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Abstract. This paper deals with global injectivity of vector fields defined on euclidean
spaces. Our main result establishes a version of Rolle’s Theorem under generalized
Palais-Smale conditions. As a consequence of this, we prove global injectivity for a
class of vector fields defined on n-dimensional spaces.
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1. Introduction

Results on global univalence of vector fields have been the object of
intense research in recent years. In several branches of Mathematics
important questions are related to these results. We refer the reader to
9,7,3] for further references and connections with other problems.

In this work, our main purpose is to establish, via minimax methods,
new versions of Rolle’s Theorem, providing further sufficient conditions
to ensure global univalence for locally injective vector fields.

Given a real Banach space E and a functional f : E — R of class C'1
satisfying a generalized version of the compactness condition introduced
by Palais-Smale [11], we relate the existence of critical points for f with
the topology of the level surfaces S.(f) = f~'({c}), c€ R. -

In our basic theorem, we show that either S.(f) is path-connected or
f+ E — R possesses a critical point. This result can be easily seen as a
version of Rolle’s Theorem for domains with dimension greater than one.
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We also provide a minimax characterization of the possible critical levels
of the functional, relating Rolle’s Theorem with the famous Mountain
Pass Theorem of Ambrosetti-Rabinowitz [1].

We generalize our basic theorem by proving the existence of critical
levels when S.(f) is not homologically trivial. This relates our results
with the notion of linking and generalizations of the Mountain Pass
Theorem.

As a consequence of our basic theorem, we establish a version of
Rolle’s Theorem for vector fields of class C! on R2. Using this result,
we prove global injectivity for a class of locally injective vector fields on
the plane.

In this article, we also prove a version of Rolle’s Theorem for vector
fields of class C? on higher dimensions. To derive such theorem, we
establish a deformation lemma based on the minor determinants of the
Jacobian matrix of the vector field. The global univalence of those
vector fields is also studied. Unlike most of the known results, to obtain
global univalence for a local diffeomorphism on R”, we assume an extra
hypothesis on only (n-1)-coordinates of the vector field.

In [10], Rabier used a deformation result and arguments of differ-
ential topology to generalize Hadamard Theorem on global diffeomor-
phism for euclidean spaces. We notice that in [10], the author considers
a notion of admissible flow which is closely related to our generalization
of the Palais-Smale condition. In [4], Katriel studied global homeo-
morphism theorem for certain topological and metric spaces by proving
two versions of the Mountain Pass Theorem without agsuming that the
functional is of class C*.

We should also mention that new versions of Rolle’s Theorem have
been recently obtained by Khovanskii and Yakovenko [5] (See also the
references therein). Considering analytic functions on the complex
plane, in [5], the authors are able to relate the number of zeros of the
function with the number of zeros of its derivative.

In [6] is proved that a C'—mapping f : R? — R? is globally one-to-
one provided that:(i) for each z € R? detf'(x) # 0 and (ii) there exist
linearly independent vectors v; (i = 1,2) in R? such that 0 does not

Bol. Soc. Bras. Mat., Vol. 29, N. 2, 1998



A VERSION OF ROLLE’S THEOREM AND APPLICATIONS 303

belong to the convex hull {f'(z)vs; z € R%}, i =1,2.

The main result proved in [3] is related to the Conjecture on Global
Asymptotic Stability (or Marcus-Yamabe Conjecture) in 2D. It says the
following: A C!—mapping f : RZ — R? is globally one-to-one provided
that f(0) = 0 and all the eigenvalues of f/(x) have negative real parts,
for every z € R2.

The article is organized in the following way: In section 2, we present
the necessary preliminary results. There, we recall a version of the
Mountain Pass Theorem after stating a deformation lemma for a gen-
eralization of Palais-Smale condition. In section 3, we prove our basic
result and its generalization. In section 4, we prove Rolle’s Theorem on
R? and study its applications. In section 5, after presenting a version
of the deformation lemma for euclidean vector fields, we state a version
of Rolle’s Theorem on R™, n > 3. There, we also study the question
of injectivity for dimension greater than two. Finally, in section 6, we
prove the deformations results stated in sections 2 and 5.

We are thankful to the referee for the helpful suggestions and com-
ments. He has also provided the reference [4] which was not known by
the authors. Following his suggestion, it is our intention to apply the
argument employed in [4] to derive topological versions of the results
obtained in this article.

2. Preliminaries
Let E be a real Banach space and consider f : E — R a functional of
class C1. Given c € R, we define S.(f) = f~1({c}), the associated level
surface of f. By B,(u) and 0B,(u) we denote, respectively, the closed
ball of radius p centered at u and its boundary. By K we denote the
set of critical points of f. Given d € R, we set f¢ = {u € E| f(u) < d},
fai={u€ E|f(u)>d} and Kg={u € E| f(u)=d, f(u)=0}
Consider A, the family of functions ¢ : (0,00) — (0,00) which are
nonincreasing, locally Lipschitz continuous and satisfy fc(,)o o(t) dt = oo.
The following version of Palais-Smale condition is assumed:

Definition 2.1. Given f € CY{(E,R) and ¢ € R, we say that f satis-
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fies the Generalized Palais-Smale condition (with respect to ¢ € A) at
level ¢ € R, denoted (GPS)., if every sequence (un,) C E satisfying
fluw) — ¢ and || f'(um)||/o(luml) — 0, as m — oo, possesses a con-
verging subsequence. If f satisfies (GPS). for every ¢ € R, we just say
that it satisfies (GPS).

We note that when ¢(t) = 1 and ¢(t) = 1/(1 +t), we have, respec-
tively, the usual Palais-Smale condition [11], denoted by (PS), and its
generalization due to Cerami [13]. In order to obtain a deformation
lemma for (GPS) condition, we shall need to make a restriction on the
topological structure of the critical points of the functional.

Definition 2.2. We say that a component of a set of E is trivial if it has
only a point. Giwen f € CYHE,R), we say that ¢ € R is an admissible
level if either ¢ is a regular value of f, or the components of K. are
trivial and c is an isolated critical value of f.

The following result is a sharper version under (GPS) condition of
a deformation lemma due to Chang [2]. The proof is a variation of the
original one and it will be given in section 6 (See also [13], for a related
result).

