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1. Introduct ion:  a descr ipt ion  o f  the main  results and condi t ions  

In this article we s tudy the behavior of nonautonomous dynamical  sys- 

tems (NDS) which converge to a limit in the neighborhood of a fixed 

point. Such NDS's arise in many problems in the theory of differential 

equations, mechanics, mathemat ical  and statistical physics (see for ex- 

ample [6]-[8]). They also arise in the theory of the Riemann ~-function 

[9], where with the help of an appropriate two dimensional NDS it was 

shown that  the C-function can be represented in the critical strip as 

a product  of second order matrices, this is an analogous of the Euler 

product  to the right of the critical strip [9]. Fm'thermore in [9] the 

correctness of the Riemann hypothesis on the zeros of the C-function is 

t ransformed to the s tudy of the stability of the fixed point of this NDS. 

We consider a NDS with discrete time, which is defined by a sequence 

of conformal mappings F(1), F (2 ) , . . .  , 

F(~): z --~ z' = F(~)(z )  = Az + f (~) ( z ) ,  (1.1) 
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where 
oo 

�9 k n 1,2, .. ; f ( n ) ( z ) =  ~ J k  , 
k - - 2  

and f ~ )  does not depend on z. The mappings F(~) are defined in a 

fixed neighborhood of 0 C C. The NDS is defined by first applying F (1), 

then applying F (2) to it's image, and so on. We assume that  the NDS 

is convergent, that  is that  as n --+ co the sequence of mappings F (n) in 

equation (1.1) smoothly approach a limit mapping 

F: z -+ z' = tiP(z) = Az + f ( z ) ,  

= 

k - - 2  

Furthermore,  we assume fk does not depend on z, 

f ( z ) -  lim f (n ) ( z ) ,  (1.2) 
n->OQ 

and the convergence in equation (1.2) is uniform for all z in some fixed 

neighborhood of the fixed point z = 0. Throughout  the article we will 

assume that  the fixed point z = 0 is neutral, i.e. BI = 1. The main 

problem which is studied in this article is the generalization to the 

nonautonomous case of the classical center problem of classifying the 

behavior of the iterates of a single mapping near a neutral  fixed point. 

In the classical problem (first studied by Sehr/Sder [10]) the behavior 

around a fixed point is studied for the iteration of one mapping. In the 

nonautonomous case, this problem was first studied in [4]-[6]. 
We explain in what  sense we want to s tudy the center problem (CP) 

for a NDS. We need to find a sequence of changes of variables 

oo 

~(~) = P(n) (z )  = z +p(n)(Z);  p(n)(Z) = ~ p ~ n ) Z k ;  n =  1 ,2 , . . .  (1.3) 

k=2 

(p~) does not depend on z) which are analytic and invertible in a neigh- 

borhood (not depending on n) Izl < r l ( r l  > 0). Furthermore,  the 

changes of variables converge (uniformly) in the neighborhood to the 
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change of variables 

r P(z) z + p(z); p(z) ~ pl~z ~ (1.4) 
t:--2 

such that  there exists a constant r2 > 0 such that  for any n C N the 

mapping 

D(~): = p0~+l) o F ('~) o (p( . , ) ) - i  (1.5) 

is defined in the disc r _< r2 and has the form 

D(n): r ~ r _ ,xr (1.@) 

If such a sequence of change of variables exists, then we say that the 

NDS defined by equation (I.i) is conjugate to a rotation or linearizable, 

otherwise we say that the NDS is not conjugate to a rotation or not 

[inearizable. In the special ease when a]] the F(n)'s coincide with one 

another then we arrive at the classical CP. The statement and the fh'st 

result about CP for a NDS are due to Pustyl 'nikov [4]-[5], who proved 

a generalization of Siegel's theorem [11]-[12]. Namely, he showed that  

under certain conditions a NDS is conjugate to a rotat ion if the Siegel 

condition holds for the parameter  A: 

Iai -- 1, Ia~ 1[ -1 _< coq 2 for q = 1, 2 , . . . .  (1.7) 

The proof of [5]-[6] a s s u m e s  that  condition (L) formulated below, is 

fulfilled. Condition (L) characterizes the smoothness of the convergence 

of the F(  ~0 as n --+ oc. We note that  the rate of convergence can be 

arbitrarily slow. A generalization of theorem 1 from [5] is formulated 

and proved in [6] (part 2, chapter V, w to the case when the parameter  

A = A (~) in equation (1.1) depends on n and the mappings F (~) have 

the form 

F('4: z --+ z' = F('O(z) : A(~)z + f('~)(z), where 

, ~ :  1 , 2 , . . . ,  a n d  f ( n ) ( z ) =  ~ f~n)zl~ (1 .8)  

k=2 

where the A04 ~ A as n --+ oc, A satisfies equation (1.7) and the infinite 

product  fin~176 converges absolutely. In this case it is clear, that  
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instead of requiring the change of variables given by equation (1.3), we 

need the more general form 

= = p ( n ) ( z )  

where #~ --+ 1. 

O(3 

k=2 

We remark tha t  the set of A in the unit circle which satisfy condition 

(1.7) form a set of full measure. In this article which we prove several 

results about the CP for a NDS analogous to a classical result about 

the CP. 

For the first problem we consider we assume tha t  ~ is not a root of 

unity. In this case we construct the sequence (1.3) of changes of variables 

in the form of formal power series in z so that  the equalities (1.4, 1.6) 

hold in the sense of equalities of formal power series. 

The second problem we consider is when A = exp 2r~iA and A is a 

Siegel irrational number. We prove tha t  a NDS is conjugate to a rotat ion 

in the case when A is an irrational number such tha t  for any rn ~ Z and 

any k C N the following holds: 

IkA - -~1 -a _< C0k" (1.10) 

where Co and # are positive constants not depending on rn or k. 

The next problems concern the case when ~ is a root of unity. In 

this case we prove tha t  a NDS is unstable in the sense of Lyapunov and 

not conjugate to a rotation. 

Finalty we s tudy the system (1.1) in inverse coordinates in a neigh- 

borhood of the fixed point in the case A is a root of unity. 

In the classical case the first problem corresponds to [10] (Schr6der 

series), the second problem corresponds to the theorems of Siegel [11]- 
[12] and Bruno [1], the third corresponds to [14] and [3] and last problem 

was studied in [2]. Nice surveys of the classical CP can be found in [2] 

and [13]. Condition (1.10) under which conjugacy to a rotat ion is proven 

is more general than  condition (1.7) and coincides with it in the case 

# = 2. The set of A ~ S 1 for which we have shown tha t  a NDS is 

conjugate or not conjugate to a rotat ion is not all of 81. The question 

remains open for nonrational ~ E S 1 which do not satisfy condition 
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(1.10). In the classical CP the conjugacy with a rotat ion is proven for 

all % c S 1 which satisfy the Bruno condition [1], and if % does not 

satisfy the Bruno condition then Yoccoz has shown that  there exists a 

polynomial who's leading term is Az which is not conjugate to a rotat ion 

[15]. 
The classical Schr6der equation 

u(Az) = ,~u(z) + f (z ) ,  (1.11) 

plays an important  role in [10]. It is well known that  in the case 

is not a root of unity this equation has a formal solution u(z), while 

in the case % satisfies the Siegel condition, the solution is analytic. In 

sections 3 and 4 of this paper we consider the following generalization 

of Schrgder's equation: 

u(,~z, y + 1) = ku(z,  y) + f ( z ,  y) . (1.12) 

