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Abstract. A simple example is considered of Hill's equation Jc + (a 2 + bp@))x  = O, 
where the forcing term p, instead of periodic, is quasi periodic with two frequen- 
cies. A geometric exploration is carried out of certain resonance tongues, containing 
instability pockets. This phenomenon in the perturbative case of small Ib], can be 
explained by averaging. Next a numerical exploration is given for the global case of 
arbitrary b, where some interesting phenomena occur. Regarding these, a detailed 
numerical investigation and tentative explanations are presented. 

Keywords: Schr/Sdinger equation with quasi-periodic potential, (non-) reducibility 
to Floquet form, quasiperiodic resonance tongues and unstability pockets, positive 
Lyapunov exponent, collapse of resonance tongues and breakdown of tori. 

1. Introduction 

1.1. The setting 

This paper studies Hill's equation with quasi-periodic forcing, given by 

+ (~2 + ~p(~)) x : o, (1) 

where a and b are parameters. The parametric forcing p = p(t) is a 

quasi-periodic function p(t) = P(tcol,tW2), for rationally independent 

frequencies COl, cJ2 and a double periodic and real analytic function 

P: T 2 --+ R. To be precise, we mostly deal with the particular choice 

p(t)  = cos (~ l t )  + cos(~2t), or P ( 0 1 , 0 2 )  = co~(01) + cos(02). (2) 

1 v~) is the golden number. We take w I = 1 and w 2 = 7, where 7 = 2( 1 + 
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254 HENK BROER AND CARLES SIM0 

Also certain perturbat ions of (2) will be considered. The parameter  a 

is going to assume finite values, while for b we distinguish two cases. 

In the first, perturbative,  case Ib] is taken small and we shall approach 

certain resonance phenomena by averaging techniques. In the second, 

global, case we present some explorative numerical results together  with 

heuristic explanations. 

Equat ion (1) can also be wri t ten as 

02u 
Ox 2 bV(x)u = a2u, 

just replacing x by u and t by x. This is the classical SchrSdinger equa- 

tion (see, e.g. [10]) where 17, the potential, replaces the previous function 

p(t) and is quasiperiodic, and a 2 is the energy. 

The second order equation (1) rewrites as a system 

0 = 0 2 ,  

(3) 
9 = - (  a2 + bP(O))x, 

where (0, (x,y)) C y2 • IR2 and where c~ = (c~l,a~2). Observe that  the 

2 torus •2 x {(0, 0)}, given by x = y = 0, is invariant with quasi-periodic 

flow of frequency vector cJ. The first aim of this s tudy is to investigate the 

normal linear behaviour of this invariant torus, in particular its stability 

and its reducibility to Floquet form. The second goal is to explore the 

case of large b, to see which kind of interesting phenomena occur. 

Remark.  If required, we can extend (3) as a Hamiltonian system with 

phase space ~22 •  2 xR  2 - {0, J, (x, y)}, where J is canonically conjugate 

to 0. Indeed, if we take as a Hamiltonian 

H(x, y, O, J) = ~y + cuJ + (a 2 + bP(O))x 2, 

the system reads 

bOP 2 
O=a~, ) = - ~ 0 0  x , Jc=y, i ] = - ( a 2 + b P ( O ) ) x .  

1.2. Problems and results 

1.2.1, Resonance  tongues  

First we review some relevant elements of the classical theory on Hill's 
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HILL'S EQUATION WITH QUASI-PERIODIC FORCING 255 

and Mathieu ' s  equat ion with a periodic forcing. Indeed, Hill's equat ion 

(1) where the forcing te rm p is periodic in t ime, has been widely s tudied 

in the l i terature,  compare,  e.g., [5, 6] and references given there. For 

related work on nonlinear parametr ic  forcing see, e.g., [2, 7]. In tha t  case 

in the (a, b)-plane, infinitely many  tongues emana te  from the resonance 
points (a, b) = (~, 0), k C N, where these tongues have more or less sharp 

'tips'.  Outside each tongue the trivial 27r-periodic solution T 1 x {(0, 0)}, 

given by x = y = 0, is stable. The  classical periodic case of the Ma th ieu -  

equat ion occurs for (1) when p(t) = cos(t). In this case the  k - t h  resonance 

tongue has a t ip wi th  a sharpness of order (k - 1). Notice tha t  in the 

periodic case, the  set of resonances is discrete. Figure 1 displays the 

resonance tongues for the classical periodic case. 

F i g u r e  1 - Tongues of the classical Mathieu equation in the (a 2, b)-plane. 

In the present  quasi-periodic case (1) with  p given by (2), something  

similar may be expected regarding the invariant 2- torus  %2 x {0} of the 

vector field (3). In this case, the set of resonances 

1 
(a,b) (~(kl  +k25) ,0 ) ,  (kl ,k2) E Z 2, 

densely fills the a-axis.  One may well ask whether  "nearby" resonances 

emit  tongues  which "interfere" for small values of Ibl or whether  these 

are separate up to modera te  values of b. Figure 2 displays the resonance 

tongues in the case where p is given by (2), wi th  the golden mean  ratio 

of frequencies. 
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Figure 2 - Main tongues, drawn in the (a 2, b)-plane, of Hill's equation with 

quasi periodic forcing p(t) = cos t + cos(~yt). 

1.2.2.  Instabi l i ty  p o c k e t s  

Another  interesting phenomenon concerns instability pockets. In the pe- 

riodic case these occur in perturbat ions of the classical Mathieu cases like 

p(t) = cos(t)+c cos(2t), where c is a small parameter.  Indeed, the bound- 

aries of the second resonance tongue, emanat ing from (a, b) = (1, 0), cross 

at an asymptotic  distance of the order of Icl from the a-axis, thereby 

creating an instability pocket. In [5, 6] this phenomenon is qualita- 

tively explained by singularity theory. Presently, an analogue of such a 

per turbat ion is given by the following modification of equation (2): 

p(t) = cos(t) + cos( t) + c cos((kl  + k2 )t), (4) 

for fixed integers/;1, k2 and with c another  small parameter.  

Let us give a rough computat ive argument  for the occurrence of 

instability pockets. The resonance tongue with tip at (a, b) = (�89 + 

k27),0) has two boundaries that  can be accurately approximated by 
1 an averaging or normalizing procedure, which provides a - 2 (hi + k27) 

as a power series in b. In the normal form, each stability boundary  is 

built up from two types of contribution, one type generated by the te rm 

b (cos(t)+cos(Tt)) and the other by bc cos((k1+k27)t). Also terms showing 

up as combination of both perturbat ions can play an important  role. All 

these types of contribution can have dominant  terms depending on c and 
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HILL'S EQUATION WITH QUASI-PERIODIC FORCING 957 

on various powers of b. Hence they 'cancel' for some small values of b, 

thereby creating instability pockets. This is similar to what  happens in 

the periodic case, see [5, 6]. Figure 3 displays an instability pocket, for 

p as in (4), where kl = 1, k2 = 1 and c = 0.3. Later on we re turn to the 

analysis of these tongues based on normal forms. 

0.6 

0 5  

0 4  

0.3 

0,2 

0.1 

0 .7  1.71 1 72 1.73 1.74 1.75 1.76 1.77 1.78 

Figure 3 Instability pocket in the (a 2, b) plane, of Hill's equation with quasi 

periodic forcing p(t) = cos t + cos(Tt) + 0.3 cos((1 + ~?)t). 

1.2.3. Further problems, a numerical investigation 

The linear equation (1) yields the normal linear part  of the invariant 

2-torus T 2 • {0}. We say tha t  (1) or, equivalently (3), is reducible (to 

Floquet form) if it can be reduced to constant coefficients b y m e a n s  of 

a linear change of the variables z and y, depending quasi-periodically 

on time. In the periodic case, the classical Floquet theory solves this 

problem. In the quasi periodic case reducibility is not always possible. 