Proposition 2.3. (Deformation Lemma.) Suppose that f € C*(E,R)
and satisfies (GPS) with respect to some ¢ € A. Assume that a is the
only possible critical value of f on the interval [a,b) and that a is an
admissible level. Then, there exists a continuous map

7100,1] x (f\ Kp) — f°\ K3, so that

1) 7(0,u)=u, Vue fo\ K,
(ii) 7(t,u) = u, V (t,u) €[0,1] x f*
(iil) T(1,u) € f*, Yuc f°\ K,

To provide a version of Rolle’s theorem on spaces of dimension
greater than two, in section 5, we establish a deformation lemma which
depends on the minor determinants of the Jacobian matrix of the given
vector field.

In what follows, we recall the Mountain Pass Theorem of Ambrosetti-
Rabinowitz [1].
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Theorem 2.4. Let E be a real Banach space and suppose [ € Cl(E,]R)
is a functional satisfying f(0) =0 and (PS). Assume, [ satisfies
(i) There exist p > 0 and o > 0 such that

fu) > a>0, VuecdB,(0),

and
(i) There exists e € E \ B,y(0) such that f(e) = 0.
Then, f has a critical value ¢ > « characterized by

c= ;2% max;(0,1] f(7(t)),
with
I'={yeC(0,1], E)| 7(0) =0, v(1) = e}.
We notice that Theorem 2.4 is a consequence of our basic result (See
Remark 3.2-(iii)). In this article, we also establish a version of Theorem

2.4 for a setting where oo = 0 and the functional satisfies (GPS) with
respect to some ¢ € A.

3. The Level Surface Theorem

In this section, we prove our basic result which is used in the sequel to
establish a version of Rolle’s Theorem on R2. We also present another
version of Theorem 2.4 and a result that relates the topology of the level
surfaces of the functional and the existence of critical points.

Theorem 3.1. (The Fundamental Theorem.) Let E be a real Banach
space and suppose that f : E — R is a functional of class C, satisfying
(GPS) for some ¢ € A. Assume that ¢ € R is an admissible critical
level of f and that u and v are two distinct points of S.. Then, either
(i) w and v are in the same path-component of Sc(f), or

(ii) f has a critical value d # c.

Remark 3.2. (i) Theorem 3.1 can be seen as a version of Rolle’s Theorem
for functionals defined on real Banach spaces. (ii) As in Theorem 2.4, we
obtain a minimax characterization of the possible values of d. Moreover,
if fe Cl(E,]R) and Theorem 3.1 fails, we have that f does not satisfy
(GPS) in at least one of those possible values. (iii) Note also that
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Theorem 3.1 may be seen as a generalization of Theorem 2.4 since the
hypothesis of this last result implies that 0 and e are not in the same
path-component of Sy(f).

Before proving Theorem 3.1, we need to establish two preliminary
results. Considering u, v € S.(f), given in Theorem 3.1, we define

c1 = inf maxic[g 1] f(V(2)), (3.1)
vely

with
I'1 = {7 € C([Oa 1]7 E) | 7(0> =1u, ’7(1) = /U}' (32)
As a consequence of Proposition 2.3, we have

Lemma 3.3. Suppose ¢ is an admissible value of f. Then, either ¢c1 > ¢
and ¢y is a critical value of f, or there exists v € I'1 such that

maxe(,1) S (V(8) < c. (3.3)

Proof. First, we assume c¢; > ¢. Arguing by contradiction, we suppose
that ¢y is not a critical value of f. From (GPS), there exists 0 < € < ¢1—¢
so that K N f‘l([cl —€,c)+€=6.

We also have v € I'1 such that

maxcjo1] f(V() < c1 + e
Applying Proposition 2.3, we obtain 7 : [0,1] x fo1T¢ — fete g0
that 7(t,u) = u, for every u € f17¢, and 7(1, f11€) C f1~¢. Then,
7(1,v(t)) € T'1 and

max,efo 1] f(r(1L, Y1) < e1 — €.
However, that contradicts the definition of ¢1.

Next, we suppose ¢; = ¢. Since ¢ is an admissible level of f, there
exists € > 0 such that KN f~!([c—¢, c+¢]) = K.. Furthermore, we have
v1 € T'y satisfying

maxejo 1] f(71(1)) Sc+e

As above, we may invoke Proposition 2.3 to obtain 7(¢,u) satisfying
(i)-(iii) with @ = ¢ and b = ¢+ e. It is not difficult to show that
() = 7(1,v1(t)) belongs to I'; and satisfies (3.3). The lemma is proved.

O
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Now, we define

C2 = Sup ming[g ] for®)), (3.4)
yelo
with
Ty = {y € C([0,1], f) [ 7(0) = u, 7(1) = v}. (3.5)

Lemma 3.4. Suppose that ¢ is an admissible value of f and that Ty & &.
Then, either co < ¢ and cg is a critical value of f, or there exists v € T'y
such that

f(y(t) =¢, Yte[0,1]. (3.6)

Proof. If ¢ < ¢ and ¢y is not a critical value of f, we take 0 < e < c—co
and apply Proposition 2.3 on —f to obtain 7 : [0,1] X fe,—e — fc,—¢ such
that 7(t,u) = u, for every (1,u) € [0,1] X fere, and 7(1, foy—e) C fegte-
If we take v € 'y so that

min,[0,1) f(7(t)) = 2 — €,

and consider ¥(t) = 7(1,v(t)), for ¢t € [0, 1], we get that 4 € I'p and

ming.g.1] f(9(¢)) = c2 + €.

But, this contradicts the definition of c3. When ¢o = ¢, we apply Propo-
sition 2.3 for —f with a = —¢ , b = —c + ¢, and € > 0 sufficiently small.
Then, we argue as above to obtain a path v € T'9 satisfying (3.6). The
lemma is proved. O

Proof of Theorem 3.1. Suppose that u and v are not in the same path-
component of S.(f). Considering ¢; and cp given by (3.1) and (3.4),
respectively, we claim that at least one of those values is a critical value
of f. Effectively, if we suppose otherwise, Lemma 3.2 implies I'y # &,
Consequently, by Lemma 3.3, we must have v : [0,1] — S.(f) such that
~(0) = w and (1) = v. But, that contradicts the fact that v and v are
not in the same path-component of S.(f). On the other hand, if f has
no critical value d # ¢, then, necessarily, ¢y = ¢co = ¢ and » and v are in
the same path-component of S.(f). Theorem 3.1 is proved. O
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Remark 3.5. (i) It is clear from the proof that Theorem 3.1 holds if we
assume (GPS). for ¢ € [c1,¢p], where ¢; and ¢g are given by (3.1) and
(3.4), respectively. (ii) Substituting f by —f in Theorem 3.1, we obtain
two other possible critical values of f:

¢3 = sup mingpg 1] L(Y(?)), (3.7)
vely

with
Iy ={y € C([0,1], B) | %(0) = u, 7(1) = v}; (3.8)

and
e = inf e 107(0), (3.9)

with
T3 ={y € C(0,1], fo) | 7(0) = u, (1) =v}. (3.10)
Next, we extend to (GPS) condition a version of Theorem 2.4 proved in

[11].

