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Abstract. We prove that an analytic circle homeomorphism without periodic orbits is 
conjugated to the linear rotation by a quasi-symmetric map if and only if its rotation 
number is of constant type. Next, we consider automorphisms of quasi-conformal 
Jordan curves, without periodic orbits and holomorphic in a neighborhood. We prove 
a "Denjoy theorem" that such maps are conjugated to a rotation on the circle. 
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1. Circle Maps 
1.1. Introduction 
Apparently due to the great complexity of problems involved, there is a 

tendency to divide dynamical systems into ever smaller sub-fields, each 

developing in its own right. Only exceptional mathematicians are able to 

overcome this tendency. Ricardo Mafi6 was this type of researcher. He 

left a deep mark on ergodic theory, general theory of diffeomorphisms on 

surfaces, hamiltonian dynamics, and the systems in one real or complex 

dimension. To him, dynamical systems was one field. 

This paper is not directly connected to Mafid's research. Without  

trying to approach his scope of vision, we show another example of a 

close connection between the theory in one real and complex dimension. 

Both sub-fields are quite different in the tools they use: strong reliance 

on the ordering of points in real dynamics and methods of complex 

function theory in holomorphic dynamics. Interactions between these 

theories have repeatedly been shown to lead to new deep results. An 
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330 GRZEGORZ SWI~TEK 

example of this occurred in 1987 when Michel Herman proved a theo- 

rem about, boundaries of Siegel disks with rotat ion numbers of constant 

type. His solution was based on quasiconformal surgery, see [4], and 

a theorem about the quasi-symmetric conjugacy between an analytic 

homeomorphism of the circle and a linear rotation, see [3]. 

In the first section we provide a proof of Herman's  theorem about 

circle mappings. Our proof is somewhat different from the original one 

and based on the method of [2]. We introduce a new technical concept 

of a cross-ratio module as the "minimal" tool which makes the theory 

work. Another  purpose of Section 1 is to simply fill out a gap in the 

l i terature by publishing proofs of results which have been referenced 

several times. 

The second section contains a generalization of the theorem by 

Yoccoz concerning the absence of Denjoy counterexamples for analytic 

maps. We extend the result to holomorphic maps tha t  preserve an 

arbitrary quasiconformal Jordan curve. This part  of our work provides 

a good example of the interplay between "real" arguments based on the 

ordering of points and complex function-theoretic tools. 

Quasi-symmetric homeomorphisms of  the line. 

Definition 1.1. A homeomorphism h : 1~ --+ 

symmetr ic  i f  and only i f  for  every real x and 6 ~ 0 

Ih(x + 6) - h(x)l 
I h ( x )  - h ( x  - 6)1 

< _ Q .  

is called Q-quasi- 

Rotation numbers. If f: R --+ ]R is the lifting of a degree 1 homeomor- 

phism of the circle, i.e. f ( x  + 1) = f ( x )  + 1 and f is increasing, then the 

following limit: 
fn (x)  

p(f)  := lira 
n ~  n 

exists for every x and is independent  of x. It is called the rotation 

number of f .  A lifting can always be chosen so that  p(f)  E [0, 1), so 

we assume that  in the sequel. An irrational rotation number can be 
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ON CRITICAL CIRCLE HOMEOMORPHISMS 331 

uniquely represented in the form of an infinite continued fraction 

1 
P(f) - 1 

al + a2+... 

with a l , . . ,  all positive integers. We say that  the rotat ion number  is of 

constant type if and only if the numbers ai are all bounded by a constant. 

T h e  s tatement  o f  M. H e r m a n ' s  theorem.  

Theorem 1.1. Let f be a real-analytic homeomorphism of the real line 

onto itself, a lifting of a degree 1 circle homeomorphism. Suppose that 

the derivative of f vanishes at least at one point. Let p(f) ~ Q be the 

rotation number of f .  

Then there is a homeomorphism H: H ~ R, also a lifting of a degree 

1 circle map, so that the functional equation 

H(x  + p(f)) = f (H(z ) )  

is satisfied. Moreover, H is quasi-symmetric if and only if p(f) is of 

constant type. 

The existence of H which solves the given functional equation had 

followed from an earlier theorem of Yoccoz (see [11]). The proof of the 

whole theorem appeared in the manuscript  [3]. 

Sketch of  the paper.  We will re-state Theorem 1.1 in a more general 

form which does not assume any smoothness and instead is fully based 

on an est imate of the cross-ratio distortion. We will proceed to prove 

this theorem. Since real-analytic maps satisfy the cross-ratio condition, 

Herman's  theorem follows. 

1.2. Bounded Geometry 

Cross-ratios. Choose four points on the real line so that  either 

a < b < c < d  

or all inequalities are reversed. Then  define their cross-ratio by 

Cr(a, b, c, d) := la - bl" Ic - dl 
ta - cl hi" 
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It turns out that  we can consider a much more general class of func- 

tions of the quadruples of points, which will still be sufficient for our 

proofs. 

Definit ion 1.2. A cross-ratio module is a .function X from all quadruples 

of points of the real line which satisfy a < b < c <_ d, or a >_ b > c >_ d, 

with values in [0, oc) provided that: 

�9 there is a constant C so that if  Cr(a, b, c, d) > 1 then x(a, b, c, d) > 

C, 

�9 for every c > 0 there is a ~5 > 0 so that if Cr(a ,b ,c ,d )  < (5, then 

?((a,b,e,d) < e. 

