

which case we write {xi (co)}C>l, where co is an element of the probabil i ty 

space (f~,/z) of all possible realizations. For a discussion of these two 

approaches, see e.g. [B,1981] section 2.11. These two approaches are 
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essentially (i.e. under some further hypotheses,  the most important  of 

which is stationarity, see below) equivalent, bu t  notat ionally one or the 

other is more convenient, depending on the situation. 

Stationarity and reconst ruct ion  distributions. We always assume that  we 

deal with s ta t ionary t ime series. The definition of this notion is different 

in the two approaches mentioned above. In the formalism of 'realiza- 

tions' we have the finite dimensional distributions of (zi 1 (co), �9 �9 �9 , zi~ (co)) 

induced by the probabil i ty measure # on ft. Stationarity, or s tat ionari ty 

in the strict sense, means that  these probabil i ty distributions are in- 

variant under translations of time, i.e. tha t  the distr ibution of the vec- 

tors (zil (co), �9 �9 �9 , xi~ (a J)) is the same as the distr ibution of (zi l+s (co), �9 �9 �9 

zik+s(w)) for any s. Wi thou t  loss of generality we may restrict our- 

selves,  in this definition of stationarity, to the distributions of the vec- 

tors of the form (xi(a~),Z~+l(aJ),... ,xi+~_l(CO)). For s ta t ionary t ime 

series, the whole probabilistic s t ructure is given by the distributions of 

the vectors (zl(co), x2(co),. - - , xk(co)). These distributions are called the 

k-dimensional reconstruction distributions and are denoted by #k. This 

terminology is used because the vectors (z~(co),.. .  ,z~+k_l)  are often 

called reconstruction vectors because of their role in the reconstruction 

theorem [T,1981], [SYC,1991], which was the original motivation to 

s tudy these probabil i ty distributions in the theory of nonlinear systems. 

Often one only needs to consider the reconstruction distributions #k for 

low values of k, see the discussion of the order of a t ime series below. 

If we have only one t ime series, the reconstruction distributions, if 

they exist, are defined differently: We say that  a t ime series {zi}i_>l 

has a k-dimensional reconstruction distr ibution #k if for each positive 

continuous function f :}R k --+ R we have: 

lim - f(:ci, Zi+l ,""  ,xi+k 1) = f d # k  
n-->oo n i = 1  

(here we also speak of equali ty if bo th  the left and right side diverge). 

In this case, where we have only one realization, we call the t ime series 

s ta t ionary if the reconstruct ion distributions exist in the above sense. 

Orde r  o f  dynamical systems. We say that  a t ime series has order n if, 
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when predicting a new (future) element of the time series on the basis 

of the most recent values, with the knowledge of the general statistical 

properties of the time series (i.e. with the knowledge of the reconstruc- 

tion distributions), one obtains an optimal results using the last n values 

in the sense tha t  less than  n values give in general a worse prediction 

and tha t  more than  n values don' t  help to improve the prediction. In 

order to make this more formal we have to introduce some notions. 

For a probability distribution # on R l we define its projection re1 on 

R t-1 by 

- -  � 9  �9 - ,  A } ) ,  

for arbi t rary measurable subsets A C R l-].  The projection 7rl is simi- 

larly defined, interchanging the roles of the first and the l-th coordinates. 

If we consider a s ta t ionary time series with reconstruction distribu- 

tions #k, these distributions satisfy ~rl(pk) = ~rk(pk) = #k-1. Now we 

consider a fixed k and observe tha t  there is a unique probability dis- 

t r ibution #~+1 on IR k+l such tha t  for any three subsets A, B c R and 

C c IR k-1 we have that  

#~+I(A x C x t3) = pk(A x C)#k(C x B) 
ffk_l (C) 

where of course P~-i  = 7rl(#~) = 7rk(p~). 

Then our time series has order n if for all k > n we have, in the 

above notation, Pk+l' = Pk+l. We should note tha t  it is very common 

for s ta t ionary time series that ,  for k sufficiently big, #~+1 and Pk+l are 

at least very close. This means tha t  it is not a severe restriction to 

require tha t  a time series has finite order. For estimation of the order 

of (nonlinear) t ime series see [CT,1992] and [T,1996]. 

Mixing. There are various definitions of mixing for dynamical  systems 

and time series. Here we consider the strong mixing as introduced by 

Rosenblatt  [R,1956]. We say tha t  a s ta t ionary time series with re- 

construction distributions #k is strongly mixing if there is a function 

g : N --+ R, such tha t  g(n) converges to zero for n -+ oo, and such tha t  

for each l, n, and m and measurable subsets A c IR l and B C R "~, we 
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h a v e :  

Im+~+~(A • ~ • B) - # z ( A ) ~ ( B ) l  < g(n). 