Theorem 3.6. Let E be a real Banach space and suppose that f €
C’l(E,R) is a functional satisfying f(0) =0 and (GPS). Assume that f
satisfies
(i) There exists p > 0 such that

f(u) 20, Vue dBy0),

and
(ii) There exists e € V' \ B,(0) such that f(e) = 0.
Then, f has a critical value ¢ > 0 characterized by

c= 71161% max,c(o 1] S (V(t)),
with
I'={y € C([0,1], B)| v(0) =0, v(1) = e}.

Furthermore, if f does not have a critical point u on 0B.(0), for some
0<r<p, then ¢ > 0.

Proof. By Lemma 1.19 in [12], if f has no critical point v € 8B.(0),
then there exist @ > 0 and a homeomorphism ¢ : £ — E such that
P(0) =0, P(e) = e and f(¥(u)) > a > 0, for every u € 0B,(0). On that
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case, ¢ > « > 0 is a critical value of f by Theorem 3.1. The theorem is
proved. O

Remark 3.7. Asin Theorem 1.13 of [12], to get the homeomorphism used
in the proof of Theorem 3.6, we need only a local version of Palais-Smale
condition at level zero.

As our final result in this section, we state a natural generalization
of Theorem 3.1 which relates the existence of critical points for the
functional f : E — R with the topology of the level surfaces of f. Given
a topological space X, we denote by fIk(X ) the k-th reduced singular
homology with integer coefficients.

Theorem 3.8. Let E be a real Banach space and suppose that f : E — R
is a functiondl of class C1 satisfying (GPS) for some ¢ € A. If H,(Sc(f))
is not trivial for some ¢ € R, then f possesses a critical value d # c.
Proof. For k € NU {0}, we set D]f+1(0) = {z € RFFL|||z]| < 1}. Given
v : 8% = 8D1(0) — S.(f), we denote by [7] the equivalence class of 7 on
Hy(Se(f)). Following the proof of Theorem 3.1, we define

Clk = 'yel{“lf B max eD’H'l( 0) F((x)), (3.11)

with

1k ={¥ € C(DJTH0), B) | 4(z) = v(2), ¥z € S*}. (3.12)

As before, if ¢y is not a critical value of f, then, necessarily, c; , = ¢
and there exists 4 € T'y ;, N f¢. In this case, we define

ok = fyelf_‘lf . Mk, pk+l(g) f(y(x)), (3.13)

with
= {§ € C(D1(0), fO) | Az) = v(z), ¥ = € S*). (3.14)

If ¢k is not a critical value of f, the argument employed in Lemma
3.4 shows that there exists 4 € I'1 such that §(D1(0)) C S.(f) and,
consequently, [y] = 0. Thus, we have shown that [y] # 0 if, and only if,
f has a critical value d # ¢. The theorem is proved. : O
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Remark 3.9. We observe that Theorem 3.8 may be used to establish
new versions of generalizations of the Mountain Pass Theorem [11, 12].

4. Rolle’s Theorem on R?
In this section, we apply Theorem 3.1 to establish our version of Rolle’s
Theorem on R2. Moreover, this theorem is applied to prove a global
univalence result for a class vector fields on the plane. Before stating
such results, we need to introduce some preliminaries.

Given ¢ € R*, and F : R* — R*, k < n of class C1, we follow the
notation used in section 2 and set S.(F) = F~1({c}). We denote by K
the set of singular points of F', and we note by K, the set K N S.(F).

Theorem 4.1. (Rolle’s Theorem on R?.) Let F = (fi, f2) : R? — R? be
a vector field of class C1 with fi satisfying (GPS) with respect to some
¢ € A. Assume that there exist two distinct points u and v belonging to
Sc(F), ¢ = (cy,¢9), in such a way that ¢1 s an admissible level for fi.
Then, either

(i) w and v are in the same path-component of Sc(F), or

(ii) F has a singular value d # c.

Remark 4.2. (i) Note that the above result is independent of the choice
of the coordinates system, and that (GPS) condition is assumed for just

one coordinate of F'. (ii) We recall that the argument used in the proof
of Theorem 4.2 also holds if f; is of class C! and fo is differentiable.

Proof. By Theorem 3.1, it suffices to suppose that v and v are in the

same path-component of S, (f1). Let v € C([0, 1],R?) be such that
Y(0) = u, ¥(1) = v, and

fiy®) =1, V€01, (4.1)
Then, h = fo oy € C(]0,1],R) and satisfies h(0) = h(1) = co. Further-
more, we have the two following excluding possibilities
(i) h(t) =cg, for all t € [0,1], or
(ii) There exists ¢t € (0,1) so that h(t) # co.
On the first case, u and v are in the same path-component of S.(F). If
(it) holds, we claim that F possesses a singular value d # ¢. Without
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loss of generality, we assume that h(tg) = max,c|g ) h(t) > co. Arguing
by contradiction, we suppose that the claim is not true. Since v(¢g) is a
regular point of F', we may use (4.1) and the Tmplicit Function Theorem
to assume that v is differentiable on ty and +/(ty) # 0. From (4.1) and
our choice of ty, we get

(f1(v(t0)), 7 (t)) = O.
(fa(v(t0)), ¥ (to)) = 0.

Consequently, fi(v({p)) and f5(y(tg)) are linearly dependent. Thus, d =
(c1, fa(v(tg))) # c is a singular value of F'. The theorem is proved. O

Corollary 4.3. Let F' = (f1, f2) : R2 — R2 pe a vector field of class
CY with f1 satisfying (GPS). Assume that there exists ¢ = (c1,cg) € R?
such that F' has no singular value d # ¢. Then, either

(i) Sc(F) possesses at most one point, or

(1) S.(F) possesses a nontrivial component.

Proof. Let u and v be two distinct points of S.(F) and assume, by
contradiction, that the components of S.(F') are trivial. Since F does
not have a singular value d # ¢, we obtain that {w € R2 | filw) =0} C
Sc(F). Thus, ¢1 is an admissible level of f;. But, now Theorem 4.1
implies that F has a singular value d # ¢. The corollary is proved. O

Remark 4.4. We notice that we may substitute S.(F") by K. in condi-
tion (ii).

