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The nonautonomous function-theoretic
center problem

T. Kruger, L. D. Pustyl’'nikov and S. Troubetzkoy

Abstract. We study the linearizability and stability of a nonautonomous dynamical
system in the neighborhood of a neutral fixed point. Our results generalize the clas-
sical results of Schréder and Siegel in the case when the linear part of the mapping
is an irrational rotation, well known results in the rational case and the fundamental
result on the representation of the system as a translation in the neighborhood of a
fixed point at infinity.
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1. Introduction: a description of the main results and conditions
In this article we study the behavior of nonautonomous dynamical sys-
“tems (NDS) which converge to a limit in the neighborhood of a fixed
point. Such NDS’s arise in many problems in the theory of differential
equations, mechanics, mathematical and statistical physics (see for ex-
ample [6]-[8]). They also arise in the theory of the Riemann (-function
[9], where with the help of an appropriate two dimensional NDS it was
shown that the (-function can be represented in the critical strip as
a product of second order matrices, this is an analogous of the Euler
product to the right of the critical strip [9]. Furthermore in [9] the
correctness of the Riemann hypothesis on the zeros of the (-function is
transformed to the study of the stability of the fixed point of this NDS.
We consider a NDS with discrete time, which is defined by a sequence

of conformal mappings F(l), F(Q), cee

F)g o = PO () = Az 1 £ (), (1.1)
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where

n=12,... ;f(n)(z) = Z f,gn)zk,
k=2

and f,gn) does not depend on z. The mappings F() are defined in a
fixed neighborhood of 0 € C. The NDS is defined by first applying ¥ @),
then applying F' ) to it’s image, and so on. We assume that the NDS
is convergent, that is that as n — oo the sequence of mappings F' (n) in
equation (1.1) smoothly approach a limit mapping

Fiz— 2 =F(z) = Az + f(2),

k
flz) =) fud".
k=2
Furthermore, we assume f), does not depend on z,

f(z) = lim f™(2), (1.2)

n—00

and the convergence in equation (1.2) is uniform for all z in some fixed
neighborhood of the fixed point z = 0. Throughout the article we will
assume that the fixed point 2z = 0 is neutral, i.e. |A| = 1. The main
problem which is studied in this article is the generalization to the
nonautonomous case of the classical center problem of classifying the
behavior of the iterates of a single mapping near a neutral fixed point.
In the classical problem (first studied by Schréder [10]) the behavior
around a fixed point is studied for the iteration of one mapping. In the
nonautonomous case, this problem was first studied in [4]-[6].

We explain in what sense we want to study the center problem (CP)
for a NDS. We need to find a sequence of changes of variables

¢ = PO () = 24 p 2y pW () = S PV n=1,2,... (13)
k=2

(p,gn) does not depend on z) which are analytic and invertible in a neigh-
borhood (not depending on n) |z| < ri(r1 > 0). Furthermore, the
changes of variables converge (uniformly) in the neighborhood to the
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change of variables
oC
k
(= P(2) = 2+ p(2); p2) = Y prz (1.4)
k=2

such that there exists a constant ro > 0 such that for any n € N the
mapping
D). = pltl) o i) o (p(n)y-1 (1.5)

is defined in the disc ’C (”)‘ < r9 and has the form
D ¢ln) - vl Z p ¢t (1.6)

If such a sequence of change of variables exists, then we say that the
NDS defined by equation (1.1) is conjugate to a rotation or linearizable,
otherwise we say that the NDS is not conjugate to a rotation or not
linearizable. In the special case when all the F(")s coincide with one
another then we arrive at the classical CP. The statement and the first
result about CP for a NDS are due to Pustyl'nikov [4]-[5], who proved
a generalization of Siegel’s theorem [11]-[12]. Namely, he showed that
under certain conditions a NDS is conjugate to a rotation if the Siegel
condition holds for the parameter A:

N =110 1 <epg? forg=1,2,... . (1.7)

The proof of [5]-[6] assumes that condition (L) formulated below, is
fulfilled. Condition (L) characterizes the smoothness of the convergence
of the F(™ as n — oco. We note that the rate of convergence can be
arbitrarily slow. A generalization of theorem 1 from [5] is formulated
and proved in [6] (part 2, chapter V, §2) to the case when the parameter
A= A1) in equation (1.1) depends on n and the mappings I’ (") have
the form

.y — = pln) (z) = Az + f(”)(z), where

n=12...,and fM(z) = 3 fé@zk (1.8)
k=2

where the A(™ — X asn — 00, A satisfies equation (1.7) and the infinite
product [[724 Aln) /A converges absolutely. In this case it is clear, that
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instead of requiring the change of variables given by equation (1.3), we
need the more general form

¢ = POy = iz 4 p(2); p(2) = Zp,(gn)zk; n=12... (1.9)

where f, — 1.

We remark that the set of A in the unit circle which satisfy condition
(1.7) form a set of full measure. In this article which we prove several
results about the CP for a NDS analogous to a classical result about
the CP.

For the first problem we consider we assume that A is not a root of
unity. In this case we construct the sequence (1.3) of changes of variables
in the form of formal power series in z so that the equalities (1.4, 1.6)
hold in the sense of equalities of formal power series.

The second problem we consider is when A = exp27iA and A is a
Siegel irrational number. We prove that a NDS is conjugate to a rotation
in the case when A is an irrational number such that for any m € Z and
any k € N the following holds:

kA —m| ™ < Cokt (1.10)

where Cy and u are positive constants not depending on m or k.

The next problems concern the case when A is a root of unity. In
this case we prove that a NDS is unstable in the sense of Lyapunov and
not conjugate to a rotation.

Finally we study the system (1.1) in inverse coordinates in a neigh-
borhood of the fixed point in the case A is a root of unity.

In the classical case the first problem corresponds to [10] (Schréder
series), the second problem corresponds to the theorems of Siegel [11]-
[12] and Bruno [1], the third corresponds to [14] and [3] and last problem
was studied in [2]. Nice surveys of the classical CP can be found in [2]
and [13]. Condition (1.10) under which conjugacy to a rotation is proven
is more general than condition (1.7) and coincides with it in the case
= 2. The set of X € S for which we have shown that a NDS is
conjugate or not conjugate to a rotation is not all of Sl. The question
remains open for nonrational A € S! which do not satisfy condition
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(1.10). In the classical CP the conjugacy with a rotation is proven for
all A € S' which satisfy the Bruno condition [1], and if A does not
satisfy the Bruno condition then Yoccoz has shown that there exists a
polynomial who's leading term is Az which is not conjugate to a rotation
[15].