Here u(z, y) is the unknown function and f ( z ,  y) is a fixed function 

which is analytic in z in a given neighborhood of the point z = 0 and 

satisfies f(O, y) - (Of/Oz)(O, y) = 0. Several additional assumptions are 

made. We assume that  the functions f ( z ,  y) and u(z, y), considered as 

functions of y, are defined on a domain Y C R which includes all the 

points y + n , n  - 1 ,2 , . . .  whenever y c Y. Furthermore,  we assume 

that  the function f ( z ,  y) converges smoothly enough to a limit function 

f ( z ,  ~ ) .  This notion will be made precise later. We want to find a 

solution u(z, y) of equation (1.12) which is defined for all y E Y, which 

is analytic in z in a neighborhood of z - 0 (not depending on y). Fur- 

thermore, for any z if 'on this neighborhood, the function u(z, y) must 

converge smoothly  enough as y --+ oo to an analytic function u(z, oo) 
such that  we can est imate the modulus lu(z, Y)I of this solution and its 

differences in y through the moduli  and difference of the functions f ( z ,  y) 
(theorems 3.3, 3.4). If we reduce to the special case, when the functions 

f ( z ,  y) = f (z) ,  u(z, y) = u(z) do not depend on y, then equation (1.12) 

reduces to Schr6der's equation. 

Equat ion (1.12) was introduced in [5] (section 2, lemmas 2.1 and 

2.3) where, in the case that  ~ satisfies condition (1.7) a solution u(z, y) 
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was constructed satisfying the requirements described in the last pa,ra- 

graph. Ill this article (w the solution from [5] is used to study of the 

linearizability of NDS's for all values of A except when ~ is a root of 

unity (w 

Another important  idea which is used in this article for the proof 

of the linearizability of a NDS is the correct description of the smooth  

convergence of the NDS (1.1) as n --+ oc. For the proof of the formal 

conjugacy to a rotation: (w theorem 4.1) it is enough only to require 

the convergence of the arbitra;ry first differences of the functions f(70 (z): 

oo 

sup f ( n + l ) ( z ) - f ( r O ( z ) < o o .  (1.13) 
Izl<r0 7 t z l  -- 

However, for the proof of the analytic conjugacy to a rotat ion con- 

dition (1.13) is not enough. We additionally to require some estimates 

on the convergence of the absolute values of the higher differences of the 

function f(~)(z). These estimates are quite restrictive, it is impossible 

to effectively s ta te  them and they are not applicable to some natural  

NDS of more general form, for example: 

h ( 4  
F(n) :  z -+  = z . x z  + g ( z )  + - -  (1.14) 

?Z a 

where a is an arbi trary positive constant  and g(0) = dg/dz(O) = h(O) = 

dh/dz(O) = 0. In [5], to overcome this problem tile condition (L) was 

introduced. Condition (L) consists of the following: for Izl _< r0, y _> 

1, (r0 > 0) there exists a function F(z,  y) = ~z + f ( z ,  y) such that  

(i) f ( z , n )  = f(~)(z); 

(ii) in the disk Izl _< r0 there exists an analytic function 

f ( z ,  oo) = f (~) (z )  = Iim f ( z ,y ) ;  
y---+ oo 

(iii) the power series for f (z ,  y) in z begins with second order terms; 

(iv) for a certain/3 > 0 the function f ( z ,  x -z)  has l continuous partial 

derivatives in x for 0 _< x < 1, (at the endpoints x = 0 and x = 1 we 

assume that  one sided partial derivatives exist). 

Par t  (iv) of condition (L) characterized the level of smoothness of 

the convergence of F (~) to their limit as n -+ oc. The main condition 
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of part  (iv) is the existence of I partial derivatives from tile right at 

the point x = 0: one cart always embed the system of mappings F(  rO 

depending on a discrete parameter  as smoothly as one wants in a system 

of mappings depending of a smooth parameter  such that  the function 

f ( z ,  x -~) will have the needed number  of partial derivatives for all x ~ 0. 

Condition (L) does not affect the speed of convergence of the F(~): 

this speed can be arbitrari ly slow if/3 in part  (iv) is sumciently large. 

Condition (L) holds for the system (1.14): in this case/3 = 1 /a  and 

f ( z ,  y )  9(z) + - f ( z ,  x /~) = 9(z) + xh(z)  (1.15) y~ 

and condition (L) holds. 

For a sequence of mappings F (~) given by equation (1.8) the fol- 

lowing additional condition (in addition to (L)) is required [6] (part 2, 

chapter V, w there exists a function k(y) such that  

(v)  (rz) = lim>   A(y) = A; 

(vi) the function A(y) = flk~=o k(y  + h) /A is defined for y > 1, the 

product  is absolutely convergent and l i m y ~  A(y) = 1; 

(vii) for some/3 > 0 the function A(x -z) has 1 continuous derivatives 

i n x f o r 0 < x < l .  

In the theorems on the analytic conjugacy to a circle rotat ion and 

on the stability of the point z = 0 (w we require that  condition (L) 

is fulfilled for l = 16. In the proof of the nonconjugabili ty to a circle 

rotat ion and the instability of the point z = 0 of the NDS's (1.1) or (1.8) 

in the case that  ,~ is a root of unity (w we do not require condition 

(L), but only the converges of F(~) to the limit mapping F.  

In section 6 we generalize to the nonautonomous case the important  

theorem on the i teration of a fixed mapping in the neighborhood of 

an infinite fixed point (w = oc) and its application to the s tudy of a 

conformal mapping, whose linear part  is a rational rotation, near the 

point z = 0 [2]. In theorem 6.1 we consider a sequence of conformal 

mappings G('0, in the domain Re(w)  > e~ 0 having the form 

(n 2. ) a O 4 ( w ) : w + l + _ +  (w), . . .  , 
W 
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where b~ is a constant,  and g(~)(w) = O(w-2).  Our main result here 

is that  there exists a change of variables ~('~)(w), (n = 1, 2 , . . . )  which 

bring the mappings G (~) to a translation by 1: 

~(~+t)  o G(~) (w) = ~(~)(w) + 1 

In particular when all the G(~) (w) are all identical, then the q)(~)(w) 

are all identical and our theorem reduces to the one proven in [2]. Finally 

we mention that  the s tudy of a sequence of mappings G(~)(w) in a 

neighborhood of the point w = oo is the main factor in proving the 

Lyapunov instability and nonconj ugability of the systems (1.1) and (1.8) 

at the point z = 0 when k is a root of unity (theorems 5.1, 5.3, 5.5 and 

corollaries 5.2, 5.4, 5.6). 

where 

2. Main definitions and terminology 
1. Suppose that  for the function h(z, y), defined for Izl < ro and y > 1, 

the limit limy_.~ h(z, y) = h(z, ~ )  exists and if the function h(z, x -z) 
has s > 0 derivatives with respect to x for 0 < x < 1 then 

= h ( z , x  - z ) ~  sup sup sup h ( z , x  - z )  , 
0<a<s O<x<l Izl<r o 

( ~  ~ 
Ox h(z, x - z )  = t~(z, z Z ) .  

2. Let Y be an arbi trary set of reals satisfying y + n c Y for all y ~ Y 

and all n E Z + (the non negative reals). The two main examples which 

are used in this work are Y = N the natural  numbers  and Y = {y > 1}. 