Corollary 4.5. Let F' = (f1, f2) : R2 — R? be a vector field of class
Ct with f1 satisfying (GPS) and F(0) = 0. Assume that F' is a local
diffeomorphism on R? \ So(F) and locally injective on So(F'). Then,
F(u) #0, for every u € R?\ {0}.

Proof. If F(u) =0 for some u # 0, by Corollary 4.3, So(F") should have
a nontrivial component. But, this contradicts the fact that F' is locally
injective on Sp(F'). The corollary is proved. O

Theorem 4.6. (Global Injectivity Theorem.) Let F = (f1, fo) : R? — R?
be a vector field of class C1 with f1 satisfying (GPS) with respect to some
¢ € A. Then, F is globally injective provided it is a local diffeomorphism.
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Proof. Given ¢ € R™ S.(F) possesses only trivial components. Hence,
Corollary 4.3 implies S.(F) has at most one point. Theorem 4.6 is
proved. O

Remark 4.7. Theorem 4.6 holds for F = (f1, fo) with fi of class C1
and fo differentiable, if we assume that F is locally injective and has no
singular points (See Remark 4.2-(ii)).

4.1. Examples
Here, we present some examples and applications of the results obtained

in this section.

1. The following example has been given in [6]. Consider F' = (f1, f2) :
R2 — R? the polynomial mapping defined by

F(z,y) = (x + (y + 2%y +2%), ¥ (z,y) € R%

Then, F' is a local diffeomorphism since det(F'(x,y)) = 1, for every
(z,y) € R?. Furthermore, it is easy to verify that fo(x,y) satisfies (PS),
i. e., (GPS) with respect to ¢(s) = 1. Therefore, by Theorem 4.6, F is
globally injective.

We remark that we may not apply Theorem 1 of [6] to show that Fis
globally injective. We also notice that trace(F'(z, y)) = 2+ 4z (y + z2) >
2>0ifx<0andy< —x2, orx > 0andy > —z2, Hence, the global

injectivity is not a consequence of the main result of [3].

2. Consider F' = (fl,‘fg) : R2 — R? of class C! such that fl(x,vy) =
Az + €% + a(y), with A > 0. Thus, (f1).(u) = A +€* > A, for every
u = (z,y) € RZ. Assume that fy satisfies

A+ (f2)yw) — W) (f2)a(u) £0, Vu=(z,y) €R®. (¥
Then, Theorem 4.6 implies that F' = (f1, fo) is globally injective. Note

that we do not assume any extra hypothesis on det £”(z,y) besides con-
dition (*).

3. Suppose that F' = (f,9) : R2 — R? is of class C! and assume that
there exists ¢ € A such that
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i) ¢(@h) < /W), ¥V ueR?, and

(i) (fagy = gofy)(w) #0, ¥V u=(z,y) € R*.

Then, F is globally univalent in R? by Theorem 4.6. This result is
related to a theorem by Nikaido [8, 9] which states that F' is a global
diffeomorphism under conditions stronger than (i) and (ii). We notice
that it is not difficult to give examples of F' satisfying (i) and (ii) which
are not surjective (See the previous item).

4. Consider F(z,y) = (f1, f2) = (¢* — % + 3,4ye* — y3). Then, F is a
local diffeomorphism; but, it is not injective since F'(0,2) = F(0,—2) =
(0,0). By Theorem 4.6, for every nonincreasing locally Lipschitz func-
tion ¢ : (0,00) — (0,00) such that [;° ¢(t)dt = oo, there exists a se-
quence (T, Ym) — 00, a8 M — 00, such that f1(®m,ym) — ¢1 = 3 and
W 1@, Y ) I/ O (@, Ym) || — 0, @8 m — o00. Note that the value ¢; =3
is given by (3.1). A similar result holds for fs.

5. Consider fi(z,y) = log(x? + 1) — log(y? + 1) and assume that f5
R2 -5 R satisfies the following condition:

el b g (o)) 0, Y u = (2,9) € R {0.0) ()

Then, F(x,y) # (0,0), for every (z,y) € B2\ {(0,0)}. Effectively, f1
satisfies (GPS) with respect to ¢(t) = t/(t2 + 1) and (sx) implies F is a
local diffeomorphism on R? \ {(0,0)}. Thus, by Corollary 4.3, the result
holds.

5. Rolle’s Theorem on higher dimensions
In this section, we extend the results of the previous section to vector
fields of class C? defined on dimensions greater than two.

Given n > 3 and 2 < k < n, we denote by P, = {o = {j1, .., jr} €
{1,..,n}|j1 < ... < j}, the family of ordered subsets of {1, ...,n}
with k elements. For every o € Py, we consider the inclusion j, ‘: RF —

R™ defined by
' T, l=Jr€0

) B
We also take P, : R — j,(R¥) the corresponding projection and define
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o, = j;l 0P, :R" — RF. By u; A...Aus_1, we denote the vectorial
product of ug,...,us_1 on R*. For k = 2 and u = (a,b), we set Au =
(—b,a).

Definition 5.1. For o € Py, we define the o-vectorial product of
Ul,..Up_1 onn R™ by

VI Ao o - Ao Vg1 = Jo(Po (V1) A ... A B (VE_1)).

It is not difficult to verify that (vi Ay ... Ag Uk_1,v;) = 0, for every
ie{l,..,k—1}.
Definition 5.2. Given v; = (a;1,...,04) € R?, 1 <i<k<n, and o =
{1, jx} € Pr, we consider the matric My = (asj,,), 1 < i,m < k,
and define

Ag(v, ..., v5) = det [M,],

Ak(U]_,-..,'Uk;) = Z Aga
O’GPk

For k = 1 and o = {j1}, we take A,(v1) = M, = ay;,, and we obtain

and

Aq1(vy) = ||y ||2 From the definitions given above and the properties of
the vectorial product on R*, k > 2, we get

(V1 Ao -« N Vk—1,Vk) = Ag(V1, .. Uk), ¥V 0 € P,
Al i=(n—k+1) Y v Ao... Aol
O'GPk

Now, we may define a generalization of (GPS) condition for vector fields
F=(ft,....fr) :R* = R¥ 1 <k <n. Givenm € {1,..,k}, we denote
by F,, the vector field F,, = (f1,...,fm) : R* — R™. Consider A,
the family of functions given in section 2, and take ¢ € A. Setting
| F (w)]] = Ap(fi(w), ..., fi(w)), for every v € R", we define

Definition 5.3. Given F = (f1,...,fx) : R* - R*¥ 2 < k < n, be a
vector field of class CY and ¢ € R¥, we say that F satisfies the generalized
Palais-Smale condition (with respect to ¢) at ¢, denoted (GPS)., if every
sequence (Up) C R™ such that F(um) — ¢ and

1E (o) e/ 1 Ff 1 () 616w ) — 0,
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as m — 00, possesses a converging subsequence. If F satisfies (GPS),,
for every ¢ € R¥, we just say that it satisfies (GPS).