So the function values g(n) can be considered as a measure for the 

coherence of the behaviour of the time series during time intervals which 

are at least n units apart.  Mixing means that  this coherence disappears 

if the time distance increases. 

Note that  a time series which is generated by a deterministic system 

is (usually) not mixing, even if the dynamical system is mixing in the 

sense of ergodic theory. 

2.2 Definition of  correlation integral 

Let X be a set in which there are defined a probabil i ty distr ibution # 

and a metric p. We define the correlation integral at distance c, P(c) ,  as 

the probabil i ty tha t  two independently chosen #-random elements of X 

are within distance c. (We shall disregard the possibility that  the dis- 

t r ibut ion of distances, or other distributions have points with positive 

probability, i.e., we tacit ly assume that  all our probabil i ty distributions 

are non-atomic, so that  we don't  care to distinguish between the strict 

and the non-strict inequality when defining distr ibution functions.) Ap- 

plying this notion to the reconstruction distributions of a time series we 

obtain the correlation integrals of the t ime series: 

Let {xi(w)}i_> 1 be a s ta t ionary time series with reconstruction dis- 

tr ibutions #k. Then the k-dimensional correlation integral of this t ime 

series at distance e, Pk(e),  is defined as the correlation integral at dis- 

tance e in the above sense of R k with the reconstruction distr ibution #k 

and metric pk( (Xl , ""  ,xk), (Yl , " "  ,Yk)) = maxi=l...,k ]xi - Yil. 

It is clear that  if we have a finite segment of (one representative of) a 
x N s ta t ionary t ime series { i}i=l,  we can est imate the correlation integral 

Pk(c) as 

2 
~'~(c) = ( N -  k+  1 ) ( N -  k) #{ ( i ' j ) l l  <- i < j <_ N -  k+  1 

and pk((xi ,"" ,xi-~_l),  (x j , . . .  ,xj+k_l)) < e}, 

where # stands for ' the number  of elements of'. Though this methods  of 
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e s t i m a t i o n  is cor rec t  in t he  sense t h a t  for N -+ oo the  e s t i m a t e  converges  

to  the  cor rec t  value,  t he re  are  r e f inements  which  are  useful  in case of 

l imi ted  values  of  N ,  see [T,1990]. 

2.3 Estimation o f  dimension and entropy 

Dimension. I f  X is aga in  a set  w i t h  a p r o b a b i l i t y  d i s t r i bu t ion  # and  a 

metric p, then we define its correlation dimension as 

an(P(c)) 
D(X) = lim - -  

 n(c) 
If the limit does not exist, then the correlation dimension is not defined 

(some authors define in that case an upper and lower correlation dimen 1 

sion by using limsup and liminf). For a stationary time series, we use 

this same definition and obtain D k, the dimension of the h-dimensional 

reconstruction distribution #k- From the definition it is clear that this 

dimension can be estimated from the estimates of the correlation inte- 

grals. However, according to the definition we have to take the limit for 

c --+ 0, and, for small values of c, Pk(c) becomes extremely small, and 

hence the estimate ~k(e) becomes very inaccurate in the sense that the 

relative estimation error will be large. For this reason we introduce the 

notion of the dimension Dk(e) at a fixed length-scale c: 

D k(C) = 0 t n (P  k (c)) 

01n(e) 
which can be estimated as: 

D (s) = 
in(e) 

where ~ is some constant (in our numerical calculations we used ~ = .9). 

If these estimated values Dk(c) are approximately independent of e 

for low values of c, then we can use these estimates as an estimate of the 

dimension D k of the k-dimensional correlation distribution of the time 

series. In principle there may be no convergence of Dk(~) (or Dk(c)) for 

decreasing values of c, but this is very rare. 

If we now consider a time series which is generated by a determinis- 

tic system in the sense of [T,1981] or [SYC,1991], then it follows that 
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the dimensions D k, for increasing values of k, become constant,  i.e. in- 

dependent  of k. If for a given time series the dimensions D ~, as far as 

they can be estimated, converge, for increasing k, to a constant,  then 

this constant  is called the dimension of the  t ime series. For a motivation 

of this definition we also refer to the above mentioned papers [T,1981] 

and [SYC,1991]. In the case tha t  these est imated dimensions b ~ do 

not tend to a constant,  we say that  the dimension estimation does not 

converge. 