Several results concerning nonreducibilt iy in similar or wider contexts 

can be found in [22, 10, 11], [15], [17, 18], [19] and [3, 4, 8, 9]. 

For larger values of Ibl the perturbat ive method is less effective and 

we resort to a numerical exploration. Good tools for such a s tudy of 

equation (1), or system (3), for any value of the parameters  (a, b) are the 

maximal Lyapunov exponent and the rotation number.  To this end we 

introduce an algorithmic approach, which proves very useful in practice. 

First we reformulate the problem as follows. In the  periodic case 
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all information concerning the properties of (1) is contained in the mon- 

odromy matrix,  i.e., the fundamental  matr ix  which starts at the identity 

for t = 0 evaluated at t = T, T being the period of p. Equivalently we 

can use the Floquet matrix,  i.e., the logarithm of the monodromy matr ix  

divided by T. Compare, e.g., [5, 6]. 

In the present case of (2) with two angles 01,02 and the corresponding 

frequencies w I = 1 and ~2 = 7, we select one (e.g., 01 with period 27r.) 

But then the angle 02 will take the succesive values {2nlr 7 mod 27r}, n E 

N. Therefore, the 'monodromy' matrix also depends on the value of 02 

at the beginning of each time interval. Let M(O) be the fundamental 

matrix of (i) with 

p(t) = cos( t )  + cos(0  + 

starting at the identity matr ix  at t = 0 and evaluated at t = 27r. Next 

we define a sequence {Pn} of matrices, using the skew product  transfor- 

mation: 

(P, 0) ~ (M(O)P, 0 + 2 ~  rood 2~) (5) 

start ing at (P,O) = (I, 0). So Pn(O) = M(O)P~_I(O), n E N, where all 

matrices P~(O) are symplectic. Note that  in the periodic case Pn = P~ 

for the linear Poinca% map P. 

We are interested in the 'average' properties of this sequence. We 

s tudy (the existence of) a limiting behavior both  in the 'expanding'  and 

in the ' rotating'  properties. Let >n be the dominant  eigenvalue of pn. 

Then the maximal Lyapunov exponent is defined by 

1 
/k = Iim -- log I#nl, (6) 

n---+oe n . 

which happens to be independent  of the initial value of 0. Similarly we 

consider the rotat ion associated to P~. Here one has to consider the 

rotation on the lift, that  is, without  taking rood 2~r. To do an effective 

computat ion it is enough to start  with any normalized vector (e.g., (1, 0)) 

and then to s tudy the arguments of the successive vectors obtained by 

applying the matr ix  M(2n~r 7 rood 27r) to the previous case. Let c~ be the 

successive values obtained for the arguments (in the lift; this requires 

some knowledge of the effect of the successive M matrices on vectors). 
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Then the rotation number is defined as 
1 

p = lira-a, , (7) 
n---* oo Tb 

independent  of the initial value of O. 

Remarks.  1. We give some hints on the effective computations,  just  

describing the methods used for a rough exploration. See the Appendix 

for concrete details and further refinements. 

One possible approach is to do the computat ions by just integrating (1) 

over a long t ime span (say, up to t = 27c x 105 or t = 27r • 106). However, 

this is t ime consuming and moreover can be severely affected by the 

propagation of errors. Therefore both more efficiency and accuracy are 

required. 

2. Since we need to know many  matrices M(O), we used the expeditive 

way to compute  these for an equally spaced mesh of 0-values in [0, 27r). 

Then  the values for other 0 are found by interpolation. Typically the 

number  of points and the order of the polynomial interpolation range 

from 200 to 1000 and from 7 to 15, respectively, again in what  concerns 

rough explorations. 

3. The computat ion of each of the M(O), for the selected equispaced 

set of 0-values, is carried out accurately and fast by using a Taylor 

series method.  This method  requires the computat ion of higher order 

derivatives of x. Start ing with z and 2 the value of ~ is available from 

(1). Higher order derivatives are obtained by applying the Leibnitz rule 

to (1). An optimal choice of the order of the expansion and of the 

stepsize is required. A typical 'optimal'  order ranges from 20 to 30. 

4. Proceeding as described one can rapidly obtain up to 106 iterates. 

Nevertheless we applied a ' test of goodness' to our estimates of both  

A and p. Assume tha t  we produce estimates of these every 10,000 iter- 

ates, skipping a transient of, say, 30,000 iterates. Then  we can compare 

the est imated values of Lyapunov exponent and rotat ion number. If 

three consecutive estimates (for instance,  after, say 130,000, 140,000 

and 150,000 iterates) agree within a prescribed tolerance, the est imate 

is considered as sufficiently good. Typical tolerances range from 10 .5 

Bol. Soc. Bras. Mat., Vol. 29, IV. 2, 1998 



260 HENK BROER AND CARLES SIMO 

to 10 7. Furthermore the scannings usually are done not allowing very 

large changes in A or p fi'om one value of a to the next, in order to not to 

miss interesting phenomena.  Here, the stepsize in a is reduced to 10 -9 

if needed. 

The first theoretical problem then is the existence of these two num- 

bers. It is clear that,  if (1) is reducible, then the corresponding Floquet 

matr ix  and the reducing matr ix  transfbrmation immediately supply us 

with the existence. For small b the set of a values with an instable 

2-torus has a rotat ion number in the set 

~ =  {~(kld-]c27) CRI]Cl ,k2  ~ Z } ,  

exactly corresponding to a resonance tongue, by definition. Now fix b 

small and consider varying a. Despite the fact tha t  the set of intersec- 

tions with the tongues is dense, the measure of its complement is still 

relatively large, as proved in [17], for instance. More concretely, the set 

of values of a for which reducibility is not possible is exponentially small 

in b, under generic conditions. In fact the result is even sharper, since in 

[17] only reducibility to the stable or 'elliptic' case is considered. Hence, 

the resonant zones are thrown out. But it is well known tha t  in the 

hyperbolic case reducibility is always possible. These results fit, once 

more, inside KAM theory. 

Keeping b small, a large part  of a-values taken in any simulation 

scanning a segment, should correspond to points outside the resonance 

tongues. Indeed, the est imated values of A do not significantly differ 

from zero. This can be seen in figure 4 where for b as large as b = 0.2 we 

plot, to the left, the est imated Lyapunov exponent as a function of a 2 in 

the range [0.25, 1]. The right hand figure shows the corresponding value of 

the rotation number in the same range. Only the resonances associated 

to (kl, k2) = (1, 0) and to (0, 1) are relevant in the left and central parts 

of this range. Very small spikes associated to the resonances ( -2 ,  2) and 

(3, -1)  start  to show up for a 2 close to 0.382 and 0.477, respectively. It is 

clearly seen that  the Lyapunov exponent is only positive in the resonance 

tongues, that  is, when the couple (a, b) is inside 74. Apart  from the  'large' 
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steps seen in the ro ta t ion  number  plot, there is a countable set of steps 

(every t ime p takes a value in Q) but  they  are hardly visible. In the  

COrn )lement of 74 the value of I is zero. 

\ 
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Figure 4 - Plots of Lyapunov exponent and rotation number for b = 0.2. 
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Figure 5 - Plots of Lyapunov exponent and rotation number for b = 0.6. 

Note also that from [16] it follows that, given some interval in the 

a-variable, some %hnost' reducibility is possible, uniformly in a. More 

concretely, equation (i) can be reduced to constant coefiCicients except 

by a remainder which is, at most, exponentially small in b. 

On the other hand, for larger values of b (for the present choice of p 

this starts to occur for b-values around 0.5) and for a ~ [0.5, I] we can 

still speak of 'resonance tongues'. Here the rotation nmnber belongs to 

7-4, but it is no longer true that the points outside these tongues have 

A = 0. Figure 5 displays the same data as figure 4 but for b = 0.6. 