In the particular case where k = 1, we obtain the original (GPS)
condition by taking || F{(u)| = 1, for every u € R™.

Following the notation used in section 1, we define S.(F) = F~1({c}),
for every ¢ € R¥, and consider K = {u € R"|||F (u)||x = 0}, the set of
singular points of F. We also set K. = K N S.(F) = {u € R*"|F(u) =
¢, |F'(w)l|g = 0}, for every ¢ € R¥. Note that if K, = @, then S.(F) is
a n — k dimensional submanifold of R™. In that case, we say that c is a
regular value of F.

Definition 5.4. Given F' € CY(R™, R¥), we say that c € R¥ is an admis-
sible value if either ¢ is a regular value of F', or the components of K,
are trivial and c is an isolated singular value of I.

Given ¢ € R", we write ¢ = (a,b), a € RF-1 = RE-1 x {0}, b €
R 2 {0} x R. The following result, also proved in section 6, is a natural
generalization of Proposition 2.3.

Proposition5.5. (DeformationLemma.) Suppose that F = (f1,..., fi) :
R™ — RF € C%(R", R*) and satisfies (GPS). Assume that (d,a) is the
only possible critical value of F on {d} x [a,b) and that (d,a) is an
admissible level for F. Then, there exists T : [0,1] x Sg(Fy_1) N (f2\
K(ap)(F)) = Sa(Fe-1) N (FL\ K (g3 (F)) such that

(i) 7(0,u) =u, ¥ u € Sa(Fr_1) N (ff \ Kap)(F)),

(i) 7(t,w) =u, ¥ (t,u) € [0,1] X Si44)(F),

(iit) 7(1,u) € S(g4)(F), ¥V u € Sg(Fr-1) N (fP\ K(ap) (F))-

Note that Proposition 5.5 establishes a deformation lemma for fi
on the manifold M = S;(F;_1) which may have singular points. The
condition (GPS) on this case is based on the projection of the vector
V fr(u) over the tangent space of M at the point w.

Next, we establish the main results in this section. These are natural
generalizations for vector fields of class C? of the results obtained in
section 4.

Theorem 5.6. (Rolle’s Theorem on R™, n > 3.) Let F' = (f1,..., fn) :
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R™ 5 R™ be a vector field of class C? with Fy, . .., F,_1 satisfying (GPS)
with respect to ¢1,...,0,_1 € A, respectively. Assume that there exist
two distinct points u and v belonging to Sc(F), ¢ = (¢1,¢2) € R™, in such
a way that ¢ is an admissible level for F,,_1. Then, either

(i) u and v are in the same path-component of S.(F), or

(i) F has a critical value d # c.

Proof. In the following, we use the notation K (F) = {u € R" | ||F'(u)|| =
0}, K4(F) = K(F)N Sy(f), for every I': R* — R* and d € R*. Consid-
ering ¢ = (¢, c2) given above, we set c1 = (ci, . . .,c?‘l).

Next, we claim that u and v are in the same path-component of
Se, (Fn-1) provided F' has no singular value d # c. Observing that
K(Fy) € K(F,_1), we conclude that ¢, = (c%, ...,c¥) is an admissible
value of Fy, for every k € {1,...,n — 1}. Then, by Theorem 3.1, v and
v are in the same path-component of f; = Fy.

Now, we argue by induction, assuming that u and v are in the same
path-component of Sak,l(Fk—l)’ for 2 <k <n-—1. Let~y:[0,1] —
Sty (
Consider

Fy,_1) be a continuous path such that v(0) = v and (1) = v.

by = max; (o1 fe(Y(8)) = c-
If b > ¢, we apply Proposition 5.5 to obtain 7 : [0,1] X S‘Eml(Fk'l) N
f;:k — Sak_1(Fk‘1) ﬁf;:k such that 7(1,u) € S;;k_l(Fk_l)ﬂka, for every

u € Sﬁk,l(F’f—l) N f,gk, and 7(t,u) = u, for every t € [0,1], u € Sak(Fk)-
Then, v1 = 7(1,~(f)) : [0,1] — Sty Fe-1) N f,:k is a continuous path

such that v1(0) = v and v1(1) = v. Taking vy =~ if bx = ci, we define

ar = ming(g 1) fr(71(t)) < .

If ap = ¢, we have the claim. Otherwise, we may argue as above and
apply Proposition 5.5 to £}, = (f1,-..,—fx) to obtain that u and v are
in the same path-component of S&k(Fk)~ This proves the claim.

So it suffices to assume that u and v are in the same path-component
of Se; (Fr21). Let v : [0,1] — S¢, (F,_1) be a continuous path such that
~v(0) = u and (1) = v. Take h = f, 0y :[0,1] — R. As in the proof of
Theorem 4.1, we have the following two excluding possibilities
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(i) h(t) = ¢y, for all ¢ € [0,1], or
(if) There exists ¢ € (0,1) so that h(t) # c,.

On case (i), v and v are in the same path-component of S.(F). If
(i) holds, we use the same argument of the proof of Theorem 4.1 to
conclude that F' has a singular value d # ¢. Theorem 5.6 is proved. [

We omit the proof of the next three results since the argument em-
ployed is similar to the one used to prove the corresponding results in
section 4.

Corollary 5.7. Let F' = (f1,..., fn) : R® — R" be a vector field of class
C? with Fy, ..., Fy_1 satisfying (GPS) with respect ¢1,...,¢p_1 € A,
respectively. Assume that there exists ¢ € R™ such that F' has no singular
value d # c¢. Then, either

(1) Se(F) possesses at most one point, or

(ii) Se(F') possesses a montrivial component.

Corollary 5.8. Let F' = (f1,..., fn) : R® = R™ be a vector field of class
C? with F(0) = 0 and Fy,..., F,_1 satisfying (GPS) with respect to
D1y - On1 € A, respectively. Assume that F' is o local diffeomorphism
on R™\ So(F') and locally injective on So(F). Then, F(u) # 0, for every
u e R™\ {0}.

Theorem 5.9. (Global Injectivity Theorem.) Let F' = (f{,..., fn) :
R™ — R" be a vector field of class C? with Fy, ..., F,_1 satisfying (GPS)
with respect to ¢1,...,¢n_1 € A, respectively. Then, F' is globally injec-
tive provided it is o local diffeomorphism.

