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Abstract .  We show in this paper that  if f is a quadratic infinitely many times 
renormalizable polynomial of sufficient high combinatorial type, then: H D ( J ( f ) )  
inf{6 : 3 5 - con f o rma l  measure  f o r  f }  We use Lyubich's construction of the 
principal nest ( [Lyu97])  in order to prove this result. 
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Introduction 

Let f:  C --* C be a quadrat ic  polynomial. Sullivan showed in [Sul80] 

that  it is possible to construct  a conformal measure for f with sup- 

port  on J(f), the Julia set of f ,  for at least one positive exponent 6. 

By a conformal measure (or &conformal measure, to be more precise) 

we unders tand a Borel  probabil i ty measure # satisfying the following 

condition: 

,(f(A)) = fA IDd(~)l~d~(z)' 
whenever f restricted to the set A is one to one. 

Conformal measm'es are one of the tools in the s tudy of the Haus- 

dorff dimension of Julia sets. From the work of Bowen, Sullivan, and 

Waiters ([Bow75], [Sul80] and [WalT8]) we know that  if f is expanding 

on J ( f ) ,  then the Hausdorff  measure (which is finite and non-zero) is 

the only conformal measure on J(f). In other words, there exists only 

one exponent 6 for which a f-conformal measure for f exists. This f is 

Received 12 November 1997. 
Part ial ly supported by CNPq-Brazil  grant # 300534/96% 



32 EDUARDO A. PRADO 

the Hausdorff dimension of J( f )  and this &conformal measure is equiv- 

alent to the Hausdorff measure of J(f) .  Denker and Urbaflski showed 

in [DU91] (with a technical problem solved in [Prz9a]) that  the hyper- 

bolic dimension of the Julia set of any rational function f is equal to 

inf{(5 > 0 : ~ (5 - con formal  measure for  f} .  Let us call this last 

quanti ty (Smf. 

Urbafiski showed in [Urb I that  if f is a rational function with no 

recurrent critical point then the Hausdorff dimension of the Julia set of f 

is equal to (Si~f. In this case critical points are allowed to be inside J( f ) .  

In [Prz96] Przytycki  showed this same result if f is a non-renormalizable 

quadratic polynomial or a Collet-Eckmann map. The goal of this work is 

to extend Przytycki 's  result to some infinitely renormalizable quadratic 

polynomials: the polynomials of high combinatorial type (see Section 2.2 

for the definition of such polynomials). We use Przytycki 's  techniques 

together with Lyubich's construction of the Principal nest ([Lyu97]) in 

order to do that.  In other words we show the following: 

Theorem 1. For any polynomial of high combinatorial type f we have 

the following equality: 

inf{~ : B (5 - con formal  measure for  f}  = HD(J(f))~ 

where HD(J(f ) )  stands for the Hausdorff dimension of the Julia set of f . 

2. Renormal izat ion and combinatorics 
2.1 Yoccoz polynomials 
We will briefly describe how to construct  the Yoccoz puzzle pieces for a 

quadratic polynomial. See [Hub] and [Mi191] for a complete exposition 

of such construction. 

In this section we will just consider quadratic polynomials f with 

repelling periodic points. 

We say that  g: U --~ U' is a quadratic - like map if it is a double 

branched covering and U and U' are open topological discs with U 

properly contained in U'. In addition to that  we require the filled in 

Julia set of g to be connected. By filled in Julia set of g we unders tand 
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C O N F O R M A L  MEASURES AND HAUSDORFF DIMENSION 33  

the set {z ff U : .9~(z) is defined for all natural numbers n}. There are 

two fixed points of g inside its filled in Julia set. One of them, the 

dividing fixed point, disconnects the filled in Julia set of 9 in more than 

one connected component. The other does not. Usually the dividing 

fixed point is denoted by c~. 

Remember that f ,  a quadratic-like map or a polynomial, is terror- 

realizable if there exist open topological discs U C U' with 0 C U with 

/~(f): U ~ U' being a quadratic-like map, R(f)  = f~lv, with k the 

smallest natural number bigger than 1 satisfying this statement (we call 

k the period of renormalization). Here R(f)  stands for this renormaliza- 

tion of f.  We can ask whether R(f)  is renormalizable or not and then 

define renormalizations of f of higher orders. So, each renormalization 

of f defines a quadratic polynomial-like map. 

Let f be a degree two non-renormalizable polynomial and let G be 

the Green function of the filled in Julia set of f.  There are q external 

rays landing at the dividing fixed point of f,  where q > 2. The q Yoccoz 

puzzle pieces of depth zero are the components of the topological disc 

defined hy G(z) < Go, where G0 is any fixed positive constant, cut along 

the q external rays landing at the dividing fixed points. We denote y0 (z) 

the puzzle piece of depth zero containing x. We define the puzzle pieces 

of depth n as being the connected components of the pre-images of any 

puzzle piece of depth zero under f~. Again, if z is an element of a given 

puzzle piece of depth n we denote such puzzle piece by Y"(z). 

