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Abstract. Let H be a germ of holomorphie diffeomorphism at 0 6 C. Using the 
existence theorem for quasi-conformal mappings, it is possible to prove that there 
exists a multivalued germ S at 0, such that S ( z e  2~i) - H o S ( z )  (1). If H;~ is an 
unfolding of diffeomorphisms depending on A G (C, 0), with Ho -- Id,  one introduces 

its ideal 27/4. It is the ideal generated by the germs of coefficients (ai(A), 0) at 0 6 C k, 
where H;~(z) - z  = ~ ai (A)z  i. Then one can find a parameter solution S;~(z) of (1) 
which has at each point z0 belonging to the domain of definition of So, an expansion 
in series Sx(z) = z + ~-~bi()O(z - zo) i with (hi,O) E 27H, for all i. 

This result may be applied to the bifurcation theory of vector fields of the plane. 

Let XA be an unfolding of analytic vector fields at 0 C ]R 2 such that this point is 
a hyperbolic saddle point for each A. Let H;~(z) be the holonomy map of X~ at the 
saddle point and 27H its associated ideal of coefficients. A consequence of the above 
result is that one can find analytic intervals a, ~-, transversal to the separatrices of 
the saddle point, such that the difference between the transition map D;~(z) and 
the identity is divisible in the ideal fill- Finally, suppose that XA is an unfolding of 
a saddle connection for a vector field X0, with a return map equal to identity. It 
follows from the above result that the Bautin ideal of the unfolding, defined as the 
ideal of coefficients of the difference between the return map and the identity at any 
regular point z 6 a, can also be computed at the singular point z = 0. From this last 
observation it follows easily that the cyclicity of the unfolding X x is finite and can be 
computed explicitly in terms of the Bautin ideal. 

Keywords: Quasi-conformal, bifurcations, mapping theorem. 

I. Introduction and results. 
Let H(z) be a germ of holomorphic diffeomorphism at 0 C C, such tha t  

H(0) = 0. One can ask the following question: is there a germ of analytic 

multivalued mapping S(z), with S(0) = 0, such tha t  the new value of 

Received 13 March 1998. 



230 ROBERT ROUSSARIE 

S(z) obtained after one turn  around the origin is equal to H o S(z)? 

Writing S(ze 2~i) for this second determinat ion of S, one can write: 

S(ze 2~i) = H o S(z) with S(0) = 0. (1) 

Let us formulate this question in the universal covering ~r = exp: 

) C - {0}. Let be 5 = 2 + i )  the coordinate in C. We will call 

neighborhood of 0 = {2 = - o c } ,  any open set of C of the form {2 [ 2 < 

p(~)} where p is some continuous function of ~. The germ H lifts as a 

diffeomorphism H : 1D ~ ~;, where ]D is the neighborhood of 0 equal to 

7c-1(D- {0}) and II? is some disk centered at 0 E C on which H is defined. 

The multivalued mapping S lifts as a diffeomorphism S : W --+ C, where 

W is a neighborhood of 0 and must verify: 

S(~ + 27ci) = H o S(~) + 27ri with S(0) = 0. (1) 

The last condition means that  the real part  of S(5) tends to - o c  

when 2 tends to - e c  and ~ remains in some arbi t rary compact  subset  

of R. 

This question was indirectly solved by P~rez-Marco and Yoccoz in 

[P.Y] by finding a local analytic vector field on C 2, near a hyperbolic 

saddle point, with a germ of holonomy equals to H, above a loop around 

the singular point on the unstable manifold - the transit ion map D from 

a section to the stable manifold toward a section to the unstable manifold 

is a solution of the equation (1). 

Here, we want to present a direct construction for the solution of 

(1) (or (f)), based on the quasi-eonformal mapping theorem of Ahlfors- 

Bers. This proof  has the advantage to be simpler than the one by P~rez- 

Marco and Yoccoz because we will remain in the complex dimension 1. 

Moreover, we are interested in parameter  families as we will explain now 

and our proof easily extends to parameter  families. 

We suppose that  A is a parameter  near 0 E C e and we consider a 

germ of analytic parameter  family of diffeomorphisms H),(z) at 0 E C, 

with HA(0) = 0 for all A. This germ of family will be represented by 

an analytic mapping HA(z) : II3 x P --~ C where II3 is a disk centered at 

0 E C and P is a neighborhood of 0 E C e. For any ,k E P, z ~ HA(z) is 
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QUASI-CONFORMAL MAPPING THEOREM AND BIFURCATIONS 231 

an holomorphic  diffeomorphism of D into C, with  HA(0) = 0. 

For analytic families of functions, one can define the following ideal 

of functions in the paramete r  space: 

Definition 1. (Ideal of  coefficients.) Let (f~)~ be an analytic family of 

functions defined on U x P C C • C ~, f~(z) : U • P > C, where U is 

a connected open set in C and P an open neighborhood of 0 E C e, the 

parameter space. Let zo be any point in U and let us consider the series: 
o~ 

fA(z) = ~ ai(A)(z - z0) i. 
i = 0  

The ideal of coefficients of the family Z(f~), is the ideal generated 

by the  germs of coefficients ai = (ai, 0), in the  ring O0(C ~) of analytic 

germs of functions at 0 E C ~. 

It  is easy to obta in  the following proper ty  and al ternative definition 

for :r(A): 

Propos i t ion  1. The ideal Z( fx)  is independent of the choice of the base 

point zo. Moreover it is also generated by the germs of the functions: 

A ~ f~(z), when z E U. 