The next result is an immediate application of Theorem 5.6

Theorem 5.10. Let F = (f1,..., [n): R" — R™ be a vector field of class
C? with f1,..., fo_1 satisfying (GPS) with respect to ¢1,...,¢n_1 € A,
respectively. Assume that F is a local diffeomorphism on R™. Then, F
s globally injective provided it satisfies

(i) For each k € {2,...,n — 1}, there exist 0y > 0 and Ry > 0 such that

1F ()l 2 Oll fe()lll Fr 1 (Wllk-15 ¥ [Jull > Ry
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5.1. Examples
Next, we illustrate Theorem 5.9, presenting some examples and appli-
cations.

1. Consider F' = (f1, fo, f3) : R3 — R3 of class C? such that F is a
local diffeomorphism, fi(u) = f(x1,x9), for every u = (z1,z2,23) € R3,
and f; satisfies (GPS). Then, F is globally injective provided there
exists ¢ € A so that ||[(f2)z,(u)]| > ¢(||ul]), for every u € R3. Indeed,
by Theorem 5.9 it suffices to show that Fy satisfies (GPS). But, by
definition,

IFS ()13 = AL, 8Y2(ff (w), fow)) + A2, 3Y(f1 (w), f5(w))
> || @Pe? lull), ¥ u e R,

Hence, F is globally injective. As a direct application of this result, we
obtain, for example, that F(x,y, 2) = (33+(y+:1;2)2+z, Y42, as/2+23+z)
is univalent on R3.

2. Given € € R, Consider F, = (fe,g,h) : R° — R? of class C? such that
fe(@,y,2) = ex + ¥ +log(y® + 1), g(2,y, 2) = ye™>* + g1(2), h(z,y,2) =
hi(y, z) with (h1).(y,2) > 0 and ¢ (2)(h1)y(y,2) < 0 for every (x,y,2) €
R3. We determine the injectivity of F, in function of the parameter e:

(a) F¢ is globally injective if € > 0. Since f/(z,y,2) = (e + 2e2% 2y, 0), we
have that f. satisfies (PS). Furthermore, we claim that (F¢) also satisfies
(PS), i.e., (GPS) with respect to ¢(t) = 1. We argue by contradiction one
more time, supposing that there exists a sequence U, = (Tm, Ym, Zm),
m € N, such that (Fo)a(um) — ¢ = (c1,¢2), ||(F)sum)ll2/ || filum)|] — 0,
and ||uy,| — oo, as m — oo. From fe(um) — ¢1, we conclude that
either (Zm,ym) € R2 is a bounded sequence or (Zm, Ym) — (—00,00),
as m — oo. On both cases ||fi(um)|| — d # 0 and, consequently,
|(Fe)5(um)|| — 0. But, this contradicts

[(Foh@)ll2 > A2y (fl g')(w) = ee ™ + 4y?e ™7 /(y? +1) +2 > 2,

for u = (z,y, 2) € R3. The claim is proved. Since F. is a local diffeo-
morphism on R3, Theorem 5.9 implies F¢ is globally univalent.
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(b) F is not injecﬁve if € < 0. Let z. € R be such that ez, + e2%¢ = 1.
Then, Fe(z,0,0) = Fe(0,0,0) = (1, 91(0), ~(0,0)).

(c) F; is globally injective if € = 0. Let u,, = (Tm, Ym, 2m), m € N, be a
sequence such that fo(u,) — ¢1 > 0. By the definition of fj, we find
M > 0 such that z,, < M, |ym| < M, for every m € N. Furthermore,
(Tm, Ym) 7> (—00,0) since, on that case fo(um) — 0, as m — oo. Using
those facts, we obtain that || fy(um)|| — d # 0, as m — oco. Now, we
may argue as on item (a) to conclude that fy satisfies (P.9)., for every
¢ >0, and (Fp)o satisfies (PS),, for every ¢ = (¢1, ¢o) with ¢ > 0.

As fo(u) > 0, for every u € R3, we deduce from Theorem 3.1 and
Remark 3.5-(i) that S.(fp) is path-connected for every ¢ > 0. Actually,
the same argument allows to apply Theorem 5.9 to conclude that Fy is
globally injective since (Fp)o satisfies (PS)., for ¢ = (c1, ¢2), with ¢; > 0.

6. Proofs of Propositions 2.3 and 5.5

Proof of Proposition 2.3. Let V(u) be a pseudo-gradient vector field
associated to f on E = {u € E| f'(u) # 0} (See [11]). Recall that V is
a locally Lipschitz continuous map so that, for every u € E, we have

V()| < 201 f (w),
(V(w), f'(w) > || ()]

Given the initial value problem

(6.1)

Vintt, v)g(lintt, )
V@ w)l? (6.2)
n(0,u)=ue A= f"\ (K, U f),
By the theorem of existence and uniqueness for ordinary differ-

d
%n(u U) =

ential equations, there exists a maximum time ¢*(u) > 0 such that
n(t,u) is defined on [0,tT(u)), for u € A. Setting T, = max{s €
[0,£7(w),| f(n(s,u) > a}, for u € A, our main objective is to study
the behaviour of n(t,u) as t — T,.

Using the properties (6.1) of a pseudo-gradient vector field, we have

i) <~ ollneil) <0, Ve € 0t w). (63)
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Furthermore, given d > 0, by (GPS), we obtain § > 0 such that
1 )l = sl (W), Vue A\ Na(K). (6.4)

Assuming the hypothesis and the notation of Proposition 2.3, we need
some preparatory lemmas.

Lemma 6.1. There exists dy > 0 such that for every solution n(.,u) of
(6.2), 0 <ty <te <T, and 0 < d < dy satisfying
In(ty,uw) — K|l = d/2,
In(ta, u) — Kol = d, (6.5)
d/2 < |In(t,u) = Kol < d, V11 <t < to.
Then, there exist 6 = 6(d) > 0 and o = a(d) > 0 such that

by —t1 > 6_2d, (6.6)
and .
a < f(n(te,u)) < fn(t,u) — 104(?52 — 1) (6.7)

Proof. Taking dj smaller if necessary, we choose 6 = §(d) such that (6.4)
holds for every u € A\ Ng/2(K). Hence,

d
|l < 5Vt fttal

That implies immediately (6.6). Furthermore, since K, is compact, from
(6.5), we get M > 0 such that ||n(t,u)|| < M, for every t € [t1,t9]. Using
(6.3), we obtain & > 0 so that

%f(ﬁ(tvu)) < _ia, Vi€ [ty,ta].

