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On critical circle homeomorphisms

Grzegorz Swiatek-

— Dedicated to the memory of R. Mané

Abstract. We prove that an analytic circle homeomorphism without periodic orbits is
conjugated to the linear rotation by a quasi-symmetric map if and only if its rotation
number is of constant type. Next, we consider automorphisms of quasi-conformal
Jordan curves, without periodic orbits and holomorphic in a neighborhood. We prove
a “Denjoy theorem” that such maps are conjugated to a rotation on the circle.
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1. Circle Maps

1.1. Introduction

Apparently due to the great complexity of problems involved, there is a
tendency to divide dynamical systems into ever smaller sub-fields, each
developing in its own right. Only exceptional mathematicians are able to
overcome this tendency. Ricardo Mané was this type of researcher. He
left a deep mark on ergodic theory, general theory of diffeomorphisms on
surfaces, hamiltonian dynamics, and the systems in one real or complex
dimension. To him, dynamical systems was one field.

This paper is not directly connected to Maifié’s research. Without
trying to approach his scope of vision, we show another example of a
close connection between the theory in one real and complex dimension.
Both sub-fields are quite different in the tools they use: strong reliance
on the ordering of points in real dynamics and methods of complex
function theory in holomorphic dynamics. Interactions between these
theories have repeatedly been shown to lead to new deep results. An
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330 GRZEGORZ SWIATEK

example of this occurred in 1987 when Michel Herman proved a theo-
rem about boundaries of Siegel disks with rotation numbers of constant
type. His solution was based on quasiconformal surgery, see [4], and
a theorem about the quasi-symmetric conjugacy between an analytic
homeomorphism of the circle and a linear rotation, see [3].

In the first section we provide a proof of Herman’s theorem about
circle mappings. Qur proof is somewhat different from the original one
and based on the method of [2]. We introduce a new technical concept
of a cross-ratio module as the “minimal” tool which makes the theory
work. Another purpose of Section 1 is to simply fill out a gap in the
literature by publishing proofs of results which have been referenced
several times.

The second section contains a generalization of the theorem by
Yoccoz concerning the absence of Denjoy counterexamples for analytic
maps. We extend the result to holomorphic maps that preserve an
arbitrary quasiconformal Jordan curve. This part of our work provides
a good example of the interplay between “real” arguments based on the
ordering of points and complex function-theoretic tools.

Quasi-symmetric homeomorphisms of the line.

Definition 1.1. A homeomorphism h : R — R is called @Q-quasi-
symmetric if and only if for every real x and § # 0

bz +6) b _ o
k(@) ~hiz—6)] =

Rotation numbers. If f:R — R is the lifting of a degree 1 homeomor-
phism of the circle, i.e. f(x+1) = f(z)+1 and f is increasing, then the
following limit:

o(f) 1= Jim T

n—oo N

exists for every x and is independent of z. Tt is called the rotation
number of f. A lifting can always be chosen so that p(f) € [0,1), so
we assume that in the sequel. An irrational rotation number can be
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ON CRITICAL CIRCLE HOMEOMORPHISMS 331

uniquely represented in the form of an infinite continued fraction

1
pf)=—"—7—
ai + agt
with a1, ... all positive integers. We say that the rotation number is of

constant type if and only if the numbers a; are all bounded by a constant.

The statement of M. Herman’s theorem.

Theorem 1.1. Let [ be a real-analytic homeomorphism of the real line
onto itself, a lifting of a degree 1 circle homeomorphism. Suppose that
the derivative of f vanishes at least at one point. Let p(f) ¢ Q be the
rotation number of f.

Then there is a homeomorphism H:R — R, also a lifting of a degree
1 circle map, so that the functional equation

H(z + p(f)) = f(H(2))

is satisfied. Moreover, H is quasi-symmetric if and only if p(f) is of
constant type.

The existence of H which solves the given functional equation had
followed from an earlier theorem of Yoccoz (see [11]). The proof of the
whole theorem appeared in the manuscript [3].

Sketch of the paper. We will re-state Theorem 1.1 in a more general
form which does not assume any smoothness and instead is fully based
on an estimate of the cross-ratio distortion. We will proceed to prove
this theorem. Since real-analytic maps satisfy the cross-ratio condition,
Herman’s theorem follows.

1.2. Bounded Geometry
Crossratios. Choose four points on the real line so that either
a<b<e<d

or all inequalities are reversed. Then define their cross-ratio by
a—bl-Je—d]

Cr(a, b, C, d) = M——bl
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It turns out that we can consider a much more general class of func-
tions of the quadruples of points, which will still be sufficient for our

proofs.

Definition 1.2. A cross-ratio module is a function x from all quadruples
of points of the real line which satisfya <b<c<d, ora>b>c>d,
with values in [0, 00) provided that:
o there is a constant C so that if Cr(a,b,c,d) > % then x(a,b,c,d) >
c,
e for every € > 0 there is a 6 > 0 so that if Cr(a,b,c,d) < 6, then
x{(a,b,c,d) <e.