3. For any natural  number s we recursively define the s th  difference 

A~h(z, y) of the function h(z, y), defined in the domain Izl < r0, y ~ Y, 

by: 
A 1 h(z, y) = h(z, y + 1) - h(z, y) 

A2h(z,y) = A l ( z , y  + 1) - Alh(z ,y)  

A~h(z,y) = A~-l(z ,y  + 1) - A~-lh(z,y) . 
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4. Suppose  t ha t  the  sequence of formal  power  series 

= gk z ' , ( n =  1 ,2 , . . . )  
k>_O 

g(~)z k and  the  power  series g(~)(z) = k_>0 k are given and  the  coef- 

ficients g do not  d e p e n d  on z for all n _< oc and all k. We say 

the  sequence g(")(z)  converges as n -+ oc to  the  series g(~)(z) = 

if for each k > 0 have = g oo). 

5. Suppose  t h a t  f (z ,  y) = ~ 2  f~(Y) z~ is a formal  power  series in z w i th  

coefficients f~(y), not  depend ing  on z. We say t h a t  the  formal  power  
oc k series u(z, y) = ~ = 2  uk(y)z is a formal  so lu t ion  of equa t ion  (1.12) if, 

when  it is appl ied  to  equa t ion  (1.12) t h e n  for all /c > 2 the  coefficients 

of  z k coincide as func t ions  of  y for all y C Y. 

6. T h e  fixed poin t  z = 0 is call stable in the sense of Lyapunov for a 

NDS given by  a sequence  of mapp ings  F(~):  n = 1, 2 , . . . ,  if for any  e > 0 

the re  is a (~ > 0 so t h a t  

F (~) o . . .  o F (1 )z  < 

for any  n and  any  ]z] < tS. 

7. T h e  fixed po in t  z = 0 is call uniformly stable in the sense of Lyapunov 

for a NDS given by  a sequence  of mapp ings  F(~): n = 1, 2 , . . . ,  if for any  

c > 0 the re  is a ~ > 0 and  for all pos i t ive  integers  no < n l  so t h a t  

F(~I)  o . . .  o F(~O)z < 

for any  I zl _< (~. 

3. The  f u n c t i o n a l  e q u a t i o n  

We consider  equa t ion  (1.12), in which u(z,y) is a u n k n o w n  funct ion ,  

f ( z ,y )  = ~k~176 2 fk(y)z ~ is a given z -ana ly t i c  func t ion  in the  d o m a i n  

Izl _< r0, y Y and  fk(y) does not  depend  on  z. 

Theorem 3.1. Suppose that IA[ = 1 a n d  A is not a roo t  of unity. Suppose 

further that for each y E Y the limit l imn_ ~  f (z ,  y + n) = foo(z, y) exists 
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and the following inequality holds: 

sup A l f ( z , y + n )  < o o .  (3.1) 
n=O Izl-<r~ 

Then there exists a formal solution u(z, y) of equation (1.12) given by 

the formal power series 

u(z,y) = ~ uk(y)z ~ . (3.2) 
k = 2  

The coefficients uk(y) have the form 
o~ 

f~(Y) + ~ (fk(Y + n + 1) - f~(y + n))A (k-1)(~+l) 
uk(y) = n=0 (3.3) 

A ~ - A 

and for each y 6 Y the limit 

lira u(z, y + n) = u~(z,  y) , (3.4) 
?).---+ OC; 

exists" where n 6 H and Uoo(Z,y) is a .formal power series representing 

the formal solution of the equation 

u~(Az, y) = Au~(z,y)  + f~ ( z , y )  . (3.5) 

Proof .  We apply the Cauehy error estimate in the domain Izl < r0 to 

the z-analytic function f (z ,  y + n + 1) - f (z ,  y + n). This yields: 

A l f ( z ; y  + n) 
Ifk(y + n + l) -- fk(Y + n)l <_ sup 

Izl<_r o r ~  

Thus, using equation (3.1), the series on the right hand side of equation 

(3.3) converges, uk(y) is properly defined and the following equality 

holds: 
lira uk(y + n) -- f~,k(Y) (3.6) 

Here f~,e(y) is the kth coefficient of the z-Taylor series expansion 

f~ ( z , y )  = ~ = 2  f~,~(Y) z~ of the z-analytic function f~ ( z , y )  in the 

domain Izl _< r0. The coefficient of z k in the formal power series u~(z,  y) 

is u~,k = limn-~oo uk(y+n), thus using equation (3.6) we see that  uoo(z, y) 

formally satisfies equation (3.5). Thus to prove theorem 3.1 we must 

show that  the formal power series (3.2) with coefficients (3.3) formally 

Bol. Soc. Bras. Mat., Vol. 30, N. I, 1999 
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satisfy equation (1.12). This fact was proven in [5] (Lemma 2.1, formula 

2.6). [] 

Corollary 3.2. For any .s C N the. coefficient zt~(y) of ttle formal solution 

(3.2) of equation (1.12) defined by equation (3.3) sati4es: 

i .~(ASfk(y ) + E A@-l)(n+l)As+lfk(Y + n)) . 
a%k(y ) -  ),~_ ~=o 

Theorem 3.3. We suppose the assumptions of theorem 3.1. Additionall~l 

we suppose that A = e 2~A, where A is a real number, satisfies condition 

(1.10) (with integer constant # > 0), 0 is a positive constant satisfying 

0 < 0 < 1, and s is a natural number. Then equations (3.2) and (3.3) 

define the solution u(z, y) of equation (1.12), which is z-analytic in the 

domain Izl < r 0 ( 1 - 0 ) ,  y ~ Y.  I'n this domain the following inequalities 

hold: 

I~(z,y)l_< ~0,~+1 sup I f ( z , y ) [+ y + n )  , (3.7) 
Izl-<ro n=0 

,As~z(z,9)]< C0#' ( ~176 As+lf(z,  ) _ 40#+ 1 sup ]A~f( z,~/)l + ~ ~/+ n) , (3.8) 
Izl_<ro r~=0 

where Co is a constant defined in equation (1.1O). Furthermore equation 

(3.~) holds, and the z-analytic .function u~(z, y) satisfies equation (3.5). 

Proof.  For arty k ~ N, we choose rh C Z such that  I k A - m l  < 1/2. 

Using 4[hA - rh] < Ak _ 1 and equation (1.10) we get 

i - 1  < 6 ' 0  k . ;  k = I. 2, . . . .  ( 3 . 9 )  A k 
4 

Now applying the estimate (3.9) to equation (3.3) and using equation 

(3.2) and the Cauchy estimate in the domain Izl _< r0(1 - 0) gives: 

I~(~,y)l-< <co ( 
- -  sup If(z, y)l 

- -  4 ] z l < r  0 

Now 

+ s  Alf(z,y+n)) fik/~(1-A)k. 
'n=O k = 2  

(3.~o) 

s  O) ~ < s  ~ -  d~ 1 (_~)~ u! 
dO~ 0 0/~+1 " 

k 2 k=O 
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Applying this to (3.10) we arrive at inequality (3.7). We prove inequality 

(3.8) completely analogously, using A~u(z, y) = ~~176 2 zkASu~(y) and 

corollary 3.2. Finally, using equations (3.9) and (3.6), we get that  the 

formal power series uo~(z, y) = lim~_~oo u(z, y+n)  constructed in theorem 

3.1 has the form 

k=2 

and defines an analytic function which satisfies (3.5). [] 

Theo rem 3.4. Let Y = {y: y > 1}. Suppose the following hold: 

1. A = e 2~iA satisfies equation (1.10); 

2. l imv_~ .f(z, y) = f ( z ,  ~o) exists; 

3. for some l E N and fl C I~ satisfying fl > 21 the .function f ( z ,  x -z)  

has l + 2 derivatives in x in the domain [z I < r0,0 < x <_ 1 and in this 
o s 

domain for any s C N satisfying 1 < s < 1 + 2 the ]unction ~ f ( z ,  x -z )  

is analytic in z. 