The typical situation for t ime series of a non-deterministic system 

is tha t  for c --+ 0, Dk(e), and also Dk(e), converges to k for E -+ 0, and 

hence the values o f / )~  = k diverge for increasing k. 

Entropy. Next we come to the est imation of the entropy of a t ime 

series. This notion is derived from the notion of (Kolmogorov) entropy 

for dynamical  systems. For a discussion of the various types of entropy 

of dynamical  systems and their est imation from time series we refer to 

[KS,1997], Chapter  11, Section 4, and to [GP,1983] and [T,1983]. Here 

we only define the notion for (stationary) t ime series in terms of the 

correlation integrals. As in the case of dimensions, it is possible tha t  for 

a t ime series the entropy is not defined and /o r  that  the estimation of the 

entropy does not 'converge'. First the formal definition. The entropy of 

a t ime series with correlation integrals pk(c) is defined as 

- ln(P k (e) 
H = lim lira 

e--+O k-~oc k ' 

whenever this limit converges. As in the case of dimension est imation 

the estimation of entropy is done in two steps in which intermediate  

quantities are estimated. We first define the entropy at embedding di- 

mension k and at length scale e as 

H~(e) = ln(pk+l(e))  + ln(Pk(e)). 

It is clear tha t  we est imate this quanti ty  by replacing in the definition 

the correlation integrals by their estimates, so 

k r k ( e )  = - l (P + 
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If Hk(c) converges to a constant for k --+ oc, then this constant equals 

- ln(P k (c) 
H(s) = j im ( - l n (pk+ l ( e ) )  + l .(Pk(s))) = lim 

In principle there may be no convergence at this point, but tha t  is very 

rare. The estimation of H(c) is usually done by visual inspection of the 

graph of ftk(e) as function of k. Some refinements are possible here 

but, as far as I know a systematic way of estimating H(c) has not been 

published. 

Next, if H(c), for c --+ 0, converges to a constant, then this constant 

has to be equal to the entropy as defined before: 

- h~(P k(c) 
H = lira H(c) = lim lira 

At this point there are often problems with the convergence. In fact, 

for a stochastic t ime series, one expects tha t  H(c) tends to oc as e tends 

to zero. 

2.4 Numerical examples of  estimates of  correlation integrals and various 

derived quantities 
For two time series, which were generated numerically, namely one time 

series from the H6non-system and one from an autoregressive system we 

est imated the correlation integrals and give a graphical presentation of 

the related quantities as introduced above. 

The first t ime series was generated by the rule 

r = 1 - 1.4z2_1 + .3xn_2 

and start ing with random initial values close to zero. The second time 

series was generated by the rule xn = .9Zn-1 + :noise' where the noise 

is generated by a random generator producing independent realizations 

from a normal distribution with average zero and variance one. In both 

cases, in order to obtain time series which are practically stationary, we 

disregarded the first 100 values. The actual t ime series consists of the 

next 3000 elements. Before further calculations were carried out the 

time series were rescaled such tha t  the maximal, respectively minimal, 

value equals one, respectively zero. 
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For both  t ime series we first est imated the correlation integrals P~(g) 

for k = 1 , . . .  , 20 and g = 1, .9, . 9 2 ,  . . .  , . 9 5 9 .  For each value of k, we 

plotted, ln(/b~(e)) as function of in(e), see figures 1 and 4. Since the 

values of Pk(c) and hence the values of ln(Pk(c)) decrease for increasing 

k, we have from the top to the bo t tom the values of k increasing from 

1 to 20. Since the relative est imation errors of/5~(c) become large as 

Pk(c) becomes low, we omit ted those estimates which would have been 

based on less than 50 pairs (i, j )  as in the formula for the estimation of 

correlation integrals. 

Already from these graphical representations one gets an idea of the 

dimensions and entropies as defined above: the est imated dimensions 

are the slopes of the various graphs of ln(/5~(c)') ' as function of in(e); the 

est imated entropies are the distances between the graphs of ln(/bk(c)) 

and ln(/bk+l(c)) for the various values of k and c. 

These estimates of dime~asions and entropies as function of In(e) for 

various values of k are given~in the figures 2, 3 and 5, 6. 

In the case of the t ime series generated by the Hdnon system, we 

see tha t  both the estimates of dimension and entropy cluster, for low 

values of c (is 'distance') around a constant value (the big exception 

for the entropy is for k = 1 which we may disregard since we have to 

consider the limit for k --+ oo). The results agree reasonably well with 

the estimates reported in the literature: for the dimension around 1.2 

and for the entropy around .32. 