The cross-ratio inequality. Suppose that  n quadruples of points ai < 

bi < e~ < di are chosen on the real line. We will say that  they are in 

an allowable configuration if the intervals (ai, di) are pairwise disjoint 

modulo 1 and d~ - ai < 1. 

Definit ion 1.3. Let 9: R ~ R be strictly increasin9 and suppose that 

9(x) - x is 1-periodic. Let ?4 be a cross-ratio module. We say that g sat- 

isfies the cross-ratio inequality with respect to ~ (CRI-X in short) with 

bound Q if and only if  for any choice of quadruples of points (ai, bi, ei, di), 

i = 1 , . . .  , n in an allowable configuration, the estimate 

~ i  X(9(ai), 9(bi), 9(ci), 9(di) ) < Q 

holds true. 

A technical remark. In earlier works, [9], the cross-ratio inequality was 

stated in a seemingly stronger form. Instead of the allowable configu- 

rations all quadruples were allowed. Then, one defined an intersection 

number  for a configuration equal to the supremum over points x E IK of 

k so that  x is contained modulo 1 in k intervals (ai, di) from the config- 

uration. For example, the configuration is allowable in the sense defined 

earlier if and only if its intersection number is 1. In these earlier works 

the constant  Q in the cross-ratio inequality depended on the intersection 

number. 
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A graph-theoretical  argument shows that  our cross-ratio inequality 

implies this older version. 

Lemma  1.1. Suppose that g satisfies the cross-ratio inequality with re- 

spect to some X with bound Q. Let (ai, bi, c~, di) be any configuration of 

quadruples of points on the real line with intersection number k. Then 

~ i  x(g(ai), g(bi), g(ci), g(di) ) Q2k < 
i=1 x(a~, bi, c~, di) - 

Proof .  The lemma will be proven if we can divide the set of intervals 

(ai, &) into 2k classes so that  the intervals in each class are disjoint on 

the circle and thus form an allowable configuration. Pick the intervals 

(ai, &) that  contain an integer and make each a one-element class. This 

gives us no more than k classes. The remaining intervals can be moved 

by integer translations onto the interval (0, 1). Let 27 be the set of the 

moved intervals, with those containing integers excluded. The intervals 

from 27 have the intersection number  k and we will prove that  they can 

be divided into no more than k classes of disjoint intervals. 

Consider the graph G having the elements of 2- as vertices. An edge 

joins two intervals if and only if they intersect. Such a graph is called an 

interval graph (see [1], page 13). It is known that  every interval graph is 

perfect (ibidem, Theorem 4.11 on page 95 and Problem 2 on page 100), 

i.e. its vertices can be separated into n classes ("colors") so that  no two 

vertices of the same color are adjacent,  where ~ is the number of vertices 

of the largest complete subgraph of G. Recall here that  a complete 

graph, also known as a clique, is a graph with all possible connections. 

"Largest" in the previous sentence means "having the greatest number  

of vertices". A complete subgraph of G corresponds to a set of intervals 

with non-enlpty pairwise intersections. They  must have one point in 

common, hence ~ = k. The coloring gives us exactly the needed division 

of the set of intervals into k classes so that  no two intervals in the same 

class intersect. [~ 

Checking the cross-ratio inequality. In [9], it is proven that if g is real- 

analytic, then 9 satisfies the cross-ratio inequality with respect to the 
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classical cross-ratio with some bound. Hence, the mapping f from the 

hypothesis of Theorem 1.1 satisfies the CRI-Cr. 

In the situation of finitely many critical points of 9 (counted modulo 

1), the method of checking the CRI-Cr consists of three steps. First, 

one checks tha t  if (ai, di) is in a small neighborhood of a critical point of 

the mapping, but  does not contain the critical point, the cross-ratio is 

decreased under the action of g. Secondly, if (ai, di) contains a critical 

point, then the cross-ratio shows a bounded growth. This is close to 

assuming that  g itself is quasi-symmetric. Third, the product  of changes 

on all other quadruples is bounded. This last step ignores the critical 

points and so methods developed for the s tudy of diffeomorphisms such 

as bounded variation or the Zygmund property apply. More information 

about checking the cross-ratio inequality and estimating the bound can 

be found in [5], [8], [6] and [10]. In the final section of this paper we will 

work with a non-classical cross-ratio module to show that  the cross-ratio 

inequality is satisfied. 

1.3. Quasi-symmetry of  orbits 

Facts from arithmetic. If a l , ' - -  , a n , ' "  are coefficients of the continued 

fraction representation of p(f), then let p~/%, n > 1, denote the n- 

th  convergent, i.e. the rational number,  wri t ten in the simplest terms, 

that  is obtained after dropping the part  of the continued fraction which 

comes after as. For example, 

P2 1 
1" q2 al + a~ 

Dynamically, the numbers qn are the closest re turn times for the 

rotation by p(f), i.e. 

I,(f)q  - -< b ( f ) k  - 

for any two positive integers k, m so that  k < qn+l with the equality 

only when k = q~ and m = p~. 

The following fact describes the ordering of orbits under circle home- 

omorphisms. 
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Fact 1.1. Let g: R -+ R be increasing and satisfy g(x + 1) = g(x) + ! for 

every x ~ R. Choose Q positive so that p(g) = P / Q  in simplest terms, 

or make Q = oc if  p(g) is irrational. Then for every x E I~ and every 

pair of integers p, q so that Iql < Q, we have 

( f q ( z )  - -  X - -  P)(qP(g) - P) > O. 

Proof.  This is an easy exercise. [] 

A statement about quasi-symmetry. Let us state a lemma. 