The crossratio inequality. Suppose that n quadruples of points a; <
b; < ¢; < d; are chosen on the real line. We will say that they are in
an allowable configuration if the intervals (a;,d;) are pairwise disjoint
modulo 1 and d; — a; < 1.

Definition 1.3. Let ¢:R — R be strictly increasing and suppose that
g(x) —x 18 1-periodic. Let x be a cross-ratio module. We say that g sat-
isfies the cross-ratio inequality with respect to x (CRI-x in short) with
bound Q if and only if for any choice of quadruples of points (a;, b;, ¢;, d;),
i=1,...,nin an allowable configuration, the estimate

X az ) g( z) g(dz)>
H (azabzycudz) = Q

holds true.

A technical remark. In earlier works, [9], the cross-ratio inequality was
stated in a seemingly stronger form. Instead of the allowable configu-
rations all quadruples were allowed. Then, one defined an intersection
number for a configuration equal to the supremum over points z € R of
k so that z is contained modulo 1 in k intervals (a;, d;) from the config-
uration. For example, the configuration is allowable in the sense defined
earlier if and only if its intersection number is 1. In these earlier works
the constant Q) in the cross-ratio inequality depended on the intersection
number.
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ON CRITICAL CIRCLE HOMEOMORPHISMS 333

A graph-theoretical argument shows that our cross-ratio inequality
implies this older version.

Lemma 1.1. Suppose that g satisfies the cross-ratio inequality with re-
spect to some x with bound Q. Let (a;,b;, c;,d;) be any configuration of
quadruples of points on the real line with intersection number k. Then

x(g(aq), g(bi), g(ci), g(ds)) 2%k
H X(azabwcw d;) =€

Proof. The lemma will be proven if we can divide the set of intervals
(a;,d;) into 2k classes so that the intervals in each class are disjoint on
the circle and thus form an allowable configuration. Pick the intervals
(a;,d;) that contain an integer and make each a one-element class. This
gives us no more than £ classes. The remaining intervals can be moved
by integer translations onto the interval (0,1). Let Z be the set of the
moved intervals, with those containing integers excluded. The intervals
from 7 have the intersection number k£ and we will prove that they can
be divided into no more than k classes of disjoint intervals.

Consider the graph G having the elements of 7 as vertices. An edge
joins two intervals if and only if they intersect. Such a graph is called an
interval graph (see [1], page 13). It is known that every interval graph is
perfect (ibidem, Theorem 4.11 on page 95 and Problem 2 on page 100),
i.e. its vertices can be separated into & classes (“colors”) so that no two
vertices of the same color are adjacent, where  is the number of vertices
of the largest complete subgraph of G. Recall here that a complete
graph, also known as a clique, is a graph with all possible connections.
“Largest” in the previous sentence means “having the greatest number
of vertices”. A complete subgraph of G corresponds to a set of intervals
with non-empty pairwise intersections. They must have one point in
common, hence x = k. The coloring gives us exactly the needed division
of the set of intervals into & classes so that no two intervals in the same
class intersect. O

Checking the cross-ratio inequality. In [9], it is proven that if g is real-
analytic, then g satisfies the cross-ratio inequality with respect to the
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classical cross-ratio with some bound. Hence, the mapping f from the
hypothesis of Theorem 1.1 satisfies the CRI-Cr.

In the situation of finitely many critical points of g (counted modulo
1), the method of checking the CRI-Cr consists of three steps. First,
one checks that if (a;, d;) is in a small neighborhood of a critical point of
the mapping, but does not contain the critical point, the cross-ratio is
decreased under the action of g. Secondly, if (a4, d;) contains a critical
point, then the cross-ratio shows a bounded growth. This is close to
assuming that g itself is quasi-symmetric. Third, the product of changes
on all other quadruples is bounded. This last step ignores the critical
points and so methods developed for the study of diffeomorphisms such
as bounded variation or the Zygmund property apply. More information
about checking the cross-ratio inequality and estimating the bound can
be found in [5], [8], [6] and [10]. In the final section of this paper we will
work with a non-classical cross-ratio module to show that the cross-ratio
inequality is satisfied.

1.3. Quasi-symmetry of orbits

Facts from arithmetic. If a1, -- ,a,, - are coefficients of the continued
fraction representation of p(f), then let p,/gn, n > 1, denote the n-
th convergent, i.e. the rational number, written in the simplest terms,
that is obtained after dropping the part of the continued fraction which
comes after a,. For example,

P2 _ 1

q2 a1+%'

Dynamically, the numbers g, are the closest return times for the
rotation by p(f), i.e.

1p(Han — pnl < |p(f)k —m|

for any two positive integers k,m so that k < g,.1 with the equality
only when k = g, and m = p,.

