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Conformal measures and Hausdorff
dimension for infinitely renormalizable
quadratic polynomials

Eduardo A. Prado

Abstract. We show in this paper that if f is a quadratic infinitely many times
renormalizable polynomial of sufficient high combinatorial type, then: HD(J(f)) =
inf{é6 : 3 § — conformal measure for f} We use Lyubich’s construction of the
principal nest ([Lyu97]} in order to prove this result.
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Introduction

Let f:C — C be a quadratic polynomial. Sullivan showed in [Sul80]
that it is possible to construct a conformal measure for f with sup-
port on J(f), the Julia set of f, for at least one positive exponent 6.
By a conformal measure (or é-conformal measure, to be more precise)
we understand a Borel probability measure p satisfying the following
condition:

u(f(A)) = /A IDF(2) P dp(2),

whenever [ restricted to the set A is one to one.

Conformal measures are one of the tools in the study of the Haus-
dorff dimension of Julia sets. From the work of Bowen, Sullivan, and
Walters ([Bow75], [Sul80] and [Wal78]) we know that if f is expanding
on J(f), then the Hausdorff measure (which is finite and non-zero) is
the only conformal measure on J(f). In other words, there exists only
one exponent 8 for which a é-conformal measure for [ exists. This 6 is
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32 EDUARDO A. PRADO

the Hausdorf{f dimension of J(f) and this é-conformal measure is equiv-
alent to the Hausdorff measure of J(f). Denker and Urbariski showed
in [DU91] (with a technical problem solved in [Prz93]) that the hyper-
bolic dimension of the Julia set of any rational function f is equal to
inf{6 > 0:3 8§ — conformal measure for f}. Let us call this last
quantity g,y .

Urbanski showed in [Urb]| that if [ is a rational function with no
recurrent critical point then the Hausdorff dimension of the Julia set of f
is equal to d;,¢. In this case critical points are allowed to be inside J(f).
In [Prz96] Przytycki showed this same result if f is a non-renormalizable
quadratic polynomial or a Collet-Eckmann map. The goal of this work is
to extend Przytycki’s result to some infinitely renormalizable quadratic
polynomials: the polynomials of high combinatorial type (see Section 2.2
for the definition of such polynomials). We use Przytycki’s techniques
together with Lyubich’s construction of the Principal nest ([Lyu97]) in
order to do that. In other words we show the following:

Theorem 1. For any polynomial of high combinatorial type f we have

the following equality:
inf{6 : 3 6 — conformal measure for f} = HD(J(f)),

where HD(J(f)) stands for the Hausdor[f dimension of the Julia set of f.

2. Renormalization and combinatorics

2.1 Yoccoz polynomials

We will briefly describe how to construct the Yoccoz puzzle pieces for a
quadratic polynomial. See [Hub] and [Mil91] for a complete exposition
of such construction.

In this section we will just consider quadratic polynomials f with
repelling periodic points.

We say that g: U — U’ is a guadratic — like map if it is a double
branched covering and U and U’ are open topological discs with U
properly contained in U’. In addition to that we require the filled in
Julia set of g to be connected. By filled in Julia set of g we understand
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CONFORMAL MEASURES AND HAUSDORFF DIMENSION 33

the set {z € U : ¢"(2) is defined for all natural numbers n}. There are
two fixed points of g inside its filled in Julia set. Omne of them, the
dividing fixed point, disconnects the filled in Julia set of ¢ in more than
one connected component. The other does not. Usually the dividing
fixed point is denoted by «. .

Remember that f, a quadratic-like map or a polynomial, is renor-
malizable if there exist open topological disecs U € U’ with 0 € U with
R(f):U — U’ being a quadratic-like map, R(f) = f*|y, with k the
smallest natural number bigger than 1 satisfying this statement (we call
k the period of renormalization). Here R(f) stands for this renormaliza-
tion of f. We can ask whether R(f) is renormalizable or not and then
define renormalizations of f of higher orders. So, each renormalization
of f defines a quadratic polynomial-like map.

