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Abstract. Let H be a germ of holomorphic diffeomorphism at 0 € C. Using the
existence theorem for quasi-conformal mappings, it is possible to prove that there
exists a multivalued germ S at 0, such that S(z¢*™) = H o §(z) (1). If H) is an
unfolding of diffeomorphisms depending on A € (C,0), with Hy = Id, one introduces

its ideal IH It is the ideal generated by the germs of coefficients (a;()),0) at 0 € Ck,

where Hy(2) —z = Y a;(\)z". Then one can find a parameter solution Sy (z) of (1)
which has at each point zg belonglng to the domain of definition of Sg, an expansion
in series Sy (z) = z + Y b;(A\)(z — z0)* with (b;,0) € Ty, for all 4.

This result may be applied to the bifurcation theory of vector fields of the plane.
Let X, be an unfolding of analytic vector fields at 0 € R? such that this point is
a hyperbolic saddle point for each A. Let Hy(z) be the holonomy map of X at the
saddle point and 7y its associated ideal of coefficients. A consequence of the above
result is that one can find analytic intervals o, 7, transversal to the separatrices of
the saddle point, such that the difference between the transition map Dy(z) and
the identity is divisible in the ideal Zz;. Finally, suppose that X is an unfolding of
a saddle connection for a vector field Xp, with a return map equal to identity. It
follows from the above result that the Bautin ideal of the unfolding, defined as the
ideal of coefficients of the difference between the return map and the identity at any
regular point z € &, can also be computed at the singular point z = 0. From this last
observation it follows easily that the cyclicity of the unfolding X is finite and can be
computed explicitly in terms of the Bautin ideal.
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I. Introduction and results.

Let H(z) be a germ of holomorphic diffeomorphism at 0 € C, such that
H{(0) = 0. One can ask the following question: is there a germ of analytic
multivalued mapping S(z), with S(0) = 0, such that the new value of
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230 ROBERT ROUSSARIE

S(z) obtained after one turn around the origin is equal to H o S(2)7
Writing S (262”) for this second determination of S, one can write:

S(2*™) = H 0 S(z) with S(0) = 0. (1)

Let us formulate this question in the universal covering m = exp:
C — C —{0}. Let be Z = & +  the coordinate in C. We will call
neighborhood of 0 = {# = —oco}, any open set of C of the form {Z | % <
p(y)} where p is some continuous function of y. The germ H lifts as a
diffeomorphism H:D— C, where D is the neighborhood of 0 equal to
71 (D—{0}) and D is some disk centered at 0 € C on which H is defined.
The multivalued mapping S lifts as a diffeomorphism S:W— C, where
Wis a neighborhood of 0 and must verify:

S(Z +2mi) = H 0 (%) + 2mi with S(0) = 0. 0

The last condition means that the real part of S(Z) tends to —oo
when Z tends to —oo and y remains in some arbitrary compact subset
of R.

This question was indirectly solved by Pérez-Marco and Yoccoz in
[P.Y] by finding a local analytic vector field on C2, near a hyperbolic
saddle point, with a germ of holonomy equals to H, above a loop around
the singular point on the unstable manifold : the transition map D from
a section to the stable manifold toward a section to the unstable manifold
is a solution of the equation (1).

Here, we want to present a direct construction for the solution of
(1) (or (1)), based on the quasi-conformal mapping theorem of Ahlfors-
Bers. This proof has the advantage to be simpler than the one by Pérez-
Marco and Yoccoz because we will remain in the complex dimension 1.
Moreover, we are interested in parameter families as we will explain now
and our proof easily extends to parameter families.

We suppose that A is a parameter near 0 € Cf and we consider a
germ of analytic parameter family of diffeomorphisms Hy(z) at 0 € C,
with H,(0) = 0 for all A. This germ of family will be represented by
an analytic mapping Hyx(2) : D x P — C where D is a disk centered at
0 € C and P is a neighborhood of 0 € C¢. For any A € P, z — Hj(2) is
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QUASI-CONFORMAL MAPPING THEOREM AND BIFURCATIONS 231

an holomorphic diffeomorphism of D into C, with H(0) = 0.
For analytic families of functions, one can define the following ideal
of functions in the parameter space:

Definition 1. (Ideal of coefficients.) Let (f\)x be an analytic family of
functions defined on U x P C C x C¥, fa(z) : U x P — C, where U is
a connected open set in C and P an open neighborhood of 0 € C¢, the
parameter space. Let zg be any point in U and let us consider the series:

xx

faz) =2 aiN(z - 20)"

=0
The ideal of coefficients of the family Z(f,), is the ideal generated
by the germs of coefficients a; = (a;,0), in the ring Oo(CTY of analytic
germs of functions at 0 € C’.

It is easy to obtain the following property and alternative definition
for Z(fy):

Proposition 1. The ideal Z(f)) is independent of the choice of the base
point zg. Moreover it is also generated by the germs of the functions:
A — fa(2), when z € U.