Lemma 1.2. Suppose that f:  ~ --+ R is a lifting of a degree 1 circle 

homeomorphism with rotation number which is irrational. Assume also 

that f satisfies the cross-ratio inequality with respect to a cross-ratio 

module X with bound M.  Let p~/q~ be a convergent of p(f) .  

Then~ for every M,  there is a K >_ 1, also depending on X, so that 

for every x E ]R 

K-1 l fqn ( z )  - p~ - x I <_ If-q~(x) + pn - x I <_ Kl fq~(x)  - p~ - x I. 

Proof.  Wi thout  loss of generality assume tha t  p,~/q~ < p(f) .  Otherwise, 

we could consider F(x)  = - f ( - x )  + 1. We see tha t  p(F) = 1 - p(f) ,  and 

so the n-th convergent of p(F) would be 1 - P~. We could then do the 
q n  

argument for F instead of f and for - x  instead of x to obtain the same 

estimate. 

Adopt notations P / Q  := p~/q~ and P ' / Q '  for the next fraction larger 

than  P / Q ,  with Q' < Q. Notice that  P ' / Q '  > p(f) .  Otherwise, we 

would have p'  p 
0 < p ( f ) -  ~7 < P( f ) -  

which would imply 

IQ'p(f) - P'I < [Qp(f) - PI 

contrary to the assumption tha t  Q is a closest return time. 

Let us fix a point x E ]R. From Fact 1.1 we see tha t  f e ( x ) - P  > z and 

f Q ' ( z ) - P '  < z. Hence, f - Q '  ( x )+P'  > x. Choose n so tha t  f - Q '  ( z )+P '  

lies between f0~-l)Q(x) - ( n - 1 ) P  and f ~ Q ( x ) - u P .  Observe tha t  n > 2 

since n = 1 would imply by Fact 1.1 tha t  0 < - Q ' p ( f ) +  P '  < Qp(f)  - P  
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in contradiction to Q being a closest return. For n = 2, the ordering of 

points is shown on Figure 1. 

Q' pt f -  (x) § f2Q(x)_ 2P 
': f ' I I 

fQ ' (x ) -P '  x f Q ( x S - P  

Figure 1 - T h e  ordering of points in the proof of Lemma 1.2. 

Now take Fs : :  f - s where s is a non-negative number. As s grows, 

point of the forward orbit of x move to the ]eft and those in the backward 

orbit proceed to the right. Hence there is a unique value of s for which 

F S 2 ( x )  - n P  = FSQ' (x )  + P' .  Let fix s at this value, and write F for 

Fs in order to keep the notat ion simple. Clearly, the orbit of x by F is 

periodic with rotat ion number 

n P  + P '  
f i t  ~_ 

n @ + Q ' "  

Note the following ordering of points 

0 < FQ(x) - / 9  < fQ(x) - / 9  < F2Q(x) - 2/9. (1) 

Of these inequalities, the last one is not obvious. If it didn ' t  hold, we 

would have 

FnQ(x)  - n/9 = F(n-2)Q(F2Q(x)  - 2/9) - (n - 2)/9 

<_ F ( ~ - 2 ) Q  ( 9  (x )  - P )  - ( n  - 2 ) e  

< f(~-2)Q(fO(x) - P) - ( n -  2)P 

= f(~-l)Q(x) - (n - 1)P. 

So, 

vnQ(x )  - n I  ~ <_ f (n-1)Q(x)  - ( n -  1)/9 < f - Q ' ( x )  + p t  < F - O ' ( x  ) +/9 ,  

which is a contradiction. By the same reasoning, we get 

0 > F-Q(x)  + / 9  > f -Q(x)  + / 9  > F-2Q(x) + 2/9 . (2) 

The orbit of e 2~x by the projection of F consists of n Q  + Q' points. 

Notice tha t  the projections of x and FQ(x)  are consecutive. Otherwise, 

BoL Soc. Bras. Mat., Vol. 29, iV. 2, 1998 



ON CRITICAL CIRCLE HOMEOMORPH1SMS 337 

for some 0 < q < nQ + Q' we would have 

x < Fq(x) - p  < FQ(x) - P 

or, by Fact 1.1 

0 < q / - p  < Qp' - P. (3) 

Clearly, p' exceeds both p/q and P/Q.  

We claim that  p/q > P/Q.  First, note that  q > Q. Since p' < o(f)  

and by Fact 1.1, we have 0 < qp' - p  < q,o(f) - p ,  and since P / Q  is a 

closest re turn time for the rotation by p, 0 < Q,o(f) - P < qp(f) - p. 

But since p(f) > p' this means that  

Q p ' -  p < qp'-- p, 

a contradiction with inequality (3). Another  thing which follows from 

the same inequality is that  

p - P  / < -- u, 
q - O  

hence p/q is between u and P/Q,  thus p/q > P / Q  as claimed. 

However, p/q E (P/Q, p') is impossible since P / Q  and p' are Facey 

neighbors. The term Farey neighbors refers to two fractions, wri t ten 

is the simplest terms, so that  the denominator  of any fraction between 

them exceeds the denominators of both Farey neighbors. From the way 

P / Q  and P' /Q '  were chosen, they  were obviously Farey neighbors. A 

general principle, see [9], Section 3, is that  if r/s  and r'/8' are Farey 

neighbors, then so are r/8 and (r + r')/(8 + s'). Applying this principle 

n times, we see tha t  P / Q  and / are indeed Farey neighbors. So, the 

projections of x and FQ(x) are consecutive points of the orbit of x. 