The above inequality provides (6.7). So Lemma 6.1 is proved. 0O

Definition 6.2. Given a topological space M, a compact set K C M, and
a continuous map m : [0,t9) — M, tg € RU {oo}, we say that the pair
(n, K) satisfies the strong attraction property, denoted (SAP), at to if
there exists v € K such that limy ., n(t) = v, whenever liminf; ¢, ||7(t)—
K| =o.
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Lemma 6.3. Given v € A and considering n(t,u) the corresponding
solution of (6.2), we have

(a) fln(t,w) — a ast — Ty,

(b) The pair (n(.,u), K,) satisfies (SAP) at T,.

Proof. Arguing by contradiction, we suppose that (a) does not occur.
From (6.3), there exists a € (a,b) such that f(n(t,u)) —a, as t — Ty,.
Using the compactness of K, U K3, we obtain d > 0 such that n(t,u) €
A\ Ny(K) for every t € [0,T,). Consequently, by (6.4), we find § > 0
so that Hf (nt,u)|l > do(IIn(t,u)|), t € [0,T). The last inequality
and (6.2) imply that Hzﬁn tu)| < 3, for every t € [0,7,). Therefore,
In(t, il < ful + £, and

¢ $
Font,w) < fw) = [ ol + 3 ds, Ve € 0,T)

provided that ¢(s) is nonincreasing. As [y° ¢(s)ds = oo, we get that
T, < oo and, from the above bound on || gdz??(t» u)||, there exists v € S;(f)
such that n(t,u) — v, as t — T,,. But, that contradicts the definition of
T, since n(t, u) would be defined on [0, s], s > T3, and f(n(t,u)) > a, for
every t € [0,s]. That proves (a). '

To verify (b), we suppose liminf; 7, ||7(t, u) — K,|| = 0. First of all,
we assert that lim; 7, [|[n(t, u) — K, = 0. Argumg by contradiction, we
assume that this is not verified. Considering dy given by Lemma 6.1, we
find 0 < d < dgy and sequences 0 < 11 < 81 < ... <tm < 8m < ... < Ty
such that ¢, and s,, satisfy (6.5), for every m € N. Consequently,
Sm — tm > %d, and

1

@ < F05m0)) < F (0t 0) = 1005 — b) < f0(5m_1,w) — <adb.

Hence, T,, < > and 8, — t;, — 0, as m — oo. But, that provides a
contradiction. Therefore, lim; 7, |[n(t, u) — K,|| = 0, as claimed.

From the compactness of K,, we get M < oo such that ||n(t, u)| <
M, for every t € [0,T,). Using this relation and (6.3), we get & > 0 so

that

d
S ft,w) < —é, V't € [0,70).
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This equation implies that 7}, < co. Furthermore, since K, is compact,
we may find z; € K, and a sequence #,, — T, as m — 00, so that
N(tm, u) — 21, as m — oo. If n(t,u) /4 21, as t — Ty, we would obtain
z9 € Ky \ {#1} and 8, — T, satisfying n(3,,,u) — 29, as m — 00. As
the connected components of K, are points, by the Separation Lemma
[2], there exist disjoint compact sets K7 and K» satisfying K, = K1UK>
and z; € K;, i = 1,2. Taking 0 < d < rnin{dg,%HKl — Ks||}, we find
sequences 0 < t] < 81 < ... < tyy < 8y < ... < Ty, with t,, — T,
as m — 00, and tn, Sy satisfying (6.5), for every m € N. The same
argument used above gives us a contradiction. The lemma, is proved. O

The reasoning employed in the proved of Lemma 6.3 provides a uni-
form bound for n(t,u) on the interval [0, Ty,).

Corollary 6.4. T, < oo, for every u € A. Moreover, there exists M < oo
such that ||n(t,u)|| < M, for every t € [0,T,).

Proof. If liminf, .1, ||n(t,u) ~ K, = 0, The thesis of Corollary 6.4 has
already been proved in Lemma 6.3. Otherwise, we argue as in the first
part of the proof of that lemma to obtain the conclusion. O

Lemma 6.5. (a) Given u € A, there exists v € S, so that

lim; 1, n(t, u) = v.

(b) The application T : A — R given by T'(u) = T, is a well defined
continuous map.

(c) Given w € S, and a sequence (up,) C A such that u, — u, as
m — o0, we have T(uy) — 0, as m — oo.

Proof. To show (i)-(ii), we consider two possibilities:

1. liminfy g, ||9(t, u) — K| > d > 0. By Corollary 6.4, T,, < oo and

n(t,u) is uniformly bounded for ¢t € [0,73,). Applying (6.4) and the

argument used in Lemma 6.3, we get that n(t,u) — v € Sa(f) \ K. (ii)

is a direct consequence of continuous dependence of solutions of (6.2)
with respect to initial conditions.

2. liminfy 7, ||n(t,u)— K| = 0. Lemma 6.3 implies the pair (n(t, u), K,)
satisfies (SAP). Thus, (i) must hold. Furthermore, by Corollary 6.4,

Bol. Soc. Bras. Mat., Vol. 29, N. 2, 1998



A VERSION OF ROLLE’S THEOREM AND APPLICATIONS 323

T, < co. To show that T'(u) is continuous on A, we argue by contradic-
tion, supposing there exist v > 0 and (u,,) C A such that u,, - u € A
and |Ty,,, — Tyl > ~v > 0, for every m € N. From the continuity of
n(Ty—",.) at u, without loss of generality, we may suppose T,,,, > Ty, +7,
for every m € N.

We claim that there exists a € (a,min{b, f(u)}) satisfying f(n(T, +
¥/2,Um)) > 4 > a, for every m € N.

Assuming the claim, we take T}, = max{s € [0,t(u)) | f(n(s,u)) > a},

we IP\ (K Ul @) By our previous argument, T,, is continuous since

K; = @. Furthermore, TUm > Ty + /2, for every m € N. Hence,

Tu > Ty + /2 because u,, — u, as m — oo. But, that contradicts

the definition of T;. Thus, to prove the continuity of T, it suffices to

verify the claim. By the continuity fo f, the fact that K} is compact
and (6.4), there exists d; > 0 such that ||n(t, um) — Kp|| > dy, for every

m € N and ¢ € (0,%,,,). Considering dy > 0 given by Lemma 6.1, we

take dg = min{dy,dp}. Taking v smaller, if necessary, we may assume

that v < 36(da)da, with 8(ds) given by Lemma 6.1, and that n(., u,) is

well defined on I = [T, — /2, T, + 27v/3], for every m € N.