Suppose now that f is at most finitely renormalizable without in- 

different periodic points. Let c~ be the dividing fixed point of the last 

renormalization of f.  Let G be the Green function of the filled in Ju- 

lia set of f.  In that case we define the puzzle pieces of depth zero as 

being the components of the topological disc G(z) < G0, C0 a positive 

constant, cut along the rays landing at all points of the f-periodic orbit 

of c~. As before we define the puzzle pieces of depth n as being the 

connected components of the pre-images under f'~ of the puzzle pieces 

of depth zero. The puzzle piece at depth n containing z is denoted by 

We will consider the Yoecoz puzzle pieces as open topological discs. 
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34 EDUARDO A. PRADO 

Under this consideration the Yoccoz partition will be well defined over 

the Julia set of the polynomial f minus the set of pre-images of the 

dividing fixed point of the last renormalization of f (which is f itself in 

the non-renormalizable case). 

A quadratic polynomial is a Yoccoz:polynomial  if it is at most 

finitely renormalizable without indifferent periodic points. We will need 

the following result: 

Theorem 2.1. (Yoceoz.)If f is a Yoccoz polynomial then 

N 
n>0 

for any x where the Yoccoz partition is defined. 

2.2 Polynomials of high combinatorial type 
Let us pass to the main class of polynomials that we will be consider- 

ing, namely the polynomials of high combinatorial type. See [Lyu97] 

for a detailed exposition on this matter. We will need some technical 

definitions. 

Let us start with a quadratic polynomial f with a recurrent critical 

point, say zero, and without indifferent periodic points. Given a Yoccoz 

puzzle piece Y[~ of f and a point x such that fJ (x) belongs to Y~'~. We 

define the pull back ofYi ~ along the orbit of z as being the only connected 

component of f - J (Y~)  containing x. If moreover x belongs to y n and 

j is minimal and non-zero, then we say that j is the first return time of 

x to Y~n. A puzzle piece is said to be critical if it contains the critical 

point. Notice that if we pull back a critical puzzle piece Y~ (0) along the 

first return of the critical point to Y~(0) we get a new critical puzzle 

piece. 

We say that a polynomial (or a polynomial-like map) is Douady- 

Hubbard immediately renormalizable if it is renormalizable and the 

critical orbit never escapes the puzzle pieces of level one whose closures 

contain the dividing fixed point of f (see [Lyu97]). If f is not Douady- 

Hubbard immediately renormalizable it is possible to find a first time to 

when the critical orbit escapes the union of the puzzle pieces of level one 
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whose closures contain the dividing fixed point of f .  The pull back of 

y l ( f to (o) )  to 0 is denoted by V 0,0. This is the first critical puzzle piece 

such that  the closure of its pull back along the first return of the critical 

point to itself is properly contained in itself. We say that  this is our 

puzzle piece of level zero. The pull back of V ~176 along the first return 

of the critical point to V ~176 will be denoted V ~ We keep repeating 

this procedure: define V ~ the puzzle piece of level t + 1, as being 

the pull back of V O't, the puzzle piece of level t, along the first return 

of the critical point to V ~ This procedure stops if the critical point 

does not return to a certain critical puzzle piece. If we assume that  the 

critical point is combinatorially recurrent (i. e., the critical orbit enters 

every critical puzzle piece), then we can repeat  this procedure forever, 

so let us assume that  (as the opposite case is a well unders tood case). 

The collection V ~ for t being a natural  number is the principal nest of 

the first renorrnalization level. 
Now we have a sequence of first return maps fl(t) : v0, t+l  _~ vO,t. 

By definition V ~176 properly contains V ~ This implies that  each V ~ 

properly contains V O't§ It is also easy to see that  e a c h  fl(t) : rl/-O,t§ 

V O't is a quadratic-like map. 

We say t h a t  fl(t) : V0r  ~ vO,t is a central : re turn  or that  t + 1 is 

a central: return:  level if  fl(t)(O) belongs to V O,t+l (this implies that  

l(t + 1) = l(t)). A cascade: of:  central: re turns  is a set of subsequent 

central return levels. More precisely, a cascade of central returns is a 

collection of central return levels ~ - to + 1, ..., to + N followed by a 

non-central return at level to + R r + 1. In this case we say that  the above 

cascade of central returns has Iength N.  We could also have an infinite 

cascade of central returns. Notice that  with the above terminology a 

non-central return level is a cascade of central return of length zero. We 

also say that  V ~ is on top of the cascade of central returns. 