Then for any 0 satisfying 0 < 0 < 1 equations (3.2) and (3.3) define 

a solution u(z, y) = u(z, x -z) of equation (1.12) which is z-analytiG has 

1 partial derivatives with respect to x in the domain Iz[ < r0(1 - 0 ) ,  0 < 

x <_ 1. Furthermore in this domain the following inequalities hold: 

lu(z,y)] < C1 r (z  x -z~] (3.11) 
- -  0 # + 1  a ~  , J 1 ' 

C1 f ( z , z  -z) s+2 ' (3.12) x - z )  s 5 

where 1 < s < l, C1 is a constant not depending on the function f and 

the norm f ( z , x  -z)  s+2 is taken in the domain [z I < ro,O < x < 1. 

Proof.  It is clear that  it is enough to consider the case when the constant 

p in equation (1.10) is a natural  number.  Now, from the assumptions 

of theorem 3.4 for 1 <_ s < l +  2 the function ~-~f(z ,  x -z )  which is 

z-analytic in the domain Izl _< r0 has 

0 s 0 s 
Ox s f~(y) = _~x~f~(x Z) 
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as it's z k Taylor coefficient and Cauchy's estimate yields 

~ f k ( x  Z) < [f]~ (3.13) 

Let c~ = 23 -1. In the disc Izl < r0(1 - 0) for x r 0 equations (3.2, 3.3, 

3.9, 3.13) yield 

Co ~ 1 /p(~ _ O) ~ 

n=0 k=2 
COp! f(z, x -3) 1 

< 20~+~ ~- 

This proves inequality (3.11) for x ~ 0. Also 

oo n)A(k-1)(~+l) ~s Alf~(y + < o~lfll 1 
n = 0  r ~  = (y q- 7~,)1+c~ ---+ 0 

as y ~ co. Thus using equation (3.3) the limit 

oo . Zk 

lira u(z,y) = u(z,x -~) Ix=O= ~ ~ u ~ A f k ( o o  ) 
y ----~ cc 

/c 2 

exists and satisfies the estimate (3.11). 

We go on to prove inequality (3.12). For this we use the following 

two equations which were proven in i5] (w proof of Lemma 2.3): 

o@su(z,y) < s }zJk ( C2}fk ls+2~ 
- ~=2 IA~-- AI If~]~ + ~ ; Z  ~ J ' ( 3 . 1 4 )  

(here C2 is a positive constant not depending on f )  and 

GqS oo Zk ~ 
lira ~ ~ fk(x -/~) . (3.15) 

Now using equations (3.13, 3.9, 3.14) in the disc Izl < r0(1 - 0) we 
have the inequality: 

as v) _< c0+c~c2 
O~-x ~u(z' 4 Ifl,+2 s k2u( 1 - O) k �9 (3.16) 

k = 2  

Plugging in 

~-2 O) k d2U oo O) k (2#)! ,~2#(1 -- < ~ Z ( 1 -  -- 02t~+1 
k=0 
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into equation (3.16) yields inequality (3.12) for x ~ 0 .  Finally, since 

the function u(z, x -z)  is continuous for x = 0, from equation (3.15) we 

get that  it is s times differentiable in x at x = 0 and equation (3.12) is 

fulfilled at x = 0. Theorem 3.4 is proven. [] 

4. Linearizability of  NDS with discrete time 
Our first theorem states that  a N D S g i v e n " b y  equation (1.1) can be 

linearized using a change of variables given by a formal power series in z. 

T h e o r e m  4.1. Suppose )~ is not a root of unity and that the function 
f(~)(z) from (1.i) satisfy the inequality(1.13). Then there exists a for- 
mal change of variables ~(n) = p(~4 (z)i n = 1, 2, . . .  of the form described 
by equation (1.3) which give the formal power series (1.4). Similarly 
the inverse formal change of variables z = V(~)(~ (~)) give rise for each 
n e N to the formal equation ~(~+1) = p(~+I)(F(~)(V(~)C(n)))) and 

formally give rise to the equation C (~+1) = )~(~). 

Proof .  To find the formal power series P(n)(z) and V00(C(~) ) we must 

find a formal power series solution to the following system of functional 

equations: 

V( '+I )  (~C) = F (~) (v ( ' )  (i)), n = 1, 2 , . . . .  (4.1) 

Here F (~) (z) was introduced in equation (1.1) and both sides of equation 

(4.1) are formal power series in 4. From equation (1.3) we see that  the 

linear te rm in the series P(~O(z) are equal to z. Thus using equation 

(1.1) the linear te rm in both  parts of the equality (4.1) are equal to Aft. 

Suppose now that  for ~ny natural  k 

OO 

k = 2  

Substituing these expressions for V(~)(C) in equation (4.1) we will 

search for the coefficient v~ ~) (/~ = 2, 3 , . . .  ) which equates the monomials 

with the identical power of ~ in both sides of equation (4.1). We rep- 

resent the function f(~)(z) which was defined by (1.1) as a power series 
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the following way: 

k = 2  

where n = 1, 2 , . . .  and f ~ )  do not  depend  on z. Then,  using inequal- 

ity (1.13), Cauchy est imates and the definition of the s th  difference 

A~h(z, y) we have for each k _> 2 

sup Al f~(z ,n )  < o c .  (4.4) 
k : l  Izl<-ro 

Let k 2. Compar ing  the monomial  with 4 2 in bo th  parts  of equa- 

t ion (4.1) gives tha t  the function u2(~, n) = v~)C2" satisfy the following 

equat ion 

u2(A~, n + 1) = Au2(C, n) + f2(~, n) , (4.5) 

which has the form of equat ion (1.12). By (4.4) the function f(C, n) = 

f2 ( ( ,n )  satisfies condit ion (3.1) for C = z ,n  = y. Thus  using theorem 

3.1 there exists a solution u2((, n) = v~)C2 satisfying equat ion (4.5) for 

which 

We inductively assume tha t  for each integer m > 2 and n = 1, 2 , . . .  

tha t  the coefficients v~ ~) of the series V(~)(C) in (4.2) (2 < k < m) are 

defined so tha t  the monomials  with C k in bo th  parts  of equat ion (4.1) 

coincide and satisfy the inequality 
0<3 

2 2 (4.6) E v - -v  < o o .  