Proof .  The  first assumpt ion  was proved in JR1]. Let be 2- the ideal 

generated by the germs A ~ f~(zl),  for all Zl E U. The  function 

A > fX(zl) is the  constant  coefficient of the expansion of f),(z) in 

( z -  zl). Then,  it follows from the first assumpt ion  tha t  Z C 2-(f~). Now, 

because the ideal 2- is closed it contains the germ 

A > dd~(Z0)= lira f)~(z)-f)~(zo) ' 
z - - ~ Z o  Z - -  Z 0 

and by an induct ion on i, it contains also any mapping  

Oi f ;~ , , 
A > -g~-zilzo). 

This implies tha t  Z(f),) C Z and the  equali ty between the two ideals. [] 

Remark .  Obviously, the  ideal I(f;~) is a t tached to the  germ of family 

(fx, (0, 0)) at (0, 0) E C x C e. 

We can now formulate  the  existence result for the  equat ion (1) and 

a family HA: 
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Theo rem 1. Let H;~(z) be a germ of analytic parameter family  of dif- 

feomorphisms at 0 ~ C, with HA(O) = 0 for  any A and Ho(z) = z. Then 

there exists a solution S~(~) of the equation (1), defined and analytic 

on W • P, where W is some neighborhood of O, and P is chosen small 

enough. Moreover, for  any ~ ~ W,  the map ~ ~ (S~(~) - 5) has a 

at 0 C C g in the ideal 2-(H;~ - Id)(i.e., in the ideal of coefficients germ 
\ 

of the germ of family  (H;~(z) - z); 0 . 

Remarks.  1. A stronger result could be a parameter  version of the 

theorem of P~rez-Marco, Yoccoz: does there exist an analytic parameter  

family of vector fields, 

0 0 

where any coefficient of the field P~ is in the ideal if(HA - Id)? 

2. The size of the domain W which is defined by the function p depends 

on the proper ty  of HA, because this domain can be obviously obtained 

as the union of the iterations by HA of a strip Wo = {7 + i~ I ~ -< A, 0 _< 

< 2~r}..Let us suppose that  P is compact.  It is easy to see that  one 

can always take p(~) = - c l  - c 2  I Y I for some cl, e2 > 0. It is possible to 

have a more precise and useful est imation when one allows the domain 

W to depend on A, i.e. defined by a continuous function px(~) depending 

on A. Let 2 C P be the subset defined by I H~, I = 1. Using the proof 

of Ii 'yashenko in [I] (see also [R2] for instance), it is easy to find a 

continuous function p~(~) which verifies p~(~) _> - c 3 ( 1 +  1~ I) �89 for all 

A 6 Z, where c3 is some positive constant.  The multivalued function 

S;~(Z) is then quasi-analytic in the sense of [I], when A C 2. This means 

that  Sa is determined by its Dulac formal series at z = 0 when A c 2 (it 

is easily proved that  such series exists for any ,~). 

Let (Xa)~ be an holomorphic family of vector fields near a saddle 

point at 0 E C 2. One can suppose that  X~ is defined in some neigh- 

borhood /3 of 0 E C 2, for A E P, some neighborhood of 0 E C e and 

that  the local unstable manifold W ~ and the local stable one W ~ of X~ 

are independent of A. Let ~, ~- be two sections, transversal respectively 

to W ~ and W ~. Let HA be the holonomy map on ~-, above a loop in 
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W ~ - {0}, based at the point 7- N W u. The transition map DA from ~ to 

7- is a multivalued germ on cr at the point c7 A W s. If we identify ~ and 

~- with a disk ]I} c C centered at 0 and the points cr N W s, ~- A W ~ with 

0, the map DA verifies the equation (1): 

/PA(z + 27ri) = HA o/9A(z) + 27ri, DA(0) = O. 

The theorem 1 can be used to obtain a "good" parametr izat ion of 

the transversal ~, well-adapted to the holonomy map HA: 

Theorem 2. If ~ ~_ D and P are chosen small enough, there exists an 

analytic change of coordinate CA(z) : D • P -~ D on the transversal 

~_ [3, depending analytically on A and verifying CA(O) = O, such that 

the germ of the .function A > (DA o CA(z) - z) belongs to Z(HA -- Id) 

for all z ( this means that the ideal ff(DA o CA - Id) is contained in the 

holonomy ideal: if(HA - I d ) ) .  

Let us consider now a real analytic family of vector fields which 

unfolds a saddle connection. We suppose that  X0 has a saddle singular 

point at 0 E R 2 with a saddle connection F made by the coincidence of 

one stable and one unstable separatrix. The family XA is an unfolding 

of X0, defined near F, for t near 0 E ]Re. Here, we are interested to 

unfolding of infinite codimension. This means that  the return map for 

X0, along F is equal to identity. In [R1], it was proved that  the number  

of limit cycles (isolated closed orbits) which bifurcate from F, for A near 

0, is always finite. This bound of the number  of limit cycles is called the 

cyclicity of tile germ (XA, F) and denoted Cycl (XA, F) (see [R1], [R2] for 

a precise definition). Then the result in [R1] was that  dycl (XA, F) < co. 

Let ~ and ~- be two analytic sections to the stable and unstable local 

separatrices of X0, contained in r .  Let a +  _~ [0, X[ be the half-section 

on the side on which the return map is defined along F, with 0 _~ or+ NF. 

We can suppose that ,  for A E P C N e, some neighborhood of 0 C R e, the 

Dulac map DA(z) (transition from g to ~- near the saddle point) as well 

as the regular transit ion RA(x), for XA(Z), above the regular arc of F 

between cr and T, are defined from cr + • P to ~-. The limit cycles of XA 
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near F are in one to one correspondence with the roots of the equation: 

A~(x) = D;~(x) - R;~(x) = 0. (2) 

The  cyclicity Cycl (X~, F) is equal to the min imum of the number  of 

roots of (2) in (7+, for A E P, if P and (7+ are chosen small enough. 