The following fact describes the ordering of orbits under circle home-
omorphisms.
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ON CRITICAL CIRCLE HOMEOMORPHISMS 335

Fact 1.1. Let g:R — R be increasing and satisfy gz + 1) = g(x) + 1 for
every x € R. Choose Q positive so that p(g) = P/Q in simplest terms,
or make Q = oo if p(g) is irrational. Then for every x € R and every
pair of integers p,q so that |q| < Q, we have

(f%z) — = —p)(aplg) —p) > 0.

Proof. This is an easy exercise. O

A statement about quasi-symmetry. Let us state a lemma.

Lemma 1.2. Suppose that f:R — R is a lifting of a degree 1 circle
homeomorphism with rotation number which is irrational. Assume also
that f satisfies the cross-ratio inequality with respect to o cross-ratio
module x with bound M. Let p,/q, be a convergent of p(f).

Then, for every M, there is ¢ K > 1, also depending on X, so that
for every x € R

K™Y (z) — pp — 2| <|f77(@) +pn — 2] < K|f7(z) — po — z].

Proof. Without loss of generality assume that p, /g, < p(f). Otherwise,
we could consider F(z) = —f(—z)+1. We see that p(F) =1 p(f), and
so the n-th convergent of p(F") would be 1 — 2—2. We could then do the
argument for F' instead of f and for —x instead of x to obtain the same
estimate.

Adopt notations P/Q := p,/qn and P'/Q)’ for the next fraction larger
than P/@Q, with Q' < Q. Notice that P'/Q" > p(f). Otherwise, we
would have

- P’ P

0<P(f)*@<ﬂ(f)*a

which would imply
\Qp(f) — P'| <|Qp(f) — P|

contrary to the assumption that ¢ is a closest return time.

Let us fix a point z € R. From Fact 1.1 we see that f9(x)—P > z and
fQ’(x)—P’ < x. Hence, f‘Q,(m)—i—P’ > z. Choose n so that f‘Ql(a:H—P’
lies between f(”_l)Q(:c) —(n—1)P and f"?(x)—nP. Observe that n > 2
since n = 1 would imply by Fact 1.1 that 0 < —Q'p(f)+ P’ < Qp(f)— P
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in contradiction to @ being a closest return. For n = 2, the ordering of
points is shown on Figure 1.

L ;7@ + P ) 2P
; - }

Figure 1 — The ordering of points in the proof of Lemma 1.2.

Now take Fy := f — s where s is a non-negative number. As s grows,
point of the forward orbit of 2 move to the left and those in the backward
orbit proceed to the right. Hence there is a unique value of s for which
FrQ(z) — nP = F79(x) + P'. Let fix s at this value, and write F' for
Fg in order to keep the notation simple. Clearly, the orbit of z by F is
periodic with rotation number

, nP+ P
T nQ+ Q"

Note the following ordering of points
0< FPz)— P < f9uz) — P < F2%z) — 2P. (1)

Of these inequalities, the last one is not obvious. If it didn’t hold, we

would have

Qg )-nP F=2QF2Q 3y — 9P) — (n — 2)P
FO29(f%a) — P) — (n—2)P
gf"”Qw%m-wan~mP
= =gy — (n—1)P.

So,
F'9g)—nP < f0 090 —tn—1)P < f 9 (@)+ P < F @)+ P
which is a contradiction. By the same reasoning, we get

0> F Q)+ P> f R +P>F 20 +2P. (2)

The orbit of 2™ by the projection of F consists of nQ + Q' points.
Notice that the projections of = and F?(z) are consecutive. Otherwise,
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ON CRITICAL CIRCLE HOMEOMORPHISMS 337

for some 0 < g < nQ + Q' we would have
r< Flz)—p< Fex)— P

or, by Fact 1.1
0<qgp —p<Qp —P. (3)
Clearly, p’ exceeds both p/q and P/Q.
We claim that p/q > P/Q. First, note that ¢ > Q. Since p’ < p(f)
and by Fact 1.1, we have 0 < ¢gp' — p < gp(f) — p, and since P/Q is a

closest return time for the rotation by p, 0 < Qp(f) — P < qp(f) — p.
But since p(f) > p’ this means that

QY — P <qp —p,

a contradiction with inequality (3). Another thing which follows from
the same inequality is that

p—P
-Q
hence p/q is between u and P/Q, thus p/q > P/Q as claimed.

However, p/q € (P/Q, p') is impossible since P/Q and p' are Farey
neighbors. The term Farey neighbors refers to two fractions, written

P <

u,

is the simplest terms, so that the denominator of any fraction between
them exceeds the denominators of both Farey neighbors. From the way
P/Q and P’/Q" were chosen, they were obviously Farey neighbors. A
general principle, see [9], Section 3, is that if r/s and /s’ are Farey
neighbors, then so are r/s and (r + ') /(s + s'). Applying this principle
n times, we see that P/@Q and p’ are indeed Farey neighbors. So, the
projections of z and F¥(z) are consecutive points of the orbit of .