We express (4.1) in the form 

v(~+~)(Ar = Av(~)(r + F('4(V(~4(r _ AV(~)(r 

We obtain tha t  the  function u,~+l(r = v (~) F~+I  satisfies the m + l S  

equat ion 

Um+l(/~r n + 1) = /~Um+l(r n ) +  Fm+l(r  n) (4.7) 

where F ~ + l ( ~ , n )  = *~(~),~+lSF~+l is a monomial ,  in which F([[~I is a 

number ,  independent  of C, which is the value of a polynomial  function 
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16 T. I~RQGER, L. D. PUSTYL'NIKOV and S. TROUBETZKOY 

of = 2, 3 , . . .  , n +  1) and (k = Note  that the vf/  are 

ah~ known by the inductive hypothesis. Using this and inequalities 

(4.4) and (4.6) we see that  the function f ( ( , n )  = PTr~+l((,n) (for ( = 

z ,n  = y) satisfies inequality (3.1) and by theorem 3.1 there exists a 

solution u,~+l(( ,  n) = v (~) ~,~+1 satisfying equation (4.7). tbr which m - F I  b 

v)) 
n = l  m + l  - -  < O0 . 

In such a fashion we get the change of variables z = V('0 (((~)) = 

((n) + . . .  in the form of a formal power series beginning with the linear 

term (00.  Thus the inverse change of variables (00 = p(~) (z) = z + . . .  

is defined. Using equation (4.6) p00  converges as n --+ oo to the formal 

change of variables (1.4) and formally solves equation (1.6). Theorem 

4.1 is proven. 

Next, we will formulate and prove theorems on the analytic lineariz- 

ability of nonautonomous dynamical systems of the form (1.1) ( theorem 

4.2) and (1.8) (theorem 4.5) and obtain corollary 4.6 to theorem 4.5 on 

the Lyapunov stability of the fixed point z = 0. 

Theorem 4.2. Suppose that A, from the expression t = e 2~/A satisfies 

equation (1.10). Furthermore suppose that the function F (~) defined in 

(1.1) satisfies conditions i)-iv) of condition (L) for l = 16 and some 

/3 > O. Then the nonautonomous dynamical system of the form (1.i) 

is analytically linearizable in the following sense: there exists positive 

constants rl, r2 and a sequence of changes of variables ((n) = p(~) (z) of 

the form (1.3) which are analytic in the disc Izl < rl and as n ~ oc they 

converge to the change of variables (1.~) in the disc. For any n ~ N the 

mapping D(~) = P(r~+l) oF(~)o(P(~) ) - I  is defined in the disc ((~) < r2 

and satisfies equation (1.6). 
The proof of theorem 4.2 is connected to condition (1.10) and the- 

orem 3.4. The proof coincides with the proof of theorem 1 from [5] up 

to the changes we will indicate here. In the same way that  the proof 

of theorem 1 from [5] follows from theorem 3, the proof" of theorem 4.2 

follows from the following theorem. 
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T h e o r e m  4.3. Consider the mapping F: (z,y) ~ (z' ,y') of the form 

z' = F(z ,  y) = Az+ f ( z ,  y), y' = y + l  defined in the domain Iz] < r0, y _> 1. 

Suppose that A satisfies condition (1.10), and that the funct ion F(z ,  y) 

satisfies parts i)-iv) of condition (L) for 1 = 16 and some/3 >_ 32. Then, 

for  some r > 0 there exists a @analytic in the disc ]z[ < r and y- 

continuous for y >_ 1 .function U(C, y) = C + u(4, y) for  which 

a ~  o 1. u(0, y) 0r ,Y) = 0 for  y > 1; there exists u(4, cxD) = l i m y ~ ( 4 ,  y) 

and the converges is uni form in the disc 14I <- r; 

2. The inverse change of variables z = U(4, y) is defined for y > 1 in 

the disc 141 <- r; 

3. The map F expressed in the coordinates 4, Y is defined in the domain 

141<- r, y > l and has the form r = A4, y' = y + l. 

It  is clear tha t  under  the  condi t ions  of t heo rem 4.3 the  change of 

variables  mus t  sat isfy the  funct ional  equa t ion  

U(Ar y + 1) = F ( U ( 4 ,  y), y) . 

Similarly to the  p roof  of t heo rem 3 in [5] we cons t ruc t  a sequence  

of newton ian  changes of variables  for the  solution. For l = 16 we intro- 

duce  parameters ,  N~, ~ ,  r~, O~(n = 1, 2 , . . .  ) which sat isfy the  following 

relations: 

3 N -  5 ? 1 
X +l = , = + 2 - D ,  - 

12(2 n + 1) ' (4.8) 
a4(2~+l+Z) 

N11  < ~1 

where  p, ~ N was in t roduced  in equa t ion  (1.10) and f' < 4 _ 3r0. 

We will use the  following induct ive  lemma.  

L e m m a  4.4. Suppose that the mappings 

z' = F~(z,y)  = Az + f~(z ,y )  
F~: y' ~ y +  l 

where fr~(z, y) is a series in z ~tartin9 with second order terms, is defined 

for Izl < r~, y >_ 1 and satisfies 

1. The funct ion F ( z , y )  = F~(z, y) satisfies the conditions of theorem 

4.3; 
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2. ~ <en ,  [ ~ l p < N ~ r n  f o r l ~ p ~ L  

Then there exists a constant N so that if  N~ > N then there exists 

a C-analytic and y-continuous change of variables z = V~(C,y) = ~ + 

v~(C, y) defined in the domain I<1 < r~(1 - 20~) for  which the following 

hold: 

1. v~(0, y ) =  o< w , Y ) = 0 ,  ~-< 
exists, and the convergence is uniform in the disc Ir < r~(1 - 20~); 

. In the domain I<I < r,~+l, 

Vg 1 o F~ o V~: f~ <+1 
L 

1 < y < oo the mapping 

r : &+~(r : ~r + A+1(r y) 
y' y + l  

where ~' = V ~ l ( z ' , y  + 1), is the inverse change of variables to z' = 

, oL~+I (0, y) = O, and the following inequalities V~(r  + 1), f~+l(0, y) = o< 
hold: 

Of~+l fi~+l(r -~) < N ~  p lr~ f o r l < p < l  - - ~ - -  < ~ n + l ,  + - -  - -  �9 

The proof of the inductive lemma uses theorem 3.4 and inequality 

(4.8) exactly like in section 5 

using lemma 2.1 and 2.3 from 

3.4) and the inequality N1-1 < 

our inequality (4.8)). 

of [5] the inductive lemma was proven 

section 2 of [5] (instead of our theorem 
0(~+5)4 1 from section 5 of [5] (instead of 

Using the inductive ]emma we get a sequence of changes of variables 

V1, V2,. . .  and a sequence of mapping s F = F1, E 2 , . . . ,  which for n > 
i, r = z, r : v~(r y) : r + v~(r F~+I = v# I o 

Thus, for n >_ 1 the change of variables Un+l = 171 o ]72 o ..- o Vn 

conjugates F to Fn = U,n I o F o Un. From the inductive lemma it easily 

fo]lows that if + > 0 is sufficiently small, N1 > AT and the inequalities 

~ < q = Ns 5 , qflp < N;r~ for I _< p < l 

hold in the domain Iz[ < rl = -34 ~ < r0 then the mappings Un and Fn are 

defined in the domain r < rn, y _> 1 and the sequence of functions 

U,~(r y) in the domain I<l < -~, Y >- 1 uniformly converge (as n --+ oo) 
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to the  funct ion U(r y) = ( + u(( ,  y) for which u(0, y) = ~ ( 0 ,  y) = 0 and 