The  proof  of the finite cyclicity in [R1] is based on a (x, w)-expansion 

of order k, k large enough, of A~: 

k k 

A~(x) = ~ /3i(s i + . . . ]  + ~ o~j(A)[xJw + . . . ]  + Ck(x,A). (3) 
i = 0  j-----1 

Here/3i and ay are analytic coefficients independent  of the order k; 

x -al(a) - 1 
~ ( x ,  ~)  - 

( where c~1()~) = 1 + ~11 (A) ~2(~) < 0 < ,~I(A) are the eigenvalues of X;~ 

a t  the  saddle point  0 ; c~1(0) = 0). The  sums + . . .  are 
N 

finite polynomial  

expansions in the  monomials  xecS of order strictly larger than  the  first 

monomial  in the bracket, and ~k(x, ~) is a remainder  of class C k which 

is k - f l a t  at x = 0 for any/~ : 

0k~,k 
~k(o,  ~) . . . . .  Ox k (o, ~) = o. 

The  expansion (3) can be wr i t ten  for (x,)~) E (7 + x Vk (where Vk is 

a neighborhood of 0 in P, depending  on k). 

One defines the  ideal 2- o associated to the unfolding (X; 0 as the  ideal 

generated by the  germs of coefficients c~i,/3j in 59 o (Ce). 

In [R1], one has also defined the Ideal of Baut in  2- of the unfolding 

(X~) as the ideal generated by the  coefficients of the family (Aa(x))x for 

x E]0, X[ (the regular points  of (7+). Recall t ha t  this ideal is generated 

by the coefficients of the  expansion of the real analytic map  A~(x) at any 

point  x r 0, or equivalently by the  germs ~ --+ Ax(x) for x E (7+ - {0}. 

Let 2-H be as above the  ideal 2-(H~(z)-  z) associated to the holonomy 

map  at the saddle point.  For a real family (X~)x the three ideals 2-H, 

2-0, 2- are real,i.e, generated by real analytic functions and in [R1] it was 

Bol. Soc. Bras. Mat., VoL 29, iV. 2, 1998 



QUASI-CONFORMAL MAPPING THEOREM AND BIFURCATIONS 235 

proved that:  ZH C if0 C 5[. Now, as a direct consequence of theorem 2, 

one can prove the following: 

Theorem 3. Z0 = Z: for any xo • O, the germ {A ~ Ax(x0)} belongs 

to the ideal 2-0. 

Finally, a simple argument  of division of the map A~(x) in the ideal 

2-0 implies the finite cyclicity and, moreover gives an explicit bound for 

Cycl (X~, C): 

Theorem 4. The cyclicity of (X~, F) is finite. Moreover, let be g the 

smallest integer such that the first g coefficients in the list/30, C~l, /31, 

c~2.., generate the ideal 2- 0. Then, Cycl (Xx, F) <_ g. 

Remark. The finite cyclicity was already established in  [R1] , using the 

division in the ideal Z. But because it was not possible to control the 

factors in the division, no explicit bound was obtained for it. 

In the second paragraph, one gives the proof of theorem 1, based on 

the Ahlfors-Bers theorem and deduce from it in the third paragraph, the 

theorem 2 about the division of the Dulac transit ion in the holonomy 

ideal. In the last paragraph one establishes the theorems 3,4 for the 

cyclicity of unfoldings of saddle connections. 

This paper follows from discussions with Christiane Rousseau about 

the possibility to apply a Khovanskii method to the s tudy of bifurcations 

of infinite codimension, during a stay in the Centre de Math6matiques 

de l'Universit~ de Montreal in january  1997. I thank her for the kind 

invitation. 

II. Construction of  multivalued mappings. 

We suppose that  H;,(z) is a family of holomorphic diffeomorphisms of 

C, defined on D x P, where D is a disk centered at 0 E C, and P is a 

compact  neighborhood of 0 E C ~, the parameter  space. Moreover, one 

assumes that  HA(0) = 0 for VA and tha t  HO(Z ) - z. Let be ~r = exp : 

> C - {0}, the universal covering map. 

The family HA(z) lifts on ~;, as a family of diffeomorphisms H~'~(~) 

with ~ E ]D = 7c-1(D) and I E P. For each A E P, the diffeomorphism 
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N 

2 ; H~,(2) verifies: 

H~(2 + 27ri) = Ha(2) + 27ri. (4) 

We will write H~(2) = 2 + h~(2), wi th  h~ a 27ri-periodic function 
N 

such tha t  hA(0) = 0 and h0(2) - 0. 

We are looking for a holomorphic  family of diffeomorphisms S~(2), 

defined for 2 E W, some neighborhood of 0 in D, and /~ C P, some 

restricted compact  neighborhood of 0 E C *, which must  be solution of 

the equat ion (1): 

S~(2 + 27ri)= H;~ o S~(2) + 27ci , S~(0) = O. 

Moreover, we want  tha t  the germs of maps  ~ ) S~(2) - 2  at ~ = 01 

belong to the ideal of coefficients Z H  = Z ( H ; ~  - Id). 

The  idea of the construct ion of S~(2) is as follows. First,  we will con- 

s t ruct  a Smooth solution E~(2) of the equat ion (1). In fact E~(2) will be 

smooth  in 2, but  holomorphic  in ~. As a consequence E~(2) will be quasi- 

conformal ill 2, uniformly in P, and using the Ahlfors-Bers theorem, it 

will be possible to construct  a family ~ ( z )  of quasi-conformal homeo- 

morphisms near 0 E C, with  ~ ( 0 )  = 0, such tha t  Sx(2) = E~ o ~ ( 2 )  

will be a holomorphic solution of ~)  (~x is the lift of ~ on C). We will 

choose for ~ a normalized solution of a Bel trami equat ion on S 2, in 

such a way tha t  Sx(2) will verify the  required analytici ty and division 

propert ies in function of the parameter  ~. 