Let Z denote the collection of arcs on the circle with endpoints at
two consecutive points of the orbits of z by F.

Claim . Let x be a cross-ratio module. If F' satisfies CRI-x with bound
M and if I, s € T are adjacent, then |I1|/|Io| > M’ where M’ > 0
depends only on M and x.

Before proving the claim, note that it immediately implies Lemma
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1.2. Indeed, it means that all four intervals delimited by points
F 22y 4 2P F 9+ P,z ,F%x) — P and F>?(z)— 2P

have lengths comparable with the factor of (M’)~3, hence controlled
by M. In view of inequalities (1) and (2), Lemma 1.2 follows with
K = 2(M')~3.

The claim is essentially Lemma 8 of [9] and the proof goes as follows.
Choose I3 € T adjacent to I on the opposite side. Lift 11, I9, I3 to the

line to get intervals (a,b), (b, c) and (¢, d), respectively. Observe that

I
Cr(a,b,c,d) < Ll 4)
| I2]

Then choose the smallest £ so that f¢ maps I3 to the shortest arc in 7.
The configuration (a, b, c,d), ..., (.ff_l‘(a), ..., fF1(d)) has intersection
number at most 3. From Definition 1.2, x(f(a), f(b), f¢(c), f4(d)) > C1.
So, by Lemma 1.1,

"C < x(fHa), -, fH(d) < MOx(a,b,c,d).

So, x(a,b,¢,d) > CM 6. From Definition 1.2, Cr(a,b,c,d) > 5(C'M_6)
and invoking estimate (4) ends the proof of the claim, and thus of Lemma
1.2. O

1.4. Bounded ratio of closest returns.

We will present a second property of orbits. Unlike the first one, proved
in Lemma 1.2, this will require f to have critical points. Because of
our tendency to avoid assuming any smoothness, we state a weaker
property which gets used in the argument. Also, in this argument we
assume that the cross-ratio inequality is satisfied with respect to the
standard cross-ratio Cr. It would be possible to weaken this assumption
to allow some cross-ratio module with extra properties. Since we have
no good example when such a generalization would lead to new results,
this seemed superfluous.

Definition 1.4. Let g: (a,b) — R be strictly increasing. We say that ¢ is
a pseudo-critical point of g if for every ', A > 0 there is § > 0 so that
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for every x,y # c if
|z —c|l/é6<|y—c <A,

then
9y) —9(O)] | 1y —¢
9(z) =9~ |z -

As an easy exercise, we leave it to the reader to show that if g is C'!
in a neighborhood of ¢, then ¢ is pseudo-critical if and only if ¢'(¢) = 0.
Let us now state the result.

Lemma 1.3. Suppose that f:R — R is a lifting of a degree 1 circle
homeomorphism with the rotation number irrational. Let pyy1/qn+1 and
Pn/qn be consecutive convergents of p(f). Assume also that [ satisfies
the cross-ratio inequality with respect to Cr.

Then, if ¢ is a pseudo-critical point of f, there is a constant K > 0
so that

IquH_l(C) — Dn+1 — C‘ 2> K’fqn(c) — Pn — C‘ .

Proof. As in the proof of Lemma 1.2, we assume without loss of gen-
erality that p, /g, < p(f), it follows then that p,+1/¢.+1 > p(f). Start
by observing a general fact the for every x € R, the projections to the
circle of intervals (z, z%%), ..., (fq”+1*1(:l:), fq”+1+q”’1(a:)) are disjoint.
By Fact 1.1 it will be enough to check this fact for the rotation by p(f)
instead of f, and then it is clear from ¢, being a closest return.

Now choose points dg = fIn+1(c) — ppy1, g = ¢, bg = f¥(c) — pn
and ag = f29(c) — 2p,,. Setting *; = f*(x) where % stands for a,b,c,d
and i =1,...,¢,41 we get a configuration of quadruples of points. The
ordering of points is shown on Figure 2.

d

dn-1

Figure 2 — Solid arrows denote the action of f% — py; the dashed ones show

fqn+1 — Pn+1-
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By the observation of the preceding paragraph, the intersection num-
ber of this configuration is no more than 3. Hence, by Lemma 1.1,

Cr(dg,. 15 Cgninr Pgpin Gappr) < Q% Cr(dy,c1,b1,a1) . (5)

In the forthcoming estimates we will use K; for positive numbers

independent of n. Let us estimate Cr(d b from be-

In+1° C‘1n+1 P Ydn 41 G’Qn+1)

low.
|d

o dn+1 C‘]n+1‘ 'an+1 B a‘]n—i—l‘
dnt1 Bans1) = d

b

Cr(dqn+1 » Capio

dnp1 bfln—{—li ‘an+1 - %n+1| .