Thus  for sufficiently small  r > 0 in the disc I zl _< r the  change of 

variables z = r162  y) is invertible, and  by conclusion 2 of the induct ive 

lemma:  in the  domain  Ir < r, y _> 1 we have limn-+oo Fn(r y) Ar we 

have in this  domain  the  change of variables z U(( ,  y) brings F to 
r162 

U - l o F o U =  lira F~: yr 
~--+~o y + l  

This  completes  the  proof  of theorem 4.3. [] 

To derive theorem 4.2 from theorem 4.3 we point  out,  t h a t  if condi- 

t ion (L) holds for the sequence of mappings  F(~) for 1 = 16 a n d / 3  > 0, 

t hen  it will hold for I = 16 and  f31 = rn/3, where m is an a rb i t ra ry  na tu ra l  

number .  Thus,  if the  condi t ions of theorem 4.2 hold for I = 16,/3 > 0, 

then  the  condi t ions  of theorem 4.3 applied to the  mapp ing  

z' = F ( z , y )  = l z  + f ( z , y )  
F: y, y + 1 

will hold for 1 = 16 and  /31 = m/3_> 32 for some m. Now theorem 4.2 

follows direct ly  from theorem 4.3 wi th  y = 1. [] 

T h e o r e m  4.5. Suppose that A defined by A = e 2~iA satisfies condition 

(1.10) and the funct ion FO0 defined in (1.8) satisfies parts i)-vii) of 

condition (L) with 1 = 16 and some /3 > O. Then the nonautonomous 

dynamical system defined by equations (1.8) is linearizable with a z- 

analytic change of coordinates depending on time n in the following 

sense. For some positive constants r l , r2 ,  there exists an sequence of 

changes of coordinates r pOO(z) of the form (1.9), which are an- 

alytic and invertible in the disc Izl <_ r l .  As n ~ oc in this disc they 

converge to the change of variables (1.~) and for any n ~ N the mapping 

D@) = p ( , , + l ) o F ( Z ) o ( p ( ~ ) )  1 is defined in the disc r < r2. Finally 

equation (1.6) holds. 

Proof .  The  proof  of theorem 4.5 is based on the  fact t h a t  using a l inear 

change of variables r 6(y)z the  mapp ing  

z' = F ( z , y )  = l ( y ) z  + f ( z , y )  
F: y' = y +  i 
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reduces to the form 

4' = G(~, y) = A~ + g(4, Y), Y' = Y + 1 , (4.9) 

where g(O,y) = 0~(0, y) = 0 and A does not depend on y and was in- 

t roduced in part  v) of condition (L). It is easy to see that  for this we 

can take ~5(y) = A(y) where A(y) was introduced in part  vi) of condition 

(L). Applying parts v)-vii) of condition (L), we get that  the sequence 

of mappings arising from the mapping (4.9) with y = n, (n = 1, 2 , . . .  ) 

satisfy the conditions of theorem 4.2, and thus theorem 4.5 follows. [] 

Corollary 4.6. If .for the nonautonomous dynamical system Of the form 

(1.8) with the parameter )x = e 2~A satisfying condition (1.10) condition 

(L) holds for I = 16 and some fl > 0 then the fixed point z = 0 is stable 

in the sense of Lyapunov. 

Proof.  Let z = (p(1))-l(~(1)), F(~) oF(~- l )  o . . . o F ( 1 ) z  = z(~), ~(~+1) = 

p(~+l)(z(n)),  C(1) G r2, where the change of variables p0~) and the 

constant r2 where introduced in theorem 4.5. Then, using theorem 4.5 

for any n > 1 we have 

kl•I1 ((1) ((n+l)  = r ( n + l ) z ( n  ) = ) t (k)  , (4.10) 

and using vi) of condition (L) we have 

k1211A(k) < ~,  (4.11) 

where ~ is a constant independent of n. Thus the corollary follows from 

(1.9, 4.10, 4.11). [] 

Corollary 4.7. Under the conditions of corollary 4.6 the fixed point z = 0 

is uniformly stable in the sense of Lyapunov. 

The proof of the corollary is the same as the proof of corollary 4.6. 

5. T h e  ra t iona l  case  

In this section no assumption is made on the smoothness of the conver- 

gence. Our theorems are in the case that  the NDS is of the more general 
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form (1.8). 

Theorem 5.1. If the limit function F is not linear for the NDS (1.8) 
and )~ is a root of unity then in the neighborhood of the fixed point z = 0 

either 

(i) there exists z 0 ~z 0 such that l i m i n f n ~  F (n) o . . -  F(1)(z0) = 0, 

(ii) there exist positive constants e, r such that .for all points z in the 

bail U(O, e) except z = O, the orbit leaves the ball U(0, r), i.e. 

lira inf F(  n) o . . . F ( 1 ) ( z )  > r  . 
TL~OQ 

Corollary 5.2. Under the assumption of theorem 5.1 ~he NDS (i.8) is 

not conjugate to a rotation. 

Option (ii) of theorem 5.1 occurs even for the simple linear example 

F(~d(z): = (1 + 1/n)z. This example shows the difference between a 

NDS and a diffeomorphism: for a NDS a neutral  fixed point (defined by 

IDflo = 1) can display repelling behavior. 

P r o o f  o f  t h e o r e m  5.1. Let F q ( z )  = Z + fq(Z) where fq(Z) = ~ j = r  bj zj 

and b~ ~ 0 for some r > 2. Note that  Fq is the qth iterate of the limit 

map F and is not the same a s  F (q). In fact, it is known that  r > q+l[2]. 

We make a change of coordinates which we call the inverse coordinates: 

1 
w -  ~r-1 " (5.1) 

Let G(w) (resp. G(~)('w)) be the mapping in inverse coordinates 

corresponding to F(z) (resp. F(~O(z)). In the inverse coordinates the 

t ransformation F q(z) becomes 

Gq(q3)) : w (r -- 1)br - (r ])~r+l w 1/@-1) + O(w-2/(r-1)) 
(52) 

: = W q - e r  +Cr+l w-1/(r-1) + O ( w  2/(r 1)) 

where c~. ~ O. For n ~ Z+ = {0, 1, . . .  } let 

B(n): = B~n): = F (q(n+l)) o . . .  o ff(qn+l) . 

By continuity we have 

q(~+l) 
(~)z j H ),~z+ f i b j  

i = q n + l  j = 2  

(5.3) 
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where  b) n) ~ ~ bj as k -+ oc for all j and  b 2 , . . .  , b~._l are u n d e r s t o o d  to  

equal  0. In o the r  words B(n)(z)  converges un i fo rmly  to  Pq(z) in a fixed 

n e i g h b o r h o o d  of the  poin t  z = 0. 

For  n C Z + let C(~): C ~ ) :  = G(q(n+l)) o . . .  o G(qn+l). Now 

r - 1  

C ( n ) w  ~ (~) i /(~-1) c~_iw + O ( w  -2 / (~-~) )  . (5.4) 
i = - 1  

Here  c --+ 1, c --+ 0 for k = 2, r 1, c! ~) --+ c~ and c (~) " ' '  r + l  --+ 

c~+1 and  thus  we can say t h a t  equa t ion  (5.4) converges to  (5.2). Here  

we can assume t h a t  the  O t e r m  does not  d ep en d  on n. Of  course we 

could express  the  coefficients c! ~) in t e rms  of the  coefficients --f~'~) for 

rn E {qn + 1 , . . .  , q(n + 1)}, bu t  this is not  necessary  for our  purposes .  