There many more steps are seen and, furthermore, outside the steps the 
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Bol. Soc. Bras. Mat., Vol. 29, N. 2, 1998 



262 HENK BROER AND CARLES SIMO 

Lyapunov number is definitely different from zero. See figures 6 and 7 

for magnifications of small a ranges and nearby values of b, and section 

5 for many additional details. 

We observe that  for (a, b)-values outside the tongues with ~ > 0 

evidently reduction to Floquet form is impossible, since in a 2 x 2-matr ix 

it is impossible to incorporate • • 

An interesting global phenomenon concerns the line C in the (a, b)- 

plane, see figures 9 and 10. Here a "collapse of resonances" seems to 

occur. Moreover, for fixed b, on the lef t -hand side of this line pa ramete r -  

points outside the tongues seem to have positive &. See section 5 for 

a nuinericM investigation on the origin of the collapse. Also see the 

Conclusions for a summary. 

2. Resonance tongues 
Fixing the integers k I and k2, we now study a neighbourhood of the 

resonance (ao, b) = ( l (k l  + k27), 0). 

Definition 1. The resonance tongue associated to the tip (ao, O) is defined 
as the subset of the (a, b)-plane, where the rotation number p(a, b) ezists 
and equals l ( k  1 + 7k2). 

The problem is that  for given small b, the set of a-values contained 

in the union of all tongues is dense. 

In this context we slightly change the notat ion of (1), first setting 

a 2 = a~ + c~ 0. The s tandard scMings 

and the passage to complex coordinates 

q + ip iq + p 
v S  , vS,  

allow us to express the Hamilton• of (3) as follows: 

q 2 - p 2  + 2iqp ( C~a~ 0 4@ 0 ) H = aoiqp + 2 + (cos t + cos('yt)) , (8) 

compare [6]. Let J be a variable canonically conjugate to the t ime t and 
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let us abbreviate  zl = exp(it), z2 = exp(iTt). Then (8) can be wri t ten as 

an integrable part ,  H0, and a per turbat ion,  H1, given by 

Ho = J + aoiqp, 

H1 = ~(q2 _ p2 + 2 iqp) (~o  + z l  + z ~  1 + z2 + z 2 1), (9) 

where 
2a0 b_ b 

& 0 -  b ' 8ao' 

We can follow the Giorgilli Galgani algorithm [13], for instance, to 

carry out the normalization (averaging). For similar considerations in 

the periodic case see [6]. Start ing with HO,O = Ho and HI,0 = H1, we 

compute  recurrently 
k 

n G  Hj, = g[ n, 0=0.1,  k >0, 
n = l  

where [, ] denotes the Poisson bracket. The functions G~ are determined 

to cancel the time dependence, as far as possible. The transformed 

Hamiltonian then is K = K0 + K1 + / s  + . . .  , where K0 = H0;0 and 

Kn = Hl ,n_ l  + HO,n. Note that  the 'order'  of a term can be considered 

to be the order with respect to the auxiliary parameter  b. Therefore, Kn 

con ta ins /~  as a factor. 

It is easy to check that  the action of/4o,o on q~p ~z k, where z k = 
k 1 k 2 z 1 z 2 , by means of the Poisson bracket is 

[Ho,0, q~P-r Zk] = q~P-r zki(a(2 - 2r) - (kl + 7k2)), 

showing that  all terms with a(2 - 2r) - (kl + 7k2) different from zero 

(or, at least, not too small) can be cancelled. If ao is selected to be 

k~ + 7k~, (where k~ and k~ are assumed to be half integers) then the 

choice kl = 4-2k~, k2 = • produces a resonance (the plus-sign being 

used for r = 0 and the minus-sign for r = 2). 

This procedure can be implemented automatically. It is immediate  

to check by induction that  if j + k = m then the Hj,k are of the form 

Hj,k = q2c 1 - p2c2 + iqp(c3 + c4), 

and the corresponding G,~ are of the form 

G m =  i(q2cl + p2c2) + qp(c3 -- c4), 
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where cl contains terms with real coefficients of the form &~-~z ~ with 

Ikl = Ikl]+]k2I = r and s and r have the same parity. The terms in 

c2 are exactly the same as in Cl except for a replacement of z k by z -k. 

The expression of c 3 is similar to tha t  of Cl, but all terms either have 

hi > 0 or kl = 0, k2 _~ 0. Finally c4 again is identical to c3 but for the 

replacing of z k by z -k. 

Collecting all the terms which appear in the normalization process we 

reduce the Hamiltonian as follows. For a completely similar procedure 

see  [6]. 

1 before, Theorem 2. (Complex normal form.) Fixing a0 = 2(/;1 + ~k2) as 

by a canonical change of coordinates the Hamiltonian H = Ho + H1, up 

to an additive remainder, can be reduced to the normal form 

NF = J + aoiqp + coefl iqp + coef 2(q2 z -k - p2 zk), 

where, for Ikl = Ikal + Ik2l, 

�9 coefl = &O + r l ,  where r l  is a (real) function depending on (8,&o) 

and containing some power of 8 as a factor, 

�9 coef2 = ~[al • r2, where r2 is a (real) function depending on (8, ~0), 

but with r2(O, O) ~ O. 

�9 The order of the remainder is greater than Ik] in b. 

If we skip the remainder and pass to co-rotat ing coordinates (u, v) 

defined by 

u = qe• v = pexp(aoit) 

we obtain the system 

/t = i coefl u - 2  coef2 v, 
(10) 

~) = - 2  coef2 u - i coef] v. 

Summarizing, formally everything looks exactly like in the periodic 

case, e.g., see [6]. At the tongue tip the boundary  curves have order of 

contact Ikl. The Floquet matr ix  is given by (10). It also follows tha t  

the expression D = coef~-4coef~ determines the stability: n > 0 is 

the stable case and D < 0 the unstable one. The boundaries are given 

by the equation coefl = • coef2. This approach also shows that ,  if the 

normal form procedure can be made convergent in this way, then for 
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D < 0 o n e h a s A = 2 7 c  -g-EDand 

1 
p : ~(kl  + ~k2), 

while for D > 0 one has A = 0. 

The following conjecture suits with the numerical simulations made up 

to now. In future research we plan to investigate this further, based on 

small divisor estimates, and possibly involving resonances and bifurca- 

tions, compare [1, 22, 10, 17, 18, 23]. 

Conjecture 3. Select any range of a-values (e.g. a E [1/2, 1]). Then, 

there exists a value bo > 0 such that for Ibl < bo all tongues are separated 

by areas where the Lyapunov exponent equals zero. 

3. Instability pockets 
We fix the form of p as in (4), taking 

p(t) ---- cos(t) -? cos(ut) -? e cos((]r 1 q- ]r 

Then the normal form computat ion is as before, but  the main difference 

comes from an additional term in eoef2 of the form cb times some nonzero 

number. The tongue boundary  again is given by the equation D = 0. 

For a given value of c (with the suitable sign when Ikl is odd) we find 

a zero of D for some small b. This is the "upper end" of the pocket 

if b > 0, the "lower end" being at 0. For b < 0 the si tuation reverses. 

Figure 3 illustrates this phenomenon. By increasing c the upper  end of 

the pocket goes up. Values up to c = 0.5 have been tested with success. 

Larger values interfere with the "collapse of resonances", described in 

the next section. 

The addition of more parameters  with different harmonics, i.e., re- 

placing the term in c in (4) by 

Z Cj cos(hi,j01 -}-/~2,j02). 
j = l  

also can be studied by means of the normal form. Looking at a particular 

resonance one finally obtains a polynomial  in the variables b, cj, j = 
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1 , . . .  , m.  B y  a sui table  select ion of the  values of the  cj one  can p ro d u ce  

zeros of the  func t ion  D,  which give the  in te rsec t ion  poin ts  associa ted  to  

the  ins tabi l i ty  pockets .  As in [6], for any  (small) value of b, this  n u m b e r  

of zeros ( including the  one at  b = 0) can  reach  the  mul t ip l ic i ty  Ikl of the  

resonance.  