Let 2- denote the collection of arcs on the circle with endpoints at 

two consecutive points of the orbits of x by F.  

Claim.  Let  X be a cross-ratio module. I f  F satisfies CRI-x with bound 

~I and if [1,[2 ~ Z are adjacent, then 1111/1121 >_ M'  where k/I' > 0 

depends only on M and X. 

Before proving the claim, note that  it immediately implies Lemma 
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1.2. Indeed, it means that all four intervals delimited by points 

F - 2 Q ( x ) + 2 P , F - Q ( x ) + P , x , F Q ( x ) - P  and F 2 Q ( x ) - 2 P  

have lengths comparable with the factor of (M') -3, hence controlled 

by M. In view of inequalities (1) and (2), Lemma 1.2 follows with 

:-- 2iM')-3. 
The claim is essentially Lemlna 8 of [9] and the proof goes as follows. 

Choose/3 c 2- adjacent to I2 on the opposite side. Lift I1 , I2 ,1a  to the 

line to get intervals (a, b), (b, c) and (c, d), respectively. Observe that 

15P Cr(a, b, c, d) < - -  (4) 
1• 

Then choose the smallest g so that fe maps /2  to the shortest arc in Z. 

The configuration ( a, b, c, d) , ..., ~ f e - 1  ( a ) , . . . , H - l ( d) ) has intersection 

number at most 3. From Definition 1.2, x ( f e ( a ) ,  fZ(b), fe (c) ,  fe (d))  > C1. 

So, by Lemma 1.1, 

~C < x ( f~ (a ) ,  . . .  , f e (d ) )  <_ M 6 x ( a , b , c , d ) .  

So, x(a ,  b, c, d) >_ C M  -6.  From Definition 1.2, Cr(a, b, c, d) > ~(CM -6) 

and invoking estimate (4) ends the proof of the claim, and thus of Lemma 

1.2. [] 

1.4. B o u n d e d  ratio o f  closest returns. 

We will present a second property of orbits. Unlike the first one, proved 

in Lemma 1.2, this will require f to have critical points. Because of 

our tendency to avoid assuming any smoothness, we state a weaker 

property which gets used in the argument. Also, in this argument we 

assume that the cross-ratio inequality is satisfied with respect to the 

standard cross-ratio Cr. It would be possible to weaken this assumption 

to allow some cross-ratio module with extra properties. Since we have 

no good example when such a generalization would lead to new results, 

this seemed superfluous. 

Definition 1.4. Let  g: (a, b) ~ R be s tr ict ly  increasing.  We  say that  c is 

a pseudo-critical point of  g i f  f o r  every F, A > 0 there is (~ > 0 so that  
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for every x, y ~ c if 

then 

Ix-cl/ < l y - c l  < n, 

Ig(y) - g(c)l Jy - cl 

19(~) - g(c)l I ~ - cl " 

As an easy exercise, we leave it to the  reader  to show t h a t  if g is C 1 

in a ne ighborhood  of c, t hen  c is pseudo-cri t ical  if and only if g'(c) = O. 

Let us now s ta te  the  result.  

L e m m a  1.3. Suppose that f: ~ ~ R is a lifting of a degree 1 circle 

homeomorphism with the rotation number irrational. Let p~+ l/qn+ l and 

p~/q~ be consecutive convergents of p(f) .  Assume also that f satisfies 

the cross-ratio inequality with respect to Cr.  

Then, if  c is a pseudo-critical point of f ,  there is a constant K > 0 

so that 

Ifq +l(c) - - cJ >_ KIfq (c) - - cJ 

Proof .  As in the  proof  of L e m m a  1.2, we assume wi thou t  loss of gen- 

eral i ty  t h a t  p~/q ,  < p(f),  it follows then  t h a t  P~+l/q~+l > P(f). Star t  

by observing a general  fact  the  for every x E R, the  project ions  to the  

circle of intervals (x, xq~) , . . .  , ( f q . + l - 1  (z), fq~+l+q~-I  (x)) are disjoint.  

By  Fact  1.1 it will be enough to check this  fact for the  ro ta t ion  by p(f) 

ins tead  of f ,  and  then  it is clear from q,  being a closest re turn .  

Now choose points  do = fqn+l(c) -P~+I ,  co = c, bo = fq~(c) - P n  

and  ao = f2q~(c) - 2 p . .  Set t ing *i = i f (*)  where �9 s tands  for a,b, Gd  

and i = 1, . . .  , q~+l we get a conf igurat ion of quadruples  of points.  The  

order ing of points  is shown on Figure  2. 

r ', r ', 
I I I I i 
J i I I 

dqn+l d C b a 

Figure  2 - Solid arrows d e n o t e  the  action of fqn _ P n ;  the  d a s h e d  o n e s  s h o w  

fqn+l -- Pn+l. 
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By the observation of the preceding paragraph, the intersection num- 

ber of this configuration is no more than  3. Hence, by Lemma 1.1, 

Cr(dqn+l ' Cqn+l, bqn+laqn+l ) < Q6 Cr(dl ,  el, bl, al)  �9 (5) 

In the forthcoming estimates we will use K.i for positive numbers 

independent  of n. Let us est imate Cr(dqn+l , Cqn+l , bqn+l aqn+l) from be- 

low. 

