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Abstract.  The dual action of a locally compact abelian group, in the context of 
C*-algebraic bundles, is shown to satisfy an integrability property, similar to Rieffel's 
proper actions. The tools developed include a generalization of Bochner's integral as 
well as a Fourier inversion formula for operator valued maps. 
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1. Introduction 

The goal of this paper  is to initiate a s tudy of a new notion of integra- 

bility for an action c~ of a locally compact  group lp on a C*-algebra B. 

In the literature, several notions of integrability can be found, and they 

primarily deal with the s tudy of elements b ~ B'for  which one can make 

sense of the integral 

s c~x (b) do:. 

The main difficulty is, of course, that  the integrand has constant  norm 

and hence, when the group is not compact,  the integral will not converge. 

In order to a t t r ibute  meaning to this, authors have mostly resorted to 

the weak topology, in the spirit of Pett is  integrals, and thus, one would 

speak Of elements b for which 

converges for all continuous linear functionals r on t3. See, for example, 

[1], [2], [s] and [10, 7.8.4]. 
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100 RLW EXEL 

More recently, Rieffel [11] introduced a notion of "proper" actions 

in which a similar integrability condition plays a crucial role. There, 

Rieffel requires, among other things, that  for all elements a and b of a 

fixed dense *-subalgebra B0 of /3 ,  one has that  

fr ac~x(b) dz and ~ c~x(b)a dx 

are integrable in the sense of Bochner. Under suitable extra hypothesis, 

he shows that  one can then make sense of a "generalized fixed point 

algebra" and he obtains a powerful version of the Takai-Takesaki dual- 

ity. Rieffel's condition have a strong smell of the strict topology, since 

integrability is obtained only after one performs a multiplication with 

another element of the algebra, although the role of that  topology is not 

made explicit. 

My interest in understanding Rieffel's notion of properness steams 

from a desire to s tudy a rather general class of actions of locally com- 

pact abelian groups, obtained as dual actions on cross sectional algebras 

of C*-algebraic bundles. However I have found it difficult to work with 

Rieffel's conditions in an abstract  sense, mainly because the dense sub- 

algebra B0, mentioned above, comes about  in a somewhat  ad hoc way. 

The main motivational force behind the present work is, therefore, to 

a t tempt  a reformulation of Rieffel's ideas in which the set of "integrable" 

elements arises in a more natural  way. We think we have succeeded in 

doing so, although it is not clear for us, at the moment,  what  is the 

exact logical relationship between our notion of integrable actions and 

Rieffel's proper actions. 

In developing our theory we have been forced to unders tand two crit- 

ical additional phenomena. The first one is the concept o f  unconditional 

integration. This notion generalizes Bochner 's theory of integration in 

the same way that  unconditional summabil i ty  for series in a Banach 

space generalizes the notion of absolute summability. The s tudy of un- 

conditional integrability is the content of section (2), below. 

The second fundamental  phenomena subjacent  to our work is the 

Fourier inversion formula for operator  valued maps, which states that  if 

p: G --~ B ( H )  is a compact ly  supported,  continuous, posit ive-type map, 
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UNCONI)ITIONAL INTEGRABILITY FOR DUAL ACTIONS 101 

defined on a locally compact  abelian group G, and taking values in the 

operators  oil a Hilbert  space ~, then 

r ( t ,  d z  = P(O,  

where P is the Pontryagin dual of G and "f" is the unconditional integral 

mentioned above. The topology with respect to which the convergence 

of this integral takes place depends on the continuity properties of p. 

The proof of this result is accomplished in section (3) below. 

In the next two sections, (4) and (5), we apply these results to show 

our main result (5.5), which we would now like to briefly describe. Given 

a C*-algebraic bundle /3  ovei: the locally compact  abelian group G (see 

[4] for a comprehensive s tudy of C*-algebraic bundles), we consider a 

natural  action of the dual group F on the C*-cross sectional algebra 

C*(B), which we call the dual action. The content of our main theorem 

says, among other things, that  there is a dense subset  of the positive 

cone of C*(13), whose elements satisfy a certain integrability property. 

Namely, if p is in this subset  then, for all a in C*(B), the maps z 

ac~x(p) and z ~+ c~x(p)a are unconditionally integrable. 

In the following section (6), we conduct a brief study, from an ab- 

stract  point of view, of the integrability proper ty  which turned out to 

be the conclusion of our main theorem. A few comments  are then pre- 

sented in section (7), and an open question is posed, with respect to 

the possible characterization of dual actions by means of integrability 

properties. 