The classical Schroder equation

u(Az) = Mulz) + f(2), (1.11)

plays an important role in [10]. Tt is well known that in the case )
is not a root of unity this equation has a formal solution w(z), while
in the case A satisfies the Siegel condition, the solution is analytic. In
sections 3 and 4 of this paper we consider the following generalization
of Schroder’s equation:

u(Az,y +1) = Aul(z,y) + f(z,y) . (1.12)

Here u{z,y) is the unknown function and f(z,y) is a fixed function
which is analytic in z in a given neighborhood of the point z = 0 and
satisfies f(0,y) = (0f/02)(0,y) = 0. Several additional assumptions are
made. We assume that the functions f(z,y) and u(z,y), considered as
tunctions of y, are defined on a domain ¥ € R which includes all the
points ¥y + n,n = 1,2,... whenever y € Y. Furthermore, we assume
that the function f(z,y) converges smoothly enough to a limit function
f(z,00). This notion will be made precise later. We want to find a
solution u(z,y) of equation (1.12) which is defined for all y € Y, which
is analytic in z in a neighborhood of z = 0 (not depending on y). Fur-
thermore, for any z from this neighborhood, the function u(z,y) must
converge smoothly enough as y — co to an analytic function u(z, o)
such that we can estimate the modulus |u(z, y)| of this solution and its
differences in y through the moduli and difference of the functions f(z,y)
(theorems 3.3, 3.4). If we reduce to the special case, when the functions
f(z,y) = f(2),u(z,y) = u(z) do not depend on y, then equation (1.12)
reduces to Schroder’s equation.

Equation (1.12) was introduced in [5] (section 2, lemmas 2.1 and
2.3) where, in the case that X satisfies condition (1.7} a solution u(z, y)
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was constructed satisfying the requirements described in the last para-
graph. In this article (§3) the solution from [5] is used to study of the
linearizability of NDS’s for all values of A except when X is a root of
unity (§4).

Another important idea which is used in this article for the proof
of the linearizability of a NDS is the correct description of the smooth
convergence of the NDS (1.1) as n — oo. For the proof of the formal
conjugacy to a rotation.(§3, theorem 4.1) it is enough only to require
the convergence of the arbitrary first differences of the functions f (n) (2):
sup ‘f(”+1)(z)—f(")(z)1 <00 . (1.13)

n=1 12I<r0

However, for the proof of the analytic conjugacy to a rotation con-
dition (1.13) is not enough. We additionally to require some estimates
on the convergence of the absolute values of the higher differences of the
function f (n)(z). These estimates are quite restrictive, it is impossible
to effectively state them and they are not applicable to some natural

NDS of more general form, for example:
h
PO = PO () = Mz 1 g(z) + @ (1.14)
n
where « is an arbitrary positive constant and ¢(0) = dg/dz(0) = h(0) =
dh/dz(0) = 0. In [5], to overcome this problem the condition (L) was
introduced. Condition (L) consists of the following: for [z| < rg,y >
1, (rg > 0) there exists a function F(z,y) = Az + f(2,y) such that
(i) flz,m) = [ (2);

(ii) in the disk |z| < rg there exists an analytic function
f(z,00) = fz) = 1m f(z,p)

(iii) the power series for f(z,y) in z begins with second order terms;
(iv) for a certain 3 > 0 the function f(z,z77) has [ continuous partial
derivatives in z for 0 < z < 1, (at the endpoints z = 0 and z = 1 we
assume that one sided partial derivatives exist).
Part (iv) of condition (L) characterized the level of smoothness of
the convergence of F(™) 4o their limit as n — oo. The main condition
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of part (iv) is the existence of [ partial derivatives from the right at
the point z = 0: one can always embed the system of mappings F(n)
depending on a discrete parameter as smoothly as one wants in a system
of mappings depending of a smooth parameter such that the function
f(z,277) will have the needed number of partial derivatives for all z 5 0.
Condition (L) does not affect the speed of convergence of the Fn),
this speed can be arbitrarily slow if 5 in part (iv) is sufficiently large.
Condition (L) holds for the system (1.14): in this case § = 1/a and

fzy) = g(z) + %J — far P = g(e) tohz)  (L15)

and condition (L) holds.

For a sequence of mappings Fin) given by equation (1.8) the fol-
lowing additional condition (in addition to (L)) is required [6] (part 2,
chapter V, §2): there exists a function A(y) such that

(v) An) =AM limy_ o A(y) = A;

(vi) the function A(y) = [[p—g Ay + k)/A is defined for y > 1, the
product is absolutely convergent and limy_.., A(y) = 1;

(vii) for some 3 > 0 the function A(z~#) has [ continuous derivatives
inzfor0<ag<l.

In the theorems on the analytic conjugacy to a circle rotation and
on the stability of the point z = 0 (§4), we require that condition (L)
is fulfilled for { = 16. In the proof of the nonconjugability to a circle
rotation and the instability of the point z = 0 of the NDS’s (1.1) or (1.8)
in the case that A is a root of unity (§4) we do not require condition
(L), but only the converges of £(™) to the limit mapping F.

In section 6 we generalize to the nonautonomous case the important
theorem on the iteration of a fixed mapping in the neighborhood of
an infinite fixed point (w = oo0) and its application to the study of a
conformal mapping, whose linear part is a rational rotation, near the
point z = 0 [2]. In theorem 6.1 we consider a sequence of conformal
mappings G| in the domain Re{w) > kg having the form

G(n)(w) :'w+1+%n+g(”)(w),(n: 1,2,...),
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where b, is a constant, and g(“) (w) = O(w*Z). Our main result here
is that there exists a change of variables ®(™) (w),(n = 1,2,...) which
bring the mappings G to a translation by 1:

2 o ¢ (w) = oMW (w) +1 .

In particular when all the G (w) are all identical, then the »(n) (w)
are all identical and our theorem reduces to the one proven in [2]. Finally
we mention that the study of a sequence of mappings G (w) in a
neighborhood of the point w = oo is the main factor in proving the
Lyapunov instability and nonconjugability of the systems (1.1) and (1.8)
at the point z = 0 when A is a root of unity (theorems 5.1, 5.3, 5.5 and
corollaries 5.2, 5.4, 5.6).