I % + 1  - eq~+l I Ibn+l  - a ~ + z  I 
Cr(dqn+l' Cq~§ bq~z§  = ]dqn+a bqn+l I ]Cqn§ - aqn+l  I " 

Since aqn+l and eqn+l are the image and preimage of bqn+l , respectively, 

the second fraction is bounded from below by Lemma 1.2. Next, the 

interval (dqn+l , bqn+l ) is contained in (f-2qn (e) + 2pn, b). So, 

[dqn+l - Cqn+l ] 
Cr(dqn+l,eqn+l,bqn+laqn+l) >_ K1 if_2-~(c) + ~ p ~ -  b I = 

Id - el I % + 1  - %~+~ [ Id - bl 
= K1 id bl Id - e I If-2qn(e) + 2pn -- b I " 

In the last estimate, the second fraction is bounded from below by a 

positive number from Lemma 1.2 since dqn+l and c are the image and 

preimage, respectively, of d by fqn+l. The third fraction is bounded as 

follows: 
I d -  bl > l e -  Vl 

If-2qn(e) + 2pn -- b] - If  2q~(e) + 2pn - b I " 

Since e = f -qn(b) ,  this is bounded from below by a positive constant 

from Lemma 1.2. 

Hence, 
Id - el 

Cr(dqn+l' Cqn+l' bqn+l aqn+l ) >- K21d - b~ " (6) 

Next, est imate 

[dl - c l l  Idl - cll 
Cr(dl ,  Cl, bl, al)  < < 

Idl - bll Ic1 -- bll " 

Prom this and est imate (5), we get 

Cr(dqn+l Cq~+l, bqn+laqn+l ) < Q6 Idl - c l l  
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while if take  into account  e s t ima te  (6) 

Id - el Idl - 

Now we use the  fact  t ha t  c is a pseudo-cr i t ica l  point .  In Defini t ion 1.4, 

set A = 2 and P = 2143 to ob ta in  the  (5, which we can addi t iona l ly  make  

less or equal  to 1. If  Id - c I < (51c - bl, then  

Id -c l_< I d - c l <  I d - c l  
Icl - bl] 2/43 ] c -  bl - K ~  Id bl 

in clear cont rad ic t ion  to es t ima te  (7). Hence  Id - c] _> 61b - c I bu t  this 

is jus t  the  claim of L e m m a  1.3. [] 

1.5. Conjugacy Theorems 
Based  on L e m m a s  1.2 and 1.3, we prove resul ts  a b o u t  tile quasi- 

symmet r i c  con jugacy  of a circle h o m e o m o r p h i s m  to the  l inear ro ta t ion.  

A condition for QS conjugacy 

Proposition 1. Let f: • --+ • be a lifting of a degree 1 circle homeomor- 

phism with an irrational rotation number p(f). Suppose that f satisfies 

the cross-ratio inequality with bound Q with respect to 3ome cross-ratio 

module X. 

Then, there is H: R -+ R, also a lift of a degree 1 circle homeomor- 

phism, which conjugates f to the translation by p(f). Furthermore, H 

is quasi-symmetric if p(f) is of bounded type. If  the continued .fraction 

coefficients are all bounded by N,  then H is K-quasi-symmetric where 

K depends only on Q, x and N.  If  f has at least one pseudo-critical 

point and X = Cr,  then H is quasisymmetric if and only if p(f) is of 

constant type. 

Before  proving P ropos i t i on  1, observe  tha t  it d i rect ly  implies Theo-  

rem 1.1. The  p roof  will na tu ra l ly  split into three  steps: the  cons t ruc t ion  

of H ,  the  p roof  tha t  it is quas i - symmet r i c  in the  b o u n d e d  t ype  s i tuat ion,  

and the  p roof  tha t  it is not  quas i - symmet r i c  otherwise.  

T h e  ex i s tence  o f a  conjugacy.  We will cons t ruc t  H to  solve the  funct ional  
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equation 

f ( H ( x ) )  = H ( x  + p( f ) )  . 

The method is very natural. Make H(0) = 0. Then necessarily 

H ( m p ( f )  + n) = fro(O) + n for any pair of integers m, n. This defines H 

on a dense subset  of ~.  By Fact 1.1, H is increasing. To prove that  H 

extends to a homeomorphism of the line, it is necessary and sufficient 

that  the closure of the set S := {f ro(0)+ n:  m, n c Z} be the whole real 

line. If not, choose a point x on its boundary.  Points fq2n(x) - P 2 n  ap- 

proach x from the right unless x has a right-sided neighborhood disjoint 

from S. Similarly, points f -q2n (x) + P2n approach x from the left un- 

less x has a left-sided neighborhood disjoint from S. In view of Lemma 

1.2, convergence cannot happen on only one side. Hence, all boundary  

points of S are isolated in S. In particular, there are only finitely many 

of them modulo 1 and since map preserves S as well as OS, it will even- 

tually map one of them into itself creating a periodic point on the circle, 

contrary to the assumption that  p( f )  is irrational. 

So the existence of H has been proved. Moreover, we showed that  

H is unique once the image of one point has been fixed, so all other 

eonjugacies will be of the form H(x+A)  where A is an arbi trary constant.  

Hence to s tudy their quasi -symmetry it does not mat te r  which one is 

picked out. 

The  quasi-symmetry of  H.  Let us now assume that  p( f )  is of constant 

type  with continued fraction coefficients bounded by N. One has to 

recall that  

a~lq~P(f)  - P~I < - I q ~ - x P ( f ) - P , ~ - l l  <-(a~ + 1)lq~p(.f) - P~I 

for all n > 1 with the convention Po/qo = 1/0. By Fact 1.1, a conse- 

quence of this is that  

Iff(a~+l)qn(y) - c(a~ + 1)p~ - Yl > I f -~qn-i(Y)  + eP~-ll  (8) 

for a l l n _ > l ,  y C I l ~ a n d ~ = - l , 1 .  