Proof. The first assumption was proved in [Rj]. Let be Z the ideal
generated by the germs A — fy(z1), for all zy € U. The function
A — fiafz1) is the constant coefficient of the expansion of fy(z) in
(z— z1). Then, it follows from the first assumption that Z C Z(f)). Now,
because the ideal 7 is closed it contains the germ

. h&) = o)

— —J—(ZO) =1

z—2( zZ— 2 ’

and by an induction on 4, it contains also any mapping

P00

A —

This implies that Z(fy) C Z and the equality between the two ideals. O

Remark. Obviously, the ideal Z(f,) is attached to the germ of family
(fx, (0,0)) at (0,0) € C x C*.

We can now formulate the existence result for the equation (1) and
a family Hy:
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232 ROBERT ROUSSARIE

Theorem 1. Let Hy(z) be a germ of analytic parameter family of dif-
feomorphisms at 0 € C, with Hx(0) =0 for any A and Hy(z) = z. Then
there exists a solution SA( %) of the equation (1), defined and analytic
on W x P, where W is some nezghborhood of 0, and P is chosen small
enough. Moreover, for any z € W, the map A — (S,\( ) — %) has a
germ at 0 € C* in the ideal T(Hy — Id) (i.e., in the ideal of coefficients

of the germ of family (Hx(z) — z))\>.

Remarks. 1. A stronger result could be a parameter version of the
theorem of Pérez-Marco, Yoccoz: does there exist an analytic parameter
family of vector fields,
0 0
Xy=—aw1+— + D + P

where any coeflicient of the field P,\ is in the ideal Z(H)y —1d)?

2. The size of the domain W which is defined by the function p depends
on the property of H), because this domain can be obviously obtained
as the union of the iterations by Hy of a strip WO ={Z+iw|Z<A0<
y < 2m}. Let us suppose that P is compact. It is easy to see that one
can always take p(y) = —c1 —cg | ¥ | for some ¢, ep > 0. It is possible to
have a more precise and useful estimation when one allows the domain
W to depend on A, i.e. defined by a continuous function py(y) depending
on A. Let © C P be the subset defined by | Hy |= 1. Using the proof
of II’yashenko in [I] (see also [Rg] for instance), it is easy to find a

continuous function py(y) which verifies py(7) > —c3(1+ | ¥ I)%, for all

A € X, where cg is some positive constant. The multivalued function
Sx(z) is then quasi-analytic in the sense of [I], when A € X. This means
that S is determined by its Dulac formal series at z = 0 when A € X (it
is easily proved that such series exists for any A).

Let (X)x be an holomorphic family of vector fields near a saddle
point at 0 € C2. One can suppose that X, is defined in some neigh-
borhood B of 0 € C2, for A € P, some neighborhood of 0 € C¢ and
that the local unstable manifold W* and the local stable one W* of X,
are independent of A. Let o, 7 be two sections, transversal respectively

to W* and W*. Let H) be the holonomy map on 7, above a loop in
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"W — {0}, based at the point 7 N W¥. The transition map D) from o to
7 is a multivalued germ on o at the point o N W*. If we identify o and
7 with a disk D C C centered at 0 and the points o N WS, 7 N W* with
0, the map D, verifies the equation (1):

Dy(% + 27i) = Hy 0 Dy(3) + 2mi, D,(0) = 0.

The theorem 1 can be used to obtain a “good” parametrization of
the transversal o, well-adapted to the holonomy map H):

Theorem 2. If 0 ~ D and P are chosen small enough, there exists an
analytic change of coordinate Cy(z) : D x P — I on the transversal
o ~ D, depending analytically on A and verifying Cx(0) = 0, such that
the germ of the function A — (D) o Cy\(2) — 2) belongs to Z(Hy — 1d)
for all z ( this means that the ideal T(Dy o Cy —1d) is contained in the
holonomy ideal: T(H) — Id)). .

Let us consider now a real analytic family of vector fields which
unfolds a saddle connection. We suppose that X has a saddle singular
point at 0 € R? with a saddle connection T' made by the coincidence of
one stable and one unstable separatrix. The family X is an unfolding
of Xy, defined near T, for A near 0 € R%. Here, we are interested to
unfolding of infinite codimension. This means that the return map for
Xp, along I' is equal to identity. In [Rq], it was proved that the number
of limit cycles (isolated closed orbits) which bifurcate from I', for A near
0, is always finite. This bound of the number of limit cycles is called the
cyclicity of the germ (X, T) and denoted Cycl (X, ) (see [R1], [Ro] for
a precise definition). Then the result in [R1] was that Cycl (X,T) < co.

Let ¢ and 7 be two analytic sections to the stable and unstable local
separatrices of X, contained in I'. Let o =~ [0, X[ be the half-section
on the side on which the return map is defined along I', with 0 ~ ¢+ NT.
We can suppose that, for A € P C R¢, some neighborhood of 0 € R, the
Dulac map Dy (z) (transition from o to 7 near the saddle point) as well
as the regular transition Ry (x), for —X,(z), above the regular arc of T
between ¢ and 7, are defined from ot x P to 7. The limit cycles of Xy
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234 ROBERT ROUSSARIE

near T' are in one to one correspondence with the roots of the equation:
Ax(x) = Dy(z) = Rx(x) = 0. (2)

The cyclicity Cycl (X,,T) is equal to the minimum of the number of
roots of (2) in o™, for A € P, if P and o™ are chosen small enough.