Last  but  not least, I would like to express my thanks to Beatriz 

Abadie, who took an active role in the early stages of the project  which 

culminated with the present work. 

2. Unconditional Integration 
Let (S, ~ #) be a measure space and X be a Banach space. The well 

known Bochner 's  theory of integration (also referred to as Bochner 

Dunford-Hi ldebrandt  integration theory) discusses the conditions under 

which one can define the integral of functions f :  S --+ X.  According to 
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102 RUY EXEL 

that  theory, a strongly measurable f is integrable if 'and only if (see [12, 

V.5]) 

fs Jlf(s)ll dp( ) < 
In the special case of the counting measure on a set S, one there- 

fore sees that  a necessary and sufficient condition for f to be Bochner- 

integrable is that  the series ~ s c s  f ( s )  be. absolutely summable. However, 

in many situations, the point can be made that  the most natural  no- 

tion of summabil i ty for series in a Banach space is that  of unconditional 

summability. 

It is the goal of the present section to present an integration theory 

which generalizes Bochner's theory in the same way that  unconditional 

summabil i ty generalizes the notion of absolute summability. 

Let us start  by considering a measure space (S, ~Y~ #) where, as usual, 

92I is the or-algebra of measurable subsets of S, and p is a or-additive 

positive measure defined on 9Jr 

An important  ingredient of our theory is the notion of a local family, 

which we describe below. 

2.1. Definition. Given a measure space (S, ~ p), we say that a subset 

s c_ 9)i is a local family if the following conditions hold: 

i) 12 is closed under finite unions. 

ii) I f  L E 12 and B is a measurable subset of L then B ~ s (that is, 12 

is hereditary). 

Once a local family is fixed we will say that its members are the local 

sets. 

To avoid trivialities it is often interesting to assume tha t  s also 

satisfies 

iii) If L E s then #(L) < oo. 

iv) For every measurable set /3, one has that  #(/3) = sup{p(L):L C 

S, L C B} .  

However, we will find it unnecessary to assume that  these last two prop- 

erties hold for the local families in consideration in this section. 

Note that  (ii) implies that  !2 is closed under countable intersections. 
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UNCONDITIONAL INTEGRABILITY FOR DUAL ACTIONS 103 

An example of local family would be, of course, the collection of all 

sets of finite measure. In case we are speaking of a regular Borel measure 

on a locally compact  topological space, a natural  choice for a local family 

is the collection of all measurable,  relatively compact  subsets. 

Throughout  this chapter we will fix a measure space (S, ~ #) equip- 

ped with a fixed local family 12. 

Let X be a Banach space. , 

2.2. Definition. We say that a funct ion f: S --+ X is locally integrable 

(with respect to t2) i f  f is Bochner-integrable over every local set. 

Observe that  12 is an ordered set under set-inclusion, which is clearly 

directed in the sense that  given L1 and L2 in 12, there is an L in t3, 

bigger than both  L1 and L2 (namely their union). This allows us to 

use t3 as the index set for nets. In particular, given a locally integrable 

function f ,  we can form the net 

2.3. Definition. We say that a funct ion f:  S --> X is unconditionally 

integrable (with respect to 12), or just  u-integrable, if  the above net con- 

verges in the norm topology of X .  In this case we set 

ds L C 1 2 J  L 

The Cauchy condition for convergence of nets, when applied to ours, 

gives the following. 

2.4. Proposition. A function f: S ~ X is unconditionally integrable i f  

and only if, for  every e > O, there exists an Lo in 12 such that, given any 

D in s which is disjoint front LO, one has II ]D f dPll < e. 

It is easy to show that ,  for an unconditionally integrable f ,  one has 

that  the supremum of ]1 fL f d~ll, as L ranges over all local sets, is fi- 

nite. However, this condition does not imply unconditional integrability. 

Nevertheless, the functions satisfying this proper ty  are relevant for our 

s tudy  as well. 

2.5. Definition. A locally integrable funct ion f: S -~ X is said to be 
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pseudo-integrable if 

II / f @11 < s u p  o o .  

Lc12 JL 

For the special case of scalar valued functions we have the following. 

2.6. Lemma.  If  f: S ~ C is pseudo integrable then 

~up [ If(s)l @(s) < oc. 
LE12 "]fL 

Proof. Assume, initially, that f is real valued and let 

M = sup I f f @ l .  
Lc12 JL 

Given L in 12 let L+ = {s E L: f(s) > 0} and L_ - {s e L: f(s) < 0}. 