In the case of the t ime series generated by the autoregressive system, 

we see that  for low values of k, the values of / )k(c)  converge td-k as c --+ 0 

for larger values of k this should also happen, but  the estimates stop 

because of the  low numbers of pairs on which the est imation of the 

correlation integrals would have been based. In the estimation of the 

entropies we see tha t  there is essentially no dependence on k but  that  

the values diverge to cc as c tends to zero. 

3. Extremal  value theory 
Extremal value theory is concerned with the following situation. Let 
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{x~(w)} be a s tat ionary time series (again w is an element of (ft, #), the 

probabil i ty space of all possible realizations). For such a t ime series we 

define Mk(aJ) to be the maximum of Xl(C~), �9 �9 �9 , x~(cJ). The main interest 

of extremat value theorie is the s tudy of the distr ibution of Mk (cJ) for 

large values of k. We denote the distr ibution function of Mk(c~) by 

A4~(x) = P(Mk(w)  < x). 

One may think of the following example: Let x~ be the maximum sea 

level in year i (we assume that  this is a realization of some stat ionary 

process of which we write the general realization as {x~(w)}). Decisions 

on how high dikes have to be will be based on (estimates of) quantities 

like the value of x for which Ad5000(x) = .5 (if one accepts a flood about  

once every 5000 years). 

This example shows that  one is interested in asymptot ic  results 

about  Adk(x) for large values of k, and in particular for those values 

of x where J~4k(x) is bounded away from 0 and 1. This means that  one 

uses in general a rescaling of the x variable which depends on k. This 

is also illustrated in the next example. 

Extremalvalues  o f a n i i d t i m e s e r i e s .  We consider a s ta t ionary time series 

{x~ (w)} in which all elements are statistically independent.  We call such 

time series independently and identically distributed, abbreviated as lid. 
The distribution function for xl ,  and hence for each xi, is denoted by 

5C(x) = P(xl(c~) < x). It is easy to see that ,  due to the independence, 

the distr ibution function A//~ of the maxima of k successive elements is 

the k-th power of 5c: 

A4~(x) = $-(x) k. 

From this simple result, one sees that  the rescaling mentioned above, 

is indeed useful because the asymptot ic  behaviour of Ad~(x) for fixed x 

and k --+ ~ is uninteresting: whenever 5V(x) < 1, Adk(x) converges to 

zero. 

In this example we get a complete description of the distribution 

of extremal values for lid time series. No such simple result exists for 

time series in which the values at different times are dependent. We give 

however in subsection 3.2 some examples of time series with dependence 
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for which one can analytically compute  the distr ibution functions M k .  

Then, in subsection 3.3 we introduce the extremal index which quantifies 

the effect of the dependence for the distr ibution of maxima. Before doing 

so, we discuss in subsection 3.1 the relation between the distributions 

of maxima and our correlation integrals as defined before. Finally, in 

subsection 3.4 we discuss the interpretat ion of correlation integrals in 

terms of extremal indices. 

3.1 Correlation integrals and extremal values 

In this subsection we describe some constructions for transforming a 

given t ime series into others; for this reason it is convenient to use a 

single symbol to denote a time series. Let X = {xi(cz)} be a s ta t ionary 

t ime series (again co is in (f~, #), the probabil i ty space of all possible 

realizations). From this we define the time series of differences D X  = 

{dxi(aJl,a~2) = x~(cJ1) -x~(c~2)}. Note that  the probabil i ty space of all 

possible realizations for D X  is the Cartesian product  of f~ with itself 

(with the product  probabil i ty measure). We denote a general element 

of (t = ft x ~ by c~ = (cJl,cz2). Next we define the time series of absolute 

values of differences A D X  by A D X =  {adxi(&) = Idzg( )l}. Finally we 

denote by MXk the distr ibution function of the maxima of k successive 

elements of ADX. 

These definitions are arranged in such a way that  AdXk(e) as defined 

above is just  equal to the k-dimensional correlation integral of our t ime 

series X at distance e. This is the motivation to t ry  to interprete the 

correlation integrals in terms of extremal value theory (especially for 

stochastic t ime series). 

Before we proceed to exploit the relation between correlation inte- 

grals and extremal values, we want to point to some simple relations 

between the t ime series X, DX, and ADX. 

Since X is stationary, also DX and A D X  are stationary. The t ime 

series DX has average 0 and variance equal to twice the variance of X. 

