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Palais-Smale conditions. As a consequence of this, we prove global injectivity for a 
class of vector fields defined on n-dimensional spaces. 

Keywords: Rolle's theorem, minimax methods, global injectivity. 

1. Introduct ion 

Results  on global univalence of vector fields have been the object  of 

intense research in recent years. In several branches of Mathemat ics  

important  questions are related to these results. We refer the reader to 

[9,7",3] for further references and connections with other problems. 

In this work, our main purpose is to establish, via minimax methods,  

new versions of Rolle's Theorem, providing further sufficient conditions 

to ensure global univalence for locally injective vector fields. 

Given a real Banach space E and a functional f : E --+ ]R of class C 1 

satisfying a generalized version of the compactness condition introduced 

by Palais-Smale [11], we relate the existence of critical points for f with 

the topology of the level surfaces So(f) = f - l ( { c } ) ,  c E IR. 

In our basic theorem, we show that  either Sc(f) is path-connected or 

f : E --+ R possesses a critical point. This result can be easily seen as a 

version of Rolle's Theorem for domains with dimension greater than one. 
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We also provide a minimax characterization of the possible critical levels 

of the functional, relating Rolle's Theorem with the famous Mountain 

Pass Theorem of Ambrosett i-Rabinowitz [1]. 

We generalize our basic theorem by proving the existence of critical 

levels when So(f) is not homologically trivial. This relates our results 

with the notion of linking and generalizations of the Mountain Pass 

Theorem. 

As a consequence of our basic theorem, we establish a version of 

Rolle's Theorem for vector fields of class C 1 on IR 2. Using this result, 

we prove global injectivity for a class of locally injective vector fields on 

the plane. 

In this article, we also prove a version of Rolle's Theorem for vector 

fields of class C 2 on higher dimensions. To derive such theorem, we 

establish a deformation lemma based on the minor determinants  of the 

Jacobian matr ix  of the vector field. The global univalence of those 

vector fields is also studied. Unlike most of the known results, to obtain 

global univalence for a local diffeomorphism on IR n, we assume an extra 

hypothesis on only (n-1)-coordinates of the vector field. 

In [10], Rabier used a deformation result and arguments of differ- 

ential topology to generalize Hadamard  Theorem on global diffeomor- 

phism for euclidean spaces. We notice tha t  in [10], the author considers 

a notion of admissible flow which is closely related to our generalization 

of the Palais-Smale condition. In [4], Katriel studied global homeo- 

morphism theorem for certain topological and metric spaces by proving 

two versions of the Mountain Pass Theorem without assuming tha t  the 

functional is of class C 1. 

We should also mention tha t  new versions of Rolle's Theorem have 

been recently obtained by Khovanskii and Yakovenko [5] (See also the 

references therein). Considering analytic functions on the complex 

plane, in [5], the authors are able to relate the number of zeros of the 

function with the number of zeros of its derivative. 

In [6] is proved tha t  a C l - m a p p i n g  f : N 2 --+ R 2 is globally one-to- 

one provided that:(i) for each x E R 2 detf'(z) r 0 and (ii) there exist 

linearly independent  vectors vi (i = 1, 2) in IR 2 such tha t  0 does not 
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belong to the convex hull {f '(x)vi;  x E R2}, i = 1, 2. 

The main result proved in [3] is related to the Conjecture on Global 

Asymptot ic  Stability (or Marcus-Yamabe Conjecture) in 2D. it  says the 

following: A C 1 - m a p p i n g  f : R 2 ~ R 2 is globally one-to-one provided 

that  f(0) = 0 and all the eigenvalues of f ' (x )  have negative real parts, 

for every x E IR 2. 

The article is organized in the following way: In section 2, we present 

the necessary preliminary results. There, we recall a version of the 

Mountain Pass Theorem after stating a deformation lemma for a gen- 

eralization of Palais-Smale condition. In section 3, we prove our basic 

result and its generalization. In section 4, we prove Rolle's Theorem on 

R 2 and s tudy its applications. In section 5, after presenting a version 

of the deformation lemma for euclidean vector fields, we state a version 

of Rolle's Theorem on R ~, n _> 3. There, we also s tudy the question 

of injectivity for dimension greater than  two. Finally, in section 6, we 

prove the deformations results s tated in sections 2 and 5. 

We are thankful  to the referee for the helpful suggestions and com- 

ments. He has also provided the reference [4] which was not known by 

the authors. Following his suggestion, it is our intention to apply the 

argument  employed in [4] to derive topological versions of the results 

obtained in this article. 

2. Preliminaries 
Let E be a real Banach space and consider f : E --~ R a functional of 

class C 1. Given c E R, we define So(f)  = f - l ( {c} ) ,  the associated level 

surface of f .  By Bp(u) and OBp(u) we denote, respectively, the closed 

ball of radius p centered at u and its boundary. By K we denote the 

set of critical points of f .  Given d E N, we set f a  = {u E E If(u) _< d}, 
fa = {u E E i f ( u  ) >_ d} and [s = {U E E I f ( u  ) = d, f ' (u)  = 0}. 

Consider A, the family of functions r : (0, ec) --+ (0, ec) which are 

noninereasing, locally Lipschitz continuous and satisfy fo ~ r dt = ec. 

The following version of Palais-Smale condition is assumed: 

Definit ion 2.1. Given f E CI(E ,  IR) and c E R, we say that f saris- 
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ties the Generalized Palais-Smale condition (with respect to d) E A) at 

level c E •, denoted (GPS)c,  i f  every sequence (u,~) c E satisfying 

f(u.~) ~ c and IIf'(Um)ll/r ~ O, as m ~ oc, possesses a con- 

verging subsequence. I f  f satisfies (GPS)c for every c E N, we just say 

that it satisfies (GPS) .  

We note tha t  when r - 1 and r = 1/(1 + t), we have, respec- 

tively, the usual Palais-Smale condit ion [11], denoted  by (PS), and its 

generalization due to Cerami [13]. In order to obtain a deformat ion 

lemma for (GPS) condition,  we shall need to make a restrict ion on the  

topological s t ructure  of the critical points  of the  functional.  

Definition 2.2. We say that a component of a set of E is trivial i f  it has 

only a point. Given f E C I ( E , R ) ,  we say that c C Is is an admissible 

level i f  either c is a regular value of f ,  or the components of Kc are 

trivial and c is an isolated critical value of f . 

The following result is a sharper  version under  (GPS)  condi t ion of 

a deformat ion lemma due to Chang [2]. The  p roo f  is a variation of the 

original one and it will be given in section 6 (See also [13], for a related 

result). 

Proposition 2.3. (Deformation Lemma.) Suppose that f E C I ( E , R )  

and satisfies (GPS) with respect to some r c A. Assume that  a is the 

only possible critical value of f on the interval [a, b) and that a is an 

admissible level. Then, there exists a continuous map 

~-: [0, 1] • (fb \ Kb) --~ fb \ Kb, so that 

(i) u) = u, v u fb \ Kb 
(ii) ~-(t,u) = u, V (t ,u) E [0, 1] x fa  

(iii) T(1, u) E f a  V u E f b \ K b  

To provide a version of Rolle's theorem on spaces of dimension 

greater than  two, in section 5, we establish a deformat ion l emma which 

depends  on the minor  de te rminants  of the Jacobian mat r ix  of the given 

vector field. 

In what  follows, we recall the Mounta in  Pass Theorem of Ambroset t i -  

Rabinowitz [1]. 

Bol. Soc. Bras. Mat., Vol. 29, N. 2, 1998 



A VERSION OF ROLLE'S THEOREM AND APPLICATIONS 305 

Theorem 2.4. Let E be a real Banach space and suppose f E CI(E ,  IR) 

is a functional satisfying f(O) = 0 and (PS) .  Assume,  f satisfies 

(i) There exist p > 0 and c~ > 0 such that 

f ( u )  > c~ > O, V u E OBp(O), 

and 

(ii) There exists e ~ E \ Bp(O) such that f ( e )  = O. 