4.  G l o b a l  p r o p e r t i e s  

In this  sect ion we present  some numer ica l  resul ts  which ap p ea r  for rel- 

a t ive ly  large values of the  p a r a m e t e r  b. 
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Figure 6 - Plots of ~ and p near the boundary of a tongue. The plots on 

the left display A. In the upper case, ~ = 0 outside the tongue and is positive 

inside. In the lower case we show a situation where outside the tongue A is still 

positive. The plots on the right show the corresponding values of p, where the 

square roo tbehav ior  is clearly seen. The upper plots correspond to b = 0.5 

and to the a2-range [0.3945, 0.396]. The lower ones to b = 0.54 and to the 

a2-rartge [0.4067 : 0.4094]. 

BoL Soc. Bras. Mat., Vol. 29, N. 2, 1998 



HILL'S EQUATION WITH QUASI-PERIODIC FORCING 267 

4.1. Near the tongue boundaries  

Near a tongue boundary  the Lyapunov exponent  and the rotat ion num- 

ber seem to behave always as in the case of small b, according to a 

normal form. 

Concerning the Lyapunov exponent: Inside a tongue, when a ap- 

proaches the boundary  of the tongue, I),(a)-~(a*)l behaves as the square 

root of l a -  a*l, where a* denotes the corresponding endpoint  (left or 

right) of the interval. For b small &(a*) is 0. But  the behavior looks like 

c L ~ f ~ - -  a*] even for large values of b, where one has &(a*) > 0. 

By definition p is constant  inside the tongue. Let a* be the left 

endpoint.  Then p ( a * )  - p ( a )  ~ c R V / U  - a for a < a*. If a* is the right 

endpoint,  then p(a) - p ( a * )  ~ cR~v/a - a* for a > a*. 

Furthermore,  the relation between the constants,  eL  and cR, con- 

cerning A and p, respectively, suits the theoretic predictions obtained 

when normal forms provide sufficiently good approximations. 

Some magnifications are shown in figure 6. 

4.2. The collapse o f  resonances  

A puzzling phenomenon is the "collapse" of resonances. When  the pa- 

rameter  b is increased, the boundaries  of different tongues approach. 

After this, the Lyapunov exponent  is no longer zero outside the reso- 

nance tongues, but  positive. Also the variation of p as a function of a 

seems to be much sharper than just  the effect of a square root. Figure 

7 shows ~ and p for b = 0.51, 0.54, 0.57 and 0.60. This effect is specially 

remarkable for a range of a 2 between 0.38 and 0.52. 

A refined computa t ion  allows to detect  and measure the width 

(width = a r i g h t  e n d  - -  a l e r t  e n d )  of all the tongues of width greater than 

10 -7, for a set of values of b. A plot of the measure of the complement 

of the resonance tongues as a function of b is given in figure 8. The 

a 2 domain of our consideration is [0.35, 0.75]. The measure of the  com- 

plement depends, of course, on the selected domain of a. For shorter 

domains the measure of the complement shrinks to values very close to 

zero for b-values for which the line of collapse of resonances is crossed. 
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Figure 7 - Plots of Lyapunov exponent ~ (left hand figures) and rotation 

number p (right hand figures) for b = 0.51, 0.54, 0.57 and 0.60 (from top to 

bo%om). 
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F i g u r e  8 - Estimate of the measure of the complement of the set of resonances 

as a function of b. 

Regarding the Lyapunov exponent,  we also observe the following. 

Outside the "bumps" associated to the tongues, )~ as a function of 

a 2, for b-values where it is positive, seems to lie on a straight line. 

This line intersects k = 0 for some value of a depending on the cur- 

rent b-value. In fact, this may well be a proper  definition of the col- 

lapse line. For (a, b)-values at the left upper  part  of this line, the 

Lyapunov exponent  seems to be positive even outside the resonance 

tongues, while below it seems to be zero outside the tongues. Fig- 

ure 9 displays a general view of the resonance tongues and an esti- 

mate  of the position of the collapse fine for a 2 C [0.25, 1] and b E 

[0, 1]. Figure 10 shows a magnification for a 2 E [0.3916, 0.41041 and 

b E [0.5, 0.57]. All resonances of order less than or equal to 101 in this 

a - range  are displayed. From left to right these are (including the large 

resonance zones which s tar t  to be seen at bo th  left and the extrema): 

(1,0), (-54,34),  (35,-21),  (-20,13),  (14, -8) ,  (-41,26),  (48,-29),  

(--7,5), (--62,39), (27,--16), (--28,18), (61,--37), (6,--3), (--49,31), 

(40,--24), (--15,10), (19,--11), (--36,23), (53,--32), (--2,2). 

We end this section with two further observations. The first is tha t  

the resonance tongues become narrower when b is increased with respect 

to the collapse line. Secondly, the width of the resonances for small b 

follows the rule given by the order of the resonance. If we compare one 
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resonance to another, it seems that they decay in an exponential way 

with respect to the order. Then, the coefficients CL in the square root 

law or the maxima of the bumps in  the A follow similar rules. 

= ,  -= 

" • 2 

: :  /Y  

/ 

--  r t p 
0.3 0.4 0.5 0.6 0.7 

Figure 9 Resonance zones and collapse line. 

This is no longer true near the collapse. Indeed, in that case it seems 

that the width of the resonances is like 1/ (some power of the order of the 

resonance), this power decreasing near 2 when we approach a collapse. 

See the next section for more accurate data and the related figures, and 

to see how a more detailed numerical study reveals additional interesting 

characteristics. 

Z 

[iif ,| 

Figure 10 Magnification of the previous figure 
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5. A detailed numerical study 
The phenomena near the collapse line of resonances ask for explanation. 

In this section we present a detailed description of the phenomenology. 

Trying to make the presentation clear we give here results concerning 

three different aspects: The phase space after skipping the eventual 

instability, the Fourier space and the properties of A and p. We refer to 

the Appendix for all the' computat ional  details. 

5.1. On the phase space. Skipping instability 
Consider first a case where A = 0 and where p is non resonant. We 

s tudy the behavior of the iterates as a function of the number  of the 

iteration, or to put  it more geometrically , at the set made of the 

first column of the matrices P~ (see after (5)) after a transient. We select 

(a 2, b) = (0.408, 0.4)..The results are displayed in figure 11 1). They  show 

a clear quasiperiodic behavior corresponding to the projection of a 2- 

torus. Indeed, we have 3 basic frequencies: 1, ~ and p. Since we s tudy 

iterates at t-values that  are multiples of 27c, we skip the frequency 1, but  

and p remain. It the present case p ~ 0.6032880958. The probability 

of picking p such that  (1, 7, p) satisfies a diophantine condition is 1. 

To display cases for which ), > 0 we first have to skip the instability. 

This is achieved by introducing the matrices/5~ = exp(-nA)P~, where 

the estimated value of ), is used and n is taken after a transient. We shall 

refer to/5n as the scaled matrices. Again in figure Ii we display in 2) the 

result for (a 2, b) = (0.413, 0.4) which shows an invariant curve (section of 

a 2 torus) and in 3) and 4), respectively, the results for b = 0.6 and the 

values a 2 = 0.40s (nonresonance) and 0.413 (resonance). In 4) the 

behavior is similar to 2), except for the fact that the invariant curve is 

more "wild" and do not projects as a simple closed curve. However, the 

case 3) displays an ugly set of points, far away from quasiperiodicity. We 

have limited the window to better show the central part. Other points 

fall far away from the "central region". The parameters for which b = 0.4 

are below the line of collapse of resonances, while the ones with b = 0.6 

are above that line. 
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Figure  11 - Plots of iterates of the first column of matrices Pn (case 2) or 

matrices /5 n (the remaining cases). In all cases, except in 1), we used 214 

iterates after a transient. In case 1) this number is 215. The transient has a 

length of 106 iterates. The estimated values of A and p are also shown. 