2. Main definitions and terminology

1. Suppose that for the function h(z,y), defined for |z| < rgand y > 1,
the limit limy .o h(2,y) = h(z,00) exists and if the function h(z,z %)
has s > 0 derivatives with respect to z for 0 < x < 1 then

(&) v

( 9 >0h(z,x‘ﬁ) = h(z,277) .

Ih(z,y), = Bz, ~?)

= sup Sup sup
5 O<o<s 0<z<1 |z|<rg

where
Ox
2. Let Y be an arbitrary set of reals satisfying y +n €Y forally e Y

and all n € Z* (the non negative reals). The two main examples which
are used in this work are Y = N the natural numbers and Y = {y > 1}.

3. For any natural number s we recursively define the sth difference
ASh(z,y) of the function h(z,y), defined in the domain |z| < rg,y € Y,
by:

Ath(z,y) = hz,y +1) = h(z,y)

AZh(z,y) = Al(z,y + 1) — Alh(z,y)

Ah(z,y) = A Yz y + 1) — A Th(z,)
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4. Suppose that the sequence of formal power series

g(”)(z) _ Zgign)zk’ (n=1,2,...)

k>0

and the power series g(°°) (2) = 2ks0 g/,(:o)z’€ are given and the coef-
ficients g,in) do not depend on z for all n < oo and all k. We say
the sequence g(”)(z) converges as n — 0o to the series g(°°) (2} =

(n) _ (o)

limy,— 00 g(”)(z) if for each & > 0 we have Ii‘mnqoo 9 =9

5. Suppose that f(z,y) = i o fr(y)z* is a formal power series in z with
coeflicients fx(y), not depending on z. We say that the formal power
series u(z,y) = Yo ug(y) 2"
when it is applied to equation (1.12) then for all £ > 2 the coeflicients

is a formal solution of equation (1.12) if,

of z¥ coincide as functions of y for all y € V.

6. The fixed point z = 0 is call stable in the sense of Lyapunov for a
NDS given by a sequence of mappings Fn)in = 1,2,..., if for any e > 0
there is a 6 > 0 so that

‘F(n)OOF(l)Z <6
for any n and any |z| < 6.

7. The fixed point z = 0 is call uniformly stable in the sense of Lyapunov
for a NDS given by a sequence of mappings F (). = 1,2,...,if for any
€ > 0 there is a ¢ > 0 and for all positive integers ng < ni so that

‘F(m) o...op(no)z( <€

for any |z| < 6.

3. The functional equation
We consider equation (1.12), in which u(z,y) is a unknown function,

f(z.y) = St fe(y)2® is a given z-analytic function in the domain
|z| <rp, y €Y and fi(y) does not depend on z.

Theorem 3.1. Suppose that |\| =1 and A is not a root of unity. Suppose
further that for each y € Y the limit limy o, f(2,y+n) = foo(z,y) exists
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and the following inequality holds:

sup ‘Alf(z,y—i—n) <00 . (3.1)
n=0 l#I<70

Then there exists a formal solution u(z,y) of equation (1.12) given by

the formal power series

(o]

ulz,y) = > w(y)2” . (3.2)

© k=2
The coefficients ux(y) have the form
Jely) + S aly+n+1) — fuly +n)Al-DtD

n=0

ui(y) = Y (3.3)

and for each y € Y the limit
Jim u(z,y+n) =uwo(z,y) (3.4)

exists where n € N and u(2,y) is a formal power series representing

the formal solution of the equation
Uso(AZ,Y) = Moo (2, Y) + foo (2, 1) - (3.5)

Proof. We apply the Cauchy error estimate in the domain |z| < rg to
the z-analytic function f(z,y + n+ 1) — f(z,y +n). This yields:

Al f(z,y + 1)
: .

lfely+n+1) — fuly +n)| < sup .
0

|z[<rg

Thus, using equation (3.1), the series on the right hand side of equation
(3.3) converges, ug(y) is properly defined and the following equality
holds:

Jm -+ ) = T2

Here for(y) is the kth coeflicient of the z-Taylor series expansion
foo(2,y) = Dpen foojk(y)zl‘C of the z-analytic function f..(z,y) in the
domain |z| < rg. The coeflicient of zF in the formal power series 1. (z,y)

(3.6)

1S Ugo o = limy, oo Uk (y+n), thus using equation (3.6) we see that u.(2,y)
formally satisfies equation (3.5). Thus to prove theorem 3.1 we must
show that the formal power series (3.2) with coefficients (3.3) formally
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satisfy equation (1.12). This fact was proven in [5] (Lemma 2.1, formula
2.6). O

Corollary 3.2. For any s € N the. coefficient ui(y) of the formal solution
(3.2) of equation (1.12) defined by equation (3.3) satisfies:

1
Mg — A

(A% frly Z AG=DOHD A g 0 4y
n=0

Aug(y) =

Theorem 3.3. We suppose the assumptions of theorem 3.1. Additionally

2mA, where A is a real number, satisfies condition

we suppose that A = e
(1.10) (with integer constant p > 0), 8 is a positive constant satisfying
0 <0 <1, and s is a natural number. Then equations (3.2) and (5.3)
define the solution u(z,y) of equation (1.12), which is z-analytic in the
domain |z| < ro(1—0), y € Y. In this domain the following inequalities

hold:

Copu! >
lu(z,y)| < @%\3@ <|f(z,y)] + Z lAlf(z7y+ n)\) ) (3.7)
#l=ro n=0

| Copt! o0
|A%u(z, y)| < @%ﬁ—l s <1Asf(z,y)| +3 ]N“ﬂz,ym)‘), (3.8)
z|sTo n=0

where Cy is a constant defined in equation (1.10). Furthermore equation
(3.4) holds, and the z-analytic function uy(z,y) satisfies equation (8.5).