Le t  7-{+(c~) be the  half  p lane  which conta ins  the  poin t  c~ ~ C def ined 

by  the  line going t h r o u g h  the  origin o r thogona l  to  c~ ( though t  of as a 

vector)  and ~ (c~.) the  o the r  half  plane. 

Now since equa t ion  (5.4) converges to (5.2) in the  l imit  we imme-  

d ia te ly  see t h a t  the re  exists a K > 0 such t h a t  for each w sat isfying 

Ilwll > ~; the re  is a N = N ( w )  such t h a t  for n _> N 

c(n)w > Ilwll + IIc~-,ll (5.5) 
- 3 

Let  ft be  the  d o m a i n  of def ini t ion of G. For w0 r 9. we consider  

the  sequence w~: = G (~) o . . .  o G(1)w0 and  the  co r respond ing  sequence 

z~: = F(~)  o . . .  o F (1 ) zo  . 

We assume t h a t  case (ii) of the  t h e o r e m  does not  hold, name ly  t h a t  

sup limsupjlwkll = oc . (5.6) 
w0Cf~ k ~ o e  

We need  to  show t h a t  there  is a poin t  w0 E f~ for which the  or- 

bi t  goes to  infinity, t h a t  is l imsup~_~  Ilwkll = oc. We assume the  

opposi te ,  name ly  for each poin t  w0 E f~ the  orbi t  s tays  bounded ,  or 

limsup~__~o~ I]w~ll = K (w o)  < oc. Using equa t ion  (5.6) we can fix w0 E ft 

wi th  K(wo)  sufficiently large. T h e n  for each e > 0 the re  is a poin t  v ~ C 

wi th  Ilvll = K(wo)  such t h a t  w~ i E U(v,  e) for infini tely m a n y  hi. 

Bol. Soc. Bras. Mat., Vol. 30, N. 1, 1999 



THE NONAUTONOMOUS FUNCTION-THEORET[C CENTER PROBLEM 23 

For sufficiently large k by  equa t ion  (5.5) we have 

_> +llc ll/3. 

Now we app ly  (5.5) in two cases, first assume tha t  v ~ 7-t+(c~). Now if 

ni is sufficiently large by  equa t ion  (5.5) we get 

w ~ + q  _> w.~ +lle~.ll/3 (5.7) 

and the  right had  side is large than  K(wo)  if e is sufficiently small. This  

cont rad ic t s  the  definit ion of K(wo) .  The  p roof  in the  case v ~ ?-f-(c~.) 

is similar, we jus t  replace w~i+ q by w~i_ q in equa t ion  (5.7). [] 

T h e o r e m  5.3. Under the conditions of theorem 5.i there exists a con- 

stant R > 0 such that for every e > 0 satisfying c < R there exists a 

positive integers ni = hi(e) (i = 0, 1) and a point z with ]z I = e such that 

F( 'U) o F(~1-1)  o - . .  o F(~O)(z) > R. 

Coro l l a ry5 .4 .  Under the conditions of theorem 5.1 the N D S  (1.8) is not 

uniformly stable in the sense of Lyapunov. 

P r o o f  o f  t h e o r e m  5.3. We use the  no ta t ion  of the  p roof  of theo rem 5.1. 

We assume wi thou t  loss of general i ty  tha t  c~ 1. The  limit ma p  Fq is 

uns tab le  in the  sense of L y a p u n o v  [2]. Thus,  there  exists  R > 0 such 

tha t  for every e > 0 there  is a posi t ive integer N and  a point  z0 wi th  

[z0] = ( such t ha t  FqNzo > R. Let  w0 = ~1-~., then  we have 

GqN(wo) . ( 5 . 8 )  

Set rc I rt 0 + N.  We can choose no so large t ha t  

o . . .  o - G N(w0) < ( 5 . 9 )  

Using equa t ions  (5.8) and (5.9) we immed ia t e ly  have 

C (r t l )  0 ' ' ' 0  c ( n 0 ) ( w 0 )  < Rl-r/2 . 

This  inequali ty,  when  rewr i t t en  is z coord ina tes  finishes the  proof.  [] 

Now we tu rn  back  to the  case tha t  the  NDS of the  form (1.1). In a 

special  case we can prove more: 
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T h e o r e m  5.5. A s s u m e ) ,  = 1 and ~f~'~) r 0 r f2 for aII n E N. The 

following hold in the neighborhood of the fixed point z 0 

(i) there exists zo ~ 0 such that lim~_.~ F (~) o . . .  o F(1)(z0) = 0, and 

(ii) there exist positive constant r such that for every e > 0 there is a 

point zo in the ball U(O, c) and a n > 0 such that 

F (n) o - - . o F ( 1 ) ( Z O )  > r . 

Remark.  The speed of convergence (expressed in inverse coordinates) of 

the orbit  of z0 to 0 in par t  (i) is linear as can be seen in formula (5.12). 

Corollary 5.6. Under the assumptions of theorem 5.5 the NDS ( i . i )  is 

not stable in the sense of Lyapunov. 

P r o o f  of  theorem 5.5. We use the notat ion of the proof of theorem 

5.1. For part  (i) we note that  in this case the mapping C (~) given by 

equation (5.4) becomes 

c (~) w-1/(~-1) C('~)w = w + c! ") + ~+~ + o(w -2/(~-~)) (5.1o) 

where c(~ n) --+ c~ g 0 and e!~ 1 -+ cT+I- The O term can be assumed to 

be uniform in n. We can assume without  loss of generality that  c~ = 1 

and rewrite this as 

o(~), -]/(~-1) C ( ~ ) w  = w + ] + ~(~) + ,~+1~  + O ( w  - 2 / ( ' - 1 ) )  . (5.11) 

We will show that for some w0 E Q and for all n E N 

I [ w n  - w o  - n i l  < o ( n )  . (5.12) 

We first assume that  the NDS has the special form C(~)w = w + 1 + 

5(~) . In this case, since the 5 (~) converges to 0 we have ~ = 1  g(k) = o(n) 

and equation (5.12) follows in this case. Now suppose the NDS has the 

(~) -1/(~-1) Set f o r m  c ( n ) w  = W + 1 + 6 (n) + e r §  

C (n) C r + l  C = SUPn r + l  - 

clearly C is finite. Then the term e~) lw -U(~-I)  contributes in the first 

n steps at most C ~ =  1 1 / (w+k+o(k ) ) .  But there is a N > 0 such that  

BoL Soc. Bras. Mat., Vol. 30, N. 1, 1999 



THE NONAUTONOMOUS FUNCTION-THEORETIC CENTER PROBLEiVl 25 

for k: _> N we have Io(k)I < k/2. Thus the contribution of this term is 

bounded by 

N 1 n 
C ~ 1 / ( ~ q - k + o ( k ) ) - } -  Z 1/(w+k/2) 1/(r 1) 

k 1 k=A r 

and this is of the order oQ~). In the general case the term O(w-2/(r-1)) 

contributes a lower order error term and so we have shown formula (5.12) 

whenever the infinite orbit wf~ is defined and stays outside a sufficiently 

large disk U(0,/g). By continuity the region f~n: = O (~) o . .- o G(1)9 

is nomempty  and contains a neighborhood of the point infinity for all 

n c N. Thus part  (i) follows easily from (5.12). 