Let f be a degree two non-renormalizable polynomial and let G be
the Green function of the filled in Julia set of f. There are g external
rays landing at the dividing fixed point of f, where ¢ > 2. The ¢ Yoccoz
puzzle pieces of depth zero are the components of the topological disc
defined by G(z) < G, where G is any fixed positive constant, cut along
the g external rays landing at the dividing fixed points. We denote ¥ 9(x)
the puzzle piece of depth zero containing z. We define the puzzle pieces
of depth n as being the connected components of the pre-images of any
puzzle piece of depth zero under f". Again, if z is an element of a given
puzzle piece of depth n we denote such puzzle piece by Y"(z).

Suppose now that f is at most finitely renormalizable without in-
different periodic points. Let « be the dividing fixed point of the last
renormalization of f. Let G be the Green function of the filled in Ju-
lia set of f. In that case we define the puzzle pieces of depth zero as
being the components of the topological disc G(z) < G, Gy a positive
constant, cut along the rays landing at all points of the f-periodic orbit
of a. As before we define the puzzle pieces of depth n as being the
connected components of the pre-images under f™ of the puzzle pieces
of depth zero. The puzzle piece at depth n containing z is denoted by
Y™ (z).

We will consider the Yoccoz puzzle pieces as open topological discs.
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34 EDUARDO A. PRADO

Under this consideration the Yoccoz partition will be well defined over
the Julia set of the polynomial f minus the set of pre-images of the
dividing fixed point of the last renormalization of f (which is f itself in
the non-renormalizable case).

A quadratic polynomial is a Yoccoz: polynomial if it is at most
finitely renormalizable without indifferent periodic points. We will need
the following result:

Theorem 2.1. (Yoccoz.)If f is a Yoccoz polynomial then

N Y@= {z)

n>0

for any © where the Yoccoz partition is defined.

2.2 Polynomials of high combinatorial type

Let us pass to the main class of polynomials that we will be consider-
ing, namely the polynomials of high combinatorial type. See [Lyu97]
for a detailed exposition on this matter. We will need some technical
definitions.

Let us start with a quadratic polynomial f with a recurrent critical
point, say zero, and without indifferent periodic points. Given a Yoccoz
puzzle piece Y;* of f and a point x such that f3(x) belongs to Y;*. We
define the pull back of Y™ along the orbit of z as being the only connected
component of f77(Y*) containing z. If moreover z belongs to Y;" and
§ is minimal and non-zero, then we say that j is the first return time of
z to Y. A puzzle piece is said to be critical if it contains the critical
point. Notice that if we pull back a critical puzzle piece Y™ (0) along the
first return of the critical point to Y"(0) we get a new critical puzzle
piece.

We say that a polynomial (or a polynomial-like map) is Douady-
Hubbard immediately renormalizable if it is renormalizable and the
critical orbit never escapes the puzzle pieces of level one whose closures
contain the dividing fixed point of f (see [Lyu97]). If f is not Douady-
Hubbard immediately renormalizable it is possible to find a first time g
when the critical orbit escapes the union of the puzzle pieces of level one
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whose closures contain the dividing fixed point of f. The pull back of
Y1(f%0(0)) to 0 is denoted by V90, This is the first critical puzzle piece
such that the closure of its pull back along the first return of the critical
point to itself is properly contained in itself. We say that this is our
puzzle piece of level zero. The pull back of V99 along the first return
of the critical point to V90 will be denoted V91, We keep repeating
this procedure: define VOttl the puzzle piece of level t + 1, as being
the pull back of VU, the puzzle piece of level t, along the first return
of the critical point to V9. This procedure stops if the critical point
does not return to a certain critical puzzle piece. If we assume that the
critical point is combinatorially recurrent (i. e.; the critical orbit enters
every critical puzzle piece), then we can repeat this procedure forever,
so let us assume that (as the opposite case is a well understood case).
The collection VOt for ¢ being a natural number is the principal nest of
the first renormalization level.

Now we have a sequence of first return maps fl(t) YOt p0t,
By definition V%0 properly contains V%!. This implies that each V0!
properly contains V041, It is also easy to see that each fI(8) . YO+l
V97 is a quadratic-like map.