The proof of the finite cyclicity in [R] is based on a (z, w)-expansion
of order k, k large enough, of Ay:

k k
Ax@) =" BN+ 1+ ) asWw+- T+ gz, A, (3)
i=0 j=1

Here 3; and «; are analytic coefficients independent of the order k;

x_al(o‘) -1

WA =

where a1 (A) =1+ %2 (N) ()\2(/\) < 0 < A1(A) are the eigenvalues of X
1

at the saddle point 0 ; o1(0) = O). The sums + - - - are finite polynomial
expansions in the monomials zfw® of order strictly larger than the first
monomial in the bracket, and 1, (z, \) is a remainder of class C¥ which
is k—flat at x = 0 for any A :

8k
Un(0,) = - = 6;@"“ 0.0 =0.

The expansion (3) can be written for (z,A) € o x V}, (where V} is
a neighborhood of 0 in P, depending on k).

One defines the ideal Z associated to the unfolding (X)) as the ideal
generated by the germs of coefficients oy, 3; in Oy (CH).

In [R4], one has also defined the Ideal of Bautin Z of the unfolding
(X)) as the ideal generated by the coeflicients of the family (A (x)), for
x €]0, X[ (the regular points of o). Recall that this ideal is generated
by the coeflicients of the expansion of the real analytic map Ay (x) at any
point x # 0, or equivalently by the germs A — Ay(x) for z € o7 — {0}.

Let Ty be as above the ideal Z(H ) (2)— #) associated to the holonomy
map at the saddle point. For a real family (X)), the three ideals 7y,
Ty, T are real,i.e. generated by real analytic functions and in [R1] it was
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proved that: Ty C Zg C Z. Now, as a direct consequence of theorem 2,
one can prove the following:

Theorem 3. Iy = Z: for any xg ¢ 0, the germ {\ — Ax(zg)} belongs
to the ideal L.
Finally, a simple argument of division of the map Ay (z) in the ideal

7y implies the finite cyclicity and, moreover gives an explicit bound for
Cycl (X, T):

Theorem 4. The cyclicity of (X, T) is finite. Moreover, let be £ the
smallest integer such that the first £ coefficients in the list By, a1, 51,
ag ... generate the ideal Zg. Then, Cycl (X, T) < L.

Remark. The finite cyclicity was already established in [Rq], using the
division in the ideal Z. But because it was not possible to control the
factors in the division, no explicit bound was obtained for it.

In the second paragraph, one gives the proof of theorem 1, based on
the Ahlfors-Bers theorem and deduce from it in the third paragraph, the
theorem 2 about the division of the Dulac transition in the holonomy
ideal. In the last paragraph one establishes the theorems 3,4 for the
cyclicity of unfoldings of saddle connections.

This paper follows from discussions with Christiane Rousseau about
the possibility to apply a Khovanskii method to the study of bifurcations
of infinite codimension, during a stay in the Centre de Mathématiques
de 1'Université de Montreal in january 1997. I thank her for the kind
invitation.

II. Construction of multivalued mappings.
We suppose that Hy(z) is a family of holomorphic diffeomorphisms of
C, defined on I x P, where D is a disk centered at 0 € C, and P is a
compact neighborhood of 0 € C¥, the parameter space. Moreover, one
assumes that H,(0) = 0 for VA and that Hy(z) = 2. Let be 7 = exp :
C-—C- {0}, the universal covering map.

The family H,(z) lifts on @, as a family of diffeomorphisms ’JEI/,\(E)
with Z € D = 7~1(D) and X € P. For each A € P, the diffeomorphism
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% — H,y (Z) verifies:
Hy(Z + 2mi) = H\(3) + 2. (4)

We will write ﬁA(E) =7Z+ EA(E), with hy a 2ri-periodic function
such that ki, (0) = 0 and hg(Z) = 0.

We are looking for a holomorphic family of diffeomorphisms S’A(E),
defined for z € W, some neighborhood of 0 in HND, and A € P, some
restricted compact neighborhood of 0 € C¢, which must be solution of
the equation (1): ‘

Sy(Z + 2mi) = Hy o Sx\(2) + 2mi , S\(0) =0.

Moreover, we want that the germs of maps A — S3\(Z) —z at A =0,
belong to the ideal of coefficients Ty = (I — 1d).

The idea of the construction of § \(%) is as follows. First, we will con-
struct a smooth solution 3 (%) of the equation (1). In fact £(Z) will be
smooth in Z, but holomorphic in X. As a consequence ¥ (%) will be quasi-
conformal in Z, uniformly in P, and using the Ahlfors-Bers theorem, it
will be possible to construct a family ¢, (z) of quasi-conformal homeo-
morphisms near 0 € C, with ¢,(0) = 0, such that S’A(E) = %y 0 Pa(®)
will be a holomorphic solution of (1) (7, is the lift of ¢ on @) We will
choose for ¢, a normalized solution of a Beltrami equation on 52 in
such a way that S \(Z) will verify the required analyticity and division
properties in function of the parameter A.