It is possible to show that  the principal nest of the first renormal- 

ization level ends with an infinite cascade of central returns if and only 

if f is renormalizable. In that  case, denote the first level of this infinite 

cascade of central returns by t(0) + 1. Then we define the first renormal- 

i za t ion /~( f )  of f as being the quadratic-like map fz(t(o)) : V0,t(0)+l __+ 
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V O,t(O). The filled in Julia set of R(f )  is connected (it is also possible to 

show tha t  0 V~ = J(R( f ) ) ) .  Again we can find the dividing fixed point 

of the Julia set of R(f ) ,  some external rays landing at it and defir~e new 

puzzle pieces over the Julia set o f / ~ ( f ) .  The rays landing at the new 

dividing fixed point are not canonically defined (remember tha t  R ( f )  

is a polynomial-like map, and not a polynomial). We are not taking 

the external rays of the original polynomial. Instead we need to make 

a proper selection of those rays to be able to state the Theorem at the 

end of this Subsection (see [Lyu97]). As before we can construct the 

principal nest for JR(f), provided that  R( f )  is not Douady-Hubbard ira- 

mediately renormalizable. The elements of this new principal nest are 

denoted by V 1'~ V 1'1 , . . . ,  V l ' t ,  ... and the nest is called the principal nest 

of the second renormalization level. If this new principal nest also ends 

in an infinite cascade of central returns, we repeat the procedure just 

described and construct a third principal nest. We repeat this process 

as many times as we can. 

Now we define the principal nest of the polynomial f as being the 

set of critical puzzle pieces 

V ~176 D V ~ D " "  D V ~176 D V ~176 D V ~'~ ~ V 1'1 D . . . ,  V 1't(1) D 

V 1't(1)+1 D . . .  D V ~'0 D V "~'1 D . . .  D V ra't(ra) D V m't(m)+l D . . .  

In order to go ahead with the definition of the class of polynomials 

we are interested in, we need the notion of a t runcated secondary limb. 

A limb in the Mandelbrot set M is the connected component of M \  {co} 

not containing 0, where co is a bifurcation point on the main cardioid. If 

we remove from the limb a neighborhood of its root co, we get a truncated 

limb. A similar object corresponding to the second bifurcation from the 

main cardioid is a truncated secondary limb. 

A polynomial of high combinatorial type is defined as being an in- 

finitely many times renormalizable polynomial satisfying the two follow- 

ing properties: 

(i) First select in the Mandelbrot set a finite number of t runcated sec- 

ondary limbs. We require all the quadratic-like renormalizations to 

be in these limbs. 
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(ii) We also require that  in between two quadratic-like renormaliza- 

tion levels we have a sufficiently high number of non-central returns 

(called height) which depends on the a priori selection of the limbs. 

Such class of polynomials was originally introduced and studied 

in [Lyu93]. 
Before we go to the main Theorem about polynomials of high combi- 

natorial type, we will need one last notation. If V i'~ is an element of the 

principal nest then we denote by n(k) the number of central cascades in 

between V i,~ and V ~'k. Remember  that  a non-central re turn is viewed 

as a central cascade of length zero. 

The following result in [Lyu93] (see [Lyu97]) will allow us to cre- 

ate the "Koebe space" for Yoccoz polynomials and polynomials of high 

combinatorial type: 

T h e o r e m  2.2. (Lyubich.) The principal modulus mod(V<~ \ V i'k+l) grows 

linearly with n(k) for any polynomial of high combinatorial type, if V i'k 

is on top of a cascade of central returns. Moreover, mod(V <0 \ ViA) _> 

c > 0 .  

2.3 Combinatorics of  Yoccoz pieces 
In this section we will state some basic properties of the combinatorics 

of the Yoccoz puzzle defined before. Those properties will be used in 

the next sections of the paper. 

We first notice the following: if Y'~(z) and Y'~(w) are two Yoccoz 

pieces and m > n, then either int(Y~(z)) fh int(ym(w)) = ~ or ym(w)  C 

Y~(z). We call this property the Markov property of the puzzle pieces. 

For the next Lemma, consider a critical puzzle piece Y'~(O). Let m 

be the t ime of first re turn of the critical point to Y~(O). Let Y~+'~(O) 

be the pull back of Y~(0) along the first re turn of the critical point to 

Y~(O). 

Lemma  2.3. Let z be an element of J ( f )  and let t be the smallest time 

that ft(z) = yn+m(o) .  Then we can univalently pull Y~(O) back along 

the orbit z , . .  . , i f ( z ) .  

Proof .  If not, f-~(Y~(O)) would contain the critical point, for some s 
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less than t (here f - *  means the branch of f -~  along the orbit of z). 