1. Construction of a smooth solution E~(2) of  (1). 

We choose rj, 0 < r / <  7r and A E R and consider the  region: 

w0 = { 2 ~ c 1 ~  <_A, -~_<~<_2~+~} 

which is par t i t ioned in three strips: 

and 

b3 = {~ ~ Wo I 2~ - ~ <_ ~ <_ 2~ + ~}.  
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We suppose tha t  A is chosen small enough such tha t  W0 C ID. We 

define a map  Ea(2), for (2, A) C W0 • P (for a neighborhood P small 

enough),  by: Ea(z) = z  for ~ E b ,  Ea(~) = H a ( 2 )  for 5 Eb3  and by 

taking an isotopy between these two definitions in the  strip b2. More 

explicitly, we choose a smooth  real funct ion ~(~) : IR ~ [0, 1] such tha t  

F(~) _= 0 for ~ _< r/, F(~) _= 1 for ~ _> 27c - r / and we define Ea(z) by: 

= + (5)  

for z = x + zy E W0. One choose A small enough such tha t  Ea(W0) c 5 ,  

V A E P .  

We can extend the definition (5) by HA-iterations. First  we define a 

domain  W, ne ighborhood of 0 by i terat ing W0: 

~ { ~ E C , 3 n E Z  suchthat  ~ - 2 ~ i n c W o a n d  } 

W -- ~ o ~ , a ( z -  2~rin) c II3 for 1 < k < n, VA E P " (6) 

Next we define Ea(z) for (2, A) �9 IW x P, by: 

Ea(-2) = H~'~ o Ea(-2 - 27tin) + 27tin. (7) 

if ~ - 2~in �9 WO. 
It is clear, from the const ruct ion of Ea on W0, tha t  this definition 

is coherent  ( independent  of the  choice of n) and tha t  Ea (2) verifies the 

equat ion (1) and the  continui ty proper ty  Ea(O) = O. 

Next, because hA(0) = 0 (i.e. h tends to 0 when ~ tends  to - ~ ) ,  it 

is clear tha t  if A is small enough and for a fixed P, Ea(2) is a smooth  

diffeomorphism of W into C for VA �9 P, which is holomorphic  in A. 

In fact, Ea(z) is an uniform family of smooth  quasi-conformal map-  

pings. Recall tha t  if f ( z )  ~s a smooth  diffeomorphism of an open domain  

U C C into C, preserving the orientation, one defines its di la tat ion co- 

~ where efficient to be the  funct ion #(z) : U --+ C, equal to #(z) - Of(z)' 

df(z) = Of(z)d~ + Of(z)dz. We will say tha t  f is quasi-eonformal if 

3k < 1 such tha t  I #(z) ]< k for all z �9 U. A smooth  family of dif- 

feomorphisms fa(z), with (z,),) �9 U • P, is said to be an (uniform) 

family of quasi-conformal mappings  if 3k < 1 such tha t  I #(z, A) ]< k 
for (z, A) �9 U • P, where #(z, A) = Ofa(z) 

O f a  ( z ) "  
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Here, as ~ = ~ ( z -  }), one has that:  

- - 1 
o r,(2) - (s)  

O~(z) = 1 -- 25 qJ(y)hx(z) + c,o(y)0hA(z). (9) 

Then, as h~(2) = O(exp(2)), uniformly in A ~ P, it is clear that ,  given 

any k, 0 < k < 1, one can choose A small enough such tha t  the dilatation 

coefficient p(2, A) of ~a(2) will. verify I p(2, A) l_< k for (2, A) C W0 x P. 

Next, because the dilatation coefficient of a diffeomorphism is in- 

variant by holomorphic conjugacy, the dilatation coefficient of 2(2, A) is 

27ci-periodic and verify the same inequality for any (2, A) E W x P. 

2. T h e  c o n s t r u c t i o n  o f  the  m a p p i n g  ~a(z) .  

We recall that  the Ahlfors-Bers theorem addresses the inverse problem " 

given a function #(z) on U, called a Beltrami field, find a mapping f ( z )  

which has #(z) as dilatation coeffcient. We need now to be more precise 

on the properties of # and f.  

Defini t ion 2. Let be U C C a simply connected open set. A Beltrami 

field #(z)  : U > C is any bounded measurable funct ion with L ~ -norm:  

Sup {l#(z)  l I z E u}  = II#llo~ < 1. 

As in the case of the dilatation coefficient of a diffeomorphism, one 

interprets # as defining of a field of ellipses (defined up to scalar homo- 

theties). One has a natural  action of the diffeomorphisms on Beltrami 

fields (see ILl). If G :  U > V is a diffeomorphism, and # :  U > C a 

BeRrami-field on U, we will write G* (#), the image of # by the diffeo- 

morphism G. 

For instance, the dilatation coefficients ~(2, A) of ~(2, A), on W, is 

invariant by the translation 2 > 2 + 2~ri. It induces a Beltrami field 

p(z,A) on W -  {0} for VA E P, where W = 7c(W0) O {0}, because 

I  )I=1 k < 1. 
Of course p(z, A) is discontinuous at 0 E C, but  because p(z, A) is 

smooth on W - {0} and bounded by k, it defines a Beltrami field on 
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W, which verifies also: ]1#11o~ -< h < 1 (here II- Iloo is the norm in 

Loo(W • P)). 
Moreover #z : A ~ #(z, A) is holomorphic in P for any z ~ 0 and it 

follows from the formulas (8), (9) that  the germ of #z at A = 0 belongs 

to the ideal of coefficients ffH of hA(z) = HA(z) - z. 