Then, f has a critical value c >_ c~ characterized by 

with 

c = inf maxtcr0,11 f(7(t)),  
~/EF t J 

F =  {q/E C([0,1],E) I "7(0) =0 ,  ~y(1) = e } .  

We notice tha t  Theorem 2.4 is a consequence of our basic result (See 

Remark 3.2-(iii)). In this article, we also establish a version of Theorem 

2.4 for a setting where a = 0 and the functional satisfies (GPS) with 

respect to some r E A. 

3. The  Level  Surface  T h e o r e m  

In this section, we prove our basic result which is used in the sequel to 

establish a version of Rolle's Theorem on R 2. We also present another  

version of Theorem 2.4 and a result that  relates the topology of the level 

surfaces of the functional and the existence of critical points. 

Theorem 3.1. (The Fundamental Theorem.) Let E be a real Banach 

space and suppose that f : E --+ R is a functional of class C 1, satisfying 

( G P S )  for some 0 E h. Assume  that c E R is an admissible critical 

level of f and that u and v are two distinct points of So. Then, either 

(i) u and v are in the same path-component of Sc( f ) ,  or 

(ii) f has a critical value d r c. 

Remark  3.2. (i) Theorem 3.1 can be seen as a version of Rolle's Theorem 

for functionals defined on real Banach spaces. (ii) As in Theorem 2.4, we 

obtain a minimax characterization of the possible values of d. Moreover, 

if f E C I ( E , ~ )  and Theorem 3.1 fails, we have tha t  f does not satisfy 

( G P S )  in at least one of those possible values. (iii) Note also that  
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T h e o r e m  3.1 may  be  seen as a general izat ion of T h e o r e m  2.4 since the  

hypothes i s  of this last  result  implies t ha t  0 and  e are not  in the  same 

p a t h - c o m p o n e n t  of So( f ) .  

Before  proving T h e o r e m  3.1, we need to es tabl ish  two pre l iminary  

results.  Consider ing u, v E S~(f) ,  given in T h e o r e m  3.1, we define 

c I = inf maxte[0,1 ] f(3,(t)),  (3.1) 
7EF1 

with  

r l  = {3` e c ( [o ,  1], z )  l 3`(0) : 3,(1) = v} .  (3.2)  

As a consequence  of P ropos i t i on  2.3, we have 

L e m m a  3.3. Suppose c is an admissible value of f . Then, either Cl > c 

and Cl is a critical value of f ,  or there exists 3  ̀~ r l  such that 

maxt~[0,1 ] f (7 ( t ) )  <_ c. (3.3) 

P r o o f .  First ,  we assume Cl > c. Arguing  by  cont radic t ion ,  we suppose  

t ha t  cl is not  a crit ical value of f .  F rom (GPS) ,  there  exists  0 < e < C l -C  

so t ha t  K O f - l ( [ c  I - e, Cl + e] = 2~. 

We also have 3' E Pl  such tha t  

maxt~[0,1] f (7 ( t ) )  <_ el + e. 

Apply ing  P ropos i t i on  2.3, we ob ta in  7 : [0, 1] x fCl+e __. f q+~  so 

tha t  T( t ,u)  = u, for every u C f q - ~ ,  and  7(1, f f l+~)  C f f l - ~ .  Then ,  

7(1, 3,(t)) ~ r l  and 

maxte[0,1 ] f(~-(1, 7(t)))  _< c I - c. 

However ,  t ha t  con t rad ic t s  the  definit ion of Cl. 

Next ,  we suppose  cl = c. Since c is an admiss ible  level of f ,  there  

exists  e > 0 such t ha t  K N f - l ( [ c -  e, c+ el) = K~. Fur the rmore ,  we have 

3,1 E r l  sat isfying 

maxte[0,1 ]/(3,1(t))  _< c + e. 

As above,  we m a y  invoke P ropos i t i on  2.3 to  ob ta in  ~-(t, u) sat isfying 

(i)-(iii) wi th  a = c and  b = c + e. It  is not  difficult to  show tha t  

3,(t) = ~-(1, 3,1(t)) be longs  to F1 and satisfies (3.3). T he  l emma  is proved.  
[] 
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Now, we define 

wi th  

e 2 = sup mint~[0,1 ] f(~/(t)),  (3.4) 
'TCF 2 

F2 = {7 C C([0, 1], f f ) [  ~/(0) = u, 7(1) = v}. (3.5) 

L e m m a  3.4. Suppose that c is an admissible value of  f and that F2 r Z .  

Then,  ei ther c2 < c and c2 is a critical value of  f ,  or there exists 7 E F 2 

such that 

f ( 7 ( t ) )  = c, V t E [0, 1]. (3.6) 

Proof .  If  c2 < c and  c2 is not  a crit ical value of f ,  we take 0 < e < c -  c2 

and  apply  Propos i t ion  2.3 on - f  to ob ta in  T : [0, 1] • f~2-c --+ fc2-e such 

t h a t  T(t, u) = u, for every (t, u) E [0, 1] • fc+~, and  T(1, f~2-c) C f~2+c" 

If  we take  ~y E F2 so t h a t  

mintE[0,1 ] f ( 7 ( t ) )  >_ c2 -- e, 

and consider ~/(t) = ~-(i, 7(t)), for t E [0, I], we get that 5 C F 2 and 

mint~[0,1 ] f(~/(t)) >_ c2 + e. 

But ,  this  cont rad ic t s  the  defini t ion of c2. W h e n  c2 = c, we apply  Propo-  

si t ion 2.3 for - f  wi th  a = - e ,  b = - e  + e, and  e > 0 sufficiently small. 

Then ,  we argue as above to ob ta in  a p a t h  7 E P2 sat isfying (3.6). The  

lemma is proved. [] 

Proof  o f  Theorem 3.1. Suppose t h a t  u and  v are not  in the  same pa th-  

componen t  of So( f ) .  Consider ing Cl and  c2 given by (3.1) and  (3.4), 

respectively, we claim t h a t  at  least one of those values is a critical value 

of f .  Effectively, if we suppose otherwise,  L e m m a  3.2 implies F 2 ~ Z.  

Consequent ly,  by  L e m m a  3.3, we mus t  have 7 : [0, 1] -+ S c ( f )  such t h a t  

7(0) = u and  7(1) = v. But ,  t h a t  contradic ts  the  fact t h a t  u and  v are 

not  in the  same pa th - componen t  of Sc( f ) .  On the  o ther  hand ,  if f has 

no critical value d ~ c, then,  necessarily, cl = c2 = c and  u and  v are in 

the  same pa t h - componen t  of So( f ) .  Theorem 3.1 is proved. [] 
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R e m a r k  3.5. (i) It is clear f rom the  proof  t ha t  T h e o r e m  3.1 holds if we 

assume (GPS)c  for c c [Cl, c2], where  Cl and c2 are given by (3.1) and  

(3.4), respectively. (ii) Subs t i tu t ing  f by - f  in T h e o r e m  3.1, we obta in  

two o ther  possible crit ical values of f :  

wi th  

and  

wi th  

c3 = sup mint~[0,1 ] I(7( t))  , (3.7) 
, 76F  1 

F 1 : {~ e C([0, 1],E) I "y(O) : u, "y(1) : v}; (3.8) 

c4 = inf maxt~[0,1 ] [(~/(t)), ( 3 . 9 )  
3,EF 3 

r 3 = {'~ E C([0, 1], fc) l 3'(0).= u, "7(1) = v}. (3.10) 

Next ,  we ex tend  to (GPS) condi t ion a version of T h e o r e m  2.4 proved in 

[11 ]  

T h e o r e m  3.6. Let E" be a real Banach space and suppose that f 

C I ( E ,  R) is a functional satisfying f (o)  = 0 and (GPS) .  Assume that f 

satisfies 

(i) There exists p > 0 such that 

f ( u )  > O, V u C OBp(O), 

and 

(ii) There exists e E E \ Bp(O) such that f (e )  = O. 