By a simple computa t ion  one can see that  the autocorrelations of X and 

DX are the same. Finally, the reconstruction distributions of DX are 

invariant with respect to the involutions IRk ~ X ~-+ - X  E R k, i.e. with 
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respect to multiplication by - 1  in R k. This is due to the fact that  in t~ 

the elements (w, U)  and (U, ~) have 'the same probabili ty ' .  

Next we compare the extremal value properties of DX and ADX.  

As before, we denote by AAXk the distr ibution function of the maxima 

of k successive elements of ADX.  For the present argument we denote 

by mink ,  respectively maxk ,  the distr ibution functions of the minima, 

respectively maxima, of k successive elements of DX, i.e., 

and 

m i n k ( x )  = 1 - P ( d x l ( & ) , . . . , d x k ( & )  > x) 

m a x k ( x )  = P ( d x l ( & ) , . . .  , dxl~(&) < x).  

(We remind: in the definitions of distr ibution functions, we assume ev- 

erything to be non-atomic so that  we do not have to distinguish between 

< and <.) From the fact tha t  the reconstruction distributions of DX 

are invariant under multiplication by -1 ,  it follows that  

m a x k ( x )  = 1 - m i n k ( - x ) .  

If we may assume that  the distr ibution of maximal and minimal values in 

sequences of k successive elements of DX are independent, then it would 

follow, for x > 0, that  f l 4 X k ( x )  = m a x l ~ ( x ) ( 1 - m i n l ~ ( - x ) )  = (maxl~(x)) 2. 

This assumption of independence seems to be very reasonable for large 

values of k, and values of x which are not too close to 0 or negative. 

However it cannot hold for low values of k or values of x which are close 

to zero or even negative. E.g., for k = 1 and x > 0 we have: 

AAXI(x) = 1 - 2(1 - m a x l ( x ) )  = - 1  + 2 m a x l ( x )  < ( m a x l ( x ) )  2. 

(Note that  in this last expression x > 0, so that  m a x l ( x )  E [1  1].) For 

x = 0 and k = 1, the independence assumption gives fl4X1 (0) = (1/2) 2 = 

1/4 though this quant i ty  is clearly zero. 

Conclusions.  In terms of autocorrelations (and hence power spectra),  

there is no difference between the original t ime series X and the time 

series DX of its differences. Under  an independence assumption, which 

seems to be justified for larger values of k and x, but  which does not 

hold for low values of k or x, the extremal values of ADX, the t ime 
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series of the absolute values of the differences, is related in a simple way 

to those of DX. 

There is however no reason to expect a simple relation between the 

time series X and ADX, neither in terms of autocorrelations nor in terms 

of extremal values. 

3.2 Extrema of time series with correlations: examples 

We return to the nota t ion at the beginning of this section. So {zi(w)} 

is a s ta t ionary time series, Mk(c~) denotes the maximum of the first k 

values, and M k  its distribution function. We have seen already for time 

series, where the various xi(co) are independent (i.e. for iid t ime series), 

t ha t  M k  = (A/f1) k. Since we have no such general result for t ime series 

with dependence, we discuss here some examples. In the next subsection 

we discuss some asymptot ic  results from the literature. 

Example 1. In this example we start  with an iid t ime series {yi(co)} and 

a fixed integer m. We denote the distribution function of yl(w), and 

hence of each yi(cv), by ~-. We define the elements of {xi(a;)} as 

Zi(CO) = m a x j = i , . . .  , i + m - 1  y j ( c ~ ) ,  

In this case it is very easy to see tha t  the distribution functions Adk of 

the maxima of k successive elements can be given analytically as 

l q  ~_~1 
jv4~ = ~-~+k-1 = M1 

This result admits  a simple heuristic explanation by comparing it with 

the result for iid time series. The distr ibution of maxima of k succes- 

sive values of this t ime series looks like the maximum of 1 + (k - 1) /m 

successive elements of an iid time series with distribution function 541. 

This is to be expected, at least whenever k - 1 is a multiple of m, be- 

cause then a maximum below x means tha t  the maxima of 1 + (k - 1) /m 

successive blocks of length ra of the original t ime series {pi(w)}, which 

was iid, are all below x: one block for xl(co) and one for each of the 

successive blocks of m elements of the remaining x2(c~), �9 �9 �9 , zk(co). 

Example 2. For this example we consider an arbi trary probability dis- 

t r ibut ion P on R with distribution function F ,  and a number p E (0, 1). 
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Instead of giving a formal definition of this example as a stochastic 

process, we describe how to obtain inductively the generic realization 

{xi}i_>l. This goes in the following way: Xl is a random element from 

the probability distribution P ; for each i > i, xi is equal to Xi_l with 

probability (1 - p) and with probability p it is a new and independent 

random choice of our distribution P. 