Since aq, ., and cg,,, are the image and preimage of b respectively,

In+1°
the second fraction is bounded from below by Lemma 1.2. Next, the

interval (dg,, . ,bq, ) is contained in (f_Qq”(c) + 2p,, b). So,
‘d‘ln+1 C‘In-l—l]
Cl‘(dQn+l7C(In+17an+1aqn+1 = |f 2% O+ 2 — bl =
‘d Cl |d‘1n+1 B CQn+1‘ ‘d b|

Ha=ol  fd—d [ 2m(c)+2pn 0]
In the last estimate, the second fraction is bounded from below by a

positive number from Lemma 1.2 since d and ¢ are the image and

In-+1
preimage, respectively, of d by f9+1. The third fraction is bounded as

follows:
|d — b le — b
>

|29 (c) + 2p, — O] T |f 2 (c) + 2pn — O]
Since ¢ = f7(b), this is bounded from below by a positive constant

from Lemma 1.2.

Hence,
|d — ¢

Cr(d b‘]n+1a‘Z'rz+1) = K2 |d _ bi : (6>

An+1° ch+1 ’
Next, estimate

dy —c1|  |d1 —c
ldy — b1l fer =Bl

From this and estimate (5), we get

Cr(dy,c1,b1,a1) <

6ld1 —ci1
Cr(dqn+17an+1 s bqn+1aqn+1) Q |C1 _ bl‘
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while if take into account estimate (6)
ld — c| d1 —c1]
< 83 . 7
|d - b] lcp — by ")
Now we use the fact that c is a pseudo-critical point. In Definition 1.4,

set A =2 and ' = 2K3 to obtain the §, which we can additionally make
less or equal to 1. If |d — ¢| < §le — b, then

il o 1 d-¢d _ qld—(]

ler —b1] ~ 2K3le—b] T2 ]d -0
in clear contradiction to estimate (7). Hence |d — ¢| > 6]b — ¢| but this
is just the claim of Lemma 1.3. O

1.5. Conjugacy Theorems
Based on Lemmas 1.2 and 1.3, we prove results about the quasi-

symmetric conjugacy of a circle homeomorphism to the linear rotation.

A condition for QS conjugacy

Proposition 1. Let f:R — R be a lifting of a degree 1 circle homeomor-
phism with an irrational rotation number p(f). Suppose that f satisfies
the cross-ratio inequality with bound @ with respect to some cross-ratio
module x.

Then, there is H:R — R, also a lift of a degree 1 circle homeomor-
phism, which conjugates f to the translation by p(f). Furthermore, H
is quasi-symmetric if p(f) is of bounded type. If the continued fraction
coefficients are all bounded by N, then H is K-quasi-symmetric where
K depends only on @, x and N. If f has at least one pseudo-critical
point and x = Cr, then H is quasisymmetric iof and only if p(f) is of
constant type.

Before proving Proposition 1, observe that it directly implies Theo-
rem 1.1. The proof will naturally split into three steps: the construction
of H, the proof that it is quasi-symmetric in the bounded type situation,
and the proof that it is not quasi-symmetric otherwise.

The existence of a conjugacy. We will construct H to solve the functional
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equation
J(H(z)) = H(x + p(f)) -

The method is very natural. Make H(0) = 0. Then necessarily
H(mp(f)+n) = f™(0)+n for any pair of integers m,n. This defines H
on a dense subset of R. By Fact 1.1, H is increasing. To prove that H
extends to a homeomorphism of the line, it is necessary and sufficient
that the closure of the set S := {f™(0)+n: m,n € Z} be the whole real
line. If not, choose a point = on its boundaxry. Points f%n(x) — p9, ap-
proach z from the right unless = has a right-sided neighborhood disjoint
from S. Similarly, points f~%n(z) + ps, approach z from the left un-
less x has a left-sided neighborhood disjoint from S. In view of Lemma
1.2, convergence cannot happen on only one side. Hence, all boundary
points of S are isolated in S. In particular, there are only finitely many
of them modulo 1 and since map preserves S as well as 35, it will even-
tually map one of them into itself creating a periodic point on the circle,
contrary to the assumption that p(f) is irrational.

So the existence of H has been proved. Moreover, we showed that
H is unique once the image of one point has been fixed, so all other
conjugacies will be of the form H (z+\) where A is an arbitrary constant.
Hence to study their quasi-symmetry it does not matter which one is
picked out.