Now we turn  to part  (ii). Le t / {  = 1/r for r sufficiently small to have 

9 c C\U(0,  t{). Consider the line [c: = {w: Re(w) = C}. In the proof of 

part  (i) we showed that  for any C, for sufficiently large positive values 

of Ira(w) the orbit w~ goes to infinity, in fact Re(w~) -~ oo. Completely 

analogously, for sufficiently large negative values of Ira(w) one can show 

that  Re(w, 0 also goes to infinity. Let SR be the half strip bounded by 

/ re(w)  = •  with Re(w) < 0. The proof of the above paragraph shows 

that  w,~ never enters the set SR U U(0, R) for w0 E I c  for IIm(wo)l 
sufficiently large. 

Now we argue tha t  for any C < - / {  by continuity that  the orbit of 

some initial point w c lc must hit the ball U(0,/{). Consider the orbit 

In: = O (rz) o --, G(1)/C of the line Ic. Note that  I,~ is always a Jordan 

curve. Let Y: = lira infn-oo inf=c.r~ iRe(z). We must show that  Y > - /~.  

But if not, then we have a direct contradiction since equation (5.11) 

implies that  Y _> Y + 1/2. [] 

6. Behavior  at infinity 
Consider a sequence of conformal mappings 

G (I),G(2),... ,G(~),... (6.1) 

defined on the domain/~ew > ~0, and having the form: 

G ( ~ ) : w ~ w  ' w + l + - - +  (w); ( n = l , < . . . ) ,  (6.2) 
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where  b~ is a cons tan t  such tha t  the  limit l im~_~ b~ exists  and is non 

infinite. Fu r the rmore  suppose  tha t  

C 

g(~)(~) < 1~12 , (6.3) 
I 

where  c is a cons tan t  not  depend ing  on n. 

In this sect ion we will formula te  and prove theo rem 6.1 from which 

follows tha t  the  n o n a u t o n o m o u s  dynamica l  sys t em (6.1) b rough t  to  the  

form 

~ ( n + l ) ( G ( n ) ( w ) )  = ~ (n ) (w )  + 1 ; (n = 1, 2 , . . . )  (6.4)  

using a w-ana ly t ic  change of variables  

/15 (n)(w) = r , (rt : 1, 2 , . . . )  . 

This  means  tha t  in the  coord ina te  ~(~) the  sys t em (6.1) is a t rans la t ion  

by  1. In par t icular ,  when  the G (~) are all identical,  the  q)(n) are also 

identical  and we recover the  well known classical t heo rem [2]. 

Theorem 6.1. Suppose that 

oo 

Ib~+~- b~l~o~n < ~ (6.5) 
n 1 

Then there exist constants ~, q and a sequence of analytic functions 

q~(~) (w), (n = 1, 2 , . . .  ) which for all n >_ 1 satisfy: 

1. The functions r  is defined in the domain 

f~ = {w: Rew > ~} and in this domain r  - w < q , (6.6) 

where q is a constant not depending on n; 

2. C (~)(f~) c f t  and (6.J) holds. 

P r o o f .  For any n r N using inequal i ty  (6.5) the  following sum converges 

oo 

A,,, = } 2  b,,+s_l-  b,+~ (6.7) 
S 

We will need the following lemma.  

L e m m a  6.2. The sum A = ~ = 1  An converges. 
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Proof .  From the definition 

n= l  s 1 

of Zi~ (6.7) we have 

~ b~+~_i bn+s 
8 n 1 

n 1 s = ]  .9 

~ (b,~ -- bn+l)(logr~ + O(1)) < oc , 

since by (6.5) the series in (6.8) converges absolutely. [] 

For n, k ~ N we define 

~(k, ~) = Z b~+~_~ (6.9) 
8 

s = l  
oo 

d~ Z as (6.10) 
8 

and 

G ( • ) •  " G ('~+~-1) G ('~+~-2) G 0~+]) G ('~) (6.11) < w )  : o o . . . o  o ( w ) .  

From lemma 6.2 and equation (6.10) it is clear that  the sum defining 

d~ (6.10) converges and 

d~+1 - d~ -n,,. (6.12) 

Furthermore,  fi'om equations (6.11, 6.2, 6.3) it follows that  there 

exists a constant  r~ such that  if Rew > ~ then for all n, k E 1N 

k 

From equations (6.9, 6.5) it follows that  

I~(~,~)1 < Cl iog~ (6.14) 

for all n, k ~ N where cl is a constant, not depending on n and k. 

We now want to find the change of variables ~(") required by theorem 

6.1 in the form of a limit (1)(~)(w) = limk_+oo ff)~)(w). We define the 

ff)~O (w) by: 
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First of all let us prove that if ~ is sufficiently large, then for all 

rt C N the sequence r (w) converges as k --+ oo to the analytic function 

�9 (n)(w) in the domain l~ew >_ ~. Using equations (6.11, 6.2), for/~ > 2 

we have: 

G(~) , , -+0  b , + ~  +~(~+~)~G(~) / {+ I [W)--Oh (w): l -FC~n)(w) ::t ' k (to))-g(n+k-1)(C~i)l(W))" 

From thus, using equations (6.15, 6.9, 6.3, 6.5~ 6.13) we get: 

�9 /c+l (W) (w)  ---- k + l k  --  (W) --  1 /~ + 1 

_ b ~ + ~ + _ _ + O  = O  . 
k + 1 G~ n) (w) 

Furthermore from (6.16) we have 

(6.16) 

- -  < - -  + s = l  ( I ) s + l ( W )  - -  = " 

Placing this in equation (6.16) and using equations (6.15, 6.10, 6.14) 
and lemma 6.2 yields: 

~(n) (i) (~) ( 1 k + l  1 ) (kl2) 
~+1(~) - ( ~ ) : b ~ + ~  k + ~ k , ~  _ d~ + r  + o  

k2 

Thus 
(~) 

k = l  

and the sequence r = 1, 2, . . .  ) converges to an analytic function 
r Furthermore inequality (6.6) holds for some constant q. 

From the definition of G (~) in equation (6.2) it clearly follows that 
there is a sufficiently large constant ~ such that G (~) (~) C ~ where 
was introduced in theorem 6.1. Now we will demonstrate equation (6.4). 

From the definitions of e~ / (~ )  (6.15) and a~) (~ )  (6.11) we have: 

r = k (6.17) 
= r + i + (~(/~ + i, n) ~(/~, n + i)) + d~+1 d~ , 
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for all n, k C N. Using the definition of or(k, n) (6.9) we have 

k 
bn+-k + ~ bn+s-1 bn+s (6.18) 

~(/~ + ] , n )  - ~ ( k , n  + 1) - ] ~ + 1  s 
s--1 

Taking the limit as k + oo in equation (6.17) and using equations 

(6.18, 6.7) yields: 

~)(n+t) (G(n)(w)) = {)(n)(to) + 1 + A n + dn+1 -- dn �9 (6.19) 

Now equations (6.4) clearly follows from equations (6.19, 6.12). [] 

Remark.  Using the functional equation (6.4) for any n E N we can 

analytically continue the ffmction 4p(~) (w) to any domain ~ for which the 

functions G (~) (w) are defined, G (~) (f2) c 9 and limk~oo [~eG~ ~) (w)  = oo 

for all w ~ fL 
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