Then, f has a critical value c > 0 characterized by 

c = inf maxter 0 11 f(~/(t)), 
21EF L , J 

with 

r : e c ( [ o ,  1], E )  I = o, : e}.  

Furthermore, i f  f does not have a critical point u on OB~(O), for some 

O < r < p, then c > O. 

Proo f .  By Lamina  1.19 in [12], if f has no crit ical point  u E OB~(O), 

t hen  there  exist a > 0 and  a h o m e o m o r p h i s m  g? : E --+ E such tha t  

g?(0) = 0, g)(e) = e  and  f ( • (u))  > a > 0, for every  u E OBT(O). On t h a t  
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case, c > c~ > 0 is a critical value of f by Theorem 3.1. The theorem is 

proved. [] 

Remark  3.7. As in Theorem 1.13 of [12], to  get the homeolnorphism used 

in the proof of Theorem 3.6, we need only a local version of Palais-Smale 

condition at level zero. 

As our final result in this section, we state a natural  generalization 

of Theorem 3.1 which relates the existence of critical points for the 

functional f : E ~ IR with the topology of the level surfaces of f .  Given 

a topological space X, we denote by Hk(X) the k-th reduced singular 

homology with integer coefficients. 

Theo rem 3.8. Let E be a real Banach space and suppose that f : E ~ R 

is a functional of class C 1 satisfying (GPS) for some ~ 6 A. I f  H.(S~(f))  

is not trivial for some c 6 JR, then f possesses a critical value d r c. 

Proof .  For k E H O {0}, we set D~+I (0 )  = {X E Rk+ll Ilzll _< 1}. Given 
7 :  Sk = 0DI(0) -~ S~(f), we denote by [7] the equivalence class of ~ on 

H~(Sc(f)).  Following the proof of Theorem 3.1, we define 

Cl,k = inf inaXz~Dlk+l(0) f(~(x)) ,  (3.11) 
~EFl,k 

with 

rl,k = {+ O(D  Fl(o>, E>I = V �9 Sk}  (3.12) 

As before, if Cl,k is not a critical value of f ,  then, necessarily, Cl,k = c 

and there exists ~/6 rl ,k c~ f~. In this case, we define 

c2,k = inf maxxEDlk+l(0)f(~(x)), (3.13) 

with 

r2,k = {~/E C(DI(O), fc) l @(x) = 7(x), V x E S~}. (3.14) 

If c2,~ is not a critical value of f ,  the argument  employed in Lemma 

3.4 shows tha t  there exists ~/ 6 Fl,k such that  ~/(DI(0)) C S c ( f ) a n d ,  

consequently, [7] = 0. Thus, we have shown tha t  [7] r 0 if, and only if, 

f has a critical value d r c. The theorem is proved. [] 
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Remark  3.9. We observe that  Theorem 3.8 may be used to establish 

new versions of generalizations of the Mountain Pass Theorem [11, 12]. 

4.  R o l l e ' s  T h e o r e m  o n  IR 2 

In this section, we apply Theorem 3.1 to establish our version of Rolle's 

Theorem on R 2. Moreover, this theorem is applied to prove a global 

univalence result for a class vector fields on the plane. Before stating 

such results, we need to introduce some preliminaries. 

G i v e n c E R  ~ , a n d F : R  ~ ~ R  k, k _ < n o f c l a s s C  1, we follow the 

notat ion used in section 2 and set So(F) = F- l ({c} ) .  We denote by K 

the set of singular points of F ,  and we note by Kc the set K C~ So(F). 

T h e o r e m  4.1.  (Rolle 's  T h e o r e m  o n  R2.) Let F = ( f l ,  f2) : IR2 --+ R2 be 

a vector field of class C 1 with f l  satisfying (GPS) with respect to some 

c A. Assume that there ezist two distinct points u and v belonging to 

S~(F), c = (Cl, c2), in such a way that Cl is an admissible level for f l .  

Then, either 

(i) u and v are in the same path-component of S~(F), or 

(ii) F has a singular value d r c. 

Remark  4.2. (i) Note that  the above result is independent  of the choice 

of the coordinates system, and that  (GPS) condition is assumed for just  

one coordinate of F .  (ii) We recall that  the argument used in the proof 

of Theorem 4.2 also holds if f l  is of class C 1 and f2 is differentiable. 

Proof .  By Theorem 3.1, it suffices to suppose that  u and v are in the 

same path-component  of S q ( f l ) .  Let 7 E C([0, 1],R 2) be such that  

7(0) = u, 7(1) = v, and 

f l (7( t ) )  = Cl, V t E [0, 1]. (4.1) 

Then, h = f2 o 7 E C([0, 1], R) and satisfies h(0) = h(1) = c2. Further- 

more, we have the two following excluding possibilities 

(i) h(t) = c2, for all t E [0, 1], or 

(ii) There exists t E (0, 1) so that  h(t) r c2. 

On the first case, u and v are in the same path-component  of S~(F). If 

(ii) holds, we claim that  F possesses a singular value d r c. Wi thou t  
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loss of generality, we assume that  h(to) = rnaxt~[0,1 ] h(t) > c2. Arguing 

by contradiction, we suppose that  the claim is not true. Since 7(@) is a 

regular point of F ,  we may use (4.1) and the Implicit Function Theorem 

to assume tha t  7 is differentiable on to and 7'(to) r 0. From (4.1) and 

our choice of to, we get 

(f~(7(t0)), 7'(t0)) = 0. 

(f~(7(t0)), 7'(t0)) = 0. 

Consequently, f l  (7(@)) and f~(7(to)) are linearly dependent.  Thus, d = 

(Cl, f2(7(to))) ~ c is a singular value of F.  The theorem is proved. [] 

Corollary 4.3. Let F = (f l ,  f2) : R2 --* R2 be a vector field of class 

C 1 with f l  satisfying (GPS). Assume that there ezists c = (Cl, c2) 6 IR 2 

such that F has no singular value d # c. Then, either 

(i) Sr possesses at most one point, or 

(ii) Sr possesses a nontrivial component. 

Proof .  Let u and v be two distinct points of So(F) and assume, by 

contradiction, that  the components of Sc(F) are trivial. Since F does 

not have a singular value d # c, we obtain tha t  {w 6 R21 f~(w) = o} c 

Sr Thus, Cl is an admissible level of f l-  But, now Theorem 4.1 

implies that  F has a singular value d # c. The corollary is proved. [] 

Remark  4.4. We notice that  we may substi tute S~(F) by Kc in condi- 

tion (ii). 

Corollary 4.5. Let F = (f l ,  f2) : R2 -~ R2 be a vector field of class 

C 1 with f l  satisfying (GPS) and F(O) = O. Assume that F is a local 

diffeomorphism on N 2 \ So(F) and locally injective on So(F). Then, 

F(u) r o, for every u •2 \ {0}. 
Proof .  If F(u) = 0 for some u # 0, by Corollary 4.3, So(F) should have 

a nontrivial component.  But, this contradicts the fact that  F is locally 

injective on So(F). The corollary is proved. [] 

Theorem4 .6 .  (GlobalInject ivi tyTheorem.)  Let F = (f l ,  f2) :IR2 --+ R2 

be a vector field of class C 1 with f l  satisfying (GPS) with respect to some 

6 A. Then, F is globally injective provided it is a local diffeomorphism. 
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Proof.  Given c E R n, So(F) possesses only trivial components.  Hence, 

Corollary 4.3 implies Sc(F) has at most one point. Theorem 4.6 is 

proved. [] 

Remark  4.7. Theorem 4.6 holds for F = (f l ,  f2) with f l  of class C 1 

and f2 differentiable, if we assume tha t  F is locally injective and has no 

singular points (See Remark 4.2-(ii)). 