The quasi-symmetry of f. Let us now assume that p(f) is of constant
type with continued fraction coefficients bounded by N. One has to
recall that

an|@np(f) = pul < lgn_1p(f) = Puo1] < (@n + D{gnp(f) — Pal

for all n > 1 with the convention pg/gg = 1/0. By Fact 1.1, a conse-
quence of this is that

| felentan () — ean + Dpp — y| > |71 (y) + eppy|  (8)

foralln>1, yeRand ¢ = —1,1.
Take r € R and 1 > ¢ > 0. Choose n > 0 so that

lgnr10(f) = Pry1l <t <lgnp(f) — pal -
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Then

H(x -+ t) € (f‘ﬁ‘ZnJrl(H(x)) + €Pn+1, fﬁqn(H(x)) - Epn,]

and likewise

H(zx —t) € [f " (H(z)) + epp, [+ (H(z)) — eppr1)
where € = (—1)". By relation (8),
\f T (H (%)) + epn1 — H(@)]

\f€<N+1>qn+1<H<m>> — (N + eppi1 — Hz)|
_H@+t) - H@)| _ | N (H () + (N + Vepayt — H(z)]
~ |H(z) — (ﬂf—t | B | fe9n 1 (H(z)) — eppt1 — H(2))|

for n > 0. By Lemma 1.2 any adjacent two of the intervals with end-

points
FRney(H (z)) — kppey and  fET D01 (H(z)) — (k + 1)pogy

for k € Z are comparable within the multiplicative factor K where K
depends only on the cross-ratio bound and . Hence

K-N-1 < |H(x +t) — H(x)| < N

T |H(z)—H(x—t)| ~
for0<t<1.
It remains to consider the case of t > 1. If the integer part of ¢ in
m, clearly
n |H(x +t) :L‘)l n+1
n+1 "~ |H(z) H(:L‘——tl_ n

because H(z-+n) = H(x)+n. We have proved that H is max(2, KN *1)-
quasi-symmetric.

The necessity of constant type. We start with the following fact about
quasi-symmetric homeomorphisms:

Fact 1.2. A homeomorphism h:R — R is quasi-symmetric if and only if

for every v > 0 there is a ¥’ > 0 so that for any triple of distinct points

x,y, Yy, with x placed between y and ', if
= —y
-yl

7
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then
) by
\h{(z) = h(y)]
The proof is an easy exercise.
If we now assume that p(f) is not of constant type, we can find a

sequence n; so that a,. — oco. This means that for every x
q j ]

|(@n; o(f) = Pn; + 7) — 2|
I(an—lp(f> - pnj—l +x) — xl

— 0.

On the other hand, if we choose z equal to the preimage of a pseudo-
critical point of f, Lemma 1.3 implies that

‘H(anp(f> ~Pn; + z) — H(z)|
\H (Gn;p(f) = Pny + ) — H(@)]

remains bounded from below by a positive constant independent of j.

In view of Fact 1.2 this means that H 1 is not quasi-symmetric, hence
neither is H.
This concludes the proof of Proposition 1.

2. A Denjoy Theorem

We will describe a situation in which the cross-ratio inequality holds
in a non-classical situation. As a result, we get a Denjoy theorem for
analytic maps on quasiconformal Jordan curves.

Theorem 2.1. Suppose that w is a quasiconformal Jordan curve in the
complex plane. Let ¢ be an analytic function defined in a neighborhood
of w which maps w onto itself homeomorphically. Moreover, suppose
that ¢ has no periodic points on w. Then, there is a homeomorphism h
from w onto the unit circle so that

h(2)) = 2™ Rh(2)

Jor all z and some irrational w.

When w is a circle, this reduces to Yoccoz’ theorem, see [11]. It is an
interesting question, posed to the author by Peréz-Marco, whether the
claim of Theorem 2.1 still holds when w is an arbitrary Jordan curve, or
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even just a continuum in the plane and ¢(z) is understood as the action
on prime ends.

Plan of the proof. Without loss of generality, the only critical points of ¢
are on w. Consider the Riemann mapping R from the unit disk onto W,
one of the connected components of the complement of w. For z on the
unit circle use the continuous extension of R to the boundary to define
the map f(z) = R~'opoR(z). The map f is a homeomorphism without
periodic points, hence it must be of degree 1 with an irrational rotation
number. Theorem 2.1 will follow from Proposition 1 once we show that
the lifting of f, satisfies the cross-ratio inequality with respect to some
cross-ratio module. This method of proof gives more than Theorem 2.1.
For example, the lifting of f has bounded geometry properties from
Lemma 1.2 and is conjugated to the rotation by a quasi-symmetric map
provided that the rotation number is of constant type. The function f is
easily seen to be real-analytic except at the preimages by R of the critical
points of ¢. There appears to be no easy way of controlling the behavior
of f near these, let us call them exceptional, points. Hence, it is not
clear whether the problem can be reduced to Yoccoz’ theorem or even
how to prove the cross-ratio inequality with respect to Cr. Choosing a
convenient cross-ratio module, however, makes checking the cross-ratio
inequality a relatively simple task.