From this definition it is clear that for the distribution functions of 

the maxima YPtk we find: A/[I = jr and for k > i: 

M k ( x )  = A4 _l(x)(1 + p ( f ( x )  - 1)). 

The latter formula follows from the following argument: if the first k - 1 

elements of our time series are smaller than x, then the probabil i ty that  

also the k-th element is still smaller than x is ( l - p )  (the probabil i ty that  

xk equals zk-1) + p (the probabil i ty tha t  x~ is a new random choice) 

times 5C(z) (the probabil i ty that  the new choice is smaller than z). From 

this we obtain 

M k ( z ) .  = 7 ( z ) ( 1  + p ( f ( z )  - 1)) k-1 

From calculus we know that  for z close to 1, 1 + p ( z  - 1) is well approx- 

imated by z p. This means that ,  where 5~(x) is close to 1, we have in 

good approximation 

.A / [ k (X  ) ~ • ( x ) l + P ( k - 1 ) .  

We recall that  here ~41 = 5 ~. So we see that  this approximate result 

has the same form as in example 1, with 1 / m  replaced by p. 

Example 3. Our third example gives a slightly different result. It is the 

so-called max-autoregressive random sequence (see [FHR,1994], section 

8.2). In this example we start  with an iid t ime series {yi(w)} with distri- 

bution function 5 ~ and a real number c E (0, 1). The max-autoregressive 

sequence itself, {xi(~)}, is obtained as follows: The first element Xl is 

a random choice from some probabil i ty distr ibution with distr ibution 

function ~, which we will specify later. The subsequent  elements are 

defined as 

zi(w) = c.  max(zi_l(w), Yi(~)) for i > 1. 
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In order to have this t ime series stationary, we should have 

O(x) = O ( x / c ) f ( z / c ) .  

For this we have to take 
oo 

9 = H 7 ( x / e i )  �9 
i = 1  

This infinite product  converges automatical ly to a non-decreasing func- 

tion. In this case the distr ibution functions of the successive maxima 

are given by 

M k ( x )  = 9 ( z ) ( f ( x / c ) )  

If 9(x) is, to a good approximation, equal to S(x/c) (which is the case if 

x is sufficiently close to the upper  bound of the support  of the probabil i ty 

distr ibution defined by 9),  then we have here the same situation as in 

the iid case. So, under this assumption, here the dependence has no 

effect on the distr ibution of maxima, at least for values of x which are 

close to the upper  bound of the support  of the distr ibution defined by 9. 

3.3 Extremal value theory: the extremal index 

In this subsection we recall a main asymptot ic  result on extremal value 

distributions for t ime series with correlations. So let {xi(c~)}i>l be a 

s ta t ionary t ime series, which we assume to be mixing in the sense of 

subsection 2.1. As before we denote by Adk(x) the probabil i ty tha t  the 

first k elements are all smaller than x. For s E (0,1) and k ~ N we 

define x(s, k) by the equation (Adl(X(S, k))) k = s, which has a solution 

whenever the probabil i ty distributions of x l (cz), and hence of any xi(c~), 

is non-atomic. If the  solution is not unique we just  take one of them. 

Note that ,  if the t ime series {xi(cJ)} were iid, then A4k(x(s, k)) would 

be equal to s; this was in fact the reason for taking this definition. 

Then we define O(s, k) by Adk(x(s, k)) s ~ So O(s, k) quantifies 

the effect of the dependence in the t i m e  series on the distr ibution of 

maxima. The result which we recall, see [LLR,1983], section (3.7), is 
the following. The quant i ty  0 = liminfk~oo O(s, k) is independent  of s. 

The same holds for 0+ which is similarly defined with liminf replaced 
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by limsup. These quantities 0_ and 0+ are called the lower, respectively 

upper, extremal index. 

Observe that  in the lid case, where AJk = AJ~ we have 0_ = 0+ = 1. 

Next we consider the examples in the previous subsection. In the 
1~ k-1 

first example, where we had A4k = A41 ~n it is easy to see that  

0_ = O+ = 1/m. In the second example the calculation is somewhat  

more complicated, but  one can prove, as suggested by the approxima- 
A~l+p(k-1) 

tion A4~ ~ jvL 1 , that  @_ = 0+ = p. For the third example, 

assuming that  the support  of the probabil i ty distribution defined by 

5 is bounded from above, so that  G(x) = S(x /c )  whenever ~(x /c)  is 

sufficiently close to 1, we have that  0_ = 0+ = 1. 