4.1. Examples 
Here, we present some examples and applications of the results obtained 

in this section. 

1. The following example has been given in [6]. Consider F = (f l ,  f2) : 

IR 2 --+ IR 2 the polynomial mapping defined by 

F(x,  y) = (x + (y + x2) 2, y + x2), V (x, y) E IR 2. 

Then, F is a local diffeomorphism since det(F'(x, y)) = 1, for every 

(x, y) E R 2. Furthermore,  it is easy to verify that  f2(x, y) satisfies (PS), 

i. e., (GPS) with respect to r - 1. Therefore, by Theorem 4.6, F is 

globally injective. 

We remark tha t  we may not apply Theorem 1 of [6] to show that  F is 

globally injective. We also notice that  t race(F ' (x ,  y)) = 2 + 4x(y + x 2) > 

2 > 0 i f x  < 0 a n d y _ < - x  2, o r x > _ 0 a n d y  > _ - x  2. Hence, the global 

injectivity is not a consequence of the main result of [3]. 

2. Consider F = (f l ,  f2) : R2 --+ R2 of class C 1 such tha t  f l (x ,  y) = 

A x + e  x+c~(y) ,  with A > 0. Thus, (fl)x(u) = A + e  x > A, for every 

u = (x, y) e R 2. Assume that  f2 satisfies 

(A + ez)(f2)v(u) - o/(y)(f2)~(u) • O, V u = (x, y) E R 2. (*) 

Then, Theorem 4.6 implies tha t  F = (f l ,  f2) is globally injeetive. Note 

that  we do not assume any extra  hypothesis on det F'(x,  y) besides con- 

dition (*). 

3. Suppose that  F = (f, g) : IR2 --+ R2 is of class C 1 and assume that  

there exists r E A such that  

Bol. Soc. Bras. Mat., Vol. 29, N. 2, 1998 



A VERSION OF ROLLE'S THEOREM AND APPLICATIONS 313 

(i) Ilf'( )ll, v R 2, and 
(ii) (fxgu - 9xfy)(U) • O, V u = (x ,y)  C R 2. 

Then ,  F is globally univalent  in IR 2 by T h e o r e m  4.6. This  result  is 

re la ted  to a t h e o r e m  by Nikaido [8, 9] which  s ta tes  t h a t  F is a global 

d i f feomorphism unde r  condi t ions  s t ronger  t h a n  (i) and  (ii). We notice 

t ha t  it is not  difficult to give examples  of F sat isfying (i) and  (ii) which 

are  not  surject ive (See the  previous i tem).  

4. Consider  F ( x , y )  = (f l ,  f2) = (e x - y2 + 3,4yeX _ y3). Then,  F is a 

local diffeomorphism; but ,  it is not  injective since F(0,  2) = F ( 0 , - 2 )  = 

(0, 0). By  T h e o r e m  4.6, for every  nonincreas ing  locally Lipschitz func- 

t ion ~ : (0, oc) --+ (0, oc) such tha t  f~o (~(t)dt = oc, there  exists a se- 

quence  (x,~, y,~) ~ oc, as ra --+ oc, such tha t  f l (x ,~ ,  y,~) -+ Cl = 3 and  

}}f~(x,~, y,~)ii/~(ii(x,~, y,~)II --' o, as m ~ oc. Note  t h a t  the  value cl = 3 

is given by (3.1). A similar  resul t  holds for f2- 

5. Consider  f l ( x ,  y) = log(x 2 + 1) - log(y 2 + 1) and  assume tha t  f2 : 

R 2 -+ IR satisfies the  following condit ion:  

X 
Y (f2)x(U) + x~-~+l(f2)u(u) r O, V u = (x ,y)  e IR 2 \ {(0,0)}. (**) y 2 + l  

Then ,  F(x ,  y) ~ (0, 0), for every (x, y) ~ R 2 \ {(0, 0)}. Effectively, f l  

satisfies (GPS)  wi th  respect  to r  = t / ( t  2 + 1) and  (**) implies F is a 

local d i f feomorphism on R 2 \ {(0, 0)}. Thus ,  by Corol lary  4.3, the  resul t  

holds. 

5. RoUe's Theorem on higher dimensions 

In this section, we ex tend  the  results of the  previous sect ion to vector  

fields of class C 2 defined on dimensions  grea ter  t h a n  two. 

Given n > 3 and  2 < k < n, we denote  by 79k = {or = {Jl,  . . - , j k}  E 

{1, . . . , n }  k I J l  < . . -  < jk}, the  family of ordered  subsets of {1, . . . , n }  

wi th  k elements .  For every  cr C 7~, we consider  the  inclusion j~ i R ~ --+ 

1R ~ defined by 
xk, 1 = jk E 

= o, z r o-. 

We also take P~ : IR ~ --+ j~(R k) the  corresponding pro jec t ion  and  define 
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~ = j~-i o P~ : ]~n ___+ I R k .  By Ul A . . .  A Uk_l, we denote  the  vectorial  

p roduc t  o f u l , . . . , u k _ l  on IRk. For k = 2 a n d u  = (a,b), we set A u =  

( - b , a ) .  

Defin i t ion  5.1. For a E 7)k, 

V l , . . . , v k _  1 on iR n by 

v 1 ACT... A~ vk -1  ---- ja (~a(Vl)  A . . .  A q-Sa(Vk_l)). 

I t  is no t  difficult to verify t h a t  @1 Ao . . .  A~ vk - l , v i )  = 0, for every 

i ~ b , . . . , k -  1}. 

Defin i t ion  5.2. Given v~ = ( a i l , . . . ,  ain) ~ IRn, 1 < i < k <_ n, and a = 

{ J l , . . . , J k }  E iPtc, we consider the matr ix  M~ = (aijm), 1 < i , m  <_ k, 

and define 

Aa(Vl , . . . ,Vk)  = det [Ma], 

and 

we define the a-vectorial  product  of 

Advl , . . . ,  vk) = 1 / ~ , ,  A~, 
y r~ 

For k = 1 and  a = {Jl},  we take Aa(Vl) = M~ = a l A ,  and we ob ta in  

Al (v l )  = Hvl ]]2. From the  definit ions given above and  the  propert ies  of 

the  vectorial  p roduc t  on IRk k _> 2, we get 

(Vl Aa . . .  Aa Vk-l,Vk) = Aa(v] . , . . . ,Vk),  V a 6 iok, 

Ak_12 = ( n -  ~ + 1) Z I1~ A~. .. /~  V~_lll 2 
~TET) k 

Now, we m a y  define a general izat ion of (GPS) condi t ion  for vector  fields 

F = ( f l , . . . ,  fk)  : IRn ~ IR k, 1 <_ k <_ n. Given m E { 1 , . . . , k } ,  we denote  

by F ~  the  vector  field Fm = ( f l , . - . ,  f - 0  : IRn __~ IRm Consider  A, 

the  family  of funct ions  given in section 2, and  take r c A. Set t ing 
! 

I[F'(u)Hk = A k ( f i ( u ) , . . . ,  f k (u) ) ,  for every u E IRa, we define 

Def in i t ion  5.3. Given F = ( f l , . . . , f k )  : IR~ ~ ~k ,  2 < k <_ n, be a 

veetor field of class C 1 and c E IRk, we say that F satisfies the generalized 

Pala is -Smale  condit ion (with respect to cp) at e, denoted ( G P S ) c ,  i f  every 

sequence (urn) CIRn such that F ( u ~ )  ~ c and 

F r ___+ IiF'(u,~DIIh/ll k_l (Urn) Ilk_lr o, 
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as m --+ oc, possesses a converging subsequence. I f  F satisfies (GPS)c,  

for  every c G •k, we just  say that it satisfies (GPS). 