T a k e x ~ R a n d l _ > t > 0 .  Choose n >_ 0 so that  

Iq +lp(f) - p  +ll < -< Iq  (f) 
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Then 

H ( x  + t) E (f-~q~+l(H(x)) + ep~+l, f fq~(H(x))  - ep~,,] 

and likewise 

t J [ ( x  - -  t )  ~ [ f - e q n ( H ( x ) )  4- r  f e q n + l ( f I ( x ) )  - -  e P n + l )  

where e = (-1)% By relation (8), 

{f-~q~+* (H(x)) + ep~+l - H(x){ < 
If4N+l)<+l ( H ( x ) )  - ( N  + S)ep~+l  - H ( x ) I  - 

< {H(x + t) - H(x)l  < {f-~(N+l)q~+l(H(o:)) + (N  + 1)ep~+l - H(x)  I 

- ) H ( x )  - H ( x  - t ) l  - I f f % ~ + * ( H ( x ) )  - e p ~ + l  - H ( x ) l  

for n > 0. By Lemma 1.2 any adjacent two of the intervals with end- 

points 

f~q~+l (H(x)) - kp~+l and f(~+l)q~+s (H(x)) - (k + 1)p~+l 

for k E Z are comparable within the multiplicative factor K w h e r e / 4  

depends only on the cross-ratio bound and X. Hence 

K _ N _  ~ < ] H ( x  + t)  - H(x)l < KN+I 
- p H ( x )  - H ( x  - t ) l  - 

f o r O < t < l .  

It remains to consider the case of t > 1. If the integer part  of t in 

m, clearly 
r~ < I H ( x  + t )  - H ( z ) J  < n +~ 

n + 1 - j l T ( x )  - 1 7 ( ~  - t ) l  - 

because H ( x  + n) - H(x)  + n. We have proved that  H is ma• 

quasi-symmetric.  

The  necessity o f  constant type. We start  with the following fact about 

quasi-symmetric homeomorphisms: 

Fact 1.2. A h o m e o m o r p h i s m  h: • --+ IR is quasi-symmetric i f  and only i f  

for  every "y > 0 there is a 01' > 0 so that for  any triple of  distinct points 

x, y, y', with x placed between y and y', i f  

I x - y ]  > ~ , 

j x - v ' r  
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then 
Ih (x )  - h ( y ) l  ,.yt . 

Ih ( z )  - h(y') l  

The proof is an easy exercise. 

If we now assume tha t  p ( f )  is not of constant type, we can find a 

sequence nj  so tha t  a~j --~ oc. This means tha t  for every x 

I ( q w p ( f  ) - p •  + x) - x I 
- - + 0 .  

I ( q W _ l p ( f  ) - p w : l  + x) - x I 

On the other hand, if we choose x equal to the preimage of a pseudo- 

critical point of f ,  Lemma 1.3 implies tha t  

IH(q~ jp ( f )  - p~j + x) - H(x ) l  

I H ( q n j p ( f )  - p~j + x) - H(x ) l  

remains bounded from. below by a positive constant independent of j .  

In view of Fact 1.2 this means tha t  H -1 is not quasi-symmetric, hence 

neither is H. 

This concludes the proof of Proposition 1. 

2. A Denjoy Theorem 
We will describe a si tuation in which the cross-ratio inequality holds 

in a non-classical situation. As a result, we get a Denjoy theorem for 

analytic maps on quasiconformal Jordan curves. 

Theorem 2.1. Suppose that w is a quasiconformal  Jordan curve in the 

complex plane. Let  ~ be an analytic func t ion  defined in a neighborhood 

of w which maps  w onto itself  homeomorphicaIly .  Moreover,  suppose 

that ~ has no periodic points  on w.  Then,  there is a h o m e o m o r p h i s m  h 

f r o m  w onto the uni t  circle so that 

h( r  = e2   h(z) 

.for all z and some irrational w. 

When w is a circle, this reduces to Yoccoz' theorem, see  [11]. It is an 

interesting question, posed to the author by Per6z-Marco, whether the 

claim of Theorem 2.1 still holds when w is an arbi trary Jordan curve, or 
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even just  a continuum in the plane and ~b(z) is unders tood as the action 

on prime ends. 

Plan of  the proof .  Wi thou t  loss of generality, the only critical points of ~b 

are on w. Consider the Riemann mapping R from the unit disk onto W, 

one of the connected components  of the complement of w. For z on the 

unit circle use the continuous extension of R to the boundary  to define 

the map f(z) = R -1 oOoR(z). The map f is a homeomorphism without  

periodic points, hence it must be of degree 1 with an irrational rotat ion 

number.  Theorem 2.1 will follow from Proposi t ion 1 once we show that  

the lifting of f ,  satisfies the cross-ratio inequality with respect to some 

cross-ratio module. This method of proof  gives more than Theorem 2.1. 

For example, the lifting of f has bounded geometry properties from 

Lemma 1.2 and is conjugated to the rotat ion by a quasi-symmetric map 

provided that  the rotat ion number is of constant  type. The function f is 

easily seen to be real-analytic except at the preimages by /~  of the critical 

points of ~b. There appears to be no easy way of controlling the behavior 

of f near these, let us call them exceptional, points. Hence, it is not 

clear whether  the problem can be reduced to Yoccoz' theorem or even 

how to prove the cross-ratio inequality with respect to Cr. Choosing a 

convenient cross-ratio module, however, makes checking the cross-ratio 

inequality a relatively simple task. 