We say that 18 : VOi+1  yO0t ig 5 central: return or that ¢+ 1 is
a central : return: level if f'¥)(0) belongs to VO (this implies that
It +1) =1(t). A cascade: of: central: returns is a set of subsequent
central return levels. More precisely, a cascade of central returns is a
collection of central return levels t = tg + 1,...,¢p + N followed by a
non-central return at level g+ IV + 1. In this case we say that the above
cascade of central returns has length N. We could also have an infinite
cascade of central returns. Notice that with the above terminology a
non-central return level is a cascade of central return of length zero. We
also say that V97 is on top of the cascade of central returns.

It is possible to show that the principal nest of the first renormal-
ization level ends with an infinite cascade of central returns if and only
it f is renormalizable. In that case, denote the first level of this infinite
cascade of central returns by £(0) +1. Then we define the first renormal-
ization R(f) of f as being the quadratic-like map f{#(0) ; y04(0)+1 _,
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V0.40). The filled in Julia set of R(f) is connected (it is also possible to
show that VO = J (R(f))). Again we can find the dividing fixed point
of the Julia set of R(f), some external rays landing at it and define new
puzzle pieces over the Julia set of R(f).. The rays landing at the new
dividing fixed point are not canonically defined (remember that R(f)
is a polynomial-like map, and not a polynomial). We are not taking
the external rays of the original polynomial. Instead we need to make
a proper selection of those rays to be able to state the Theorem at the
end of this Subsection (see [Lyu97]|). As before we can construct the
principal nest for R(f), provided that R(f) is not Douady-Hubbard im-
mediately renormalizable. The elements of this new principal nest are
denoted by V10 vy L1 vLt  and the nest is called the principal nest
of the second renormalization level. If this new principal nest also ends
in an infinite cascade of central returns, we repeat the procedure just
described and construct a third principal nest. We repeat this process
as many times as we can.

Now we define the principal nest of the polynomial f as being the

set of critical puzzle pieces
VO,O 3 V071 5D VU,t(O) D) VO,t(O)+1 D) VlO D) Vl,l 5. 7‘/'1715(1) >
D V17t<1)+1 BREEES) Vm70 D Vm’l BEEEES) met(m) D met(m)Jrl BEEE

In order to go ahead with the definition of the class of polynomials
we are interested in, we need the notion of a truncated secondary limb.
A limb in the Mandelbrot set M is the connected component of M\ {¢p}
not containing 0, where ¢q is a bifurcation point on the main cardioid. If
we remove from the limb a neighborhood of its root ¢q, we get a truncated
limb. A similar object corresponding to the second bifurcation from the
main cardioid is a truncated secondary limb.

A polynomial of high combinatorial type is defined as being an in-
finitely many times renormalizable polynomial satisfying the two follow-
ing properties:

(i) First select in the Mandelbrot set a finite number of truncated sec-
ondary limbs. We require all the quadratic-like renormalizations to
be in these limbs.
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(ii) We also require that in between two quadratic-like renormaliza-
tion levels we have a sufficiently high number of non-central returns
(called height) which depends on the a priori selection of the limbs.

Such class of polynomials was originally introduced and studied
in [Lyu93|.

Before we go to the main Theorem about polynomials of high combi-
natorial type, we will need one last notation. If V¥* is an element of the
principal nest then we denote by n(k) the number of central cascades in
between ViV and V**. Remember that a non-central return is viewed
as a central cascade of length zero.

The following result in [Lyu93] (see [Lyu97]) will allow us to cre-
ate the “Koebe space” for Yoccoz polynomials and polynomials of high
combinatorial type:

Theorem 2.2. (Lyubich.) The principal modulus mod(V>F\ Vi++1y grows
linearly with n(k) for any polynomial of high combinatorial type, if V¥*
is on top of a cascade of central returns. Moreover, mod(V*? \ Vely >
c>0.

2.3 Combinatorics of Yoccoz pieces

In this section we will state some basic properties of the combinatorics
of the Yoccoz puzzle defined before. Those properties will be used in
the next sections of the paper.

We first notice the following: if Y"(z) and Y (w) are two Yoccoz
pieces and m > n, then either int(Y"(2)) Nint(Y"™(w)) = @ or Y (w) C
Y™(2). We call this property the Markov property of the puzzle pieces.