In the  par t icu la r  case where  k = 1, we ob ta in  the  original (GPS)  

condi t ion  by  tak ing  [I/~(u)[[ _= 1, for every u E R ~. 

Following the no t a t i on  used in sect ion 1, we define So(F) = F - l ( { c } ) ,  

for every c E ]R k, and consider  K = {u ~ R ~ I [[F'(u)llk = 0}, the  set  of 

s ingular  poin ts  of  F .  We also set  Kc = K n Sc(F) = {u E R n IF(u) = 

c, IIF'(u)llk = 0}, for every  c E R k. No te  tha t  if Kc = ~ ,  then  Sc(F) is 

a n - k d imensional  submani fo ld  of  R ~. In tha t  case, we say tha t  e is a 

regular  value of F .  

Def in i t ion  5.4. Given F E CI(IR'~,Rk), we say that c ~ R k is an admis- 

sible value i f  either c is a regular value of F ,  or the components of K~ 

are trivial and c is an isolated singular value of F .  

Given c E I~n~ we wri te  c = (a,b),  a C R k-1 ~ Nk-1 • {0}, b E 

]R ~ {0} x R. The  following result ,  also proved in sect ion 6, is a na tura l  

general izat ion of P ropos i t i on  2.3. 

P r o p o s i t i o n 5 . 5 .  ( D e f o r m a t i o n L e m m a . )  Suppose that F = ( f l , . . - ,  fk) : 

1Rn __+ ]~k E C2(IR n, R k) and satisfies (GPS). Assume that (d, a) is the 

only possible critical value of F on {d} x [a,b) and that (d,a) is an 

admissible level for  F.  Then, there exists ~- : [0, 1] x Sd(Fk_l )  ~ (fk b \ 

K(d,b)(F)) -+ Sd(Fk_l)  n (fb \ K(d,b)(F)) such that 

(i) "5(0, u) = u, V u E Sd(Fk_I) A (fb \ K(d,b)(F)), 

(ii) T(t ,  U) = U, V (t, U) ~ [0, 1] • S(d ,a  ) ( i f ) ,  

(iii) T(1, U) C S(d,a)(F), V u E Sd(Fk_l) ~ (fb \ K(d,b)(F))" 

Note  tha t  P ropos i t i on  5.5 es tabl ishes  a de fo rma t ion  l e m m a  for fk 

on the  manifold  M = Sd(Fk_I)  which m a y  have singular  points .  The  

condi t ion  (GPS)  on this case is based  on the  p ro jec t ion  of the  vector  

V f k ( u )  over the  t angen t  space of M at the  poin t  u. 

Next ,  we es tabl ish  the  main  resul ts  in this section. These  are na tu ra l  

general izat ions  for vec tor  fields of class C 2 of the  resul ts  ob t a ined  in 

sect ion 4. 

T h e o r e m  5.6. (RoUe's  T h e o r e m  o n  R ~, n _> 3.) Let F = ( f l , - . . ,  fn) : 
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R n :-+ R n be a vectorfield of class C 2 with F 1 , . . . ,  F~_I  satisfying (UPS)  

with respect to r  ~ - 1  6 A, respectively. Assume that there exist 

two distinct points u and v belonging to So(F),  c = (cl, c2) ~ ]R ~, in such 

a way that el is an admissible level for F~_I. Then, either 

(i) u and v are in the same path-component of So(F),  or 

(ii) F has a critical value d ~ c. 

P r o o f .  In the  following, we use the  no ta t ion  K ( F )  = {u 6 •n i llF,(u)l I = 

0}, Kd(F)  = K ( F )  N Sd( f ) ,  for every F : R n -§ R k and d 6 R k. Consid-  

ering c = (Cl, c2) given above,  we set el  = (c~ , . . . ,  c~-1).  

Next ,  we claim tha t  u and  v are in the  same p a t h - c o m p o n e n t  of 

S q ( F ~ _ I )  p rovided  F has no singular  value d ~ c. Observ ing  tha t  

K(F~) c K ( F ~ _ I ) ,  we conclude t ha t  ck = (c~, . . . ,  c~) is an admiss ible  

value of F~, for every h 6 {1 , . . . ,  n - 1}. Then,  by  T h e o r e m  3.1, u and 

v are in the  same p a t h - c o m p o n e n t  of f l  = F1. 

Now, we argue by  induct ion,  assuming  tha t  u and v are in the  same 

p a t h - c o m p o n e n t  of S ~  l (Fk_ l ) ,  for 2 <_ k < n -  1. Let  7 : [0,1] --+ 

S~k_l(Fk_l)  be  a cont inuous  pa th  such tha t  7(0) = u and 7(1) = v. 

Consider  

bk = ma%e[0,1 A(7 ( t ) )  >_ ck. 

If  b~ > ok, we app ly  P ropos i t i on  5.5 to ob ta in  ~- : [0, 1] x Sak_l(Fk_l)  N 

--~ S~k_l(Fk_l)  N such tha t  T(1, U) 6 S~k_ l (~_ l . )  0 fs for every 

u 6 S%r l (Fk_ l )  N f  bk, and ~-(t,u) = u, for every t E [0,1], u 6 S~k(Fk ). 

Then,  71 = r(1, 7(t))  : [0, 1] --~ S~k_l (Fk-1) @ fs is a cont inuous  p a t h  

such tha t  71(0) = u and 71(1) = v. Taking 71 = 7 if bk = ck, we define 

ak = minte[0,1 ] fk(71(t))  ~_ ck. 

If a~ = ck, we have the  claim. Otherwise ,  we ma y  argue as above  and 

app ly  P ropos i t i on  5.5 to  Pk = ( f l , . . - , - f k )  to ob ta in  tha t  u and v are 

in the  same p a t h - c o m p o n e n t  of S~k (F~). This  proves  the  claim. 

So it suffices to  a ssume tha t  u and v are in the  same p a t h - c o m p o n e n t  

of Sq (FnL1). Let  "7 : [0, 1] --~ Sc 1 (Fn_l) be  a cont inuous  p a t h  such tha t  

7(0) = u and 7(1) = v. Take h = f~ o 7 : [0, 1] --+ N. As in the  proof  of 

T h e o r e m  4.1, we have the  following two excluding possibil i t ies 
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(i) h(t) = c~, for all t 6 [0, 1], or 

(ii) The re  exists  t 6 (0, 1) so tha t  h(t) r c,~. 

On case (i), u and  v are in the  same p a t h - c o m p o n e n t  of S~(F). If 

(ii) holds, we use the  same a rgument  of the  p roof  of T h e o r e m  4.1 to 

conclude  tha t  F has a singular value d ~ c. T h e o r e m  5.6 is proved.  [] 

We omit  the  p roof  of the  next  three  resul ts  since t h e  a rgumen t  em- 

ployed is similar to t h e  one used to prove the  cor responding  resul ts  in 

sect ion 4. 

Corollary 5.7. Let F = ( f l , . - . ,  A )  : ~ -~ R~ be a vector field of class 

C 2 with F I , . . . ,  Fn-1  satisfying (GPS) with respect ~bl, . . . ,  ~b~_l 6 A, 

respectively. Assume that there exists c 6 ]~n such that F has no singular 

value d # c. Then, either 

(i) So(F) possesses at most one point, or 

(ii) So(F) possesses a nontrivial component. 