Proof. For any k € N, we choose /i € 7 such that |kA — | < 1/2.
Using 4/kA —1h| < ‘)\k — 1' and equation (1.10) we get

})\’“—1. <%k”;k~1,2,... . (3.9)

Now applying the estimate (3.9) to equation (3.3) and using equation “
(3.2) and the Cauchy estimate in the domain |z| < rg(1 — 6) gives:

lu(z,y)| <
C oo N
< —40”‘5!1113 (’f(Z,yﬂ + }Alf(zyy%—n)‘) A A (3.10)
o n=0 k=2
Now
Z kH(1— (9 2:: (k+1)(k+2)- (kj"'/‘)(lr@)k _ W% : (—1)“5%
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Applying this to (3.10) we arrive at inequality (3.7). We prove inequality
(3.8) completely analogously, using ASu(z,y) = Yop g 28A%u(y) and
corollary 3.2. Finally, using equations (3.9) and (3.6), we get that the
formal power series (2, y) = limy,_o u(2, y+n) constructed in theorem
3.1 has the form

uw(zvy): :
2N

and defines an analytic function which satisfies (3.5). O

Theorem 3.4. Let Y = {y:y > 1}. Suppose the following hold:
1. A= e2™D sgtisfies equation (1.10);
2. limy_,o f(2,y) = f(z,00) emrists;
3. for somel € N and B € R satisfying 8 > 2 the function f(z,z )
has | + 2 derivatives in x in the domain |z| < rg,0 < z <1 and in this
domain for any s € N satisfying 1 < s <[+ 2 the function g—;f(z, z=P)
is analytic in z.

Then for any 0 satisfying 0 < 6 < 1 equations (3.2) and (3.3) define
a solution u(z,y) = u(z, 2~ ?) of equation (1.12) which is z-analytic, has
I partial derivatives with respect to x in the domain |z| < ro(1 —0),0<
x < 1. Furthermore in this domain the following inequalities hold:

lu(z, y)| < %’f(z,w‘ﬁ)\l ; (3.11)
utz, )| < k| fea )| (312

where 1 < s <, C1 is a constant not depending on the function f and
the norm ‘f(z,:z:*ﬁ)l L is taken in the domain |z| < rg,0 <z < 1.
S

Proof. 1t is clear that it is enough to consider the case when the constant
p in equation (1.10) is a natural number. Now, from the assumptions
of theorem 3.4 for 1 < s < [+ 2 the function g—;f(z,x_ﬂ) which is
z-analytic in the domain |z| < rg has

85 88

s W) = 5 Pule ™)
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as it’s z* Taylor coefficient and Cauchy’s estimate yields

| < L (3.13)

rratl ;
Let o = 3~1. In the disc |2| < ro(1— 8) for z # 0 equations (3.2, 3.3,
3.9, 3.13) yvield

lu(z,y)| < (‘f‘o‘F ‘f|1z(y+n1+a>2k“(1~9

0

< S e,

This proves inequality (3.11) for z # 0. Also

=N (k—1)(n+1) a|f|1
ZAfk(y+n) Ynt1) Z y+n)1+a

n=0
as y — oo. Thus using equation (3.3) the limit
oo Zk
S ule) = 02 o= 3 5y o)

exists and satisfies the estimate (3.11).
We go on to prove inequality (3.12). For this we use the following

two equations which were proven in [5] (§2, proof of Lemma, 2.3):

> Col frlgro
)| < > ,/\A (Ifkls v IRNCED
(here (9 is a positive constant not depending on f) and
as aS
_ﬁ 1
2 5 Z wc Nop e (315)

Now using equations (3.13, 3.9, 3.14) in the disc |z| < ro(1 — 8) we
have the inequality:

o Co + C3C
prilc y)f < T2 Z (10 (3.16)

Plugging in

o0

SR (1 - g)F

k=2

2p o0

d
492w Z(l B H)k

(2p)!
g2pu+1

<
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14 T. KRUGER, L. D. PUSTYUNIKOV and S. TROUBETZKOY

into equation (3.16) yields inequality (3.12) for z # 0. Finally, since
the function u(z,z~?) is continuous for z = 0, from equation (3.15) we
get that it is s times differentiable in = at = 0 and equation (3.12) is
fulfilled at z = 0. Theorem 3.4 is proven. O

4. Linearizability of NDS with discrete time
Our first theorem states that a NDS given by equation (1.1) can be
linearized using a change of variables given by a formal power series in z.

Theorem 4.1. Suppose A is not a root of unity and that the function
£ () from (1.1) satisfy the inequality (1.13). Then there exists a for-
mal change of variables C(”) = P(”)(z)A7 n=12,... of the form described
by equation (1.3) which give the formal power series (1.4). Similarly
the inverse formal change of variables z = V() (C(”)) give rise for each
n € N to the formal equation C(”+1) = P(”+1)(F(”)(V(“)C(”)))) and
formally give rise to the equation C(”H) = AQ(”).

Proof. To find the formal power series pn) (z) and V() (¢ (”)) we must
find a formal power serics solution to the following system of functional

equations: _
v+ 3¢y = F(ﬁ)(V("’)(C)), n=1,2.... (4.1)

Here F(™) (z) was introduced in equation (1.1) and both sides of equation
(4.1) are formal power series in (. From equation (1.3) we see that the
linear term in the series P(") (z) are equal to z. Thus using equation
(1.1) the linear term in both parts of the equality (4.1) are equal to A¢.
Suppose now that for ahy natural £

Vi =4 3ok (4.2)
‘ k=2

Substituing these expressions for Vn)(¢) in equation (4.1) we will
search for the coefficient vl(cn) (k=2,3,...) which equates the monomials
with the identical power of  in both sides of equation (4.1). We rep-

resent the function f (n) (2) which was defined by (1.1) as a power series
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the following way:

1) = 3 fulzn), fulzn) = £V (4.3)
k=2
where n = 1,2,... and f,gn) do not depend on z. Then, using inequal-

ity (1.13), Cauchy estimates and the definition of the sth difference
A®h(z,y) we have for each k£ > 2

Z sup Alfk(z,n)‘ <00 . (4.4)

o1 12I<m0

Let k = 2. Comparing the monomial with ¢2 in both parts of equa-

tion (4.1) gives that the function us((,n) = vén)g 2 satisfy the following
equation

up(AC, n+ 1) = Aug(¢,n) + f2(¢,n) (4.5)

which has the form of equation (1.12). By (4.4) the function f({,n) =

f2(¢,n) satisfies condition (3.1) for ¢ = z,n = y. Thus using theorem

3.1 there exists a solution us({,n) = vén)f 2 satisfying equation (4.5) for

which -
n=1

We inductively assume that for each integer m > 2 and n=1,2,...
that the coefficients v,gn) of the series V(”)(C) in (4.2) (2 <k <m) are

defined so that the monomials with ¢* in both parts of equation (4.1)

vén—H) — vén) <00 .

coincide and satisfy the inequality

>

n=1

(nt1)  (n)

vy —u, | < oo (4.6)

We express (4.1) in the form
verDng = av¢) + F v ) — ave)) .