That  would mean that  s is greater or equal to m, the first re turn time 

of 0 to Y~(O). Tha t  would imply f ~(Y~(O)) c Y~+'~(O) by the Markov 

property of puzzle pieces. In other words, z would hit Y~(O) on a t ime 

strictly less than t, contradicting the definition of t. [] 

We finish this section introducing the concept of generalized renor- 
realization ([Lyu911). If fl(,~,t(,~)) : vm,t(,~)+l __+ v~,t(,~) is a renormal- 

ization level, and if we denote the closure of the critical orbit by O then 

the set O N V  "%t(m) is contained in V ~ ' t (~)+l .  If fl(,~,~) : V,%i+l __+ V,%~ 

is not a renormalization level, then we need extra puzzle pieces to cover 

N V "~'i. We can find finitely many puzzle pieces V 9  '~+1, 0 < j _< 

k(m, i + 1) contained in V '~,i such that  VY ~'~+1 = V ~r when j = 0 
"3 

and each one of those VN "~'i+1 is the pull back of V "~'i along the first 

re turn of some point in O N V "~'i back to V "%i. We also assume that  

�9 UV -~'i+1 --+ V "~'i is called the i th UVj re'i+1 covers O C)V m,i. The map g : 

generalized renormalization of the rn ~h renormalization level of f .  The 

map g is defined as being f t  in each Vj "~'i+1, where t is the return time 

of VS ~'i+1 to V "~,i. We say that  the puzzle pieces are of level i + 1 (inside 

the renormalization level m). We also say that  the puzzle pieces Wj re'i+1 

are non-critical if j r O, and critical otherwise. 

3. Modified principal nest 
The goal of this section is to construct the modified principal nest, start- 

ing from the principal nest constructed in [Lyu971 and described in Sec- 

tion 2.2. The elements of the modified principal nest will be related to 

each other via maps which are compositions of a quadratic map and an 

isomorphism with bounded distortion (depending just on the map f) .  

To simplify notat ion we will denote the elements of the principal nest 

of the first renormalization level (see section 2.2) by V ~ V I, ..., V '~, .... 

Reraember that  we divide the principal nest into disjoint unions of cas- 

cades of central returns. Remember  also that  a non-central re turn level 

is a cascade of central returns of length zero or a trivial cascade. Let 

n(k) be the number of cascades of central returns before the level k. We 
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use the  following nota t ion:  #n = mod(V ~ \ V~+I) - 

Beginning of  the construction of  the modified principal nest: The ele- 

ments of the modified principal nest will be denoted by W i. Let n + 1 

be the  first level of the first non-t r ivia l  cascade of central  re turns .  We 

define W i = V i for all i = 1, ..., n + 2. Suppose t h a t  this  first non-t r ivia l  

cascade has its last  e lement  at  level n + k, i. e., the  first non-centrM re- 

tu rn  appears  on fz(~+~) : V~+k ~ V,~+k-1. We wilt cons t ruc t  the next  

e lement  W ~+3 of our  modif ied principal  nest  as being a puzzle piece 

satisfying: 

(i) V ~+k+l c W ~+3 c V ~+k and  0 ~ W~+3; 

(ii) the  puzzle piece W ~+'3 is m a p p e d  as a branched  covering of de- 

gree two onto V ~+2 = Wn+2; 

(iii) The  above map  is the  composi t ion  of a pure quadra t i c  map  and 

an i somorphism wi th  bounded  distort ion;  

(iv) mod(W \ W _> = 

Let  us cons t ruc t  W ~+a (see Figure  1). As we are in a cascade of 

central  re turns  there  exists a number  p such t h a t  fP = fz(0 : V i _+ Vi-1 

for all i = n + 1, ..., n + k. I t  is also t rue  t h a t  ffP(0) E V ~+k-i  \ V *~+~-i+1 

for i = 1, ..., k (where 0 is the  critical point) ,  in  par t icular  f ( k - l b ( 0 )  

V ~+1 \ g *~+2. 
We know t h a t  the orbit  o f  f(k-1)P(O) should enter  V ~+2. T h a t  is 

because the  orbit  of V ~+k+l should enter  V ~+2 in order to re tu rn  

to V '~+k. Let  us call S k-1 the  pull back of V ~+2 along the  orbit  of 

f(k-1)~'(0). To be more precise, let ~ > p > 0 be the  first t ime  t h a t  

f t ( f (~  lb(0))  c V ~+2. Then  S ~ 1 = f - t ( V n + 2 ) .  Here we are consid- 

ering the  branch of f - t  t h a t  takes f t ( f (~- l )p(0) )  to f ( ~ - t b ( 0 ) .  Now 

we define S i = f - ( k - i - 1 ) P ( S ~ - l ) ,  where we consider f - ( k - i - 1 ) p  as being 

the branch  tak ing  f(k-1)p(o) to fiP(O), for i = 1, ...,/r - 1. In par t icu lar  

fP(0) E S 1. We finally define W n+3 = f -P(S1) ,  where we unde r s t and  

f - P  as the  branch tak ing  fP(0) to 0. 