2.1. Constructing the cross-ratio module 

Let recall the notion of a quadrilateral. In the simplest setting, consider 

a Jordan curve w in the complex plane with four points on it, called 

the vertices of the quadrilateral. These points divide w into four arcs. 

Choose one of them as the base of the quadrilateral. Every such configu- 

ration defines a quadrilateral. The inner component  of the complement 

of w can be mapped  univalently onto the interior of a rectangle with 

vertices (0, 1, 1 + ia, ia) in such a way that  the base is mapped to the 

interval (0, 1) be the continuous extension of the map. It turns ou t  that  

a depends only on the quadrilateral as is called its module. It is useful 

to think of the family of admissible curves of a quadrilateral. These are 
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curves contained inside the quadrilateral which join the base with the 

opposite side. The basic inequality is tha t  if quadrilaterals Q1 and Q2 

are related in such a way that  the set of admissible curves for Q1 is con- 

tained in the set of admissible curves for Q2, then mod Q1 >- mod Q2. 

A good exposition of the properties of conformal module can be found 

in [7], pages 19-28. 

If w is the real line, it has a natural  cyclic order of points which 

makes it positively oriented with respect to the upper half-plane. For 

example, we can talk of an arc (1, -1 )  meaning the compactified real line 

minus [-1, 1]. In this situation if A,/3, C, D are cyclically ordered points 

on w, define Q(A, B, C, D) to be the quadrilateral with these vertices 

and the base equal to the arc (A, B). 

Definition 2.1. Consider points A <_ B < C < D on the real line. Let 

1 
x(A,/3,  C, D) = 

mod Q(A, B, C, D) 

If  A = B or C = D, we set x(A, B, C, D) = O. Also, define 

x ( A , B , C , D )  := ) I (D ,C ,B ,A)  

if the foregoing definition makes sense for the reversed sequence. 

We will now check that  X defines a cross-ratio module in the sense 

of Definition 1.2. 

For a quadrilateral from a certain class, we can associate its module 

with the bet ter  known modulus of a ring domain. Pick cyclically ordered 

points A, B, C, D on the real line and consider a Jordan arc v inside the 

closed upper half-plane with endpoints at A and D. Then  we have a 

quadrilateral Q with vertices A,/3, C, D, base (A, B) and the remaining 

sides (B, C), (C, D) and v. If Q' is the image of Q by the reflection 

about the real line, then the union of the interiors of Q', Q together  

with arcs (A,/3) and (C, D) forms a ring domain R(Q). We will say that  

this ring domain is associated with Q. Then  
7]- 

rood /~(Q) - - -  
mod Q 

So, 

x(A, B, C, D) = 7c mod R(Q(A, B, C, D)) . 
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We are ready to see that  X is a cross-ratio module. If Cr(A,/3,  C, D) _> 

1/4, then both I A -  B I and I C -  D I are at least 1/5 of I B - C [  and a round 

ring with large modulus can be fit inside R(Q(A, t3, C, D)). The second 

condition of Definition 1.2 follows from Teichmiiller's module theorem, 

see [7], page 56. This theorem says that  if a ring domain R separates 

points Wl and w2 from oc and z, then 

- w21  ) '  

where ~ is a universal function whose limit at 0 is 0. Hence, 

x(A,/3,  C, D) < e provided that  IA-Bt/IC-BI < I C - D I / I C -  

BI < 51(c) and this last condition is implied when Cr(A, B, 6", D) is suf- 

ficiently small. So, ~ indeed is a cross-ratio module. 

2.2. The cross-ratio inequality 

It is left to us to verify the cross-ratio inequality for the lifting of f and 

with respect to ~. Let us begin with a technical lemma. 

Lemma 2.1. Suppose that points A, B, C, D are cyclically ordered on the 

real line. For every k > O, i f  I D - AI <_ k /2 ,  then there is a Jordan 

arc v with endpoints D and A so that the quadrilateral Q' with sides 

(A, B), (B, C) and (C, D) and the fourth side v has interior disjoint 

from V/~ = {z: .~z >_ k} and satisfies 

rood Q(A, B, C, D) 
rood Q '  < 

i - I D - A l / k  

Proof .  Since the situation is clearly translation-invariant,  we can assume 

without loss of generality that  A = - D  and D > 0. Consider the map 

M'( z )  = 2 D - A Z  from the upper half plane onto itself. M '  sends A and 

D to - 1  and 1, respectively, while M'(V~) = V 2~ �9 Next, consider the 
D - A  

MSbius map M from the upper half-plane onto the unit disk which fixes 

- 1  and 1, sends 0 to - i ,  oc to i and i to 0. One checks directly that  

~ M  2ki D - A 
<r ( ~ _  A) > 1 k 

D - A  Let P = M o M' .  Then P(Vk) C {z: .~z > 1 - -W-}" 
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Now choose P(w) as the arc of the ellipse which joins - 1  and 1 and 

avoids F(V~). The smaller semi-axis of this ellipse can be taken to be 

1 D - A  This defines the quadrilateral F(Q'). To est imate its module, 
k " 

apply the homeomorphism H which is the identity in the lower half- 

plane and acts by 

H ( x  + iy)  = z + i ~ y  
1 D - A  

k 

in the upper half-plane. Obviously, H is 

1 
1 D-A quasiconformal, 

k 

at least 2-quasiconformal because of our hypothesis ID - A] < k / 2 .  