We obtain that the function u,,+1(¢,n) = vfﬁrl{mﬁ satisfies the
equation

U 1 1A 4 1) = M 1(C,m) + Frng1(C,m) (4.7)
where Fm+1(c,n) = Féz)rlfm*l is a monomial, in which Fé:i)_l is a

number, independent of {, which is the value of a polynomial function
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of f,gn)(k: =2,3,...,n+1) and v,&n)(k =2,...,m). Note that the v,(cn) are
already known by the inductive hypothesis. Using this and inequalities
(4.4) and (4.6) we see that the function f(¢,n) = F,1(¢,n) (for ¢ =
z,n = y) satisfies inequality (3.1) and by theorem 3.1 there exists a

solution 1 1(¢,n) = @fﬁlgmﬂ satisfying equation (4.7), for which

>

n=1

(nt1) _ (n)

Uyl — Um < 00 .

In such a fashion we get the change of variables z = y(n) ¢ (”)) =
¢ (n) 4 ... in the form of a formal power series beginning with the linear
term ¢ (n). Thus the inverse change of variables ¢ (n) = P(”)(z) =z+...
is defined. Using equation (4.6) P converges as n — oo to the formal
change of variables (1.4) and formally solves equation (1.6). Theorem
4.1 is proven.

Next, we will formulate and prove theorems on the analytic lineariz-
ability of nonautonomous dynamical systems of the form (1.1) (theorem
4.2) and (1.8) (theorem 4.5) and obtain corollary 4.6 to theorem 4.5 on
the Lyapunov stability of the fixed point z = 0.

Wil sotisfies

Theorem 4.2. Suppose that A, from the expression A\ = e
equation (1.10). Furthermore suppose that the function F (n) defined in
(1.1) satisfies conditions i)-iv) of condition (L) for 1 = 16 and some
8 > 0. Then the nonautonomous dynamical system of the form (1.1)
1s analytically linearizable in the following sense: there exists posilive
constants 1,9 and a sequence of changes of variables C(”) = p) (2) of
the form (1.3) which are analytic in the disc |z| < r1 and asn — oo they
converge to the change of variables (1.4} in the disc. For anyn ¢ N the
mapping D) = Pt o p(n) o (P(Y=1 is defined in the disc .C(”)‘ < rg9
and satisfies equation (1.6).

The proof of theorem 4.2 is connected to condition (1.10) and the-
orem 3.4. The proof coincides with the proof of theorem 1 from [5] up
to the changes we will indicate here. In the same way that the proof
of theorem 1 from [5] follows from theorem 3, the proof of theorem 4.2
follows from the following theorem.
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Theorem 4.3. Consider the mapping F:(z,y) — (2',y') of the form
2 = F(z,y) = A2+ [(2,y),y = y+1 defined in the domain |z| < rg,y > 1.
Suppose that A satisfies condition (1.10), and that the function F(z,y)
satisfies parts i)-w) of condition (L) for | = 16 and some 3 > 32. Then,
for some r > 0 there exists a (-analytic in the disc |z| < r and y-
continuous for y > 1 function U((,y) = ¢ +u((,y) for which

1. u(0,y) = ‘g—Zf(O,y) =0 fory > 1; there exists u(¢,00) = limy_,o.(C, ¥)
and the converges is uniform in the disc |¢| < r;

2. The inverse change of variables z = U((,y) is defined fory > 1 in
the disc |¢] <r;

3. The map F expressed in the coordinates (, y is defined in the domain
IC| <7,y > 1 and has the form ' = A,y =y + 1.

It is clear that under the conditions of theorem 4.3 the change of
variables must satisfy the functional equation

UGy +1) = FUGy),y) -

Similarly to the proof of theorem 3 in [5] we construct a sequence
of newtonian changes of variables for the solution. For [ = 16 we intro-
duce parameters, N, €n,7n,0,(n = 1,2,...) which satisfy the following
relations:

1
(1+27), 8, =

3
N, = N2, = N7 = = ——
n+1 n, €n Tn 12(2n n 1) ; (4.8)

[

where 1 € N was introduced in equation (1.10) and 7 < %To.
We will use the following inductive lemma.

Lemma 4.4. Suppose that the mappings
F { 2= Fo(z,y) = Az + ful2,9)
n- y/ Fa Y+ 1
where f,(z,y) is a series in z starting with second order terms, is defined

¥

for |z} < rp,y > 1 and satisfies

1. The function F(z,y) = F,(z,vy) salisfies the conditions of theorem
4.3

Bol. Soc. Bras. Mat., Vol. 30, N. 1, 1999
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2. |9z

lfnl < Nfrp for1<p<I.

Then there exists a constant N so that if N, > N then there exists
a C-analytic and y-continuous change of variables z = V,(C,y) = ( +
v (C,y) defined in the domain |(| < rp(1 — 20,,) for which the following
hold:
v,

1. Un(07y) = a_gcﬂ(oay) =0, B¢ < NJQHm hrﬂy-ﬁoo Un(g>y) = 'Un(Ca OO)
exists, and the convergence is uniform in the disc |C| < rn(1 — 26,);

2. In the domain |{| < 141, 1 <y < oo the mapping

C = n—i—l(C y) )\C+ fn—i—l(C?y)
y =y +1

?

mﬂzwﬂoﬂom{

where (' = Vn_l(z’,y + 1), is the inverse change of variables to 2/ =
Va(Cy+ 1), fre1(0,y) = ifgg—l(o,y) =0, and the following inequalities
hold:

’af n+1
78

The proof of the inductive lemma uses theorem 3.4 and inequality
(4.8) exactly like in section 5 of [5] the inductive lemma was proven
using lemma 2.1 and 2.3 from section 2 of [5] (instead of our theorem
3.4) and the inequality Nfl < 9§l+5)4
our inequality (4.8)).

Using the inductive lemma we get a sequence of changes of variables

<entts [Fas1(Ga )| < Ny for1<p <l

from section 5 of [5] (instead of

V1, Va,... and a sequence of mappings F = Fy, Iy, ..., which for n >
1,¢W = 2,¢ = V() = (D) o (0D, ), By = Vit o
F,oV,.