Having this  defini t ion of W n+3, the  first p rope r ty  is obvious by con- 

s t ruc t ion  and from the  Markov p rope r ty  of puzzle pieces. The  next  

p roper ty  follows f~'om the  fact  t h a t  each one of the  maps  fP : S i ----+. 
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s i + l , i  = 1,. . . ,k -- 2 is an isomorphism. 

inside a cascade of central returns. 

rl 

n + l ~  

That  is t rue because we are 

n+l /.,.- -.-.----.~'-~ 
V io / /  "'\ ~ ' ~  

( 0 ) ) ) 
'K\....~ Ik ...... ~ / / 

o+k ! / ........... " i>  

Figure 1: Construction of W r~+3. 

Let us prove the third property. There exists a puzzle piece Vi~ +2 of 

level n + 2 not containing the critical point such that  S k-1 c V,:~ +2 c 

V ~+1. The puzzle piece V~ +2 is defined as being the pull back of V ~+1 

along the first re turn of f(k-1)P(0) to V ~+1. Notice tha t  the return time 

of f(k-1)p to V ~+1 is smaller or equal to t (the smallest positive t ime so 

that  ft(f(k-1)p(O)) E V~+2). This together with the Markov property  of 

the puzzle pieces imply the inclusion S ~-1 C Vi~ +2. The critical point 

does not belong to Vi~ +2 because otherwise we would find a non-central 

re turn at some level between rt + 1 and rt + k - 1. In a similar fashion 

we also show that  exists a puzzle piece V% +1 of level rz + 1 such that  

En+ l  V%+1 not critical. The puzzle piece V% +1 is obtained c ' 
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as the pull back of V ~ along the first re turn  of fkP(O) back to V ~. 
p n + 2  We have mod(V/~ '+1 \ f (17/1 )) _> #,~. If the orbit of fP(Vq +2) 

hits V ~+1 at the same t ime as the orbit  of V~o+l re turns  to V ", then  we 
n + 2  obviously have mod(Vio+l \ /P(V~+2))  = #~. If the orbit of fP(Vil ) hits 

V ~+1 lat ter  t han  the orbit  of V/o~+l re turns  to V ~, then  there is a puzzle 

; (Vq ~+2 V/o+l V such tha t  f ) C V C and the orbit of fP(Vil+2 ) piece 

hits V "+1 at the same t ime as the orbit  of V covers univalently V ~. So 
p n + 2  we get mod(V o+l \ f )) -> mod(V \ 

The map  f(k-1)p : V~+~-~ __+ V~ has all its critical points  inside 

V ~+k (because we are inside a cascade of central returns).  As V/o+l r 

V ~+1, we conclude tha t  we can isomorphically pull V~o+l back along the 

orbit  S 1, 5 '2, ..., S ~-1, fP(Sk-1). Tha t  means tha t  mod( f  -(k 1)P(V/o+I ) \ 
S 1) > p~. If we make one extra pull back we will get mod(f-kP(Vio +1) \ 

1 W ~+3) _> ~#~. 

Remember  tha t  f is a quadrat ic  polynomial .  Pu t t i ng  this fact to- 

t e the r  with  the informat ion from the last paragraph  we conclude tha t  

we can decompose fpk : w n + 3  ___+ s k - 1  into a pure quadrat ic  map  fol- 

lowed by an analytic i somorphism of bounded  dis tor t ion (by Koebe's  

Theorem).  The  dis tor t ion depends  only on the principal modulus  p~, 

which is definite. 

The  inverse of the map  f t  : Sk-1 ____+ Vn+2 can be extended to V n + l  

(see L e m m a  2.3. Tha t  means,  by Koebe 's  Theorem,  tha t  the dis tort ion 

of f t  is bounded  (depending just  on P~+l = l p~ )  when restricted to 

S~-1. 

P u t t i ng  the informat ion of the last paragraphs  together  we can show 

the third property.  The  last proper ty  also follows from the previous 

argument. 

We will now define the element ~V ~+4 following I/V ~+3 in our modi- 

fied principal nest. This new element I/V n+4 will be defined as a certain 

pull-back of I/V ~+3. We start to define this pull back now. Immedi- 

ately after the  first non-trivial  cascade of central re turns we will find 

either another  non-trivial  cascade of central re turns or a trivial cascade 

of central return.  We need to consider bo th  cases. 
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Continuation o f  the modif ied principal nest through a non-trivial cascade: 

Suppose that  we have another non-trivial cascade of central returns. In 

that  case, we would find central returns on all levels from ~ +/~ + 1 to 

f~ + k + m - 1 (so this new cascade of central returns has length m). We 

can find W ~+4 such that:  
n+k 

n+k+l 

)P 

Figure 2: First construction of W n+4. 