I t  is also in s t ruc t ive  to  look a t  d a t a  c o r r e s p o n d i n g  to  the  n o n r e s o n a n t  

case above  the  col lapse  line. Indeed ,  t he re  are  severa l  c lear  peaks .  To 
2 

inake  this  m o r e  ev iden t  we p lo t  the  q u a n t i t y  Ei , j=l ,2 ( / 5 ) . .  for a large 
\ / %.7 

r ange  of i te ra tes .  T h e  p e a k s  a p p e a r i n g  in f igure 12 w i th  an  a m p l i t u d e  

la rger  t h a n  0.6 • 109 are  loca ted  a t  values  of  n ( sk ipp ing  the  t r ans i en t )  

equal  to  78306, 78683, 153708 and  200076. All the  differences (377, 

75025 a n d  46368) are  F i b o n a e c i  num ber s .  T h e  s a m e  is t r ue  if we also 

cons ider  p e a k s  above  a lower th resho ld ,  w i th  t he  even tua l  inclusion of  

Bol. Soc. Bras. Mat., Vol. 29, N. 2, 1998 



H I L L ' S  E Q U A T I O N  W I T H  Q U A S I - P E R I O D I C  F O R C I N G  273 

differences which are the  sum or the  difference of two relat ively large, 

bu t  non consecutive,  F ibonacci  numbers .  For instance,  the  closest peak  

larger t h a n  108 af ter  the  largest  one in the  plot occurs wi th  An = 70844 = 

75025 - 4181, a difference of two such numbers .  Note t h a t  despite this  

wild behavior  of t h e / b  matr ices,  the  M(O) mat r ix  is quite regular.  In 

figure 12 we also display the  behavior  of its components  as a funct ion 

of 0. I t  seems t h a t  some small  ampl i tude  high order  harmonics  of M(O) 
"do not  average well" under  composi t ion.  

3 Se§ 
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1 5 ~ Q g  
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5 e ~ 8  
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Figure 12 Left: Peaks of the sum of the squares of the elements of the scaled 

matrix after a transient of 2 • 10 6 iterates, for the next 218 iterates. Parameters 

(a 2, b) = (0.408, 0.6). Right: The 'monodromy' matrix as a function of 0 for 

0 E [0, 2rc]. For 0 = 0 the order, from top to bottom, of the matrix-entries is 

(1, 2), (1, 1), (2, 1) and (2, 1). 

5.2. Fourier analysis 

To enter deeper into the structure of the data displayed in the previous 

subsection, we perform a Fourier analysis of the scaled matrices. Figure 

13 shows results corresponding to the analysis of an element of the scaled 

matrices, for each of the couples of parameters displayed in figure it. 

The data shown are the norms of the different harmonics for the (2, l)- 

entry as a function of the number of the harmonic. The number of 

harmonics is 217 and the last one corresponds to a frequency of i. Note 

that the frequencies are shown modulo 1 and that a frequency u E (�89 i) 

appears in the place corresponding to 1 - u. 

In the case where the system is reducible, the analysis done in this 
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way contains  bo th  the  frequencies of the change of variables reducing 

the equa t ion  and  the  "proper!' f requency of the reduced equat ion.  In 

the  resonant  case the  "proper" fi 'equency is of the  form (kl + k27)/2 for 

sui table values of kl and  k2. 

. . . .  I_ I.f , , I , 
20000 40O0O 6OOO0 80000 I00000 I~0000 

1) b = 0 .4 ,  a 2 = 0 .408  

i I L 
2~0 400~ cO000 ~00 ~ooooo 120~0 

2) b = 0.4, a 2 = 0.413 

I 

4o ; -) 

/ i 

20 

o ,I [; j  ] .  ~ .I . !  I I, , 
2 . . . . . . . .  ~ . . . . . . .  o~o 

3).b = 0.6, a 2 = 0.408 4) b = 0.6, a 2 = 0.413 

Figure 13 - Results of the Fourier analysis corresponding to the element 

(/bn)2,1 for each of the cases in figure 11. All cases, except 3) show quasiperiodic 

behavior. Number of data analyzed: 218 . 

It is easily seen that the nonresonant cases above the collapse line 

seem far from quasiperiodic. To have a quantitative measure of this the 

following computation has been carried out. After doing the Fourier 

analysis we look for the "dominant harmonics". Let Amax the maxi- 

mum amplitude of the harmonics. Then we set up a "scale" of the size 

of the harmonics: A harmonic is said to be "of order" m if the corre- 
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sponding  ampl i tude  belongs t o  [0.8 r e + l ,  0.8 rn] • Amax ,  where the  value 

0.8 has been selected as a sui table choice. Given a Fourier  analysis  we 

select a value rn* such t h a t  the  number  of harmonics  of order rn < m* 

is at  most  100, bu t  the  number  of harmonics  of order  m _< rn* + 1 is 

greater  t h a n  100. A large value of m* means  a quick decrease of the  

size of the  harmonics ,  while a small  value denotes  a "rough" funct ion.  

Figure  14 displays the  value of rn* as a funct ion of a for two ranges of 

a -va lues  and  four different values of b. This  offers addi t ional  evidence 

for the  very different behavior  above and  below the  collapse line. 

30 

25 

20 

15 

10 

F i g u r e  14 - Measure for the "roughness" of the Fourier analysis of the scaled 

matrices. Low values denote a rougher behavior. See the text for additional 

explanation. Approximately the lines, from top to bottom, correspond to b = 

0.2, 0.4, 0.6, 0.8. For each value of b there are two ranges of values of a 2. They 

have been selected so that  they contain the resonances ( -2 ,  2) and ( 3 , - 1 )  

in their interior. These ranges are [0.395, 0.4] and [0.47, 0.475] for b = 0.2, 

[0.408, 0.430] and [0.455; 0,478] for b = 0.4, [0.408, 0.444] and [0.452, 0.494] 

for b = 0.6 and [0.40-2, 0.427] and [0.473, 0.504] for b - O.8. Furthermore, for 

the last three values of b, some subranges in the middle of the resonances and 

where rn* is constant, have been suppressed. In each range 1000 values of a 

were used. 
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Figure  15 Behavior of the amplitude Ap of the harmonic whose frequency 

coincides with p in the Fourier analysis of (Fn)(2,1)- Upper left: b = 0.4, below 

the collapse line. Upper right: b = 0.528, very close to the collapse line. The 

'irregularities' are due to the large number of resonances. Lower part: b = 0.6, 

above the collapse line. Large irregularities are seen outside the resonant zones. 

The stepsize in a 2 is 10 -5,  except for b = 0.528, where 10 -7  has been used. 

�9 In order to better  visualize small and large components simultaneously, on the 

vertical axis the variable is arcsinh(Ap) instead of Ap. 

Another interesting feature is the behavior of the dominant harmonic 

as a function of a for fixed b. Figure 15 displays some typical cases. We 

have taken the (2, 1) entry of the matrix/bn. Let Amax the maximum 

amplitude of the different harmonics, corresponding to some frequency 

Umax. With a few exceptions Umax = P. Only in a few cases one has 

that Umax r p, and then Amax is slightly larger than Ap for this concret 
entry of the matrix. Hence, for coherence, we have computed Ap as a 

function of a. In all cases, either below, above or across the collapse line, 

the behavior is smooth inside the resonances. Going to the endpoints of 
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a resonance there appear  two different cases: either the ampli tude has a 

sharp peak at the endpoint  or is decreases to very small values. Outside 

the resonances the behavior is wild if A > 0 and only small irregularities 

appear if A = 0. Figure 15 illustrates some details below, across and 

above the collapse line. 