Thus, for n > 1 the change of variables U,y1 = Vi oVao---0V,
conjugates F to F, = U1 o FolU,. From the inductive lemma it easily
follows that if # > 0 is sufficiently small, N1 > N and the inequalities

|8 ]<61:N1‘5,{f|p<Nfr1for1§p§l

hold in the domain |z| < r{ = 34’1 < ro then the mappings U, and F,, are
defined in the domain ’C (”)’ < rp,y > 1 and the sequence of functions

Un(¢,y) in the domain [{] < %,y > 1 uniformly converge (as n — oo)
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to the function U({,y) = ¢ + u((,y) for which u(0,y) = g—g(o, y) = 0 and
limy, oo u(C, ) = u(¢, 00).

Thus for sufficiently small » > 0 in the disc |z| < r the change of
variables z = (+u((, y) is invertible, and by conclusion 2 of the inductive
lemma: in the domain [{| < r,y > 1 we have limy, .o, Fr(¢,y) = A(, we
have in this domain the change of variables z = U({, y) brings F' to

I — )\
UloFoU = lim Fn:{C, ¢ )
n—oo Yy =y +1
This completes the proof of theorem 4.3. O

To derive theorem 4.2 from theorem 4.3 we point out, that if condi-
tion (L) holds for the sequence of mappings F (n) for [ = 16 and 8 >0,
then it will hold for [ = 16 and 41 = m@, where m is an arbitrary natural
number. Thus, if the conditions of theorem 4.2 hold for [ = 16,5 > 0,
then the conditions of theorem 4.3 applied to the mapping

p {720 =det 1oy
y=y+1
will hold for [ = 16 and 87 = mf8 > 32 for some m. Now theorem 4.2
follows directly from theorem 4.3 with y = 1. O

Theorem 4.5. Suppose that A defined by A = g2mid satisfies condition
(1.10) and the function Fin) defined in (1.8) satisfies parts i)-vii) of
condition (L) with | = 16 and some 8 > 0. Then the nonautonomous
dynamical system defined by equations (1.8) is linearizable with a z-
analytic change of coordinates depending on time n in the following
sense. For some positive constants r1,ro, there exists an sequence of
changes of coordinates C(”) = P(”)(z) of the form (1.9), which are an-
alytic and invertible in the disc |z| < r1. Asn — oo in this disc they
converge to the change of variables (1.4) and for any n € N the mapping
D) — plrtl) g pln) o(P(”))*1 s defined in the disc ’d”)‘ < rgq. Finally
equation (1.6) holds.

Proof. The proof of theorem 4.5 is based on the fact that using a linear
change of variables ¢ = é(y)z the mapping

R{%:F@M—AWV+ﬂ%m
y=y+1
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reduces to the form

(=G y)=M+gCy)y=y+1, (4.9)

where ¢(0,y) = g—g((),y) = 0 and A does not depend on y and was in-
troduced in part v) of condition (L). It is easy to see that for this we
can take §(y) = A(y) where A(y) was introduced in part vi) of condition
(L). Applying parts v)-vii) of condition (L), we get that the sequence
of mappings arising from the mapping (4.9) with y = n,(n = 1,2,...)
satisfy the conditions of theorem 4.2, and thus theorem 4.5 follows. O

Corollary 4.6. If for the nonautonomous dynamical system of the form
(1.8) with the parameter A = 2B satisfying condition (1.10) condition
(L) holds for I =16 and some 3 > 0 then the fized point z = 0 is stable
in the sense of Lyapunov.

Proof. Let z = (PW)-1(¢c()y, p(n) o pn=D) .. .o F() 5 = z(0) ¢(nt1) =
P(”+1)(z(”)), )Q(D‘ < 79, where the change of variables P(™) and the
constant ro where introduced in theorem 4.5. Then, using theorem 4.5
for any n > 1 we have

(0] = | Pl 00| ﬁ A®)|¢)] (4.10)
k=1
and using vi) of condition (L) we have
I12® <e, (4.11)
k=1

where ¢ is a constant independent of n. Thus the corollary follows from
(1.9, 4.10, 4.11). O

Corollary 4.7. Under the conditions of corollary 4.6 the fized point z = 0
is uniformly stable in the sense of Lyapunov.
The proof of the corollary is the same as the proof of corollary 4.6.

5. The rational case
Tn this section no assumption is made on the smoothness of the conver-

gence. Our theorems are in the case that the NDS is of the more general
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form (1.8).

Theorem 5.1. If the limit function F' is not linear for the NDS (1.8)
and X is a root of unity then in the neighborhood of the fized point z = 0
either

(i) there exists 29 # 0 such that liminf, .. F( o - F(N(z) = 0,

(ii) there exist positive constants €, r such that for all points z in the
ball U(0,€) except z = 0, the orbit leaves the ball U(0,7), i.e

lim inf HF(n> o F(l)(z>H >

n—oo

Corollary 5.2. Under the assumption of theorem 5.1 the NDS (1.8) is
not conjugate to a rotation.

Option (ii) of theorem 5.1 occurs even for the simple linear example
F(z):= (1 + 1/n)z. This example shows the difference between a
NDS and a diffeomorphism: for a NDS a neutral fixed point (defined by
|Dflg = 1) can display repelling behavior.

Proof of theorem 5.1. Let F'(2) = 2z + fy(2) where fy(2) = Y72 b2
and b, # 0 for some r > 2. Note that F'? is the gth iterate of the limit
map F and is not the same as F(@. In fact, it is known that » > ¢ +1[2].
We make a change of coordinates which we call the inverse coordinates:

L (5.1)

7
Let G(w) (resp. G )( )) be the mapping in inverse coordinates

w =

corresponding to F(z) (resp. F (n )( )). In the inverse coordinates the
transformation F9(z) becomes

Gq(w) =W — (”I" — 1)67, — (7" — 1)Br+1w71/(r¥1) + O(w_Q/(T_l))

(5.2)
= w6+ w07 4 O X071
where ¢, # 0. Forn € Z% = {0,1,...} let
Bn). _ Bé”): = plaln+1)) o plantl)
By continuity we have
q(n+1)
= I ne+ Z ol (5.3)
i=gn+1
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where bg-n) — bj as k — oo for all j and by,..., b, 1 are understood to
equal 0. In other words B (”)(z) converges uniformly to F9(z) in a fixed
neighborhood of the point z = 0.