Since f is locally integrable it is, in particular, measurable when re- 

stricted to local sets. Hence both L+ and L_ are measurable sets, and 

therefore belong to t2. We have 

fL 'f(s)l d#(s) = / i +  f(s) d p ( s ) -  /L f(s) d#(s) 

dL + dL 

In the genera] case, it is clear that both the real and imaginary part 

of f are pseudo-integrable and therefore the conclusion holds for them, 

and therefore also for f .  [] 

Observe tha t  we have entirely avoided the question of integrability 

of Ifl. In fact, it's worth noticing tha t  it is not even clear if, under 

the hypothesis above, f is measurable! However, it is one of the main 

features of our theory tha t  only the local behavior of functions be under 

analysis. 

In the following we let L~ be the classical space of bounded,  

measurable functions on S, with the essential supremum norm. 

2.7. Proposition. Let f: S -* X be pseudo-integrable. Then there exists 
a positive constant M such that for all ~ in L~(S)  and, for all L in 12, 

II [ r @ll <- MIIr 
YL 
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U N C O N D I T I O N A L  INTEGRABILITY FOR DUAL ACTIONS 105  

Consequently C f is also pseudo-integrable. 

Proof .  Let x' be a continuous linear functional on X.  Then, clearly, 

x' o f is a pseudo-integrable scalar valued function on S, and hence, by 

Lemma (2.6), we have tha t  

N := sup / 
LE,.~.J L 

Let L be .a local set and pick 75 

_< 

This shows that  the set 

Iz'(f(s))l dis(s) < oo. 

in L~176 with rlr -< 1. Then 

s Ir Ix'(f(s))l dis(s) 

I1r fL Iz'(f(s))l dis(s) <_ m. 

= L C C, r ~ L~176 I1r -< ~} 

is weakly bounded, and hence bounded in norm, from which the con- 

clusion follows. [] 

We would like to thank Carmem Cardassi for a suggestion which 

helped simplify our original proof of (2.7). 

2.8. Proposition. If f is unconditionally integrable and r is in L~ 
then Cf is also unconditionally integrable. 

Proof .  Assume, initially, that  r is the characteristic function of a mea- 

surable set B. By the Cauehy condition (2.4), for each e > 0, let L0 

be a local set such tha t  each D in ~ which is disjoint from L0, satisfies 

II fD f dPil < c. Then 

rl i .  II--II i disll < C~ 

which says that  the Cauchy condition holds for ?$f as well. Hence ~Df is 

unconditionally integrable. If we now assume that  ?5 is a linear combi- 

nation of characteristic functions, i.e, a simple function, then the con- 

clusion obviously holds, i.e, ?$f is unconditionally integrable. 

To deal with the general ?5, let M be such that  

IlL~fdisll-<MII~II, r E L~~ E C, 
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as in (2.7). Now, given s > 0, choose r in L~(S) to be a simple function 

s a t i s f y i n g  I1r - r < c/2M. Next, applying the Cauchy condition to 

r  which we already know is unconditionally integrable, pick a local 

set L0 such that  for any local set D, disjoint from L0, 

II JDr < s/2. 

So, for all such D we have 

II Cfdpl[ <_ II ( r  r  + II r  _< ~ 1 1 r  r + ~ = e. 

This shows that  the Cauchy condition holds for 0 f  and hence that  

it is unconditionally integrable. [] 

2.9. Lemma. If f is unconditionally integrable, then, for any positive e, 
there exists a local set Lo, such that for all local sets D, disjoint from 
LO, 

Il JDCf d#[[ <_cllr CE L~(S). 

Proof.  Arguing by contradiction, suppose that  there exists r > 0 such 

that  for any local set L0 there is a local set D, which does not intercept 

LO, and a r in L~(S) such that  

II foCf@ll >  llr 

Using this, pick a local set D1 and a unit vector r in L~176 such 

that  I[ fD1 r > c. Then, letting D1 play the role of L0 above, pick 

a local set D2, disjoint from D1, and 02 in L~176 with unit norm, such 

that  II/D2 r  @11 > ~. Continuing in this fashion, we obtain a pairwise 

disjoint sequence of local sets (Dn)n and a sequence (r of unit vectors 

in L~(S) with 

II /_ Cnfd#l[ > e. 
alL) n 

Now define r = ~ n  r where XD~ is the characteristic function 

of D~. Clearly r is in L~(S), so that,  by (2.8), 0 f  is uncondition- 

ally integrable and hence, by (2.4) there is a local set L0 such that  

II fD Of @11 < c/2 for any local set D, disjoint from L 0. 
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UNCONDITIONAL INTEGRABILITY FOR DUAL ACTIONS 107 