5.3. The behavior o f  )~ and p close to the collapse line 

In figure 7 we have seen a sample of estimates of A and p close to 

the collapse line. Some more details are shown in figure 16, where 

successive magnifications are done. This figure also gives suppor t  to 

the "collapsing" effect. The large resonance to the left of these figures 

is related to the multiplicators kl = 1, k2 = 0 and, hence, to p = 0.5. 

Notice that  in the last row of figure 16 the values of b have been selected 

in such a way that  A starts  to be positive outside the resonances. 

To locate points in the collapse line we chose the simplest case, look- 

ing for the (a, b) value where the right hand boundary  of the (1, 0) 

resonance intersects with it. Figure 17 shows a plot of )~ for b = 0.5284 

and a range a 2 C [0.39479, 0.395] such that  the first "contact" of A with 

0 occurs for p slightly greater than 1/2. The values of ), outside the 

resonances seem to be very close to a curve which, in turn, is quite close 

to a straight line. It is also plot ted on the figure. This allows to obtain, 

by extrapolation,  the value of a = at(b)  at which the "contact" is pro- 

duced. Again plott ing p(ac(b) ,  b) - 1/2 (or some equivalent magnitude) 

as a function of b (see again figure 17), allows to predict the value of 

b for which p(ac(b) ,  b) = 1. The value (a 2, b) ~ (O.39479983, O.528315) is 

found. A similar process can be used for any resonance. 

Having located these values, it is possible to examine the behavior 

of the resonances. Two items seem to be specially relevant: 

1. For a given value of b, the maxima-value  of the resonance bumps  

in ~ as a function of the value of the associated frequency. Figure 18 

displays the results for b = 0.5284, showing the heights for frequencies 

immediately to the right of 1. The range of a is selected so that  we are 
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f I' 
J I 

F i g u r e  1 6  - Deta i l s  of t h e  behav ior  of .~ and  p close to  the  col lapse line. Left: 

= A(a2) ,  r ight:  p = p (a2 ) .  The  b-va lues  are: 0.526 to 0.535 wi th  s tep  10 - 3  

for the  first row; 0.528 to  0.53 wi th  s tep  10 - 4  for the  second one; 0.528 to  

0.5285 wi th  s tep  10 - 4  for the  th i rd  one; 0.52832 and  0.52833 for the  last  one. 

In  the  lowest row the  hor izon ta l  window ranges  f rom 0.3947995 to 0.39480035. 
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close to the collapse line. We see a clear organization on the structure 

of this set, the heights behaving almost linearly with respect to some 

limit frequency. Similar structures are also seen at smaller scales. This 

occurs at the crossing of the collapse line. For values of the parameters 

not too close to tha t  line, the secondary bumps are hardly visible. 
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F i g u r e  1 7  - Parameter values for which the right endpoint al/2, r of the res- 

onance tongue with fi'equency 1 is on the collapse line. Left: A as a function 

of a 2 for b = 0.5284 and a fit of the values of/k > 0 by a line outside the 

resonance tongues. Right: A measure of the distance of a2/2,r to the collapse 

line as a function of b, and an extrapolation. 

2. For a selected set in T~, the related heights of the resonance bumps in 

as a function of b. Figure 19 displays the results. The values of b used 

here range from 0.528 to 0.53 with stepsize 10 -4, plus additional values in 

(0.5283, 0.5284) with stepsize 10 -4. The selected resonances have frequen- 

cies u in (1/2, (35 - 21y)/2 ~ 0.5106431181). The lowest order resonances 

are (35,--21), (--54,34), (90,--55), (--143,89), (179,--110), (--198,123), 

(234, --144) and (-287, 178). All these number are (eventually • equal 

to Fibonacci numbers or to the sum or difference of two of these. For all 

values of b in this range all the resonances in the corresponding range 

of order ]k I = Ikll + Ik21 < 2000 have been detected. For the values of 

b closer to the critical value 0.528315 found before, i.e., for b = 0.5283 

and b = 5284, all resonances in this range with Ikl < 10000 have been 

detected. (Some of the well detected resonances have order greater than  

50000)i These are the resonances used for the figure. It is clear tha t  the 

bumps have a maximum on the critical value. The magnification shows 
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that the higher the order of the resonance, the sharper the m a x i m u m  on 

the critical value of b. This  is, again, another expression of the "collapse 

of resonances". 
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Figure 18 - Heights of the bumps in ~ as a function of tile related frequency 

for b = 0.5284. See the text for additional explanation. 
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F i g u r e  1 9  - Heights of the bumps in ~ as a function of b. The right figure 

shows a magnification, in the vertical direction, of the left one. See the text for 

additional explanation. 

~.4. Breakdown o f  tori 

Similar to what  has been done in the previous subsect ion for the reso- 

nance wi th  p = 1, we study the b'ehavior of a nonresonant torus when  

crossing the collapse line, observing its breakdown. We set p = p* = 

1 /x /3  ~ 0.577350269. First we obtained ap.(b), where p(ap.(b),  b) = p*. 
Also .~(ap. (b), b) was computed.  Figure 20 shows plots of both  functions.  
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It is clearly seen that there is a value, bcrit(P*), up to which the cor- 

responding value of A along the curve (ap. (b), b) is zero and, from that 

point on, it increases locally almost linearly. The corresponding point of 

the curve associated to p* is, by definition, on the collapse line. For the 

given value of p* the approximate value bcrit(P* ) = 0.533713 has been 

obtained (in fact it is slightly larger) and then the related value of a (for 

short acrit(P*)) is ~ 0.40697017905282. 
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O4O691 O.4O692 O40693 O4O694 04~95 0.4~96 O4O697 0 4 ~ 8  0 ~ 9 9  0407 "0"00152 O.522 O524 0526 052~ 053 0.582 0.534 

Figure 20 Left: The curve with p = 1/V~ on the (a 2, b)-plane. The marked 

point is on the collapse line. Right: Value of A(b) along this curve. It starts to 

be positive on the collapse line. 

Figure 21 shows a plot similar to figure 18 for the present value of b. 

Again the disposition of the heights of the bumps  in • along a lattice of 

lines with scaling properties appears for this critical non-resonant case. 

In this figure we have skipped two relatively big bumps corresponding 

to the, comparatively, 'low order' resonances: (95,-58)  and (-49,  31). 

Figure 22 shows a plot of the height of the bumps  as a function of 

the inverse of the order of the related resonance (Ikl = [kll + I/c21). In 
2 = 10-11 this figure a computa t ion  with (Sami n is able to detect  all the 

harmonics of order less than 20,000 in the selected a-range and most of 

the harmonics of order up to 2 • 105. The figure reveals a clear linear 

behavior. A magnification shows that  most of the da ta  are concentrated 

on two nearby lines, the upper  one corresponding to a > acrit(P* ) and 

the lower one to a < acrit(P* ). This behavior can be combined with 

the fact that  the heights of the bumps are roughly proport ional  to the 

square roots of the widths of the corresponding instability windows in 
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the a parameter  and tha t  a normal form approach gives tha t  the widths 

are proportional to the amplitude of the harmonics (see the discussion 

after theorem 2). This illustrates the evidence mentioned at the end of 

section 4 concerning the behavior of the amplitudes of the harmonics 

when we approach the collapse line: The amplitude of the harmonic k 

tends to behave like 1/Ikl 2 for the harmonics giving frequencies which 

tend to p. This would be in favour of a decrease of the regularity of the 

invariant torus until it is just C 1 (see later). 

0S~TS 0002S / 

0.0015 / 
05~3 

05~2 
oO 

0.0005 0~1 

0575S 0ST~ 0SZ~ 0~ 057VS 0~TS 0STSa 0ST~ 0~7~ 0.406S7 04C~S7 0.406~7 040~7~ 040~97~ 04~7~ 

F i g u r e  2 1  - Heights of the bumps in ~ as a function of the related frequency 

for b = 0.533713. To the right part, p(a 2) on a window of width 10 -6 in a 2 

close to the center of the u range of the left figure. 