1. Construction of a smooth solution %, (z) of (7).
We choose , 0 <n < 7 and A € R and consider the region:

Wo={zeC|i<A, —n<j<or+n}
which is partitioned in three strips:
b={ZeWy|-n<y<n}, ba={ZeWy|n<y<om—n}

and

by3={ZeWy|2m—n <7< 2m+n}
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We suppose that A is chosen small enough such that VT/O c D. We
define a map ¥,(%), for (Z,)\) € WO x P (for a ne1ghborhood P small
enough), by: $,(Z) = % for Z € b, Sa(Z) = HA( ) for z € bg and by
taking an isotopy between these two definitions in the strip bg More
explicitly, we choose a smooth real function ¢(y) : R — [0, 1] such that
py)=0fory <n, p(y) =1 for y > 2 — n and we define Y2 (%) by:

EA(Z) = 2+ () (Z) (5)

forz=2+1y € WO. One choose A small enough such that 3 A(WO) cD,
VA e P. :
We can extend the definition (5) by Hj-iterations. First we define a
domain W, neighborhood of 0 by iterating WQ:
7 ZeC|3neZ such that % — 2min € Wy and 6
_{fﬁoiﬂ%—%mneDﬁnlgkgnﬂﬂe}’}' ©

Next we define (%) for (Z,\) € W x P, by:

S\(Z) = HY o £5(Z — 2min) + 2min. (7)
if z — 2min € WO.

It is clear, from the construction of ¥ on WO, that this definition
is coherent (independent of the choice of n) and that (%) verifies the
equation (1) and the continuity property EA(O) 0.

Next, because hy(0) = 0 (i.e. h tends to 0 when 7 tends to —oc), it
is clear that if A is small enough and for a fixed P, £,(Z) is a smooth
diffeomorphism of W into C for VA € P, which is holomorphic in A.

In fact, £5(%) is an uniform family of smooth quasi-conformal map-
pings. Recall that if f(2) is a smooth diffeomorphism of an open domain
U C C into C, preserving the orientation, one defines its dilatation co-
efficient to be the function p(z) : U — C, equal to p(z) = g§—8,
df(z) = 0f(2)dz + 0f(2)dz. We will say that f is quasi-conformal if
dk < 1 such that | p(z) |< k for all z € U. A smooth family of dif-
feomorphisms f(z), with (2, \) € U x P, is said to be an (uniform)

where

family of quasi-conformal mappings if 3k < 1 such that | u(z, ) |[< k

for (z,A) € U x P, where pu(z,\) = gﬁ%

Bol. Soc. Bras. Mat., Vol. 29, N. 2, 1998 .



238 ROBERT ROUSSARIE

~ 1 =
Here, as y = ?(z — Z), one has that:
7

85E) =2 ¢H) M), (8)

O5G) =1 - = ¢HIE + 9ORAG). ©)

Then, as hy (2) = O(exp(2)), uniformly in A € P, it is clear that, given
any k,0 < k < 1, one can choose A small enough such that the dilatation
coefficient fi(Z, \) of ¥\(%) will verify | i(Z, \) [< k for (Z,\) € WO x P.

Next, because the dilatation coefficient of a diffeomorphism is in-
variant by holomorphic conjugacy, the dilatation coefficient of (%, \) is
2mi-periodic and verify the same inequality for any (Z, ) € W x P.

2. The construction of the mapping ¢, (z).

We recall that the Ahlfors-Bers theorem addresses the inverse problem :
given a function p(z) on U, called a Beltrami field, find a mapping f(2)
which has p(z) as dilatation coefficient. We need now to be more precise
on the properties of y and f.

Definition 2. Let be U € C a simply connected open set. A Bellrams
field u(z) : U — C is any bounded measurable function with L*-norm:

Sup {| u(2) | [z€ U} =|lullo < 1.

As in the case of the dilatation coefficient of a diffeomorphism, one
interprets p as defining of a field of ellipses (defined up to scalar homo-
theties). One has a natural action of the diffeomorphisms on Beltrami
fields (see [L]). If G : U — V is a diffeomorphism, and p: U — C a
Beltrami-field on U, we will write G*(u), the image of p by the diffeo-
morphism G.

For instance, the dilatation coefficients 7i(Z, \) of %(Z, \), on W, is
invariant by the translation 2 — Z + 2mi. It induces a Beltrami field
(2, A) on W — {0} for YA € P, where W = 7(Wp) U {0}, because
| 1w (@), N) =] i) < k< 1.

Of course pu(z, A) is discontinuous at 0 € C, but because u(z, \) is
smooth on W — {0} and bounded by k, it defines a Beltrami field on

Bol. Soc. Bras. Mat., Vol. 29, N. 2, 1998



QUASI-CONFORMAL MAPPING THEOREM AND BIFURCATIONS 239

W, which verifies also: [[p]]oc < k < 1 (here || . || is the norm in
L>*(W x P)).

Moreover i, : A — p(z, A) is holomorphic in P for any z # 0 and it
follows from the formulas (8), (9) that the germ of p, at A = 0 belongs
to the ideal of coeflicients Zg of hy(z) = Hx(z) — 2.