For n € Z* let (™). = én): = gl 1)) 5. o Glamtl) | Now

CMy = Z cf,n)iwi/(“l) + O(w'Q/(T_l)) . (5.4)

(n) (n) (n)

Here ¢c;” — 1, ¢, " — O0for k=2,...7 — 1, cgn) — ¢ oand ¢y —
¢y+1 and thus we can say that equation (5.4) converges to (5.2). Here
we can assume that the O term does not depend on n. Of course we
could express the coeflicients cfnn) in terms of the coefficients f,gm) for
me {gn+1,...,g(n+ 1)}, but this is not necessary for our purposes.

Let H™(c) be the half plane which contains the point ¢, € C defined
by the line going through the origin orthogonal to ¢, (thought of as a
vector) and H ™ (¢,) the other half plane.

Now since equation (5.4) converges to (5.2) in the limit we imme-
diately see that there exists a K > 0 such that for each w satisfying

|lw|| > K there is a N = N(w) such that for n > N

el
T

|C™w| > [Jw]] + (5.5)

Let Q be the domain of definition of G. For wg € € we consider
the sequence w,,: = GMo...o G(l)wg and the corresponding sequence
Zn::F(n) o-~-éF(1)20.

We assume that case (ii) of the theorem does not hold, namely that

sup lim sup||wg|| = oo . (5.6)
woef) k—oo
We need to show that there is a point wg € Q for which the or-
bit goes to infinity, that is limsupy_ . ||wgl] = oco. We assume the
opposite, namely for each point wg € Q the orbit stays bounded, or
lim supy,_, ., [Jwi|| = K(wp) < oco. Using equation (5.6) we can fix wy € Q
with K (wp) sufficiently large. Then for each € > 0 there is a point v € C
with [Jv]| = K(wp) such that wy,, € U(v,€) for infinitely many n,.
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For sufficiently large k& by equation (5.5) we have
Hc(n)w”iH z Hw"iH + HCTH/3-

Now we apply (5.5) in two cases, first assume that v € H¥(c,). Now if
n, is sufficiently large by equation (5.5) we get
|wn,a| = [Jwn | + llerl/3 (5.7)

and the right had side is large than K (wq) if ¢ is sufficiently small. This
contradicts the definition of K(wg). The proof in the case v € H™(¢,)

is similar, we just replace W, +q by W, —q 10 equation (5.7). O

Theorem 5.3. Under the conditions of theorem 5.1 there exists a con-
stant R > 0 such that for every ¢ > 0 satisfying ¢ < R there exists a
positive integers n; = n;(€) (i =0,1) and a point z with |z| = € such that
'F(”l) o plni-1) ... o F(”O)(z)‘ > R.

Corollary 5.4. Under the conditions of theorem 5.1 the NDS (1.8) is not
uniformly stable in the sense of Lyapunov.

Proof of theorem 5.3. We use the notation of the proof of theorem 5.1.
We assume without loss of generality that ¢, = 1. The limit map F? is
unstable in the sense of Lyapunov [2]. Thus, there exists R > 0 such
that for every € > 0 there is a positive integer N and a point zg with
|zg| = ¢ such that ‘Fquo} > R. Let wg = 2", then we have

)GqN(wo)‘ < R-". (5.8)
Set ny = ng + N. We can choose ng so large that
\(1(”1) o0 Cma) () - GqN(wO)j <R-)2. (5.9)
Using equations (5.8) and (5.9) we immediately have
ctr) o0 Clro) (uwg) < R /2.
This inequality, when rewritten is z coordinates finishes the proof. [

Now we turn back to the case that the NDS of the form (1.1). In a

special case we can prove more:
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Theorem 5.5. Assume A = 1 and f\") £ 0 # fo for alln € N. The
following hold in the neighborhood of the fixed point z = 0

(i) there exists zg # 0 such that limy, Fo...o FMz0) = 0, and
(i) there exist positive constant r such that for every e > 0 there is a
point zg in the ball U(0,¢) and a n > 0 such that

HF(H) O"'OF(1><ZO)H >

Remark. The speed of convergence (expressed in inverse coordinates) of
the orbit of zg to 0 in part (i) is linear as can be seen in formula (5.12).

Corollary 5.6. Under the assumptions of theorem 5.5 the NDS (1.1) is
not stable in the sense of Lyapunov.

Proof of theorem 5.5. We use the notation of the proof of theorem
5.1. For part (i) we note that in this case the mapping ) given by
equation (5.4) becomes

My = w+ CS") + cg_)lw‘l/(r_l) + O(uf?/(’ul)) (5.10)
(n) (n)

where ¢; ' — ¢ # 0 and ¢.}/y — ¢,41. The O term can be assumed to
be uniform in n. We can assume without loss of generality that ¢, =1

and rewrite this as

Cy = w1460 1w VD L 0@y L (5.1

r

We will show that for some wg € Q and for all n € N
lwy, —wy — n|| < o(n) . (5.12)

We first assume that the NDS has the special form C (M =w+1+
§() . In this case, since the §) converges to 0 we have Sy 5 = o(n)
and equation (5.12) follows in this case. Now suppose the NDS has the
form CMw = w + 14 60 + cffﬁlw‘l/(“l). Set

M
r+1 r+1) »

C = sup
n

clearly C is finite. Then the term cfﬁr)lw‘l/ (=1) contributes in the first
n steps at most C'> "1 1/(w+k+o(k)). But there is a N > 0 such that
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for k > N we have |o(k)| < k/2. Thus the contribution of this term is
bounded by
N-1 n

C> 1/ (w+k+ok)+ S 1/(w+k/2)Y/ 1
k=1 k=N

and this is of the order o(n). In the general case the term O(w‘Q/(T”U)
contributes a lower order error term and so we have shown formula (5.12)
whenever the infinite orbit w,, is defined and stays outside a sufficiently
large disk U(0, R). By continuity the region Q,:= G o...o g
is nomempty and contains a neighborhood of the point infinity for all
n € N. Thus part (i) follows easily from (5.12).