From these examples we see that  it is not uncommon that  0_ and 

0+ are equal. In tha t  case they are denoted by 0 which is called the 

extremaI index. 

Especially from the first two examples we see that  much stronger 

relations hold: in these examples one has AJk ~ AJ~ k+~ with Ok + 

c~ = D(k - 1) + 1 or a = 1 - 0. By numerical experimentat ion with 

other examples, see the next section, we found that  the former relation 

AA~ ~ A/~ ~+a is often satisfied to a good approximation, even for values 

of k that  are not extremely big, but  that  the latter relation, namely the 

relation between (~ and 0, is usually not satisfied. We call the value c~ 

in the above description the offset. (Note that  these numerical exper- 

imentations concern correlation integrals, or, in other words, extremal 

distributions of absolute values of differences of a time series.) 

3.4 The analysis o f  correlation integrals in terms o f  extremal values 

As we mentioned in section 3.1, the correlation integrals of a t ime series 

X = {x(w)~} can be interpreted as the values of the distr ibution functions 

of maxima of k successive elements of the corresponding time series of 

absolute values of differences. 

As we observed already in the context of entropy estimation, t h e  

differences iog(P~(c)) - l o g ( p ~ + l ( c ) )  usually are independent  of k for 

sufficiently big k, say for k _> k0. The above considerations suggest even 
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more: they  suggest that  for properly chosen coefficients ck we have for 

k _> k0 that  log(Pk(e)) ~ ek log(P~~ (with ck independent  from the 

value of e), and even that  the ck depend afinely on k >_ /c 0. We will 

see that  this is indeed the case in our numerical simulations. Also we 

expect that ,  for a suitable value of Cl, we may have tha t  log(Pl(e)) 

Cl log(P~~ In our simulations this last similarity is less convincing. 

Both these expectations can be verified by visual inspection once the 

coefficients Cl, c~0+1, etc. have been found. If the result is positive, both  

the extremal index and the offset, as defined in the previous subsection, 

can be estimated. 

If the similarity between log(P l(e)) and Cl log(K k~ (e)) is not convinc- 

ing, then the est imated value of cl will depend strongly on the algorithm 

used, and hence the derived values of the extremal index and offset will 

not give much intrinsic information about the t ime series. In this case 

there are two ways in which one can proceed. One is to base the esti- 

mat ion of the coefficients ci on the est imated correlation integrals pk (e) 

whose values are very close to one, and hence for which c is close to the 

maximal possible distance this is suggested by the definition of the 

extremal index, but  the relevance of the correlation integrals for large 

values of c, e.g. for judging the predictability of the t ime series, is small. 

Therefore we t ry  a different way. Instead of basing our estimation of 

the extremal  index on the coefficients C l , C k o , C k o + l , . - -  , w e  replace Cl 

first by the value, obtained from c%, ck0+l , " "  by linear extrapolation, 

and then est imate the extremal index. We refer to this as the est imated 

modified extremal index. After the substi tution of Cl as proposed here, 

the offset has no independent  information, so that  we don' t  have to 

est imate it. 

4. D i s c u s s i o n  o f  numerica l  e s t imat ions  o f  ex tremal  indices  and 

o f f s e t  

In this section we discuss the results of a number of numerical simulation 

in which the indices and the offset were estimated for three different time 

series: the time series of the H~non system and the autoregressive system 
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which we also used before, and also of an experimental  t ime series from 

a fluid bed reactor at the Technical University Delft (provided by the 

group of prof. Van den Bleek). First we explain which calculations were 

carried out, then we discuss the results on the basis of graphical output  

of these calculations. 

4.1 Description of the calculations performed 
The calculations are based on the est imated correlation integrals as de- 

scribed in subsection 2.4, i.e., embedding dimensions from 1 to 20 and 

at distances 

g = 1 , . 9 , . 9 2 , . . .  ,.959 . 

For these calculations we have to take a value, here, as in the previous 

section, denoted by ko, which is the embedding dimension above which 

we expect the asymptotic  results to be valid. 

The first thing we calculate are the coefficients, or multiplication 

factors el, Cko+l, ck0+2,-. . ,  c20 such that  the graphs of ci �9 log(Pk~ 

is as close as possible to the graph of log(Pi(e)). This means that  for 

each of the values of e, for which correlation integrals were estimated, we 

computed the quotient log(P i (e)) / log(P ~0 (e)), and computed a weighted 

average over the relevant values of e. In further considerations we always 

assume that ok0 = 1. 