Take a disk D, centered at 0 € C and such that D C int W. We
choose some smooth function 2(z) : C — [0,1] such that ¢¥(z) = 1
for z € D and ¥(z) = 0 for z € C — D' where D' is a second disk
chosen such that: D C int ' ¢ I’ C int W. We consider the Beltrami
field p'(z,A) = ¥(2)p(z, A) which coincides with g on D, is defined on
the whole Riemann sphere S? for all A € P and is equal to 0 in a
neighborhood of co € S2. Moreover, p keeps the properties of p in
relation to A.

We want now to apply the Ahlfors-Bers theorem to the Beltrami
field 1. First we recall the definition:

Definition 3. An homeomorphism f : 82 — S2 is said quasi-conformal
if and only if the partial derivatives 8f, Of exist and satisfy in the L?
local sense an equation Of — pudf = 0 where u(z) is in L°°(S2) with
lplloo < k for some k <1 (i.e., u is a Beltrami field).

The mapping theorem of Ahlfors and Bers says inversely that given
some p Beltrami field g, there exists a quasi-conformal f which verifies
the Beltrami-equation:

Of —pudf =0 (10)

in L2-local sense (see [A] for instance). This implies that the dilatation
coefficient of f is defined and is equal to p almost everywhere. Moreover
if pe Lg (S 2y, i.e. if p has a compact support in C, there exists a unique
solution F), of (10), such that Fj(z) — z = 0(%).

This unique solution can be construct explicitly as follows, using sin-
gular integrals (see [L]). For w(z) € C3°(S?) (space of smooth functions

with compact support in C), one defines, the two following operators:
1
Tw(z)=—— // w8 dé A dn (11)
T c S—<Z%
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and:
Hw(z) = lim — — // 5 dé Adn (12)
|z—sl>e !S—Zl

e—0
for s = (&,n) € C.
The operator H can be extended continuously in LP(S2) for p > 1.
Then, taking u € LP(S?), |pllo < 1, one can define inductively in
LP(5?) a sequence of functions (pi)i:

pr=1, ¢n=pHp, 1 n>2 (13)
which converges in L?P (82) if p verifies:
[Hlp [l <1 (14)

which is always possible, if ||¢t]|« < k, small enough.
The following representation formula was first established by Bo-
jarski (see [L]) for the solution F), of Beltrami equation (10):

Fuz) =2+ Tpil2) (15)
=1

where the ¢; are defined by (13). The series is absolutely and uniformly
convergent in the Riemann sphere.

We are going to use this representation formula, to deduce the fol-
lowing properties of f\(z) = f(z,A) = Fy(z), the solution associated to
w(z, A).

Proposition 5. The family of quasi-conformal mappings fr(z) associ-
ated to the Beltrami field pi'(z, X) by the representation formula (15) is
holomorphic in b x P, where b is the sector:

b=nb)={z]| |Arg z|<n, | z [>0}.
Moreover, for each z € b, the germ: A — (f\(2z) — z) at 0 € C¥, belongs
to the ideal T = T(H)(2) — 2).
Proof. The support of 1/(z, A) in 52 does not intersect the open sector b.
Then, the functions ¢;(z, A) obtained by the formulas (13) are equal to
zero on bx P. As a consequence, the functions T'y;(z, \) are holomorphic

in b x P, and, because the convergence of (14) is absolute and uniform
on §2, we obtain that the limit f (z,A) is also holomorphic on b x P.
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Now we want to prove that A — fi(2) — z belongs to the ideal
Z for Yz € b. Suppose that 7 is generated by the analytic functions
A1(A),--- ,Ap(A) on P. The function p'(z,A) is in L§ (S2 x P). (The
space of functions which are measurable and bounded on S? x P, with a
support compact in C x P ; here Supp p/ C W x P). Moreover the gérm
A — w'(z,A) is in the ideal 7 for all z € 52 Using a classical theorem
for holomorphic ideals (see [H] for instance), it is possible to choose a
sub-neighborhood P’ of 0 € C¢, P’ C int P, and a constant M7 > 0 such
that:

12
W) =D AN (z,A) (16)
i=1

on S2 x P’. The functions x* are holomorphic in A, u* € L8°(,5’2 x P)
(with Supp u* C Supp /) and satisfy:

Ml < Mallp'lloo (17)

where:
lplloo = Sup £ p(z,X) | | (2,) € §% x P'}.

Let be any function g € LS"(S2 x P’y with Supp ¢ C W x P'. Let us
write gx(z) = g(z, A). Then gy belongs to LP(52) for any p > 1 and any
A € P, and verifies:

lgallp < Mzl

‘where My = Mo(W, p) is some constant depending on W and p. Recall
that, to apply the formulas (13), (15) we have chosen k,p, such that the
inequality (14) holds. Then there exists some constant Mg > 0, such
that at each step of the induction (13), one can write:

14
pix =D AN @iy with flgl,llp < Ms (1H|p [1]l)".  (18)
=1

These formula and inequality are obtained inductively. It is verified
for i =1 and M3 > MiMy/||H||,. Then one has:

£

Piria=prHoixn=py > MVH@l, , for i>2  (19)
P
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and then:
Piria =Y AN @l (20)
with:
W?+1,A = M/AHSOg,,\‘