2.1. Constructing the cross-ratio module

Let recall the notion of a quadrilateral. In the simplest setting, consider
a Jordan curve w in the complex plane with four points on it, called
the vertices of the quadrilateral. These points divide w into four arcs.
Choose one of them as the base of the quadrilateral. Every such configu-
ration defines a quadrilateral. The inner component of the complement
of w can be mapped univalently onto the interior of a rectangle with
vertices (0,1,1 + ia,4a) in such a way that the base is mapped to the
interval (0,1) be the continuous extension of the map. It turns out that
a depends only on the quadrilateral as is called its module. It is useful
to think of the family of admissible curves of a quadrilateral. These are
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curves contained inside the quadrilateral which join the base with the
opposite side. The basic inequality is that if quadrilaterals ()1 and Q)9
are related in such a way that the set of admissible curves for ¢}y is con-
tained in the set of admissible curves for @9, then mod ¢} > mod Q9.
A good exposition of the properties of conformal module can be found
in [7], pages 19-28.

If w is the real line, it has a mnatural cyclic order of points which
makes it positively oriented with respect to the upper half-plane. For
example, we can talk of an arc (1, —1) meaning the compactified real line
minus [—1,1]. In this situation if A, B, C, D are cyclically ordered points
on w, define Q(A, B,C, D) to be the quadrilateral with these vertices
and the base equal to the arc (A4, B).

Definition 2.1. Consider points A < B < C < D on the real line. Let
1

mod Q(A, B,C, D)’

IfA=B or C =D, we set x(A,B,C, D) =0. Also, define

X(4,B,C,D):=x(D,C, B, A)

X(A7B707D) =

if the foregoing definttion makes sense for the reversed sequence.

We will now check that x defines a cross-ratio module in the sense
of Definition 1.2.

For a quadrilateral from a certain class, we can associate its module
with the better known modulus of a ring domain. Pick cyclically ordered
points A, B, C, D on the real line and consider a Jordan arc v inside the
closed upper half-plane with endpoints at A and D. Then we have a
quadrilateral Q) with vertices A, B, C, D, base (A, B) and the remaining
sides (B,C), (C,D) and v. If ' is the image of @ by the reflection
about the real line, then the union of the interiors of @', @ together
with arcs (A, B) and (C, D) forms a ring domain R(Q). We will say that

this ring domain is associated with (. Then
T

mod R(Q) = od O

So,
X(A7B707D) =7 mod R(Q(AaBach)) .
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We are ready to see that x is a cross-ratio module. If Cr(A4, B,C, D) >
1/4, then both |A—B| and |C — D| are at least 1/5 of | B—C| and a round
ring with large modulus can be fit inside R(Q(A, B, C, D)). The second
condition of Definition 1.2 follows from Teichmiiller’s module theorem,
see [7], page 56. This theorem says that if a ring domain R separates
points wq and wo from oo and z, then ‘

mod R < (-2 =1L
lw1 — wy

where v is a universal function whose limit at 0 is 0. Hence,
x(4, B,C, D) < ¢ provided that |A— B|/|C— B| < 61(¢) or |C - D|/|C—
B| < 61(¢) and this last condition is implied when Cr(A, B, C, D) is suf-
ficiently small. So, x indeed is a cross-ratio module.

2.2. The crossratio inequality
It is left to us to verify the cross-ratio inequality for the lifting of f and
with respect to x. Let us begin with a technical lemma.

Lemma 2.1. Suppose that points A, B,C, D are cyclically ordered on the
real line. For every k > 0, if |D — A| < k/2, then there is a Jordan
arc v with endpoints D and A so that the quadrilateral () with sides
(A, B), (B,C) and (C,D) and the fourth side v has interior disjoint
from Vi, = {2: Sz > k} and satisfies
mod Q(A, B,C, D)

1—|D— Al/k

mod Q' <

Proof. Since the situation is clearly translation-invariant, we can assume
without loss of generality that A = —D and D > 0. Consider the map
M'(z) = —D—%—Az from the upper half plane onto itself. M’ sends A and
D to —1 and 1, respectively, while M'(Vy) =V 5 . Next, consider the
Mobius map M from the upper half-plane onto,é]f_lxe4 unit disk which fixes

—1 and 1, sends 0 to —%, 0o to ¢ and 7 to 0. One checks directly that
2k D—-A
\SM(m—) >1— T .

Let ['= M o M'. Then I'(Vy) C {z: 92z > 1 — 272}

Bol. Soc. Bras. Mat., Vol. 29, N. 2, 1998



348 GRZEGORZ SWIATEK

Now choose I'(w) as the arc of the ellipse which joins —1 and 1 and
avoids T'(V%). The smaller semi-axis of this ellipse can be taken to be
1— D—;A. This defines the quadrilateral T(Q’). To estimate its module,
apply the homeomorphism H which is the identity in the lower half-
plane and acts by

k

in the upper half-plane. Obviously, H is

1 .
DA quasiconformal,
Tk

at least 2-quasiconformal because of our hypothesis |D — A| < k/2.