Coronary 5.8. 
C 2 with F(O) 

@ 1 , ' ' ' ~ n - 1  G 

on \ So(F) 

Let F = ( f l , . . - ,  A )  : R~ ~ R~ be a vector field of class 

= 0 and F1, . . . ,  F~_l satisfying (GPS) with respect to 

A, respectively. Assume that F is a local diffeomorphism 

and locally injective on SO(F). Then, F(u) ~ O, for every 

Theorem 5.9. (Global Injectivity Theorem.) Let  F = ( f t , .  i. ,  A )  ! 

~ __~ •n be a vector field of class C 2 with F1, . . ., Fn-1 satisfying (GPS) 

with respect to 6 1 , . . . ,  r  6 A, respectively. Then, F is globally injec- 

rive provided it is a local diffeomorphism. 

The  next  result  is an immed ia t e  appl ica t ion  of T h e o r e m  5.6 

Theorem 5.10. Let F = ( f l , - . . ,  A )  : R~ --+ ]~n be a vector field of class 

C 2 with f l , . . . ,  fn-1 satisfying (GPS) with respect to ~1 , - - . ,  r  E A,  

respectively. Assume that F is a local diffeomorphism on R ~. Then, F 

is globally injective provided it satisfies 

(i) For each k 6 {2 , . . . ,  n - 1}, there exist Ok > 0 and Rk > 0 such that 

IIF (u)II  o llfL(u)llll %_ (u)llk- , V Ilull _> 
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5.1. Examples 
Next, we illustrate Theorem 5.9, presenting some examples and appli- 

cations. 

1. Consider F = (f l ,  f2,f3)  : 1~3 __+ ~3 of class C 2 such tha t  F is a 

local diffeomorphism, f l (u )  = f ( x l ,  x2), for every u = (Xl, x2, x3) E IR 3, 

and f l  satisfies (GPS). Then, F is globally injective provided there 

exists r 6 A so that  I](f2)~z(u)ll > r for every u c ~3. Indeed, 

by Theorem 5.9 it suffices to show that  F2 satisfies (GPS). But, by 

definition, 

IIF ( )II 2 > + %2,  3}2(fi(u), 

>_ Ilfi( )II2r v u 

Hence, F is globally injective. As a direct application of this result, we 

obtain, for example, that  F ( x ,  y, z) = ( x + ( y + x 2 ) 2 + z ,  y + x  2, x / 2 + z 3 + z )  

is univalent on R 3. 

2. Given c 6 R, Consider Fc = (A, g, h) : R 3 --+ It~ 3 of class C 2 such that  

A ( x ,  y, z) = ex + e 2x + log(y 2 + 1), g(x, y, z) = ye -2x + gl(z), h(x, y, z) = 

h l ( y , z )  with (h l ) z ( y , z )  > 0 and g' l (z ) (h l )y(y ,z )  < 0 for every ( x , y , z )  6 

~3. We determine the injectivity of F~ in function of the parameter  e: 

(a) Fc is globally injective if e > 0. Since i f ( x ,  y, z) = (e + 2e 2x, 2y, 0), We 

have that  A satisfies (PS). Furthermore,  we claim tha t  (F~)2 also satisfies 

(PS), i.e., (GPS) with respect to r ~ 1. We argue by contradiction one 

more time, supposing tha t  there exists a sequence u m =  (Xm, y,-~, z,O, 

m 6 N, such that  (Fe)2(Um) --+ c = (cl, c2), II(Fc)'2(Um)ll2/llf~(um)ll ---+ o, 

and I[u~ll --+ oo, as m -~ oo. From /~(u~) --+ Cl, we conclude that 

either (Xm, Ym) 6 R 2 is a bounded sequence or (Xm~ Ym) --~ (--00, 00), 

as m ~ oo. On both cases llf~(Um)ll --~ d ~ 0 and, consequently, 

II(Fe)~2(Um)ll---+ o. But, this contradicts 

II(F~)[(u)ll2 _> A{1,2}(f~,g')(u) = ce -2x + 4y2e-2X/(y  2 + 1) + 2 > 2, 

for u = (x, y, z) 6 ]~3. The claim is proved. Since F~ is a local diffeo- 

morphism on IR 3, Theorem 5.9 implies F~ is globally univalent. 
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(b) F~ is not injective if  e < 0. Let z~ E R be such that  ex~ + e 2z~ = 1. 

Then, F~(x~, 0, 0) = Fc(0, 0, 0) = (1, gl(0), h(0, 0)). 

(c) F~ is globally injective if  e = 0. Let u,~ = (x,~, y,~, z~),  m C N, be a 

sequence such tha t  fo(u,~) --+ cl > 0. By the definition of f0, we find 

M > 0 such that  x,~ _< M, [Y-~I -< M, for every m E N. Furthermore,  

(zm, y,~) 74 (-cxz, 0) since, on that  case fo(u,~) -~ 0, as m -+ cxz. Using 

those facts, we obtain that  ]]f(~(um)ll --+ d y~ 0, as rn --+ ~ .  Now, we 

may argue as on i tem (a) to conclude that  f0 satisfies (PS)c, for every 

c > 0, and (F0)2 satisfies (PS)c, for every c = (cl, c2) with cl > 0. 

As fo(u) > 0, for every u E ~ 3  we deduce from Theorem 3.1 and 

Remark 3.5-(i) tha t  Sc(fo) is path-connected for every c > 0. Actually, 

the same argument  allows to apply Theorem 5.9 to conclude tha t  F0 is 

globally injective since (F0) 2 satisfies (PS)~, for c = (Cl, c2), with Cl > 0. 

6. Proo f s  o f  Propos i t ions  2.3 and 5.5 

Proof  of  Proposition 2.3. Let V(u) be a pseudo-gradient vector field 

associated to f o n / ~  = {u E E i f ' ( u  ) ~ 0} (See [11]). Recall tha t  V is 

a locally Lipschitz continuous map so that ,  for every u E/~,  we have 

IIV(u)ll < 2Hf'(u)ll, 

(V(u), f ' (u))  > ]I/'(u)II 2. (6.1) 

Given the initial value problem 

2 , (6.2) 

7(0, u) = u E A = fb \ (Kb U fa), 

By the theorem of existence and uniqueness for ordinary differ- 

ential equations, there exists a maximum time t+(u) > 0 such that  

71(t,u) is defined on [0, t+(u)),  for u E A. Setting Tu = max{s E 

[0, t+(u)),  I f(~l(s,u) > a}, for u E A, our main objective is to s tudy 

the behaviour of ~(t, u) as t --+ T~. 

Using the properties (6.1) of a pseudo-gradient vector field, we have 

_< < 0, v t [ 0 , < ( u ) ) .  (6.3) 
zt 
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Furthermore,  given d.> 0, by (GPS), we obtain 5 > 0 such that  

jlf'(u)ll Z 8r V u < d \ Nd(K).  (6.4) 

Assuming the hypothesis and the notat ion of Proposition 2.3, we need 

some preparatory ]emmas. 

Lemma 6.1. There exists do �9 0 such that for every solution rl(.,u) of 

(6.2), 0 < t l  < t2 < T~ .and 0 < d < do satisfying 

Ilk(t1, ~) - Kall : d/2, 

lib(t2, ~) - K~11 = d, (6.5) 

d/2 <_ II~( t ,u) -  Kall < d, V t l  < t < t2. 

Then, there exist 8 = 8(d) > 0 and a = a(d) �9 0 such that 

~d 
t 2 -  t l  _> ~- ,  (6.6) 

and 

a < f(rl(t2, u)) <_ f(rl(tl ,  u)) - ~a(t2 - tl) .  (6.7) 

Proof.  Taking do smaller if necessary, we choose 8 = ~(d) such that  (6.4) 

holds for every u E A \ Na/2 (K). Hence, 

~t  t ~ [tl, t2]. 
1 H ~(t,~)H_<p V 

That  implies immediately (6.6). Furthermore,  since K~ is compact, from 

(6.5), we get M �9 0 such that  Jl~(t,u)ll _< M, for every t E [tl,t2]. Using 

(6.3), we obtain a �9 0 so that  

d f(rl(t,u)) <_ - ~ a ,  V t E [tl,t2]. 