Let us suppose by induction that gog y verifies the inequality (18).
One has:

leicainlle < lehlloe 1HE A < Ehlleo 1Hlp 7 Allp
which implies:
, 1
HQDg-H,)\Hp < Mz (|H|lp “N,Hoo)H_ :
Now, the Holder inequality gives: |
17930 < cp Sup {ll¢fllp | A€ P}

for some constant c,, depending on p. It follows that:

176w < ¢ (1Tl 1) (21)

with ¢, = Mzcy.
Then the series ZTapg is absolutely and uniformly convergent to-

ward a continuous funlction hj(z, A), which is holomorphic in A. We have:
fX) =2+ Tei(z,2)

i=1

_Z+Z (Z gol(z /\))

j=1

(22)

The inequality (21), permits to commute the summations in (22)
and to obtain finally:

z)\—erZA hji(z, \). (23)

This last formula is a division of f(z,A) — z in the ideal Z. O
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The solution f(z, A) does not preserve z = 0 in general. We need
this condition to be able to lift f in C.

Lemma 6. The function A — f(0, A) is holomorphic and belong to the
ideal T.

Proof. Let us choose a sequence (z;}; — 0 with z; € b. It follows from
the proposition 5 that for any 2z, € b: A — f(z;, A) is holomorphic.
Then, because f(z, A) is continuous in (z, A), we have that the uniform
limit f(0, A) of f(z;, A) is holomorphic in A and belongs to the closed
ideal 7. 0

Using the Lemma 6, we have that family F(z,\) = f(z, A) — f(0, \)
verifies the same properties than f and fixes 0 : F'(0,\) =0 for VA € P.
For each A € P, F(z, ) is solution of the Beltrami-equation for u’,
and then for p(z, A) on D.
This means that F'(z, A) sends the field of ellipses associated to u on
D on the field of circles on F(ID, A) which can be suppose equal to the
fixed disk D, using the uniformization theorem of Riemann.
The inverse mapping ¢(z, A) = F *1(2, A) is also quasi-conformal from
D to D C W and brings the trivial field of circles on the field of ellipses
associated to p(z, A) on W. Let us recall the other properties of p(z, A):
e ©(0,\) =0
e (z, ) is analytic in (2, A) for (z,A) € ¥ x P where V' is some sector
at 0, chosen so that F'(b, \) D b for all A € P.
o A\ — ¢(z,)) is in the ideal 7 for all z € ¥'.

3. The analytic solution S, (Z). (Proof of theorem 1)

The family of quasi-conformal mappings ¢, (2) lifts in a family of quasi-

conformal mappings (%), defined for (Z,A) € D x P, with $,(0) = 0.
As lift of an univalent mapping, ©,(Z) verifies:

OA(Z + 2mi) = PA(Z) + 2mi. (24)

Next, one can restrict p)(z) to V x P, where V is some open neigh-
borhood of 0 of the form V = {Z < p(y)} for some continuous function

p chosen such that, for all A € P: o (V) Cc W.
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We define SB\(E) VxP—C by :

SrZ) = Ex 0 PaD). (25)

For any A € P, p) sends the trivial field of circles in the field of
ellipses associated to fi(Z, \) and next, by construction; $(Z) sends this
field of ellipses in the trivial field of circles on C.

Then, the composition g,\(E) sends the field of circles of V into the
field of circles of C. This means that S(8) is conformal as a function of
Z, and then is holomorphic in Z for any A € P, as a consequence of the
Weyl lemma (see [L]).

Let ¥ be a strip around {y=0}in V such that 7(') C b'. We know
that ©,(2) is analytic on . Then, because Pt C band & AZ)=Zon
b, we have that S)\(3) is analytic on b for any A € P. As 7 — Sx(2)
is analytic on V, for all A € P it follows by analytic continuation that
S\(Z) is analytic in (%, A) on the whole set V x P.

We also know that for any € ¥/, the germ of the map A — &3 (2)—2
belongs to the ideal Z, and then the same is true for the germ of the
map: A — S \(Z) — Z. Using the proposition 1, it follows immediately,
that- this is also the case for V3 € V.

Finally it remains to verify that S \(Z) satisfies the equation (1):

Sa(Z +2mi) = £ 0 Ba(Z + 2mi)
N (@(z) v 27rz').
As ¥y is a solution of (1), one has :
S (@A('ZV) + 27”') — Hy 0 5 0 $(Z) + 2i.
And then, finally:

S’,\(E+ 27i) = ﬁ,\ o 3’,\(5) + 2.
The continuity property S’A(ﬁ) = 0 follows from the same property
for »y and %y.

III. Division of the Dulac transition in the holonomy ideal.
We want to prove now the theorem 2. Let (X)) be an holomorphic family
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of vector fields, defined near a saddle point at 0 € C2. We can suppose
that 0 is a saddle point of Xy for VA € P, a compact neighborhood
of 0 in the parameter space Cf, and that the local stable and unstable
manifolds are independent of A. Let o and T be some analytic segments,
transversal respectively to the local stable and to the local unstable
manifold. One can suppose o, T to be parametrized by 2 € D C C, near
0, and o, P chosen small enough such that the Dulac transition map
Dy (z) is defined from b x P into 7, where b is some angular sector at
the origin of o, with angle less than 2x. This map can be extended as a
multivalued map, which can be lifted in a map INDA(E) on some domain
W x P where W is a neighborhood of 0 in C. If H A(2) is the holonomy
germ on 7 and ﬁ,\(i) its lift on (NI, one has:

D(Z +2mi) = H o Dy(3) + 2mi , Dy(0) = 0.