Take a disk D, centered at 0 E C and such that  D C int W. We 

choose some smooth function ~b(z) : C > [0, 1] such tha t  ~(z) - 1 

for z ~ II} and 9(z) =~ 0 for z ~ C -  D' where D' is a second disk 

chosen such that:  D C int D' c c i n t  W. We consider the Beltrami 

field #'(z, A) = ~b(z)#(z, A) which coincides with # on D, is defined on 

the whole Riemann sphere S 2 for all A E P and is equal to 0 in a 

neighborhood of oc C S 2. Moreover, #' keeps the properties of # in 

relation to A. 

We want now to apply the Ahlfors-Bers theorem to the Beltrami 

field #'. First we recall the definition: 

Definition 3. An horneornorphism f : S 2 > S 2 is said quasi-eonforraal 

if and only i f  the partial derivatives Of,  Of  exist and satisfy in the L 2 

local sense an equation Of  - #Of  = 0 where #(z)  is in L~ with 

I1,11  -< k f o r  so. e k < 1 ( , i . e . , ,  is a  eltra, i  eld). 

The mapping theorem of Ahlfors and Bers says inversely that  given 

some # Beltrami field #, there exists a quasi-conformal f which verifies 

the Beltrami-equation: 

Of - #Of  = 0 (10) 

in L2-1ocal sense (see [A] for instance). This implies that  the dilatation 

coefficient of f is defined and is equal to # almost everywhere. Moreover 

i f#  ~ L~  ($2), i.e. i f#  has a compact support  in C, there exists a unique 

solution F~ of (10), such that  F, ( z )  z = o(�88 

This unique solution can be construct  explicitly as follows, using sin- 

gular integrals (see [L]). For w(z) E C~(S  2) (space of smooth functions 

with compact support  in C), one defines, the two following operators: 

l w(s) d Adrl - - -  (11)  
8 - - Z  
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and: 

Hw(z) = lim 1 / f z w(s) e-~0 7r -~E>c I s - z 12 d~ A dr/ (12) 

for s = (~,~]) C C. 

The operator H can be extended continuously in LP(S 2) for p > 1. 

Then, taking # E L~(S2),  I1 11  < 1, one can define inductively in 

LP(S 2) a sequence of functions (~i)i: 

~1 = # ,  ~n = #H~n-1  n >_ 2 (13) 

which converges in LP(S 2) if p verifies: 

IIHIIp Ilpll~ < 1 (14) 

which is always possible, if I1~11~ -< k, small enough. 

The following representation formula was first established by Bo- 

jarski (see [L]) for the solution F~ of Beltrami equation (10): 
(9O 

F,(z)  = z + ~ TFitz) (15) 
i = 1  

where the Pi are defined by (13). The series is absolutely and uniformly 

convergent in the Riemann sphere. 

We are going to use this representation formula, to deduce the fol- 

lowing properties of fa(z) = f (z ,  )~) = F,,(z), the solution associated to 

/(z,  

Proposit ion 5. The family of quasi-conformal mappings f~(z) associ- 

ated to the Beltrami field #'(z, ;~) by the representation formula (15) is 

holomorphic in b x P, where b is the sector: 

IArg l< ,t l>0}. 

Moreover, for each z E b, the germ: )~ > (fx(z) - z) at 0 E C e, belongs 
to the ideal Z = Z(Ha(z) - z). 

Proof .  The support  of #'(z, )~) in S 2 does not intersect the open sector b. 

Then, the functions pi(z, A) obtained by the formulas (13) are equal to 

zero on b x P. As a consequence, the functions Tgi(z ,  ;~) are holomorphic 

in b x P,  and, because the convergence of (14) is absolute and uniform 

on S 2, we obtain that  the limit f ( z ,  )~) is also holomorphic on b x P. 
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Now we want to prove that  I > f),(z) - z belongs to the ideal 

Z for Vz E b. Suppose that  Z is generated by the analytic functions 

AI(A),--- ,Ae(A) on P. The function #'(z ,  A) is in L~  (5 ,2 x P).  (The 

space of functions which are measurable and bounded on S 2 x P, with a 

support  compact  in C x P ; here Supp #' C W x P).  Moreover the  germ 

A > #'(z ,  A) is in the ideal Z for all z C S 2. Using a classical theorem 

for holomorphic ideals (see [H] for instance), it is possible to choose a 

sub-neighborhood P '  of 0 E C e, P '  c int P, and a constant M1 > 0 such 

that:  
s 

#'(z, A) = ~ Ai(A)#i(z, A) (16) 
i=1 

on S 2 • P ' .  The functions #~ are holomorphic in A, #i E L ~ ( S  2 • P)  

(with Supp #i C Supp #') and satisfy: 

where: 

(17) 

Let be any function g E L ~ ( S  2 • P') with Supp g C W • P' .  Let us 

write 9),(z) = 9(z, A). Then g~ belongs to LP(S 2) for any p _> 1 and any 

A ~ P ' ,  and verifies: 

Ib llp -< M211glI  

where M2 = M2 (W, p) is some constant depending on W and p. Recall 

that ,  to apply the formulas (13), (15) we have chosen k,p, such that  the 

inequality (14) holds. Then  there exists some constant M 3 > 0, such 

tha t  at each step of the induction (13), one can write: 

Aj(A) wi th  = lI < llp _ < M3 (llHIIp Ib'll ) (18) 
j= l  

These formula and inequality are obtained inductively. It is verified 

for i = 1 and M3 > MIM2/I[HIIp.  Then one has= 

g 

' ' E for i > 2  (19) ~i+1,~ = #~H~i,a = #~ Aj(A)H99~, x , _ 
j=1 
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and then: 

with: 
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g 

~+1,~ = Z  Aj(a) ~ i+I ,A 
j = l  

(20) 

ggj t j 
i--1,A = #)~H99i , iw 

Let us suppose by induction that ~J verifies the inequality (18) i,A 
One has: 