Hence,

mod @' = mod T'(Q) < H;_H_g‘;*(?))

k

but H(T(Q')) = T(Q). , O

The cross-ratio inequality - the set up and the easy case. Choose a lift g
of f. We have to check the condition of Definition 1.3. Let us consider
the allowable configuration of quadruples of points (a;, b;, ¢;, d;). For any
n > 0 and without loss of generality, all distances d; —a; can be assumed
less than n. This is because all values 4 for which this is violated are no
more than 1/7 in number and each contributes a bounded factor to the
product in the cross-ratio inequality by continuity.

If n is chosen small, each interval (a;,d;) contains at most one ex-
ceptional point of g. Consider first the position without exceptional
points. Counsider Q' := Q(g(a;), g(b;), g(¢:), 9(d;)). The map G is holo-
morphic in some strip above the real axis and its range covers the strip
Up = {#:Sz < k} for some k > 0. By Lemma 2.1, if n < k/2, then
inside @' N Uy we can find a quadrilateral Q)" with the same base two
other sides and with

y mod @’
mod @S el @) — (@)

where C := k1. Then Q" can be mapped by an inverse branch of g to

9)
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some quadrilatral which is contained in Q(a, b;, ¢;, d;). Hence,
mod Q(a’i7 bi7 Ci, dl) S mod Q/, S

1
< (1= Clg(as) — g(d))) mod Q(g(ai), 9(b:), g(cs), 9(ds))
and, »
x(g(ai), 9(bi), g(ci), 9(di)) _ 1
x(as, bi, ¢i, d;) ~ 1-Clg(di) — g(as)
Since intervals g(a;,d;) are disjoint modulo 1, their joint length is

bounded by 1 and the product of contributions of this type for all 4
is also bounded.

The handling of exceptional points. Now suppose that (a;, d;) contains
an exceptional point of g. We use, for the only but crucial time in
this proof, the assumption that the initial curve w in the statement
of Theorem 2.1 is quasiconformal. This means that the Riemann map
used to define f extends globally as a quasiconformal homeomorphism.
So, g extends to a strip on both sides of the real line in the form G =
H 1o ¢ o H where H is a K-quasiconformal covering map given as
the composition of the exp with the global quasiconformal extension of
the Riemann map K. Suppose that a symmetric strip U}, of width k is
covered by the range of G. As in the previous case, we first consider
Q' = Q(g(a;),g(b:),g(c;),9(d;)) and then choose a smaller @” whose
interior is contained in the upper half of U}, and for which estimate (9)
holds. Then construct the associated ring domain R(Q”) which now fits
inside Uy,. Also,
mod R(Q") > m(1 — Clg(a:) — g(ds)])
mod ¢
(1 —Cn)
x(9(a:), g(bi), g(ci), g(ds))

with C := k1.

Let us consider the preimage of R(Q”) by G. Let v denote the
exceptional point which is contained in (a;,d;). Consider first the case
when v is in [b;, ¢i]. Then R := G~ 1(R(Q")) is a ring domain and G
restricted to R’ is a K 2-quasiconformal covering of R(Q") of degree equal
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to the order of the critical point of ¢ at H(y). If this order is £, then
mod R(Q")

K2
If v is not in [b;, ¢;], let us assume, only to fix attention, that it belongs to

mod R’ >

(@i, b;). In that case we can find a Jordan curve ¢ which passes through
g(7) and splits R(Q") into two nesting annuli, say Ry and Ro, so that

mod R1 + mod Ry = mod R(Q") .

Suppose that Ry is the outer layer, i.e. it surrounds g(v). If mod Ry >
mod Rp, we can take as R’ the preimage of R; by G. As in the previous

case, we argue that
mod R(Q")

20K?
If, on the other hand, mod Ry > mod R1, we can take as R’ the preimage

mod R’ >

of Ro by the inverse branch of G which agrees with g_1 on the real line.

In this case,
mod R(Q")

2K?
Summarizing, in every case we get a ring domain R’ which is contained
in R(Q(ai, b;, i, d;)) and has modulus at least
mod R(Q")
20 K2

mod R >

We estimate
x(ai, by, ¢;,d;) = 7~ mod R(Q(as, bi, ¢;,d;)) > 7  mod R >

5 wod R(Q") _ x(g(ai). g(bi), g(ci), 9(di))
omlK% 2K?%(1 - Cn) '
The last inequality follows from estimate (10). The cross-ratio inequality

follows, and thus Theorem 2.1.

Comments. We have seen that a lot of the work done in this section was
independent of the hypothesis about the quasiconformality of w. The
construction of y and the proof of the cross-ratio inequality away from
exceptional points would work for any Jordan curve. In fact, they would
only require ¢ to be defined on one side of w. It is then not surprising
that we had to use more in the case when an exceptional point is near.
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On the other hand, to assume that the curve is quasiconformal is clearly
too strong. There should be a local condition at the critical points of ¢
which makes the proof work.
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