For the next Lemma, consider a critical puzzle piece Y"(0). Let m
be the time of first return of the critical point to Y™(0). Let Y ™(0)
be the pull back of ¥Y™(0) along the first return of the critical point to
Y™(0).

Lemma 2.3. Let z be an element of J(f) and let t be the smallest time
that fi(z) = Y™™(0). Then we can univalently pull Y™(0) back along
the orbit z, ..., ft(z).

Proof. If not, f~*(Y™(0)) would contain the critical point, for some s
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less than ¢ (here f~° means the branch of f=° along the orbit of z).
That would mean that s is greater or equal to m, the first return time
of 0 to Y™(0). That would imply f~*(Y™(0)) C Y™**™(0) by the Markov
property of puzzle pieces. In other words, z would hit Y™(0) on a time
strictly less than ¢, contradicting the definition of ¢. O

We finish this section introducing the concept of generalized renor-
malization ([Lyu91]). If fimt(m)) . ymi(m)+1 _, ymit(m) js 5 renormal-
ization level, and if we denote the closure of the critical orbit by O then
the set ONV™H™) is contained in V™ Hm)+1 | If fl(m’i) ymitl Ly
is not a renormalization level, then we need extra puzzle pieces to cover
ONV™' We can find finitely many puzzle pieces X/jm’i+1, 0<75<
k(m,i + 1) contained in V™" such that ij’“rl = V™t when j = 0
and each one of those ij’H_l is the pull back of V™" along the first
return of some point in O N V™* back to V™'. We also assume that
Uij’iH covers ONV™!. The map g : Uij’iJrl — V™ is called the it*

generalized renormalization of the m* renormalization level of f. The

map g is defined as being f* in each V}m’iﬂ, where ¢ is the return time

of ij’iﬂ to V™, We say that the puzzle pieces are of level i--1 (inside
the renormalization level m). We also say that the puzzle pieces ij’iH
are non-critical if j # 0, and critical otherwise.

3. Modified principal nest

The goal of this section is to construct the modified principal nest, start-
ing from the principal nest constructed in [Lyu97] and described in Sec-
tion 2.2. The elements of the modified principal nest will be related to
each other via maps which are compositions of a quadratic map and an
isomorphism with bounded distortion (depending just on the map f).
To simplify notation we will denote the elements of the principal nest
of the first renormalization level (see section 2.2) by VY, V1 .. v~», ..
Remember that we divide the principal nest into disjoint unions of cas-
cades of central returns. Remember also that a non-central return level
is a cascade of central returns of length zero or a trivial cascade. Let

n(k) be the number of cascades of central returns before the level k. We
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use the following notation: s, = mod(V" \ V1),

Beginning of the construction of the modified principal nest: The ele-
ments of the modified principal nest will be denoted by W*. Let n + 1
be the first level of the first non-trivial cascade of central returns. We
define W? = V* for all i = 1,...,n + 2. Suppose that this first non-trivial
cascade has its last element at level n + k, i. e., the first non-central re-
turn appears on fz(”"'k} Yotk yrtEel We will construct the next
element W3 of our modified principal nest as being a puzzle piece
satisfying:
(i) Vn—HH—l - Wm+3 c Ve and o c Wn+3;
(ii) the puzzle piece W13 is mapped as a branched covering of de-
gree two onto V"2 = Wwnt2,
(iii) The above map is the composition of a pure quadratic map and
an isomorphism with bounded distortion;
(iv) mod(VHk\ Wnt3y > %,un = Upt1-

Let us construct W3 (see Figure 1). As we are in a cascade of
central returns there exists a number p such that f?P = fl(i) VA
forall i = n+1,..,n+k. It is also true that fP(0) € YHk—2\ ynth-itl
for i = 1,...,k (where 0 is the critical point). In particular f(k‘l)p(o) €
Vn+1 \ V?H-Q.