_ _ ~ J  < I1~11~ IIH~,~llp < II~XIIoo IIHll~ II i,~llp g~J 

which implies: 

J 

Now, the HSider inequality gives: 

IIT~ FIoo _< cp Sup ~ 

for some constant ep, depending on p. It follows that: 

IIf~tl~ _< c; (lIHllp II~'ll~)' ( 2 1 )  

t : m 3 c p .  with c; 

Then the series ~ T ~  is absolutely and uniformly convergent to- 
i 

ward a continuous function hi(z, A), which is holomorphic in k. We have: 

f ( z ,  A) = z + ~ r ~ ( z ,  A) 
i=1  

e (22) 

i=1  j = l  

The inequality (21), permits to commute the summations in (22) 

and to obtain finally: 

g 

f ( z ,  A) = z + ~ Aj(/~)hj(z,/~). (23) 
j = l  

This last formula is a division of f ( z ,  .~) - z in the ideal 27. [] 
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The solution f (z ,  A) does not preserve z = 0 in general. We need 

this condition to be able to lift f in C. 

Lemma 6. The function 5 > f(0, 5) is holornorphic and belong to the 
ideal 5[. 

Proof. Let us choose a sequence (zi)i ---+ 0 with zi C b. It follows from 

the proposition 5 that  for any zi E b : 5 ~ f(zi ,  5) is holomorphic. 

Then, because f ( z ,  5) is continuous in (z, 5), we have that  the uniform 

limit f(0, 5) of f(zi ,  5) is holomorphic in 5 and belongs to the closed 

ideal Z. [] 

Using the Lemma 6, we have that  family F(z, 5) - f (z ,  5) - f(O, 5) 

verifies the same properties than f and fixes 0 : F(0, 5) = 0 for V5 ~ P. 

For each 5 E P, F(z,  A) is solution of the Beltrami-equation for #', 

and then for/~(z, 5) on D. 

This means tha t  F(z,  A) sends the field of ellipses associated to # on 

D on the field of circles on F(II), 5) which can be suppose equal to the 

fixed disk D, using the uniformization theorem of Riemann. 

The inverse mapping ~(z, 5) = F - l ( z ,  5) is also quasi-conformal from 

D to D C W and brings the trivial field of circles on the field of ellipses 

associated to #(z, 5) on W. Let us recall the other properties of p(z, 5): 

�9 5 )  = 0 

�9 p(z, 5) is analytic in (z, k) for (z, 5) C b' x P where b' is some sector 

at 0, chosen so tha t  F(b, 5) D b' for all k E P. 

�9 5 ~ p(z, 5) is in the ideal Z for all z E b'. 

3. The analytic solution S~ (~). (Proof of theorem 1) 
The family of quasi-conformal mappings ~ ( z )  lifts in a family of quasi- 

conformal mappings ~ ( ~ ) ,  defined for (3, A) ~ I~ x P, with ~x(0) = 0. 

As lift of an univalent mapping, ~ ( ~ )  verifies: 

+ 2 -i) = + 2 i. ( 2 4 )  

Next, one can restrict ~ ( ~ )  to V x P, where F/is some open neigh- 

borhood of 0 of the form V = {2 <_ p(~)} for some continuous function 

p chosen such that ,  for all A E P: ~x(<V) c 1~. 
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We define S~(5): ~ /x  P ~ C by : 

~(~) = ~ o ~ ( ~ ) .  (25) 

For any A E P, ~ sends the trivial field of circles in the field of 

ellipses associated to ~(~, A) and next, by construction, E~(5) sends this 

field of ellipses in the trivial field of circles on C. 

Then, the composition S~(~) sends the field of circles of V into the 
N 

field of circles of C. This means that  S~((~) is conformal as a function of 

5, and then is holomorphic in 5 for any A E P, as a consequence of the 

Weyl lemma (see [L]). 

Let b~ be a strip around (~ = 0} in V such that  7r(b') C b'. We know 

that  ~ ( 5 )  is analytic on b'. Then, because ~ ( b ' )  C b and Ea(~) =-- ~ on 

b, we have that  S~(5) is analytic on b~ for any A E P. As 5 ~ Sa(5) 

is analytic on V, for all A E P it follows by analytic continuation that  

S~(5) is analytic in (5, A) on the whole set V x P. 

We also know that  for any 5 E b', the germ of the  map A ~ ~ ( 5 ) - 5  

belongs to the ideal 27, and then the same is true for the germ of the 

map: A > Sx(5) - 5. Using the proposition 1, it follows immediately, 

t h a t  this is also the case for V5 E V. 

Finally it remains to verify that  Sx(5) satisfies the equation (1): 

~ ( 5  + 2~i) = ~ o ~ ( 5  + ~ i )  

As EA is a solution of (1), one has : 

~ (~(5)+ ~i )  = ~ o ~ o ~(5)+ ~i.  

And then, finally: 

S~ (2 + 27ri) = H~ o S~ (2) + 27~i. 

The continuity p roper ty  S~(0) = 0 follows from the same property 

for ~ and E~. 

III. Division o f  the Dulac transition in the ho lonomy ideal. 
We want to prove now the theorem 2. Let (X~) be an holomorphic family 
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of vector fields, defined near a saddle point at 0 E C 2. We can suppose 

tha t  0 is a saddle point of XA for VA E P, a compact  neighborhood 

of 0 in the parameter  space C g, and that  the local stable and unstable 

manifolds are independent  of A. Let cr and r be some analytic segments, 

transversal respectively to the local stable and to the local unstable 

manifold. One can suppose o, r to be parametr ized by z E D C C, near 

0, and c~, P chosen small enough such that  the Dulac transit ion map 

DA(z) is defined from b x P into r,  where b is some angular sector at 

the origin of o, with angle less than  27r. This map can be extended as a 

multivalued map, which can be lifted in a map L)A(z) on some domain 

x P where W is a neighborhood of 0 in C. If HA(z) is the holonomy 

germ on r and HA(z) its lift on C, one has: 

DA(# + 27ri) = H o DA(#) + 2r~i, DA(0) = 0. 