(i) V ~+~+'~+1 C W ~+4 C V ~+k+~ and 0 ~ Wn+4; 

(ii) W ~+4 is mapped  as a branched covering of degree four onto 
W n + 3  ; 

(iii) The above map is the composit ion of a pure quadrat ic  map fol- 

lowed by an ismnorphism with bounded distortion, an other pure 

quadrat ic  map and an isomorphism with bounded distortion; 

(iv) mod(V n+k+m \ W '~+4) > �89 

The above properties and their justifications are similar to the ones 

for W ~+3 stated before (see Figure 2). This finishes the construction of 
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W ~+4 in the case that  we have a non-trivial cascade of central returns 

following the first non-trivial cascade of central returns. We would like 

to point out that  the value of mod(V ~+~+~ \ W '~+4) does not depend 

on the value of mod(V ~+/~ \ Wn+3). 

Continuation of  the modif ied principal nest through a trivial cascade: In 

this case we suppose that  we have a trivial cascade following the first 

non-trivial cascade of central returns. In other words the first return 

map fl(n+/~+l) : Vr~+/~+I ~ Vrz+k is a non-central return. In that  case 

we can find W ~+4 such that: 

n+k 

Figure 3: Second construction of W n+4. 

(i) V ~+k+2 C W ~+4 C V ~+~+1 and 0 C W~+4; 

(ii) W ~+4 is mapped  as a branched covering of degree two onto 
I/V n §  ; 

(iii) The above map is the composit ion of a pure quadratic :alap and 

an isomorphism with bounded distortion; 

(iv) mod(V "+/~+1 \ W n+4) _> lmod(V~+/~ \ W ~+3) _> lpn .  

Again with the same type  of argument we used to show properties 

of W ~+3 we show the above properties (see Figure 3). 

The definition o f  the modif ied principal nest: It follows now by induc- 

tion. We assume that  we have the definition of one of its elements, say 

W i. Such element is inside the last level of a given cascade of central re- 

turns. We can construct  the next one, W i+1 following the constructions 

just  as we described in the previous two cases. 
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The modified principal nest as constructed has the following prop- 

erties. Given any cascade of central returns with last element Vn+l:  

(i) There exist W in the modified principal nest such that  V ~+1 C 

W C V n with mod(V ~ \ W) growing linearly with the number of 

cascades of central returns; 

(ii) If W ~ is the element following W in the modified principal nest, 

then mod(W \ W')  is growing linearly (with the number of cas- 

cades of central returns); 

(iii) W' is mapped  as a branched covering either of degree two or 

degree four onto W; 

(iv) The map in the previous item is the composit ion of a pure 

quadrat ic  map and an isomorphism with bounded distortion in 

the degree two case. In the degree four case, this map is a com- 

position of two maps as in the degree two case. 

The last three properties of the modified principal nest are true by 

construction (the third one is a consequence of the first). The first 

proper ty  is obvious except perhaps in one case, namely when we have 

more than one trivial cascade of central returns together. Notice that  in 

our construct ion of the modified principal nest through a trivial cascade 

(see Figure 3) we got the following estimate : 

mod(V n+k+l  \ W n+4) > l m o d ( V n + k  \ W n + 3 ) "  
2 

One can ask whether  we will keep dividing by two the bound for the 

modulus comparing the principal and the modified nests at a certain 

level, if we have several trivial cascades, one following the other. If that  

would be the case we would spoil our est imates concerning the modified 

principal nest. 

Let us analyze what  happens when we have two consecutive trivial 

cascades. On Figure 4, let V/n+2 be a non-critical puzzle piece of level 

n+2  containing the orbit of W i+2, contained inside V ~+l. Let us assume 

that  the return time of V/n+2 to V n§ is t and that  the return time of 

V n+l to V n i s  8. In general t >_ s. Let us analyze two situations: 
s n+2 one when t > s and the other when t = s. I f t  > s, then f (V/ ) 
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is contained in V ~. So there is a puzzle piece of level n + 1 Vj ~+1 

containing f s ( ~ + 2 ) .  Due to the fact that  Va~+l will be mapped to 

V" and Vi ~+2 will be mapped to V ~+1 we can prove that  mod(Vg+l \ 
s n + 2  f (V i )) > #,~. This is enough to show that  mod(V'~+2\W i+2) _> 1#,~. 

If t = s. then mod(V '~+1 \ Vii ~+2) > _lff~ Again, this is enough to show 
' - -  2 " , 

that  mod(V ~+2 \ W era2) _> ~ffn- In both cases we are showing that  

mod(V'~+2\ W i+2) is greater then lff,~, which is definite number because 

it is the principal modulus at the top of a (trivial) cascade of central 

returns. 
n 

n+2 ~ ~  

Co 
Figure 4: Two consecutive trivial cascades of central returns. 