We know that the orbit of f~1P(0) should enter V2. That is
because the orbit of V*"**1 ghould enter V™72 in order to return
to V5. Let us call S¥~1 the pull back of V"2 along the orbit of
f<k‘1)p(0). To be more precise, let £ > p > 0 be the first time that
FIFEDr0)) € V2 Then SF-1 = f~H(V7+2). Here we are consid-
ering the branch of f~* that takes fi(f*~Dr(0)) to f(E=1r(0). Now
we define S* = f“(k‘i“l)p(Sk_l), where we consider f~(F=i=1)p 45 being
the branch taking f(k*l)p(o) to f%P(0), for i = 1,....,k — 1. In particular
fP(0) € S1. We finally define Wn+3 — f£7P(S1), where we understand
fP as the branch taking fP(0) to 0.

Having this definition of W13 the first property is obvious by con-
struction and from the Markov property of puzzle pieces. The next
property follows from the fact that each one of the maps f7 : 5% —
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Sl i = 1,...,k —2is an isomorphism. That is true because we are
inside a cascade of central returns.

Figure 1: Construction of WS,

Let us prove the third property. There exists a puzzle piece ‘/;7;+2 of
level n + 2 not containing the critical point such that k=1 V{l‘+2 C
V7 +l The puzzle piece V;;"*'Q is defined as being the pull back of yrtl
along the first return of f(kfl)p(o) to V1. Notice that the return time
of f (k=1)p {5 V1 ig smaller or equal to ¢ (the smallest positive time so
that fi(fF1P(0)) € V"*+2). This together with the Markov property of
the puzzle pieces imply the inclusion S k-1 ViTJrQ. The critical point
does not belong to V;Tﬂ because otherwise we would find a non-central
return at some level between n + 1 and n + k — 1. In a similar fashion
we also show that exists a puzzle piece Vingl of level n + 1 such that
fP (Vi’lﬁz) C Vi’ngl, V£+1 not critical. The puzzle piece ViZJrl is obtained
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as the pull back of V™ along the first return of f*7(0) back to V™.

We have mod(V;"™" \ fP(V""2)) > py. 1f the orbit of fP(V;'"?)
hits V™t at the same time as the orbit of V£+1 returns to V", then we
obviously have mod(Vir ™™\ fP(V;"+2)) = pu,. Tf the orbit of f7(V"*2) hits
V™ Jatter than the orbit of Vi’gJrl returns to V™, then there is a puzzle
piece V such that fp(V;»T“Q) cVc Vigﬂ and the orbit of fp(i/;’fQ)
hits V"1 at the same time as the orbit of V covers univalently V™. So
we get mod(V; T\ fP(V7T2)) > mod(V \ fA(V]) = pin.

The map fk=1p . yntkh=1 _, yn hag all its critical points inside
Vnk (because we are inside a cascade of central returns). As V;-;”“l #
V1 we conclude that we can isomorphically pull VZ-EH'I back along the
orbit 1,82, ..., 851 fP(§%=1). That means that mod(f_(k*1>p(l/;g+1)\
S > pi,. If we make one extra pull back we will get mod(f_kp(V£+l) \
Wn+3) 2 %//Jn-

Remember that f is a quadratic polynomial. Putting this fact to-
gether with the information from the last paragraph we conclude that
we can decompose fPF . Wnt3 — S%=1into a pure quadratic map fol-
lowed by an analytic isomorphism of bounded distortion (by Koebe’s
Theorem). The distortion depends only on the principal modulus f,,
which is definite.

The inverse of the map f*: S*~1 — V"2 can be extended to V71
(see Lemma 2.3. That means, by Koebe’s Theorem, that the distortion
of f* is bounded (depending just on g, 1 = —%— in) when restricted to
Gk,

Putting the information of the last paragraphs together we can show
the third property. The last property also follows from the previous
argument.