So, for all n we have 

II fD 6f d#ll-< H fD 6f d#il + "fD 6f d#[[_< 
n hALo  n \ L o  

< II,(s)f(s)ll @(s) + 7 < IIf(s)ll @(s) + -.  
- -  h A L  0 - -  h A L o  2 

which implies that 

L Ilf(s)H @(s) > -.  
n n L  0 2 

Now, by the assumption that f is locally integrable, and hence 

Bochner-integrable over L0, we have that fL ~ IIf(8)ll @(8) < ~ .  So 

/D IIf(s)ll @(s) < ~ ,  
k = l  k nLo 

which conflicts with the conclusion of the previous paragraph. [] 

Let N(S, X) denote the space of all unconditionally integrable func- 

tions from S to X. Observe that each f in U(S, X) defines a bounded 
linear transformation 

Tf:O c L~(S) ~ (UTs 0 f d  # c X. 

(The boundedness of Tf is a consequence of (2.7)). In fact, since by 
definition, 

(U)/0 f d}.D ]l.li1 / 0 f di+t 
Jm L c.i~ J L 

we see that I ITf [I is precisely given by 

IlTsll = s u p {  H/i  Of dvll:L ~ c, IlOll_ < ~}. 

This provides a way to equip Lt(S,X) with a norm, namely Ilfll := 
IITsl I, for f d U(S,X). Actually, this is in general only a semi-norm, 
and hence, to form a normed space one needs to mod out the vectors of 
zero norm. 

2.10. Proposition. The subset ofbt(S, X) formed by the locally supported 
functions f (i.e vanishing outside some local set) is dense in H(S, X). 
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Proof .  Let f be i nb / (S ,X) .  For c > 0 l e t  L0 be as in Lemma (2.9). 

Then, if f0 denotes the product  of f by the characteristic function on 

L0, we have for any r in L~ and all local sets L, 

/L .fL ~ f  d#'[ < c"~'l" [[ ~ ( f -  f0) d~ll = 11 \L0  - 

This says that  Ilf - f011 _< e, concluding the proof. [] 

3. Fourier Inversion Theorem 
Let G be a locally compact topological group. Also let -9 be a Hilbert 

space, and denote by ~3(.9) the algebra of all bounded linear operators 

o n  .9. 

3.1. Definition. A function 

p :  G - +  ~(.9) 

is said to be of positive-type if, for every finite set { t l , t 2 , . . .  , ~ }  C_ G 

has that the n x n matriz (p(t( l t j ))qj  is a positive element of the o n e  

C*-algebra Mn (~3(.9)). 

One of our main tools in dealing with positive-type maps is Naimark's 

theorem [7], [9, 4.8], which we state below. We'd like to thank Fernando 

Abadie for having brought this result to our attention. 

3.2. Theorem.  I f  p: G ~ ~3(.9) is a positive-type, weakly continuous map 

then there is a strongly continuous unitary representation u of G on a 

Hilbert space .91, and a bounded linear operator V: .9--+ .91 such that 

p(t)  = V * u ( t ) v ,  t E a .  

Observe that ,  as a consequence, any such p must necessarily be 

strongly continuous and bounded in norm. 

Throughout  this section we shall fix a positive-type, weakly contin- 

uous map 

p :  G ~ ~ ( . 9 ) ,  

and we will let u, -91 and V be as above. 

Let us assume, from now on, that  G is abelian. Also, let r be the 

Pontryagin dual of G. We will fix the Haar measures on G and F with the 
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normalizat ion convention [5, 31.1] which yields Plancherel 's  theorem [5, 

31.18] as ~vell as the Fourier inversion Theorem [5, 31.17]. The  dual i ty 

between G and F will be denoted  by (t, x), for t ~ G and x ~ F. Tha t  

is, the value of the character  x on the  group element t is denoted (t, x). 

On the other  hand,  the inner product  of vectors ~ and r / in  the Hilbert 

spaces under  considerat ion will be denoted by (~, r]}. 

By Stone's  theorem on representat ions of locally compact  abelian 

groups, [6, 36E] it follows tha t  there exists a project ion valued measure 

E on F such tha t  
O s z) dE(z). 21(~) 

In the following result we will use the Fourier t ransform of a complex 

valued, integrable (with respect to the Haar measure) function g on G. 

Our convention for the Fourier t ransform will be 

~(z) = ./a(t, xb(t)dr,  z ~ r. 

3.3. Proposi t ion .  I f  9 is an integrable function on G and ~, r l are in S), 
then 

/Gg(t  ) (p(t)~, r/} d~=  ( f r  ~(x)dE(x)V~,  Vrl)  . 