The above inequality provides (6.7). So Lemma 6.1 is proved. [] 

Definition 6.2. Given a topological space M,  a compact set K C M,  and 

a continuous map r/ : [0, to) ---+ M,  to C ]R U {oc}, we say that the pair 

(r h K)  satisfies the strong attraction property, denoted (SAP),  at to if  

there exists v ~ K such that limt~t 0 ~](t) = v, whenever lim inft~t0 IIr/(t)- 
KII = 0 
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L e m m a  6.3. Given u c A and considering ~(t, u) the corresponding 

solution of (6. 2), we have 

(a) f(rl(t ,u)) ~ a as t -~ ~ 

(b) The pair (rl(. , u), Ka) satisfies (SAP) at T~. 

Proof .  Arguing by contradiction, we suppose tha t  (a) does not occur. 

From (6.3), there exists d C (a,b) such that  f(rl(t,u)) --~&, as t --~ Tu. 

Using the compactness of K~ U Kb, we obtain d > 0 such that  rl(t, u) 

A \ Nd(K) for every t C [0, T~). Consequently, by (6.4), we find 6 > 0 

so tha t  IIf'(~(t,u))ll >_ 6r , t E [0, T~). The last inequality 

and (6.2) imply that  II~rl(t,u)ll < 1, for every t ~ [0, T~). Therefore, 

Ilk(t, u)ll _< IJull + and 

fOt  8 f(zl(t , u)) < f (u)  - r + ~) ds, V t E [0, T~), 

provided that  r is nonincreasing. As f0 ~ r  = oc, we get that  

T~ < oc and, from the above bound oil II ~tr]( t, u)II, there exists v G Sg(f)  

such that  ~](t, u) --~ v, as t -~ T~. But, that  contradicts the definition of 

T~ since r/(t, u) would be defined on [0, s], s > T~, and f(rl(t, u)) > a, for 

every t ~ [0, s]. Tha t  proves (a). 

To verify (b), we suppose liminft_~T~ Ilk(t, u) --/call = o. First of all, 

we assert tha t  limt~T~ IIrl(t, u) - Kall = o. Arguing by contradiction, we 

assume that  this is not verified. Considering do given by Lemma 6.1, we 

find 0 < d < do and sequences 0 < t l  < sl < . . .  < t~  < s m  < . . .  < T~ 

such tha t  t,~ and Sm satisfy (6.5), for every m E N. Consequently, 
~d S m -  tm _> -2-, and 

1 
a < f(~l(Sm, u)) < f07(tm, u)) - ~a(s,~ - t~n) < f(~/(sm-1, u)) - lad6.  

Hence, Ta < cxD and s,~ - t , ~ - +  0, as m --+ ~ .  But, that  provides a 

contradiction. Therefore, limt~T~ ]]~/(t, u) - K~II = 0, as claimed. 

From the compactness of Kal w e  get M < oc such that  IIrl(t, u)H < 

M,  for every t c [0, T~). Using this relation and (6.3), we get & > 0 so 

tha t  
d 
-d~f(~(t , n)) < -&,  V t E [0, T~). 
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This equation implies tha t  T~ < oc. Furthermore,  since Ka is compact,  

we may find zl E Ks and a sequence tr~ --+ T~, as m ~ oc, so that  

r/(t,~, u) --+ Zl, as m -+ ec. If ~(t, u) 7z+ zl, as t --* T~,we would obtain 

z2 E Ks \ {zl} and 5~ --+ T~ satisfying r / ( ~ ,  u) ~ z2, as m --+ ec. As 

the connected components of Ka are points, by the Separation Lemma 

[2], there exist disjoint compact sets K1 and/42 satisfying Ks = K1 U [422 

and zi E Ki, i = 1, 2. Tak ing0  < d < min{do, 1 2ILK1 - K2[[}, we find 

sequences 0 < t l  < sl < . . .  < t m  < s m  < . . .  < T~, with tm --+ T~, 

as m ~ co, and tin, S,~ satisfying (6.5), for every m E N. The same 

argument  used above gives us a contradiction. The lemma is proved. [] 

The reasoning employed in the proved of Lemma 6.3 provides a uni- 

form bound for r/(t, u) on the interval [0, T~). 

CoroUary6.4. T~ < oc, for  every u E A.  Moreover, there exists M < cc 

such that IIr/(t,u)[I <_ M ,  for  every t E [0, Tu). 

Proof .  If liminft-~Tu Ilrl(~, u) -- Ka]l = 0, The thesis of  Corollary 6.4 has 

already been proved in Lamina 6.3. Otherwise, we argue as in the first 

part  of the proof of tha t  lamina to obtain the conclusion. [] 

Lamina 6.5. (a) Given u E A,  there exists v ~ Sa so that 

limt~Tu rl(t, u) = v. 

(b) The application T : A --+ R given by T(u)  = Tu is a well defined 

continuous map. 

(c) Given u e Sa and a sequence (urn) C A such that u ~  ~ u, as 

m --~ ec, we have T(um)  ---+ O, as m ~ oo. 

Proof .  To show (i)-(ii), we consider two possibilities: 

1. liminft-~Tu [[•(t,u) - Ka[[ >_ d > 0. By Corollary 6.4, T~ < oc and 

rl(t, u) is uniformly bounded for t E [0, T~). Applying (6.4) and the 

argument  used in Lamina 6.3, we get tha t  r/(t, u) --~ v E Sa( f )  \ Ka. (ii) 

is a direct consequence of continuous dependence of solutions of (6.2) 

with respect to initial conditions. 

2. liminft_~T~ IIr/(t, u)--Ka[[ = 0. Lemma 6.3 implies the pair (rl(t, u), Ka) 

satisfies (SAP). Thus, (i) must hold. Furthermore,  by Corollary 6.4, 
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T~ < oc. To show that  T(u) is continuous on A, we argue by contradic- 

tion, supposing there exist 7 > 0 and (urn) c A such that  um --+ u E A 

and I T ~ , ~ - T ~  I > 7 > 0, for every m C N. From the continuity of 

r~(T~-7, .) at u, without  loss of generality, we may suppose T~ m > T~+7, 

for every m E N. 

We claim tha t  there exists a E (a, rain{b, f(u)})  satisfying f(rl(T~ + 

7/2, urn)) > 5 > a, for every m E N. 

a ssuming  the claim, we take • = max{s E [0, t(u))[f(rl(8, u)) > (z}, 

u E I v \ (Kb tO [a). By our previous argument,  T~ is continuous since 

K a = ~.  Furthermore,  ~/'u,~ _> T~, + 7/2, for every m E N. Hence, 

T~ _> T,  + 7/2 because u,~ ---+ u, as ra --+ oc. But, that  contradicts 

the definition of T~. Thus, to prove the continuity of T~, it suffices to 

verify the claim. By the continuity fo f ,  the fact that  Kb is compact  

and (6.4), there exists dl > 0 such that  Ilrl(t, u,~) - Kbll >_ all, for every 

m E N and t E (0, t~,~). Considering do > 0 given by Lemma 6.1, we 

take d2 = min{dl, do}. Taking 7 smaller, if necessary, we may assume 

that  7 < 3~(d2)d2, with 8(d2) given by Lemma 6.1, and that  r/(., u,~) is 

well defined on I = [T~ - 7/2, T~ + 27/3], for every ra E N. 

Now, we consider the three possibles cases: 

(a) limsuprn+oo Ilrl(I, um) - Kall <_ d2. Since Ka is compact,  we obtain 

M < ec such that  IJr/(t, u,~)I I < M, for every t E I,  m E N. Applying 

(6.3) and observing tha t  f(rl(T~+27/3, u,~) >_ a, we obtain the claim. 