We will now define the element W4 following W"*3 in our modi-
fied principal nest. This new element W% will be defined as a certain
pull-back of W"*3. We start to define this pull back now. Immedi-
ately after the first non-trivial cascade of central returns we will find
either another non-trivial cascade of central returns or a trivial cascade
of central return. We need to consider both cases.
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Continuation of the modified principal nest through a non-trivial cascade:
Suppose that we have another non-trivial cascade of central returns. In
that case, we would find central returns on all levels from n 4+ k +1 to
n+k-+m—1 (so this new cascade of central returns has length m). We

can find W4 such that:
n+k

Figure 2: First construction of wntd,

(i) Y nthtm+l c Wwntd c yrtktmoang o c Wn+4;

(ii) Wt is mapped as a branched covering of degree four onto
Wn+3;

(iii) The above map is the composition of a pure quadratic map fol-
lowed by an isomorphism with bounded distortion, an other pure
quadratic map and an isomorphism with bounded distortion;

(iv) mod(VrHtm\ Wty > Ly

The above properties and their justifications are similar to the ones
for W +3 stated before (see Figure 2). This finishes the construction of
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W™ in the case that we have a non-trivial cascade of central returns
following the first non-trivial cascade of central returns. We would like
to point out that the value of mod(V 7 HF+m\ W4 does not depend
on the value of mod(V™H*\ Wnt3),

Continuation of the modified principal nest through a trivial cascade: In
this case we suppose that we have a trivial cascade following the first
non-trivial cascade of central returns. In other words the first return
map fl(”+k+1)  yrthtl L yntk ig 4 non-central return. In that case
we can find W4 such that:

n+k

Figure 3: Second construction of W14,

(iy Vrrkt2 cwntd c vkl and 0 e W,
(ii) Wntt is mapped as a branched covering of degree two onto
Wn+3.
(iii) The above map is the composition of a pure quadratic map and
an isomorphism with bounded distortion;
(iv) mod(V tk+l \ W”+4) > %mod(vn'Hc \ W”+3) > %,un.
Again with the same type of argument we used to show properties
of W3 we show the above properties (see Figure 3).

The definition of the modified principal nest: It follows now by induc-
tion. We assume that we have the definition of one of its elements, say
W*. Such element is inside the last level of a given cascade of central re-
turns. We can construct the next one, Wit following the constructions
just as we described in the previous two cases.
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The modified principal nest as constructed has the following prop-

erties. Given any cascade of central returns with last element V711

(i) There exist W in the modified principal nest such that yntl
W C V™ with mod(V™\ W) growing linearly with the number of
cascades of central returns;

(ii) If W’ is the element following W in the modified principal nest,
then mod(W \ W) is growing linearly (with the number of cas-
cades of central returns);

(iii) W’ is mapped as a branched covering either of degree two or
degree four onto W

(iv) The map in the previous item is the composition of a pure
quadratic map and an isomorphism with bounded distortion in
the degree two case. In the degree four case, this map is a com-

position of two maps as in the degree two case.

The last three properties of the modified principal nest are true by
construction (the third one is a consequence of the first). The first
property is obvious except perhaps in one case, namely when we have
more than one trivial cascade of central returns together. Notice that in
our construction of the modified principal nest through a trivial cascade

(see Figure 3) we got the following estimate :
1 /
mod (V" HHIN W) > Zmod (VIR W),

One can ask whether we will keep dividing by two the bound for the
modulus comparing the principal and the modified nests at a certain
level, if we have several trivial cascades, one following the other. If that
would be the case we would spoil our estimates concerning the modified
principal nest.

Let us analyze what happens when we have two consecutive trivial
cascades. On Figure 4, let VZHFZ be a non-critical puzzle piece of level
n-+2 containing the orbit of W2, contained inside V11, Let us assume
that the return time of Vi”+2 to V"*1 is ¢ and that the return time of
Vrtl to Vs 5. In general t > s. Let us analyze two situations:
one when t > s and the other when ¢ = s. If £ > s, then fs(‘/;"+2)
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is contained in V™. So there is a puzzle piece of level n + 1 an+1
containing f‘s(V;’”'Q). Due to the fact that V}”H will be mapped to
V™ and Vi”+2 will be mapped to V"1 we can prove that mod(Vj”+1 \
fS(Vi”JrQ)) > un. This is enough to show that mod(V”"’Q\WHQ) > Z—iun.
If ¢t = s, then mod(V”+1 \ V;”Jr?) > %un. Again, this is enough to show
that mod(V"2\ Wit2) > iun. In both cases we are showing that
mod(V™ T2\ Wit2) is greater then 1, which is definite number because
it is the principal modulus at the top of a (trivial) cascade of central

returns.