Here the graphical output  consists of a plot of the values of ci as 

function of i: this is for a first inspection whether  these values indeed 

depend affinely on i, i.e. whether  the plotted points are on a straight 

line. 

Next we actually show all the graphs of c~ -1.1og(Pi(a)) (as function of 

log(e) in order to inspect whether  the multiplication with the coefficients 

c[  1 indeed makes all these graphs (practically) equal. We call this the 

rescaled log-correlation-integrals. One may expect the graph for i = 1 

to be usually somewhat exceptional. Therefore, this graph is shown 

by d dot ted line instead of by a solid line, which is used for the other 

embedding dimensions, at least if the value of k0 is different from 1. 

Then  we repeat  the same, but  with the coefficients ci replaced by 
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approximations Oi such tha t  5i depends affinely on i. This also can serve 

as a test whether  k0 is already big enough to give the asymptotic  picture 

for embedding dimensions above k0. Here we speak of log-correlation- 
integrals with uniform scaling. Also here the graph for the embedding 

dimension 1 (if h0 > 1) is shown as a dot ted line while for the other 

dimensions solid lines are used. 

Finally, we give estimates of the indices and offset. These estimates 

are based on the comparisons of the correlation integrals at successive 

embeddingdimensions i and i + 1 for i = k0 to i = 19. The estimates are 

the following: 

�9 The est imate of the extremal index is obtained as the quotient (Ci+l-  

ci)/cl. In the graphical output  it is shown as a solid line. 

�9 Next the offsets are est imated for the same embedding dimensions 

and shown as stars. The estimates are based on an attine extrapola- 

tion from c{ and c{+1, i.e. our est imate of the offset is (c{ - i(ci+l - 

cd)/cl. 
�9 Finally we show in the same graphical output  the estimates of tile 

modified extremal indices. Again for each i as above, they are also 

based on an afine extrapolation from the values of ci and c~+1. These 

estimates are represented by '+ '  in the graphical output.  

4.2 Discussion of  the results 

We first consider the t ime series of the autoregressive system. We show 

the 'multiplication factors' (figure 7) and the 'indices and offsets' (figure 

8) for k0 = 1. Then  we show the 'rescaled log-correlation-integrals' 

(figures 9, 11, 13) and the 'log-correlation-integrals with uniform scaling' 

(figures 10, 12, 14) for various values of k0. As successive values of ]c O we 

take 1 (figures 9 and 10), 5 (figures 11 and 12), and 10 (figures 13 and 14). 

Even the log-correlation-integrMs with uniform scaling with embedding 

dimension > 10 fit very well - -  the agreement with the rescaled curve for 

the embedding dimension 1 is however weak. So here we see that  all the 

information about the correlation integrals with embedding dimension 

10 and higher (or even 5 and higher) can be reduced to the one curve 

shown and the extremal index and offset. 
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From the figure with indices and offsets we see the extremal index 

is by far the most stable, in the sense that it is (rather) independent of 

the embedding dimensions. 

In the following examples we have k0 = 3. 

Next we show the results for a time series from the fluid bed reactor 

mentioned before (figures 15, 16, 17, 18). Here we see even a better 

agreement with what we expect to hold asymptotically. In particular, 

the relation between, the results for embedding dimension one with the 

results for higher embedding dimensions is much better. This means 

that the information about the correlation integrals at embedding di- 

mensions three and higher can be very well described in terms of the 

extremal index. 

The same analysis for the time series from the Hdnon attractor (fig- 

ures 19, 20, 21, 22) shows a completely different picture: the multiplica- 

tion factors are not on a straight line and the rescaled log-correlation- 

integrals for different embedding dimensions do not coincide (this does 

not improve if we take higher values for k0). The same holds for the log- 

correlation-integrals with uniform scaling. So here this method of con- 

tracting the information contained is the correlation integrals by these 

ideas of extremal value theory does not work. This is not completely 

unexpected: this time series, as generated by a deterministic system, is 

not mixing in the sense of stochastic processes (see section 2.1). On the 

other hand, in this case the dimension and entropy converge and hence 

contain the asymptotic information about the correlation integrals. 

Concluding remark. We want to stress that our purpose in this paper 

is to show that estimates of the extremal index gives for certain time 

series a good description of the asymptotic behaviour of the correlation 

integrals. We did not yet optimize the estimation of these indices nor 

of the coefficients ck which were shown in the figures. This will be the 

subject of further investigations. 
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