(b) liminf,>~oo II (I, - Kall >_ d2/2 > 0. In  view of (6.4), we get 

1_ g t E I ,  m E N .  l i d  ~ ( t ' ~ ) l l  -< 8' 

Therefore, 

1 
II~(t, Um)ll _< [Iw(T~ - 7/2, u)m)ll + ~(~ - T~ + ~72), V t E Z, m E N. 

From the continuity of r/(T~ - 7/2; .) at u, we also obtain that  

II (t,u )ll is unformly bounded for t ~ I,  ra E N. As before the 

claim is proved. 

(c) liminfm-+oo - K~II < d2/2 < d2 < limsupm__+oo II (i,u.d - 

KaI]. Taking a subsequence if necessary, we find t m <  s~,  tin, s,~ C I 
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such tha t  (6.5) holds. Apply ing  L e m m a  6.1, we have 

f(r~(T~ + 7/2 ,  u,O) > f(rl(sm, u)) + l a d ~  > a, V m e N. 
8 

T h a t  proves the  claim. 

Our  final t a sk  is to  verify tha t  Tum --~ 0, as um --+ u E Sa(f) .  If 

u r ]rs the  result  is easily obta ined .  

Thus,  we m a y  suppose  u E Ka.  Arguing by  contradic t ion ,  we as- 

sume IT, l l  > e, for every m c N. If  there  exists  M < oc such 

t ha t  II~(t, Um)ll >_ M,  for every t �9 [O, Tum), m E N, f rom (6.3) and 

f ( um) - -+  f (u) ,  we mus t  have Tu,~ ~ 0. Hence,  The  last  re la t ion 

cannot  happen .  As um --+ u, we ob ta in  0 < d < do and t ~  < sin, 

tin, "sin �9 [0, Tu,~) such tha t  (6.5) holds for every m �9 N. Using L e m m a  

6.3 and f ( u ,O  --~ f (u) ,  we also ob.tain a contradic t ion.  L e m m a  6.5 is 

proved.  [] 

Using L e m m a  6.5, w e  set  r;(T~, u) = limt-~T~ rl(t, u), for every u �9 A. 

L e m m a  6.6. The application r]l : [0, 1] x A --+ fb \ Kb defined by r;l ( t, u) = 

rl(tTu, u) is continuous. Moreover, if  (t~, urn) �9 [0, 1] • A,  for  every 

m ~ N, and Um --~ u E Sa(f) ,  as m --+ Oo; then, ~ l ( t , u )  --~ u, as 

7~%--+ 0 0 .  

P r o o f .  The  cont inui ty  of rll at  (t, u) E [0, 1] x A when  ~(T~, u) r K~ or 

< 1 is easily obta ined.  

Thus,  we suppose  v = ~(T~,u) �9 [(a and ~: : 1 .  Arguing  by  

cont rad ic t ion  once again, we assume tha t  there  exists  ((tin, urn)) C 

[0,1] x A so tha t  u,~ ~ u, tm ~ 1, b u t  v ~  = V(t~T~m,U~) ~ v, as 

m --~ ec. Fur the rmore ,  we may  a s s u m e  there  exists  e > 0 such tha t  

IIV(tmTum, Urn) -- VII > ~ > 0, for every m �9 N. Now, we consider  the  

following possibilit ies: 

1. Ilrl(tm~I~, urn) - vii > d > 0. Since the  pair  (rl(t, u), K~) satisfies 

(SAP)  at Tu, we have ~ />  0 such tha t  Ilr](t,u) - K~II < d, for every  

t E [T~ - 7, T~]. The  cont inui ty  of T~ provides  the  exis tence of 

m0 �9 N such tha t  tmT~ m > Tu - 0//2, for every m >_ m0. Moreover ,  

r ; ( T ~ -  ~, u~)  --~ r l ( T ~ -  0~, u), as m --~ oc. Taking d smaller  if 

necessary,  we ob ta in  T~ - ~ < t,~ < ~ < T~,~ such tha t  (6.5) holds 
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for rn sufficiently large. Invoking Lemma 6.1, we get 60, independent 

of m, so that  50d < 2 ( 5 ~ - t ~ )  < T ~ , ~ - T ~ + %  As T~,~ --+ T~, 

as rn ~ oo, and 5' > 0 can be taken arbitrarily small, we get a 

contradiction. 

2. liminfm-+o~ I I~ ( t~T~ ,  ~ )  -Ka[ I  = 0. By the compactness of Ka, we 

may assume rl(t,~T~,~, u,~) -+ ~ E K~ \ {v}. Now, we use the sepa- 

ration lemma and the argument used before to get a contradiction 

with T~,~ --+ T~, as rn --+ oc. That  shows the continuity of 71. 

Working in a similar fashion, we may also verify that  rl(tmT~,~ , u,~) --+ u 

when um --+ u, as rn --+ oc. Lemma 6.6 is proved. [] 

Conclus ion  o f  the P r o o f  o f  Propos i t ion  2.3. Define T : [0, 1] X (fb \ K~) --+ 

(fb \ B2b) by 

( tt, (t, It) E [0, 11 • f a  
~t) 

~h(t,u), (t ,u) E [ 0 , 1 ] •  

From Lemmas 6.5 and 6.6, T(t, u) is a continuous map and satisfies the 

thesis of Proposi t ion 2.3. [] 

Remark  6.7. We may have b = oe on Proposi t ion 2.3. In other words, 

if the functional f (u)  does not have a critical value above the level a; 

then, fa  is a strong deformation retract  of E. 

P r o o f  o f  Propos i t ion  5.5. The proof is similar to the proof of Proposi t ion 

2.3. For that  reason, we only verify the main estimates. 

First, we consider the vector field W : R n --+ R n given by 

{ ~ k  (s~(~)A~. �9 .~S~_~(~))A~(~) 
W(u) = NF'(~)rI~ , if u ~ K, 

O, otherwise, 

where we used the notat ion A~(u) = A~(f~(u) , . . . ,  f~_l(u)). Next, we 

consider the following initial value problem 

71(o, u) = u c A = Sd(F~_l) o / ~  \ (K(d,b) U / ; ) .  
(6.8) 
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For every u E A, rl(t, u) is defined on a maximal  interval [0, t+(u)).  Given 

t E [0, t+(u)),  we get 

d 
-~fi(rl(t, u)) = -( f~(rl( t  , u)), W(rl(t  , ~)))r u)[I), v i ~ {a, . . . ,  k}. 

Therefore, by the definition of W, we have 

df / (~ / ( t ,u ) )  = 0, t E [0, i ~ { 1 , . . . , -  1}. g t+(u)),  k 

This implies tha t  rl(t, u) E Sa(Fk_I) ,  for every t E [0, t+(u)).  Moreover, 

for every t E [0, 1], 

~ f k ( r l ( t ,  E ~ %  A2(~( t, u)) 
~t)) I 1 - ~ ~  r u)ll) (6.9) 

= -r u) ll). 
By (GPS),  given d > O, we get 5 > 0 such tha t  

IlF'(u)llk >_ 5r v u ~ A \ N6(K). (6.10) 

Consequently,  by Schwarz inequality on R N, where N = #(79)k, we get 

w(~) _< ~ IIf{(~) a~ . . .  a~/L_l(u)lI 2 IIF'(~)II; 1 
aET~ k (6.11) 

< (n - 1~ + 1 ) l / 2 l l F s  

<_ (n - k + 1)1/2(6r -1, 

for every u E A \ Ne (K) .  It is not difficult to see tha t  equat ions (6.9), 

(6.10), (6.11) and the a rgument  used in Proposi t ion  2.3 provide the 

proof  of Proposi t ion 5.5. [] 
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