Figure 4: Two consecutive trivial cascades of central returns.

From our considerations we see that for each cascade of central re-
turn we have one element of the modified principal nest. Therefore we
can enumerate the elements of the modified principal nest counting the
cascades of central returns. So W" is the n'* element of the modified
principal nest, i.e. , the element at the end of the n** cascade of central
return.

Suppose that the first principal nest of f ends in an infinite cascade of
central returns. Then the modified principal nest also ends in an infinite
cascade of central returns. The construction of the modified principal

nest through the renormalization level is the same as the construction of
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the principal nest defined in [Lyu97] through the renormalization level.
Now we complete the modified principal nest repeating the construction
that we have just described.

4. Proof of the Theorem

Before we start the proof of Theorem 1 we state a fundamental result
due to Denker and Urbanski that we use. This result is possible due to
a technical problem solved in [Prz93].

Definition 4.1([DU91], [Shi91].) We define the hyperbolic dimension of
f as:
hypdim(f) = sup{HD(X) : X C J(f) is hyperbolic for f}

Theorem 4.2. ([DU91].)If f any rational map, then
Oing = inf{6 : 3: 6 — conformal: measure: for: f} = hypdim(f).

We use the following notation: if a, and b, are two sequences of
positive real numbers, then we write a, < b, if K -1 < Z‘Z < K, for
some constant K.

Let f be a polynomial of high combinatorial type and p a é-conformal
measure for f. Take W and W’ being two consecutive elements of the
modified principal nest and f* : W/ — W the first return map of the
critical point to W.

Lemma 4.3. Let f be any polynomial of high combinatorial type and
assume that W and W' are two consecutive elements of the modified
principal nest belonging to the same renormalization level. Then
pOW) (W)
(diam(W))4 — ° (diam(W"))®
where K is a constant depending on the selection of the secondary limbs.

Proof. Suppose first that f* : W' — W is a degree two branched
covering. Then the map f* *: f(W’') — W has bounded distortion (by
construction of the modified principal nest). That implies that

pUOVY) W)
(diam(f (W)~ (diam(WW))®
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(because of the definition of conformal measure). So we conclude that
there is a constant K such that:
(diam(f(W")))° < . PEW) (1)
(diam(W))> =1 (W)

As f: W' — f(W’) is pure quadratic we have the following inequal-
ity: diam(W') < L|Df(x)|” 'diam(f(W")), where L is a constant and
is any element in W’. As u is conformal we find zp in W’ such that
p(fW') = 31D f (20)Pu(W).

Putting last two observations together we get:

_(diamW') sl p(W)
(diam(f(W")))® st 2u(f(W7)) )

Multiplying equations (1) and (2) we get the Lemma. Remember

that we are assuming that f: W — W’ has degree two.

Suppose now that f®: W' — W is a degree four branched covering.
Then it is a composition of two maps which are themselves the com-
position of a pure quadratic map followed by some map with bounded
distortion. Then we repeat the previous argument twice to get the same
result. O

For the next Lemma we will consider two consecutive elements of
the modified principal nest W and W’ such that f* : W' — W (the
first return map of the critical point to W’) has connected Julia set. In
other words, we will be considering the level of the modified principal
nest corresponding to a change of renormalization level. Let W be the
first element of the modified principal nest following W".

Lemma 4.4. Suppose that f@: W' — W has a connected Julia set. Then
sV W)
(diam(W’))¢ — " (diam(W"))?
where W is the first element of the modified principal nest following

W' and K depends just on the selection of the secondary limbs.
Proof. Suppose that the « fixed point of g = f* : W — W is the

landing point of p external rays. For each ¢ # 0 and for each puzzle
piece of level zero Yéo for g we define S; = Y;O N J(g). Let us define Y1
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as being the intersection of J(g) with the critical puzzle piece of level
zero for g. We also define W; = —5;.

fa=g

Figure 5: Renormalization level.