Now, we consider the three possibles cases: ‘

(a) limsup,,_o |1, um) — Kaf|l < do. Since K, is compact, we obtain
M < oo such that ||n(¢, um)|| < M, for every t € I, m € N. Applying
(6.3) and observing that f(n(T,+27v/3, um) > a, we obtain the claim.

(b) liminf,,—.co |71, Um) — Koal| > do/2 > 0. In view of (6.4), we get

]]%n(t,um)ﬂ < %, Vtel, meN.

Therefore,

It wm)l < 19T = /2, 0m)] + 50 = T +7/2), ¥ t€ 1, mEN.

From the continuity of n(T, — 7v/2;.) at u, we also obtain that

In(t, um)| is unformly bounded for t € I, m € N. As before the
claim is proved.

(¢) Bminf, oo |71, Um) — Kal| < d2/2 < da < limsupy, o |71, Um) —

~ K,||. Taking a subsequence if necessary, we find ¢, < spm, tm, sm € 1
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such that (6.5) holds. Applying Lemma 6.1, we have

FONT+ /2, ) = f((500,0) + 06 > a, ¥ m € N

That proves the claim.

Our final task is to verify that Ty, — 0, as u,, — u € S,(f). If
u ¢ K,, the result is easily obtained.

Thus, we may suppose u € K,. Arguing by contradiction, we as-
sume [Ty, > €, for every m € N. If there exists M < oo such
that ||n(t, un)l] > M, for every t € [0,T),,), m € N, from (6.3) and
f(um) — f(u), we must have Ty,, — 0. Hence, The last relation
cannot happen. As u,, — u, we obtain 0 < d < dy and t,, < 8,
tim, Sm € [0, Ty,,) such that (6.5) holds for every m € N. Using Lemma
6.3 and f(um) — f(u), we also obtain a contradiction. Lemma 6.5 is
proved. . O

‘Using Lemma 6.5, we set n(Ty, u) = limy_7, (¢, u), for every u € A.

Lemma 6.6. The applicationm : [0,1]x A — fb\Kb defined by m1(t,u) =
n(tTy,u) is continuous. Moreover, if (Ly,um) € [0,1] x A, for every
m € N, and up, — u € Su(f), as m — oo; then, m(t,u) — u, as
m— 0.

Proof. The continuity of ny at (f,u) € [0,1] x A when (T}, u) € K, or
t < 1 is easily obtained.

Thus, we suppose v = n(Ty,u) € K, and t = 1. Arguing by
contradiction once again, we assume that there exists ((tm,um)) C
[0,1] X A so that wy, — U, tm — 1, but vy = NtmTum, Um) 7 v, a8
m — oo. Furthermore, we may assume there exists ¢ > 0 such that
In(tmTum s wm) — || > € > 0, for every m € N. Now, we consider the
following possibilities:

1 1n@mTum, um) — vl > d > 0. Since the pair (n(t,u), K,) satisfies

(SAP) at T, we have v > 0 such that ||n(t,u) — K| < §, for every

t € [Ty — v,T,]- The continuity of T, provides the existence of

mo € N such that ¢,,T,,, > T, — /2, for every m > mg. Moreover,

Ty — v, um) — Ty, — v,u), as m — oo. Taking d smaller if

necessary, we obtain Ty, — ¥ <t < 8, < Ty,, such that (6.5) holds
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for m sufficiently large. Invoking Lemma 6.1, we get &y, independent
of m, so that §pd < 2(8m — tm) < Tup, — Tu +v. As Ty, — Ty,
as m — 00, and 7 > 0 can be taken arbitrarily small, we get a
contradiction.

2. liminfy— o0 [1(EmLium, tm) — Kal| = 0. By the compactness of K, we
may assume 7(tm Ty, , tm) — 0 € K, \ {v}. Now, we use the sepa-
ration lemma and the argument used before to get a contradiction
with T,,, — Ty, as m — co. That shows the continuity of ny.

Working in a similar fashion, we may also verify that n(¢,,1;

Umaum) — U

when u,, — u, as m — oo. Lemma 6.6 is proved. O

Conclusion of the Proof of Proposition 2.3. Define 7 : [0, 1] x (f*\ K,) —
(f*\ K) by

u, (t,u) €[0,1] x f,
T(t7 u) = { b a
mtu), (6 € 0,1 x [\ (KU f7).
From Lemmas 6.5 and 6.6, 7(¢,u) is a continuous map and satisfies the
thesis of Proposition 2.3. , O

Remark 6.7. We may have b = oo on Proposition 2.3. In other words,
if the functional f(u) does not have a critical value above the level a;
then, ¢ is a strong deformation retract of E.

Proof of Proposition 5.5. The proof is similar to the proof of Proposition
2.3. For that reason, we only verify the main estimates.
First, we consider the vector field W : R®™ — R” given by
depk (filw)re. Ao fp_q () Do (u)
Wu) = oI
0, otherwise,

, ifudd K,

where we used the notation Ag(u) = As(fi(u),..., fi_1(w)). Next, we
consider the following initial value problem

d

(6.8)
n0,u) =u € A= Sa(Fe1) N\ (Kgp) U fR).

Bol. Soc. Bras. Mat., Vol. 29, N. 2, 1998



326 ELVES ALVES DE B. E SILVA AND MARCO ANTONIO TEIXEIRA

For every u € A, n(t,u) is defined on a maximal interval [0, 7 (u)). Given
t € [0,t7(u)), we get

d
i) = —(fi(n(t, ), Wn@t, u))é(lInt, wl), vie{1,.. .k}
Therefore, by the definition of W, we have

%fi(n(t,u)) =0, Vte[0,tT(w), ie{l,....k—1}.
This implies that n(t,u) € Sg(Fg_1), for every ¢ € [0,t" (u)). Moreover,

for every t € [0,1],

d  Toep, A3(n(t,w)
= —o(lIn(t, wll)-
By (GPS), given d > 0, we get § > 0 such that
[E" (W)l = oa(llulDliFz_1(@)lls-1, ¥V u € A\ Ns(K). (6.10)

Consequently, by Schwarz inequality on RY, where N = #(P), we get

1/2
Wu) < (Z 1f1(u) Ao - Ao f;é_l(u)HZ) IF" ()]l
o€PL (611)

< (n—k+ DY F_y ()51 |F' @)l
< (n—k+1)Y2@([ul))
for every u € A\ Ns(K). It is not difficult to see that equations (6.9),

(6.10), (6.11) and the argument used in Proposition 2.3 provide the
proof of Proposition 5.5. )
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