Then, INDA(Z’) is a solution of equation (1), associated to Hy. Let
Sy (Z) be the solution of the equation (1) given by the théorem 1. One
can suppose W and P chosen such that S %(2) is defined on W x P. As
P is compact, one can also suppose that there exists a neighborhood 1%
of 0 such that V x P is contained in the image of W x P by Dy, for all
A. The map Sy o b;l is then defined on V x P and verify:

Syo Dyt (Z+2mi) = Sy o DYYE) + 2w and Sy 0 DY) =0. (26)

This means that S‘,\ o D;l is the lift of some analytic diffeomorphism
Ch(2), defined on V x P, where V is a neighborhood of 0 in ¢. This
neighborhood V is contained in 7(V) U {0} and C(0) = 0 for VA € P
(this last property follows from Dy (0) = Sx(0) = 0).

If one introduces the multivalued map Sx(z) associated to Sy (%), one
can see C(z) as a change of coordinates in a neighborhood of 0 € o,

which transports Dy (z) into Sx(z):
S,\(Z) =D,o C’)\(Z) (27)

The map S)(z) verifies the properties obtained in theorem 1. In
particular for any z in the domain of definition of Sx(z), one has that
the germ at 0 € C¢ of the holomorphic function A — Sy (z) — z belongs
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to the holonomy ideal g = Z(H)y — 1d).

IV. Bifurcations of homoclinic loops.

We want to prove now the theorems 3 and 4. Let us consider a real
analytic family of vector fields (X)) which unfolds a saddle connection
on R2. We suppose that Xy has a saddle singular point at 0 € R?, with a
saddle connection T, i.e some stable separatrix at 0 coincides with some
unstable separatrix. The family (X)) is an unfolding of X, defined near
T, for A near 0 € RY. We suppose that the return map for Xg, along T,
is equal to identity. In [Rq], it was proved that the cyclicity of (X, T) is
finite. We want to give now a new proof of this result, based on theorem
2 above.

First we have to explain how one looks at the limit cycles which
bifurcate near T' and to introduce the ideals in the parameter space on
which will be based the proof of the finite cyclicity and its computation.

Let o and 7 be two analytic sections to the stable and unstable
local separatrices of Xg, contained in I'. Let be o ~ [0, X[C R, the
half-section contained in o, on which is defined the return map along
I', with 0 € [0, X[ corresponding to the point ¢ NIT'. We can suppose
that the Dulac transition map from o' to 7 is defined for any A € P.
It is a parameter family Dy(z) : o7 x P — 7. We suppose also that .
the regular transition defined by the flow of — X, gives an analytic map
Ry (x) from ¢ x P into 7. Then, the limit cycles of X near T" are in one
to one correspondence with the roots of the equation:

Ax(@) = Dx(z) — Bx() (28)

on o™, for A € P.

The cyclicity is equal to the minimum of the number of roots when
the diameters of o and P go to zero.

The structure of the Dulac map is deduced from the following Dulac
normal form of the family X, near the saddle point. There exists a
sequence (;(\)); of analytic germs at 0 € R, such that for any & € N,
one has an analytic chart near 0 € R?, where the family X X, Up to an
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analytic equivalence can be written:
T =4z

k
N a= =Y e W)+ () Fla,y, ).
=0

(29)

The analytic germs o1 which appear in this normal form are re-
lated to the holonomy map Hjy:

Lemma 7. The ideal generated by the germs (oy,0) in the ring O(CY) is
equal to the ideal of holonomy Ty. More precisely, if the holonomy map

s given by:
Hyy) =y -+ BN v,
>0
for any k > 0, the ideal generated by v, -, ap41 45 equal to the ideal

generated by B1,- -, Br41-

Proof. We want to compute the holonomy map for the vector field Xy
considered as a complex vector field defined in a neighborhood of C2.

So, let us suppose that x,y are now complex variables.

In the normal form (29), the unstable manifold is given by {y = 0}
and the transversal section on which we want to compute the holonomy
map can be chosen to be 7 = {z = 1}, parametrized by y near 0. One
considers the holonomy map from 7 to 7, above the loop z(f) = €% |
0 € [0,27], on the unstable manifold. The complex flow of X, through
the point (y,1) € 7 is given by z(¢) = e and y(t). We will write:

y(t) = yer' Vot y, \) (30)

where r(A) = —1+ aq is the stable eigenvalue.
One has ®(0,y, A) = 1 so that one can expand ® in series in y, with
a constant term equal to 1:

k
oty \) =1+ Y @1t Ny +O0@F). (31)
j=1

If we bring this expansion in the second equation (29) one obtains,
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for & = %? (t, A):

k
= @(Z ajpy €0y &7 4 O(yk+1)). (32)
i=1

The equation (32) gives for the analytic functions ®;(¢, ) a recurrent

System:

‘i>2 = Q9 et
2a1t Oélt

@320436 +2Py a9 e

and more generally, for any j such that 2 < j <k + 1:

(i)j = 6(j_1)a1t + Pj(al, e, 05, $q,... 7®j—l> eo‘lt) (33)
In the expression (33), P; is a polynomial in ®1,... ,®;_1 and e*1t with
linear coefficients in a,... ,a;_1. It follows that ®; has the form:
J
= > awy(t, A). (34)
/=1

for some analytic functions vg;. Then, the holonomy map:

Hy(y) = y(2mi) = ye™ O o(2mi, y, \)

k
= yemie (1+ Z ,(2mi)y +O(yk+1)) (35)

i=1
has the required property. O
Let us return now to the map Ajy(z). Using the Dulac normal form
(29), it was proved in [Rj] that, for any k& > 1, and any analytic

parametrizations of transversal segments o, 7, the map Ay (z) has (z, w)-
expansion of order k:

k
A,\(az):z Bi(\) Z SN[ w A+ ]+ YRz, A) (36)

has it was already explained in the infroduction.
The coefficients 3;, o; are analytic and the «; are the coeflicients of
the Dulac normal form.
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Definition. Let be Zy the ideal generated in (’)O(U) by the coefficients of
all the (z,w)-expansion at any order.

It is clear that this ideal is independent of the choice of the transver-
sal segments ¢, 7 and of their analytic parametrization. Moreover, it
follows from the formula (36) and the lemma 7 that:

Lemma 8. 7y C 1.

Proof. Using formula (36} we see that any coefficient ¢; of the Dulac
normal form appears as a coefficient of a (w, x)-expansion, if the order k
is chosen large enough. Now the lemma 7 says that the ideal of holonomy
is generated by the coefficients of the normal forms. 0

In' [Ry], it was defined a third ideal, the Bautin ideal Z generated by
the germs A — Ay(x) for x € o — {0}. Here we will notice by Z the
ideal generated in Oy(C¥) (called in [R1] the complexification of the real
ideal 7). To prove the theorem 3, we now consider the complex extension
of Dy, Ry that we will denote by the same notations. Moreover, o, 7
will be now small disks centered at 0 € C and o7 a sector in ¢ with
angle less than 277. The theorem 2 gives us an analytic parametrization z
of o such that D (z) — 2z has coefficients in Zr;. We suppose chosen such
a parametrization. Let T be the ideal generated by the coefficients of
the map R)(2) —

Ri(z)~ 2= %Nz (37)
1=0
First we prove that Ip C Zy. The ideal Iy is generated by the
coefficients 7;(A\) of the series (37). Let be any ¢ € N and a (z,w)-
expansion of Ay(x) of order k > i.
Consider the coefficient 8;(\) in this expansion:

BN = BN — %N (38)

where Bi()\) is the coefficient from Dy (z) — z and ~; is the coefficient
from Ry(z) — z.

The germ of Bz belongs to the ideal 7y C Zy and because the germ
5; belongs to the ideal 7y, one has also that v; € Zg.
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Consider now any z € o™ — {0}. Writing again Ay(z) = (Dx(2) —
z) — (Ra(z) — z), we obtain that the germ of A — A, (2) is a difference
of a germ in Ty and a germ in Zg. Then, it belongs to Zy. Because the
germs of maps A —» Ay (z), for z € o — {0} generate the Bautin ideal,
we have proved that 7 C Zj.

The inverse inclusion was proved in [Rq], and finally we have proved
the theorem 3: 7y = 7.

Consider now any (x, w)-expansion of Ax(x) (36). We now know that
the germ of A — Ay(x) belongs to Zy. It is the same, by definition for
the principal part of (36). Then it results that, for any = € o™ — {0}, the
map germ of the remainder: A — ¢;(x, A) belongs also at Zg, for any
[. Tt was proved in [R;] that if the remainder A — 1951 1(z, A) belongs
to some ideal Z for all z € o™ — {0}, then this function 9, 1(z,\) can
be divided in the ideal, in class C*. This implies that if {¢1, -+ ,pe} are
a set of generators for Z, then one can write, for z, A small enough:

¢
Y1 (T, A) = > @s(Ns(z, ) (39)
s=1

with vg(x, A) of class C¥, analytic in A, and (2k + 1)-flat at x = 0, as the
function o4 1.

It follows from this, that if the ideal Zy is generated by the ¢ = 2k
first coefficients Gg, a1, 81, @2, -+, Br_1, ak, one can write :

Ax(z)=Bolz+ - ]+arfzw+ -]+ +oplzbo+ -]

where each bracket has a principal part which is a polynomial in z, w,
and a remainder term which have a finite but arbitrarily large class of
differentiability and flatness K >> k. One can write a similar formula
if 7y is generated by the £ = 2k + 1 first coefficients.

It is well known that such a linear combination has at most £ zeros
in xz € 0", for ¢ and the parameter space sufficiently small. ([J], [M],
[Rz]). This proves the theorem 4.
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