The pieces S; can be enumerated following the orbit of the critical
point. It follows from bounded geometry of the puzzle pieces in Figure 5,
as shown in [Lyu97], that g : S; — S;;1 has bounded distortion for
i =1,...,p — 1 (depending only on the choice of the secondary limbs).
The same happens to the map g : S,.1 — Y1, This implies that for
i=1,..,p— 2 we have:

(S pl(Sit1)
diam(S;)® "~ diam(S;41)°

and v
w(Sp1)
diam(S,_1)® ~ diam(Y1)?"

P
By the hypothesis of polynomials of high combinatorial type (it is not

Douady-Hubbard immediately renormalizable) we know that there is a
time j (this being minimal) such that ¢7(0) € W;, for some i. According
to [Lyu97], W” is the pull back of W; along the critical orbit, back to the
critical point. As this map is the composition of a pure quadratic poly-
nomial with an isomorphism with bounded distortion (again by bounded
geometry), we can repeat the proof of Lemma 4.3 to get:

p(W") p(We) —_ u(Si)
diam(W")® = I(Odiaufn(VVi)‘S  diam(S;)?"
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Last equality follows from the fact that S; = —W;. Notice that Ky
depends just on the selection of secondary limbs. There exist an integer
k such that ¢F : W; — Y. This map has bounded distortion (again
because of bounded geometry). Then we get:

pWi) Y
diam(W;)¢ " diam(Y'1)¢

Putting all the previous estimates together we get the following (re-
member that p is the number of external rays landing at «, which de-
pends just on the selection of the secondary limbs):

1" 1 p—1 .
‘u(W) sk MY g 'H(Sz) >
diam(W")0 diam(Y1)® Pt diam(S;)®
1 )
o B (S
- diam(W")?
e )
diam(W")¢"
So we get the Lemma. 0

Lemma 4.5. The diameter of the puzzle-pieces of the modified principal

nest decreases super exponentially fast, i.e.,
diam(W™) < 17

for any L, if f is a polynomial of high combinatorial type.
Proof. According to our construction of the modified principal nest, the

principal modulus A4, = W™\ Wt grows linearly with n in between
to renormalization levels. That means that

mod(W™O\ W™y > ¢ 3" L"

(remember that n counts the number of central cascades in a given
renormalization level). The constant L is uniform according to [Lyu97].
0

Now if we put Lemmas 4.3, 4.4 and 4.5 together we conclude that
for any element of the modified principal nest W™ we have (here we are
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enumerating the whole modified principal nest with just one index):

W o PV
(diam(Wmn))? (diam (W 0))¢
In other words,
WTL
If we take 6’ > 6 then
pW™ _ pWT) 1
(diam(Wn))¥  (diam(Wn))® (diam(Wn))¥ -6
As diam(W™) goes to zero super exponentially fast, we have:
W’IZ
Fﬁw SO >0, (3)
Let us prove Theorem 1. For each n, let O, be a family of open sets
such that:.
1. For each n, O, is an open cover of the set
Xo={z€ J(f): 34, f(z) e W},
2. For U,(2) € Oy, diam(U,(2)) goes to zero as n goes to infinity;

(Un ()
LA A S S > ! > ). .
T (U (2))7 >C >0, for & > 06> 0y

The open cover O, is simply the union of the sets U, (z) defined as
the pull back of W” along the orbit of z € X,, from time ¢ = 0 to the
first time the orbit of z enters W™.

The first property described above follows from the definition of O,.

The second property follows from the proof of the local connectivity
of J(f) for a polynomial high combinatorial type (see [Lyu97]). The
last property follows from the bounds we have for mod(W™ \ w1y,
Lemma 2.3 and Koebe distortion Lemma.

The second and the third property of the covers O, imply that
HD(X,,) < 6. As we are considering § as an exponent of some conformal
measure for f, we actually showed:

HD(Xp) < Sing- (4)

Let YV, = J(f) \ Xn. Each set Y, is f invariant and the dynamics
f Y, — Y, is hyperbolic (one can see this by means of a standard
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hyperbolic metric argument, using the fact that the dynamics restricted
to the closure of the critical orbit is minimal). So, due to Theorem 4.2
we have:

HD(Yy) < hypdym(J(f)) = diny- (5)
Putting all the information together we get:
bing = hypdim(J(f)) < HD(J(f)) < biny,
and then we prove Theorem 1.
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