From our considerations we see that  for each cascade of central re- 

tu rn  we have one element of the modified principal nest. Therefore we 

can enumerate  the elements of the modified principal nest counting the 

cascades of central returns. So W ~ is the n tJ~ element of the modified 

principal nest, i.e. , the element at the end of the rt th cascade of central 

return. 

Suppose that  the first principal nest of f ends in an infinite cascade of 

central returns. Then  the modified principal nest also ends in an infinite 

cascade of central returns. The construction of the modified principal 

nest through the renormalization level is the same as the construction of 
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the principal nest defined in [Lyu97] through the renormalization level. 

Now we complete the modified principal nest repeating the construction 

tha t  we have just  described. 

4. P r o o f  o f  the T h e o r e m  

Before we start  the proof of Theorem 1 we state a fundamental  result 

due to Denker and Urbafiski tha t  we use. This result is possible due to 

a technical problem solved in [Prz93]. 

Definition 4.1([DU91], [Shi91].) We define the hyperbolic dimension of 

f as :  

hypdim(f) = sup{HD(X) " X C J ( f )  is hyperbolic for f}  

Theorem 4.2. ([DUD1].)If f any rational map, then 

(5~y = inf{(5 : ~ : (5 - con f o r m a l  : measure:  f o r  : f}  = hypdim(f). 

We use the following notation: if an and bn are two sequences of 

_ a~ < K,  for positive real numbers, then we write a~ x b~ if K -1 < b~ -- 

some constant K.  

Let f be a polynomial of high combinatorial type and # a &eonformal 

measure for f .  Take W and W' being two consecutive elements of the 

modified principal nest and fa  : W'  --+ W the first return map of the 

critical point to W. 

Lemma 4.3. Let f be any polynomial of high combinatorial type and 

assume that W and W'  are two consecutive elements of the modified 

principal nest belonging to the same renormalization level. Then 

p (W)  p(W')  
(diam(W))~ < K (diam(W,)) 6 

where K is a constant depending on the selection of the secondary limbs. 

Proof. Suppose first tha t  fa : W ~ ~ W is a degree two branched 

covering. Then the map f~ 1 . f ( W ' )  -+ W has bounded distortion (by 

construction of the modified principal nest). Tha t  implies tha t  

p( f (W ' ) )  # (W)  
(diam(f(W,)))6 ~ (diam(W))~ 
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(because of the definition of conformal measure). So we conclude that  

there is a constant K1 such that: 

(diam(f(W')))  ~ #( f (W ' ) )  (1) 
(diam(W)) ~ #(W) 

As f : W '  ---+ f ( W ' )  is pure quadratic we have the following inequal- 

ity: diam(W') _< LIDf(x)I  ld iam(f(W')) ,  where L is a constant and x 

is any element in W'.  As # is conformal we find z0 in W'  such that  

p ( f ( W ' ) )  = I lDf(zo)D%(W'  ). 

Put t ing  last two observations together we get: 

(diamW') ~ < L~ 1 #(W')  (2) 
(diam(f(W')))  ~ - 2 #( f (W') )"  

Multiplying equations (1) and (2) we get the Lemma. Remember  

that  we are assuming that  f : W --+ W'  has degree two. 

Suppose now that  fa  : W'  ~ W is a degree four branched covering. 

Then it is a composit ion of two maps which are themselves the com- 

position of a pure quadrat ic  map followed by some map with bounded 

distortion. Then we repeat  the previous argument twice to get the same 

result. [] 

For the next Lemma we will consider two consecutive elements of 

the modified principal nest W and W'  such that  fa  : W'  --+ W (the 

first return map of the critical point to W')  has connected Julia set. In 

other words, we will be considering the level of the modified principal 

nest corresponding to a change of renormalization level. Let W" be the 

first element of the modified principal nest following W'.  

Lemma 4.4. Suppose that fa  : W '  ~ W has a connected Julia set. Then 

;4W')  < K ;~(W") 
(diam(W,))~ -- (diam(W,,))~ 

where W"  is the .first element of the modified principal nest following 

W'  and K depends just on the selection of the secondary limbs. 

Proof .  Suppose that  the c~ fixed point of g = fa  : W ~ ~ W is the 

landing point of p external rays. For each i r 0 and for each puzzle 

piece of level zero y 0  for g we define & = y 0  [-] j (g) .  Let us define y 1  
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as being the intersection of J(g) with the critical puzzle piece of level 

zero for g. We also define Wi = - S i .  

ia=g 

W" W' a 

Figure 5: Renormalization level. 

The  pieces Si can be enumera ted  following the orbit  of the critical 

point.  It follows from bounded  geometry  of the puzzle pieces in Figure 5, 

as shown in [Lyug7], tha t  g : Si -+ Si+l has bounded  distort ion for 

i = 1, . . . , p -  1 (depending only on the choice of the secondary limbs). 