However figure 22 shows a cloud of da ta  close to the origin. To 

resolve them we can plot log(height) versus Ikl. The result can be seen 

in figure 23. The heights below exp(-11) do no longer behave like 1/Ikl, 
but rather they decrease in an exponential way. This shows that ,  in fact, 

the value b = 0.533713 still has an invariant torus and that ,  at the end, 

the coefficients decrease as it corresponds to an analytic torus. Writ t ing 

height~ exp(-~lkl) one can estimate ec to be close to 1/75000 for this 

value of b. It is interesting to compare with values of b slightly smaller. 

Even using b - 0.533 one has a fast decrease of the heights. Hence 

we have taken a value of b = 0.5335, very close to the previous one, to 

have a significant number of detectable bumps inside a small range of 

a around ap. (b). The exponential decrease is clearly seen if we allow to 

include heights of the order of exp(-15). The related value of ~ can be 

est imated as 1/200. Using larger a-domains,  to allow for larger bumps, 
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the initial behavior (for small I/~1) of the height is like Ikl -~  (and, hence, 

like Ik1-2w for the size of the harmonics) with ~ > 1. Therefore, these 

numerical results seem to show that  the invariant tori, when they exist, 

are analytic, but  going towards a continuous object  when the parameters  

tend to the collapse line. 

0002S [ 

o ~ 
oO 

0COS 

o~ 

oo o* O0015  

I ~ 

00005 e e  * 

o o o o~1  oc~15 ooa2 o~o2s ~ seas  o c t 1  00o015 000L~ 00~0ZS 0.0~3 0000aS 0.0004 0 O ~ S  000~S 

Figure 22 - Heights of the bumps found for b bcrit (p*) for values of a around 

acrit(P*), versus 1/Ikl. To the right a magnification. 

-8 

-14 

-16 i , , i 
o 2oo00 4o0o0 6oo00 80000 

I I r I 

1~000  ~2~00  140000 160000 ~80000 

F i g u r e  2 3  - Same as figure 22 but using ]k I as horizontal coordinate and the 

logarithm of the height of the bump as vertical variable. The crosses are the 

corresponding results for b = 0.5335. 

To see the behavior in the phase space, in figure 24 we show two 

plots of tori with p = 1/x/3 and b equal to 0.5 and 0.53, respectively. 

Note that  these values are relatively :far' of the critical one. We also 

note that  the  'size' of the tori is roughly proport ional  to 1/(bcrit(P* ) -b) .  
For instance, for b = 0.533, a figure similar to the plots in figure 24 
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requires a minimal window with half widths 1.2 x 10 3 and 9.7 x 10 3. No 

nonlinear terms exist, able to stop this explosion in size! Compare also 

the torus for b = 0.53 with figure 11 3), which shows a typical behavior 

for the nonresonant case after crossing the collapse line. 

200 
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50 

0 

50 

100 lOOO 

4soo 

-ac~o 
so 2s~ 

Figure 24 - Tori produced as in figure 11. Left: The torus for b = 0.5. Right: 

The torus for b = 0.53. 

6. Conclusions and outlook 

Hill's equation with quasi-periodic forcing in some respect is quite simi- 

lar to the case of periodic forcing. This is particularly true regarding the 

behaviour of resonance tongues for small forcing. Also the explanation 

in terms of normal forms (averaging) is similar to the periodic case. 

The phenomenon of instability pockets and its explanation was quite 

new for the periodic case [5, 6] and again, this part  of the theory trans- 

lates to the quasi-periodic case. 

However, in our quasi-periodic case, the behaviour in the com- 

plement of the resonance tongues as well as the global behaviour of 

these tongues is quite different from the periodic case. There is a 

strong relation with reducibility. To be more precise we have the fol- 

lowing, also see the discussion of w First, for both  A > 0 and p r 

�89 + k27), V(kl, k2) E Z 2, there can be  no reducibility. Second, inside 

the tongues one has the ~easy' hyperbolic reducibility. Third, for A = 0 

one can have the ~hard' elliptic reducibility. This has been established 

only for large values of a, [22, 10]. However, it seems that  these results 

can be carried over to the case of finite a and small b. Indeed, the numer- 
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ical evidence of the present paper for finite values of (a, b), together  with 

KAM-arguments  regarding averaging, see e.g., [1, 17, 22, 10], seem to 

be in favor of the following facts: 

1. For small b, in the (a, b)-plane a Cantor bundle of b-parametrized 

curves exists, on which elliptic reducibility holds. In the gaps the 

tongues are sitting, for the rest this bundle has full measure. We re- 

fer to this part  of the parameter  plane as the K A M - d o m a i ~ .  

The Cantor bundle is characterized by estimating Ip(a,  b) - 1 < k ,  aJ > 

I from below in a diophantine way, as usual. Apart  from the above 

references we like to mention forthcoming work [2a]. 

2. A priori also non-reducibil i ty may occur, in particular when, outside 

the resonance tongues, p - 1 < k, a~ > is a Liouville like number. This 

would only occur inside a residual subset of the (a, b)-plane, of measure 

zero. Again, such considerations hold for small b. It will be interesting 

to test the present examples of p for this phenomenon,  but  also to widen 

the class, e.g., by introducing extra  parameters.  Compare with [15, 12]. 

Note tha t  the results of this endeavour may cast some doubt on Con- 

jecture 3. 

3. The KAM-domain  reaches until the 'collapse line', where a break- 

down of the nontrivial KAM-tor i  occurs. From this line on, the dynam- 

ics is only reducible inside the resonance tongues. 

4. At the collapse line the resonance tongues seem to increase so much 

in width, tha t  no space is left over for nontrivial tori. 

Several generalizations also seem worth investigating. Let r = a~2/COl 

be the ratio of frequencies. 

�9 What  happens if the frequency ratio r tends to some rational value, 

but  ranging over the set of diophantine numbers? One expects to 

recover the classical F loquet - theory  for periodic solutions. One may 

guess that  the collapse line then should disappear to oc in the b 

direction. 

�9 How does the over all picture change if the frequency-rat io  r is non-  

diophantine, but  e.g., a Liouville number? 
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�9 How does the existence of instability pockets interfere with the col- 

lapse line? 

�9 What  is the generic situation when p(t) is quasi-periodic with 3 or 

more basic frequencies? 

�9 Hill's equation with quasi-periodic forcing probably is the simplest 

example of a linear equation with quasi-periodic coefficients. What  

could be expected for general equations in Rn? 

A. Appendix 
In this Appendix we describe the methods used for the numerical com- 

putations. The main goal is to achieve good accuracy with small com- 

puting time. Indeed, accuracy is required to produce realiable numerical 

results. Taking as unit of computing t ime the evaluation of one i terate 

of (5), and the est imate of A and p when being beyond some initial 

transient, the total  number  of units used in our explorations is close to 

1013. Only a very small selection has been displayed here. This large 

number asks for fast computations.  An important  part  of the task has 

been carried out on a Beowulf cluster consisting of 24 Pent ium 266 pro- 

cessors and 2 Pent ium 200 processors. Each processor is able to do near 

2 • 105 iterates per second. 

A.1. Computation of M(O) 
We have to integrate an equation of the form ~ = q(t)x. In the present 

case 
1 

q(t) = --(a 2 + b (cos(t) + cos(Tt + 0)), 7 = 5( 1 + v/g)~ 

and, for most of the computations,  a and b have been confined to [0, 1]. 

Let us introduce 
x(k) _ 1 dkz  

k! dt k" 

In a similar way we introduce q(k). Then, the Leibnitz rule gives the 

relation 

x(k+2) = 1 2) 
(k + 1)(k + 

allowing to compute recurrently all x (k) up to any order N, with a c o m -  
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putat ional  cost O(N2), start ing from x(0) and y(O) = x(1). The 'trigono- 

metric '  cost is only two evaluations of cos and sin per step, the powers 

of ~/and the inverse of the factorials being computed just once. 