Then,  DA(#) is a solution of equation (1), associated to HA. Let 

SA(z) be the solution of the equation (1) given by the theorem .1. One 

can suppose l~  and P chosen such that  SA(z) is defined on W x P. As 

P is compact,  one can also suppose that  there exists a neighborhood P 

of 0 such tha t  P • P is contained in the image of W >< P by DA, for all 

A. The map SA o ~)#1 is then defined on P >< P and verify: 

SA o b ;  + 2 i) = SA o + and SA o = ( 2 6 )  

This means tha t  SA o ~)~-1 is the lift of some analytic diffeomorphism 

CA(z), defined on V x P, where V is a neighborhood of 0 in c~. This 

neighborhood V is contained in re(V) U {0} and CA(0) = 0 for VA E P 

(this last property  follows from DA(0) = SA(0) = 0). 

If one introduces the multivalued map SA (z) associated to SA(z), one 

can see CA(z) as a change of coordinates in a neighborhood of 0 E c~, 

which transports  DA(z) into SA(z): 

SA(Z) = DA o CA(z). (27) 

The map SA(z) verifies the properties obtained in theorem 1. In 

particular for any z in the domain of definition of S),(z), one has that  

the germ at 0 E C g of the holomorphic function k > SA(z) - z belongs 
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to the holonomy ideal ~-H = ~-(HA -- Id). 
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IV. Bifurcations of  homoclinic loops. 
We want to prove now the theorems 3 and 4. Let us consider a real 

analytic family of vector fields (X),) which unfolds a saddle connection 

on R 2. We suppose that  3/0 has a saddle singular point at 0 ~ R 2, with a 

saddle connection F, i.e some stable separatrix at 0 coincides with some 

unstable separatrix. The family (XA) is an unfolding of X0, defined near 

F, for A near 0 ~ ]Re. We suppose that  the return map for X0, along F, 

is equal to identity. In [R1], it was proved that  the cyc]icity of (XA, F) is 

finite. We want to give now a new proof of this result, based on theorem 

2 above. 

First we have to explain how one looks at the limit cycles which 

bifurcate near F and to introduce the ideals in the parameter  space on 

which will be based the proof of the finite cyclicity and its computat ion.  

Let cr and T be two analytic sections to the stable and unstable 

local separatrices of XO, contained in r .  Let be o + _~ [0, X[C R, the 

half-section contained in o, on which is defined the return map along 

F, with 0 E [O,X[ corresponding to the point a F/r .  We can suppose 

that  the Dulac transition map from c~ + to T iS defined for any A E P. 

It is a parameter  family D ) , ( x )  : o + x P ~ T. We suppose also that  

the regular transition defined by the flow of -XA gives an analytic map 

R ~ ( x )  from cr x P into T. Then, the limit cycles of XA near F are in one 

to one correspondence with the roots of the equation: 

AA(z) (2s) 

on 0 + , for A EP. 

The cyclicity is equal to the minimum of the number of roots when 

the diameters of c7 and P go to zero. 

The structure of the Dulac map is deduced from the following Dulac 

normal form of the family XA near the saddle point. There exists a 

sequence (ch(A))i of analytic germs at 0 E ]R e, such that for any k E N, 

one has an analytic chart near 0 E ]R 2, where the family XA, up to an 
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analytic equivalence can be written: 

(29) xA iJ = - y  1 - ~ ~$+1 (~) ( zy /  + (xy) k+l P(z ,  y, ~) 
i 0 

The analytic germs c~i+l which appear in this normal form are re- 

lated to the holonomy map HA: 

L e m m a  7. The ideal generated by the germs (c~$, O) in the ring O(C ~) is 

equal to the ideal of holonomy :[H. More precisely, if  the holonomy map 

is given by: 

HA(y) = y + ~ Z$+1(~) r  
$>0 

for  any k > O, the ideal generated by c ~ 1 , "  , c~k+l is equal to the ideal 

generated by/31,- . .  ,/3k+ 1. 

Proof .  We want to compute  the holonomy map for the vector' field Xx 

considered as a complex vector field defined in a neighborhood of C 2. 

So, let us suppose that  x, y are now complex variables. 

In the normal form (29), the .unstable manifold is given by {y = 0} 

and the transversal section on which we want to compute the holonomy 

map can be chosen to be ~- = {x = 1}, parametr ized by y near 0. One 

considers the holonomy map from ~- to % above the loop x(O) = e i~ , 

0 C [0, 27r], on the unstable manifold. The complex flow of Xa, through 

the point (y, 1) C ~- is given by x(t) = e t and y(t). We will write: 

y(t) = ye'(x)~ r y, A) (30) 

where r(l) = -i + (x I is the stable eigenvalue. 