Hence, 

rood Q' = mod F(Q') < rood H( r (Q ' ) )  
- -  D - A  

1 k 

but H(F(Q')) = F(Q). [] 

T h e  cross-ratio inequal i ty  - the  set  up  and  the  easy  case.  Choose  a lift 9 

of f .  We have to check the condition of Definition 1.3. Let us consider 

the allowable configuration of quadruples of points (a~, bi, ci, d0. For any 

r] > 0 and without loss of generality, all distances di - a~ can be assumed 

less than  r]. This is because all values i for which this is violated are no 

more than l/r] in number and each contributes a bounded factor to the 

product  in the cross-ratio inequality by continuity. 

If r] is chosen small, each interval (ai, dO contains at most one ex- 

ceptional point of 9. Consider first the position without  exceptional 

points. Consider Q' := Q(g(a i ) ,  g(bi),  g(cO, g ( d O ) .  The map G is holo- 

morphic in some strip above the real axis and its range covers the strip 

Uk := {z:.~z < k} for some k > 0. By Lemma 2.1, if r] < k / 2 ,  then 

inside Q' • Uk we can find a quadrilateral Q" with the same base two 

other sides and with 

mod Q' 
mod Q" < (9) 

- 1 - Cig~(a) - m(d)l 

where C := k 1. Then  Q" can be mapped by an inverse branch of g to 
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some quadrilatral  which 

and, 

is contained in Q(ai, hi, ci, di). Hence, 

mod Q(ai, bi, ci, di) < rood Q/, < 

< (1 - C]g(ad - g(ddl) -1 rood Q(g(ad, g(bO, g(cd, g(dd) 

x(g(ai), g(b~), 9(ci), g(dd) < 1 
x(ai, bi, ci, di) - 1 - C l 9 ( d i ) - g ( a ~ ) ]  " 

Since intervals 9(ai,di) are disjoint modulo 1, their joint length is 

bounded by 1 and the product  of contributions of this type for all i 

is also bounded. 

The  handling o f  exceptional  points. Now suppose that  (a~, di) contains 

an exceptional point of g. We use, for the only but  crucial t ime in 

this proof, the assumption that  the initial curve w in the s ta tement  

of Theorem 2.1 is quasiconformal. This means that  the Riemann map 

used to define f extends globally as a quasiconformal holneomorphism. 

So, g extends to a strip on both sides of the real line in the form G = 

H -1 o r o H where H is a K-quasiconformal covering map given as 

the composition of the exp with the global quasiconformal extension of 

the Riemann map R. Suppose that  a symmetr ic  strip Us of width ~: is 

covered by the range of G. As in the previous case, we first consider 

Q' := Q(g(ai),g(bi),g(ci),g(di)) and then choose a smaller Q" whose 

interior is contained in the upper half of Us and for which est imate (9) 

holds. Then  construct  the associated ring domain R(Q") which now fits 

inside U~. Also, 

r o o d  /~(Q") _> r  - -  CI9(ai) -- 9(di)l) 
rood @' (10) 
7r(1 - C ~ )  

x(g(ad,  g(b~), g(c~), g(&)) 

w i t h C : = k  1. 

Let us consider the preimage of R(Q") by G. Let 3' denote the 

exceptional point which is contained in (ai, di). Consider first the case 

when 3' is in [bi, ci]. Then  R' := G-I(R(Q"))  is a ring domain and G 

restricted to R I is a K2-quasiconformal covering of R(Q' )  of degree equal 
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to the order of the critical point of r at H(7) .  If this order is g, then 

rood R(Q") 
rood 1~' > 

- gK  2 

If 7 is not in [bi, e~], let us assume, only to fix attention, that  it belongs to 

(ai, b~). In that  case we can find a Jordan curve t which passes through 

9(~) and splits R(Q") into two nesting annuli, say R1 and R2, so that  

mod R1 + mod R 2 = mod R(Q") . 

Suppose that  R1 is the outer layer, i.e. it surrounds 9(~y). If rood R1 _> 

rood R2, we can take as R'  the preimage of R1 by G. As in the previous 

case, we argue that  
rood R(Q") 

mod R'  
2gK 2 

If, on the other hand, rood R2 > rood R1, we can take as R' the preimage 

of R2 by the inverse branch of G which agrees with g-1 on the real line. 

In this case, 
rood R(Q") 

mod R' _> 
2/-(2 

Summarizing, in every case we get a ring domain R' which is contained 

in R(Q(ai,  bi, ci, di)) and has modulus at least 

rood R(Q") 
2gK 2 

We est imate 

x(ai, bi, c~, d~) = 7r -1 rood R(Q(a~, b~, c~, di)) >_ 7r -1 rood R' _> 

rood R(Q") x(g(ai), g(bi), g(ci), g(di)) > > 
- -  2Trek 2 -- 2gK2(1 -- C~]) 

The last inequality follows from est imate (10). The cross-ratio inequality 

follows, and thus Theorem 2.1. 

C o m m e n t s .  We have seen that  a lot of the work done in this section was 

independent of the hypothesis about  the quasiconformality of w. The 

construction of X and the proof of the cross-ratio inequality away from 

exceptional points would work for any Jordan curve. In fact, they would 

only require r to be defined on one side of w. It is then not surprising 

that  we had to use more in the case when an exceptional point is near. 
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On the other hand, to assume that the curve is quasiconformal is clearly 

too strong. There should be a local condition at the critical points of r 

which makes the proof work. 
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