The series for x( t  + h), as a function of h, starting from x(t),  y(t) is 

majora ted  by the one of ~(h) = r(h)z(h) ,  where 

r(h) = a 2 + Ibl (exp(h) + exp('yh)), 

s tart ing from z(0) = Ix(t)], ~(0) = ly(t)[. This shows tha t  the series is 

entire. Furthermore,  if we restrict a and b as declared and take h < 1, 

then r(h) < 9. Hence z(h) < Aexp(3h) ,  where A depends on z(0) and 

#(0). This shows tha t  selecting, say, N = 30, the last te rm is less than  

10 -18 t imes the larger of the first two. 

In fact we integrate the equation start ing at (1, 0) and (0, 1). We 

have selected a constant  t ime step (typically 27r/8 or 2~r/10 give optimal 

computing time) and select N such that  the maximum of the 2 last 

terms appearing in the expansions of the 4 places of the fundamental  

matr ix  is less than  10 -18 times the maximum of the absolute values of 

the elements of the matrix. 

This computat ion is done for a large number,  K, of 0-values, equally 

spaced in [0, 27r]. For refined computations,  where we are interested in 

a large number of iterates, K = 5000 is a suitable choice. The large 

initialization t ime (typically 3 seconds) allows to reduce the computing 

t ime in the iterations. 

A.2. The interpolation process 
We know M(0k), Ok = 2:rk /K,  k = 0 , . . .  , K - l ,  and we have to compute 

M(O). This is done by interpolation. By scaling and shifting the origin 

we can always assume that we have to evaluate a function, f(s), at 

some point s E [0, 1) from the values f j  = f ( j ) ,  j = 1 - J o ,  .... , Jo. The 

interpolation formula is of the form 

30 

wj ( s ) f j ,  
j = l - j  0 

where wj(s)  are the Lagrangian weights. To speed up the process even 
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further, the weights, wj,i, for s = i/10000, i = 0, . . .  , 10000 have been 

precomputed. Then the corresponding weights wj (s) are obtained from 

the precomputed weights by linear interpolation. It has been checked 

that this produces no significant differences in the computation of M(O). 
The interpolation has to be applied to each of the elements of the matrix. 

A suitable value for J0 is 3. So, just 6 nodes are used for the interpola- 

tion. Numerical estimates of the 6-th derivative of the elements of M(O) 
in preliminary runs show that the error estimates in the interpolation 

formula are of the order of the e of the computer. 

A.3. Estimates o f  A and p 

The formulas (6) and (7) define A and fl whenever the limits exist. 

However, to have good enough estimates it is possible that the number 

n of iterates has to be taken very large, due to 'irregular' behavior 

of these iterates. Figure 25 shows a related example, displaying the 

quotient appearing in (6) after a large transient, to be explained further 

below. A typical value for the number of iterates in the transient, in 

the region close to the collapse line, is 106 . The maximum of iterates 

has been set to 107. Guided by the results summarized in section 5 and 

by the behavior observed in many plots of the estimates, the following 

heuristic approach has proved itself to be suitable to estimate A. It was 

also used for p, despite the fact that the quotients in (7) show more 

regularity. 

After a transient, which in some cases has to go up to 2 • 106 iterates, 

the quotients of (6) are computed after each iterate, but only the largest 

quotient in blocks of, say, 1,000 consecutive iterates are recorded. The 

number of the iteration where the maximum takes place is also recorded. 

Then, after computing a number of blocks (say, 100 blocks and then, in 

successive estimates, 200, 300, etc, blocks are used) a fit of the values 

at the maxima by an expression of the form l ~  = a +/3/n~ is done. 

Here n~ is the number of the iteration where the maxima occur and A~ i 

the related quotient. The value of c~ gives an improved estimate of the 

Lyapunov exponent. 
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Figure  25 Estimates of A as a function of the number of iterates for the (a, b)- 

values shown. In all cases the maxima and minima in blocks of 103 iterates are 

displayed. In 1) we only show the maxima, the minima being below 2.1 • 10 16. 

Notice that in 3), for parameters above the collapse line and outside resonance, 

the behavior is even more irregular, despite the transient of 2 • 106 iterates 

and the additional 7 x 106 iterates computed. However, it seems that,  even in 

this case, lim inf and lim sup, of the estimates of A, coincide. 

Anyway,  c ompa r ing  successive improved  es t imates  shows t h a t  still 

the  convergence  (is any!) is too  slow. T h e n  we do again  an i t e ra t ive  

process.  Af te r  the  fit has  been  done,  we discard all the  poin ts  below the  

f i t t ing curve,  p r o d u c e  a new fit wi th  the  poin ts  which remain ,  d iscard  

again,  etc,  unt i l  the  n u m b e r  of poin ts  used in the  last  fit is not  less t h a n  

some number .  In p rac t ice  this  n u m b e r  has been  t ak en  as 50. T h e  value 

of c~ of this  last  fit is used as e s t ima te  of ~. It  was observed  t h a t  these  

e s t ima tes  are much  more  coheren t  when  the  n u m b e r  of blocks increases.  

W h e n  3 successive es t imates  ob t a ined  in this  way differ by  less t h a n  
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some tolerance (10 .8 was taken for the best  refinements) the last one is 

used as final est imate of A. 

Looking at the results for (a, b) values such that  it seems clear tha t  A 

must be zero, the results obtained in this way are always less than 10 _8 

and, in most of the cases, even below 10  - 1 0  . Also in the resonant zones 

the behavior is smooth  within 10 .8 (e.g., looking at the finite differ- 

ences for equally spaced values of a2.) In domains outside the resonant 

tongues, above the collapse line, the behavior is also smooth within this 

tolerance. Only near the crossing of the collapse line it seems that  a few 

estimates can have errors up to, at most, 10  . 6  . 

A.4. The scanning process 

Up to now we described how to obtain A and p for given values of (a, b). 

Fixing b we produced est imates for a ranging on a given interval. For 

this 'scanning process'  the following rules have been used. We chose 

some tolerances ~ and ~p, such that  if the selected values of a 2, at 

2 2 then which the computations" are done, are labelled as a 2, aj < aj+l ,  

and 
a 2 Ip( j + l ) -  p(a )l < 

2 2 unless this forces to take aj+ 1 -- aj < (~a 2 �9 . Typical choices for details mm 
are 6x = 1 0 - 4 ,  (~p = 1 0 - 5 ,  6 a 2 i n  = 1 0 - 1 1 .  These values were selected in 

order not to miss most of the details of the plots of A and p and, at the 

same time, to progress efficiently in the scanning. 

A.5. The Fourier analysis 

As mentioned in section 5, to carry out a Fourier analysis of the results in 

the phase space, we first have cancelled the eventual exponential increase 

of the iterates. This is done by computing, after the initial transient, the 

matrices P~ = exp(-nA)P~,  where the Pn are the fundamental  matrices 

after a t ime of 27cn. (See after formula (5)). 

We consider just  one of the vectors of the Pn matrices. To be precise, 

we used the first vector. If the equation is reducible to constant  coeffi- 
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cients (Floquet form), the Fourier analysis of that  vector should contain 

the harmonics involved in the change of variable (whose frequencies must 

be integer linear combinations of the fundamental ones) and the ones 

coming from the frequency associated to the reduced matrix. 

Typically we used the first 2 ]8 iterates after the transient to carry 

out the Fourier analysis. Then a F F T  routine reveals the dominant 

harmonics. We refer to section 5 for some plots. To locate the main 

frequencies several refined methods are available (e.g. [20], [21], [14]). 

However even a simpler method can be used because the basic frequen- 

cies are known and the frequency associated to the eventually reduced 

equation is approximated by p. The identification of frequencies of the 

main harmonics, in the cases which look as reducible, is done with errors 

below 10 .7  . 
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