Now we turn to part (ii). Let R = 1/r for r sufficiently small to have
Q C C\U(0, R). Consider the line Ic: = {w: Re(w) = C}. In the proof of
part (i) we showed that for any C, for sufficiently large positive values
of Im(w) the orbit w,, goes to infinity, in fact Re(w,) — co. Completely
analogously, for sufficiently large negative values of I'm(w) one can show
that Re(wy) also goes to infinity. Let S be the half strip bounded by
Im(w) = £R with Re(w) < 0. The proof of the above paragraph shows
that w, never enters the set Sp U U(0, R) for wg € I for |[Im(wp)|
sufficiently large.

Now we argue that for any C < —R by continuity that the orbit of
some initial point w € I must hit the ball U(0, R). Consider the orbit
Iy = G o . --G(I)I(; of the line I¢. Note that I, is always a Jordan
curve. Let Y:= liminf,_ . inf,c7, Re(z). We must show that ¥ > —R.
But if not, then we have a direct contradiction since equation (5.11)
implies that Y > Y +1/2. ad

6. Behavior at infinity
Consider a sequence of conformal mappings

¢ c@ a0 (6.1)
defined on the domain Rew > kg, and having the form:

G(n):wﬂw’:w+1+%+g(")(w); (n=1,2,...), (6.2)
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where b, is a constant such that the limit lim,,_,., b, exists and is non
infinite. Furthermore suppose that
g W) < =5, (6.3)
|wi
where ¢ is a constant not depending on n.
In this section we will formulate and prove theorem 6.1 from which
follows that the nonautonomous dynamical system (6.1) brought to the
form

s G (w)) = oM (w) +1:(n=1,2,...) (6.4)
using a w-analytic change of variables
o) =¢ (m=12,...).

This means that in the coordinate ( (n) the system (6.1) is a translation
by 1. In particular, when the G are all identical, the 3 are also

identical and we recover the well known classical theorem [2].

Theorem 6.1. Suppose that

Z |bpt1 — bn|logn < oo . (6.5)

n=1
Then there exist constants k, q¢ and a sequence of analytic functions
p(n) (w),(n=1,2,...) which for all n > 1 satisfy:
1. The functions o(n) (w) is defined in the domain

Q = {w: Rew > K} and in this domain ‘fb(”) (w) — w’ <q, (6.6)

where ¢ is a constant not depending on n;
2. G"M(Q) c Q and (6.4) holds.

Proof. For any n € N using inequality (6.5) the following sum converges

- bn s—1 — bn,+s
I (6.7)

s=1

We will need the following lemma.

Lemma 6.2. The sum A =Y "1 A, converges.
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Proof. From the definition of A, (6.7) we have

ZA ZZ n+51 n+s
n=

n=1 s= ln 1
=1
=Yl b Z‘ (6.8)
n=1 s=1 §
= > by = by 1)(logn +O(1)) < 00,
n=1
since by (6.5) the series in (6.8) converges absolutely. O
For n, k € N we define
E by
ke = sl 6.9
oihim = 3 (6.9)
dn = A (6.10)

and
G,(C”) (w) = GUrtk=1) o Glnth=2) o Glat) G (). (6.11)

From lemma 6.2 and equation (6.10) it is clear that the sum defining
dy, (6.10) converges and

dyy1 — dn = —Ay . (6.12)

Furthermore, from equations (6.11, 6.2, 6.3) it follows that there
exists a constant x such that if Rew > x then for all n, k € N

ReG,E”)(w) > K, 5 < ‘Gkn (w)| < |w| + 2k . (6.13)

From equations (6.9, 6.5) it follows that
lo(k,n)| < cylogk (6.14)

for all n,k € N where ¢; is a constant, not depending on n and k.
We now want to find the change of variables &™) required by theorem
6.1 in the form of a limit &™) (w) = limg_ o @,(ﬂn) (w). We define the

@,(Cn)(w) by:
o (w) = G\ (w) — k — o(k,n) +d, . (6.15)
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First of all let us prove that if s is sufficiently large, then for all
n € N the sequence @,gn) (w) converges as k — 0o to the analytic function
p(n) (w) in the domain Rew > k. Using equations (6.11, 6.2), for k > 2

we have:

n n bn n n n — n
Gy ) =61 w) = 1 g G ) gD (G ()
G (w)

From thus, using equations (6.15, 6.9, 6.3, 6.5, 6.13) we get:

n n n bn
()~ o) = G w) - 6wy -1 -

_ bag bntk (i) _ (l) (6.16)
=7 +G,(€”)(w) +0 % =0 )

‘I’z(;-lgl

Furthermore from (6.16) we have
k-1

@,(cn)(w) — w’ < 1<I>gn)(w) — w‘ + Z
s=1

Placing this in equation (6.16) and using equations (6.15, 6.10, 6.14)

o), (w) — ol (w)‘ = O(log k) .

and lemma 6.2 yields:

(n) () 1 1 L
O (w)— B (w)=b, ( - >+O (—)
F g o+ k+o(k,n)—dy+ <I>,(€n) (w) k+1 k2
bn, n log k
- kg’“o(‘@,(c)(w)’+|o(k,n)|+|dn\)f0(%).

Thus

@fjﬁl(w) - c1>,(j> (w)‘ < 00,

gk

1

o
Il

(n

and the sequence ®,. ' (w)(k = 1,2,...) converges to an analytic function
&) (w). Furthermore inequality (6.6) holds for some constant g.

From the definition of G(") in equation (6.2) it clearly follows that
there is a sufficiently large constant x such that G(”)(Q) C Q where Q
was introduced in theorem 6.1. Now we will demonstrate equation (6.4).

From the definitions of @,(Cn) (w) (6.15) and G,gn)(w) (6.11) we have:

2 G w) =
(n) | (6.17)
=0, (W) + 1+ (o(k+1,n) —olk,n+ 1)) +dyy1 —dn
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for all n,k € N. Using the definition of o(k,n) (6.9) we have

b +k : bn+s~1 - bn+s
kE+1,n)—o(k 1) = -2 —_— 6.18
ok+1,n)—o(k,n+1) l<:+1+§_:1 . (6.18)
Taking the limit as & — oo in equation (6.17) and using equations

(6.18, 6.7} yields:
(G () = 8™ w) 1+ Ay +dpat — dn - (6.19)

Now equations (6.4) clearly follows from equations (6.19, 6.12). 0

Remark. Using the functional equation (6.4) for any n € N we can
analytically continue the function ®(%) (w) to any domain §2 for which the
functions G(”)(w) are defined, G(“}(Q) C Q and limg_, ReG,(f) (w) = oo
for all w € Q.
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