The  same happens  to the map  9 : @-1 --+ y1 .  This  implies tha t  for 

i = 1, . . . ,p - 2 we have: 

diam(Si)e ~ diam(&+l)e 

and 
~(Sp 1) / , (y1) 

diarn(Sp_l)~ ~ diam(y1)5" 

By the hypothesis  of polynomials  of high combinatorial  type (it is not 

Douady-Hubbard  immediate ly  renormalizable) we know tha t  there is a 

t ime j (this being minimal)  such tha t  9 j (0) E Wi, for some i. According 

to [Lyu97], W" is the pull back of Wi along the critical orbit, back to the  

critical point.  As this map  is the composi t ion of a pure quadrat ic  poly- 

nomial  with  an isomorphism with bounded  dis tor t ion (again by bounded  

geometry),  we can repeat  the proof  of Lemma  4.a to get: 

_ .(&) 
diam(W,,)5 --> n0diam(Wi)a  diam(Si) 6" 
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Last equality follows from the fact that  S,i = -Wi .  Notice that  K 0 

depends just  on the selection of secondary limbs. There exist an integer 

k such tha t  g~ : Wi --+ y1.  This map has bounded distortion (again 

because of bounded geometry).  Then we get: 

It(w, ) It(y1) 
diam(W,i)e ~ diam(Y1)e- 

Put t ing  all the previous estimates together we get the following (re- 

member  that  p is the number of external rays landing at c~, which de- 

pends just on the selection of the secondary limbs): 

p - 1  
It(W") It(yS) #(&) 

P diam(W,,) 6 > K + I42 E > -- diam(y1)~ diam(Si) ~ - i 1 

Kit(Y1) + E i  It(S/) > 
- -  diam(W,)e 

: K It(w') 
diam(W@" 

So we get the Lemma. [] 

Lemma  4.5. The diameter of the puzzle-pieces of the modified principal 

nest decreases super exponentially fast, i.e., 

diam(W n) < e - L n  

for any L, if f is a polynomial of high combinatorial type. 

Proof.  According to our construction of the modified principal nest, the 

principal modulus A~ = W ~ \ W ~+1 grows linearly with n in between 

to renormalization levels. That  means that  

mod(W \ W > C. L 
7% 

(remember that n counts the number of central cascades in a given 

renormalization level). The constant L is uniform according to [Lyu97]. 

[] 

Now if we put Lemmas 4.3, 4.4 and 4.5 together we conclude that 

for any element of the modified principal nest W n we have (here we are 
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enumerating the whole modified principal nest with just  one index): 

 (wD ~ 
(diam(Wn))6 -> K(C) n (diam(W0))6" 

In other words, 

If we take 6' > 6 then 

p ( W D  

 (WD > aK n. 
-(diam(Wn))~ - 

p(W n) 1 

(diam(Wn)) ~' (diam(Wn)) 6 (diam(Wn)) 6'-6" 

As diam(W n) goes to zero super exponentially fast, we have: 

~ ( W D  
(di~m(WD?'  > C _> o. (3) 

Let us prove Theorem 1. For each n, let On be a family of open sets 

such that:. 

1. For each n, On is an open cover of the set 

X~ = {z ~ J ( f ) :  3j, fJ(z) ~ W~}; 

2. For U~(z) E On, diam(U~(z)) goes to zero as n goes to infinity; 
3. #(U,~(x)) > C >_ 0, for 6' > 6 > 6in  f . 

diam(Un(x)) 6' 
The open cover On is simply the union of the sets U~(z) defined as 

the pull back of W n along the orbit of z ~ Xn from time t = 0 to the 

first t ime the orbit of z enters W ~. 

The first proper ty  described above follows from the definition of On. 

The second proper ty  follows from the proof of the local connectivity 

of J( f )  for a polynomial high combinatorial  type (see [Lyu97]). The 

last proper ty  follows from the bounds we have for mod(W n \ Wn-1) ,  

Lemma 2.3 and Koebe distortion Lemma. 

The second and the third proper ty  of tile covers On imply that  

HD(X~) < 6. As we are considering 6 as an exponent  of some conformai 

measure for f ,  we actually showed: 

HD(Xn) < 6inf. (4) 

Let Y~ = J( f )  \ X~. Each set Y~ is f invariant and the dynamics 

f : Yn -~ Y~ is hyperbolic (one can see this by means of a s tandard 
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hyperbolic metric argument, using the fact that  the dynamics restricted 

to the closure of the critical orbit is minimal). So, due to Theorem 4.2 

we have: 

HD(Yn) _< h y p d y m ( J ( f ) )  = ~inf. (5) 

Put t ing  all the information together we get: 

~inf = hypd im(Y(f ) )  _< H D ( J ( f ) )  _< ~inf, 

and  t h e n  we p rove  T h e o r e m  1. 
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