One has ~)(0, y, A) - 1 so that one can expand �9 in series in y, with 

a constant term equal to i: 

k 

r  : 1 + ~ %+l(t,~)y j + O(yk+%. (31) 
j = l  

If we bring this expansion in the second equation (29) one obtains, 
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O~ 
for ~ = ~ (t, A): 

k 
6 = g 2 ( E  O~jq- 1 e jax t  yJ ~J + (Q(y/~q-1)). (32) 

j = l  

The equation (32) gives for the analytic functions ~j (t, A) a recurrent 

system: 
6 2 = O~ 2 e a l  t 

6 3 = o~ 3 e 2a i r  d-2(I)20L2 e c~lt 

a n d  m o r e  generally, for  a n y  j s u c h  t h a t  2 ~ j < k + 1: 

6 j = a j  e (j-1}~lt + P j ( a l , . . . , a j _ I ,  q~ l , . . . , ~ j -1 ,  e~lt) (33) 

In the expression (33), Pj is a polynomial in q~l,... , ~j-1 and e ~lt, with 

linear coefficients in oQ,.. .  , Olj_ 1. It follows that qSj has the form: 

J 
�9 jtt, A) = ~ ~l~,ejtt, A). (34) 

g= l  

for some analytic functions Pej. Then, the holonomy map: 

Ha(y) = y(27ri) = ye 2~ir()') (I)(27ri, y, A) 
k (35) 

j = l  

has the required property. [] 

Let us return now to the map Ax(x). Using the Dulac normal form 

(29), it was proved in [R1] that, for any k > 1, and any analytic 

parametrizations of transversal segments o, % the map A~(x) has (x, a3)- 

expansion of order k: 

k k 

A a ( x ) = ~  3 i (A) [x i+ . . . ]+~-~  o~j(A)[xJcJ+...J+r (36) 
i=0 j = l  

has it was already explained in the introduction. 

The coefficients/3/, cu are analytic and the ~j are the coefficients of 

the Dulac normal form. 
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Definition. Let  be 5[ 0 the ideal generated in O0(C ~) by the coefficients of 

all the (x, w)-expansion at any order. 

It is clear that  this ideal is independent  of the choice of the transver- 

sal segments c~, ~- and of their analytic parametrization.  Moreover, it 

follows from the formula (36) and the lemma 7 that:  

Lemma  8. 1-H C 270. 

Proof .  Using formula (36) we see that  any coefficient ~j  of the Dulac 

normal form appears as a coefficient of a (~, x)-expansion, if the order k 

is chosen large enough. Now the lemma 7 says that  the ideal of holonomy 

is generated by the coefficients of the normal forms. [] 

In  [R1], it was defined a third ideal, the Bautin ideal Z generated by 

the germs A > A~(x) for x ~ cr + - {0}. Here we will notice by Z the 

ideal generated in O0(C ~) (called in [R1] the complexification of the real 

ideal Z). To prove the theorem 3, we now consider the complex extension 

of D~, R~ that  we will denote by the same notations. Moreover, ~, r 

will be now small disks centered at 0 E C and cr + a sector in (~ with 

angle less than  2re. The theorem 2 gives us an analytic parametr izat ion z 

of cr such tha t  D),(z) - z has coefficients in 27H- We suppose chosen such 

a parametrization.  Let :Z-R be the ideal generated by the coefficients of 

the map R;~(z) - z: 

R~(z)  - z = ~ "y~(A)z ~. (37) 
i = 0  

First we prove that  2-~ C fro. The ideal 2-R is generated by the 

coefficients 7i(A) of the series (37). Let be any i E N and a (x,w)- 

expansion of A),(x) of order k > i. 

Consider the coefficient/3i(~) in this expansion: 

9~(A) = ~ ( ~ )  - ~ (~)  (38) 

where ~i(A) is the coefficient from D~(z) - z and Yi is the coefficient 

from R;~(z) - z. 

The germ of ~i belongs to the ideal 2-H C 270 and because the germ 

/3/ belongs to the ideal 270, one has also that  ~/i E 270. 
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Consider  now any z ff cr + - {0}. Wri t ing  again A~(z) = (D;~(z)  - 

z )  - ( R ~ ( z )  - z ) ,  w e  ob ta in  tha t  the  germ of A > A~(z) is a difference 

of a germ in ffH and a germ in ZR. Then,  it belongs to 270. Because  the  

germs of maps  A > Aa(z) ,  for z C ~r + - {0} genera te  the  B a u t i n  ideal, 

we have proved tha t  2- c 27o. 

The  inverse inclusion was proved in [R1], and  finally we have proved 

the  theorem 3:270 = 27. 

Cons ider  now any (x, cJ)-expansion of A~(x) (36). We now know tha t  

the  germ of A > Aa(x)  belongs to fro. It  is the  same, by definit ion for 

the  principal  p a r t  of (36). Then  it resul ts  tha t ,  for any x C cr + - {0}, the  

map  germ of the  remainder :  A > e l (x ,  A) belongs also at 2-0, for any 

l. I t  was proved in [R1] t ha t  if the  r emainder  A ~ ~2k+l  (x, A) belongs  

to  some ideal Z for all x ~ ~r + - {0}, then  this funct ion r  l )  can 

be  divided in the  ideal, in class C h. This  implies tha t  if {~1," �9 " , ~e} are 

a set of genera tors  for 27, then  one can write,  for x, A small  enough: 
g 

r  A) = ~ ~ ( A ) . . ( x ,  A) (39) 
s = l  

with  u s ( x ,  A) of class C ~, analy t ic  in A, and (2/c + 1)-flat at  x -- 0, as the  

funct ion  r 
It  follows f rom this, t ha t  if the  ideal 270 is genera ted  by  the  g = 2k 

first coefficients/3o, c~1,/31, c~2,'-- ,/3k_1, c~, one can wri te  : 

A (z) : 30[x + . . .  ] + + . . . ]  + . . .  +  k[zk  + . . ' ]  

where  each bracket  has a principal  pa r t  which is a po lynomia l  in x, a:, 

and  a remainder  t e rm which  have a finite b u t  a rb i t rar i ly  large class of 

different iabi l i ty  and flatness K > >  k. One  can wri te  a similar formula  

if 27o is genera ted  by  the/?  = 2k + 1 first coefficients. 

It  is well known tha t  such a linear combina t ion  has at most  g zeros 

in x E a + ,  for or+ and  the  p a r a m e t e r  space  sufficiently small. ([J], [M], 

[R2]). This  proves the  theorem 4. 
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