Proof .  We have 

: .s  if(x) d (z(z)V~, Vrl} 

From now on we will assume tha t  p has compact  support .  We may, 

therefore, define its Fourier t ransform by 

[ ( t , x ) p ( t ) d t ,  x ~ F, ~(x) 
JG 
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where we unders t and  the integral wi th  respect to the s trong topology. 

By this we mean  tha t  >(x) is the bounded  linear operator  on 35 given by 

= e 

Observe, in particular,  tha t  for fixed ~ in .% the map  

x r H  (x)f 

is continuous,  since it is the Fourier t ransform of p(.)~. So ~ is a strongly 

continuous map  from r into ~3(.g). It is also easy to see tha t  ~ is bounded  

in norm. 

Given tha t  p has compact  support ,  it follows from the Plancherel  

Theorem tha t  

is a function in L2(F). This  fact is used below. 

3.4 Proposi t ion .  If g is in LI(F) r~ L2(F) then, for all ~ and rl in S), 

Proof .  Let h(x) = g(x) . Then  it is easy to see tha t  ~(x -1) = h(z). The  

left hand  side above then  equals 

; ~(x -1) (~(x)~, ~ ) d x =  ~ h(x){~(x)~, ~ / ) d x =  ~ h(t)(p(t)~, r / ) d r =  

3.5. Corollary. For every ~ and 'rl in 5% @(x-1)~, r / )  dx and d{E(x)V~, 

V@ agree as measures on r. 

Proof .  Note tha t  the map  t ~-+ (p(t)~, ~) is a continuous scalar valued, 

posit ive-type map  of compact  support .  So, by the scalar Fourier in- 

version Theorem [5, 31.17], its Fourier t ransform is in LI(F). By the 

polarization formula it follows tha t  the first measure cited in the state- 

ment  is of finite total  variation, the same being true with respect to 
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Both  measures then  define continuous linear functionals on C0(F). 

Now, if g is in LI(F) A L2(p), we have seen tha t  

/F~(X) <~(x-l){,  r/} dx = fF~(X) d <E(x)V~, Vr~} . 

So, our measures coincide on a dense subset of C0(F) and hence every- 

where. [] 

3.6. T h e o r e m .  If p is a weakly continuous, compactly supported, positive 
-type function from G to ~(59) then, .for every t in G and every measur- 
able subset L of the dual group F, with finite measure, one has 

L(t, x)~(x) dx V*E(L-1)u(t)V. [] 

Proof .  We have already observed tha t  ~ is s trongly continuous and 

norm-bounded.  Therefore, since L has finite measure,  the integral on the 

left hand  side above is well defined wi th  respect to the strong operator  

topology. Fix ~ and r / in  -9. Then  

< fL (t, oo)~(x) dx ~,~7> = /L(t,x-1) (~(x)~, r/} dx = 

= s  (t, x)(~(x-*)~, ,} dx (3__5) s (e, x)d <E(x)Vg, V~>= 

= <fL-1 (t,x)dE(x)V~, VV>= <V* fL-~ (t ,x)dE(x)V ~,rl>. 

Next observe tha t  for any measurable  set B C F 

(t, x) dE(x) : z(B>(t). 

Using this in the above calculation we obtain 

Now, since { and r /are  arbitrary, we obtain the desired conc]usion. [] 

From this point  on we will let .g be the local family of all measurable,  

relatively compact  subsets of F (see (2.1)). This said, a local set will 

henceforth mean  any measurable,  relatively compact  subset of r .  As 

before we will consider g as a directed set. 
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This brings us to the Fourier inversion Theorem for weakly contin- 

uous, positive-type, operator  valued maps.  

3.7. T h e o r e m .  It p is a weakly continuous, compactly supported, positi- 

ve-type function from G to ~(2)) then, for every ~ in 53, 

(U)f r (t, x)~(x)[ dz = p(t)(. 

Proof .  Follows from (3.6) and the fact tha t  (E(L))Lel2 converges to the 

identi ty in the strong operator  topology, a fact which will be proved 

below. [] 

3.8. Lemma.  Let u be a strongly continuous unitary representation of 

the locally compact group G on the Hilbert space 2~1, with corresponding 

spectral measure E, on the dual group F. Let V be a bounded operator 

from ~ to f~l. If  

x ~  IIV u ( t ) v I I  = o 
~---+ e 

Then 

lira Hv - z ( r ) v l l  = o. 

In addition, if ~ is in ~1, then 

lim ]1~ - E(Lf l l  = O. 
L ~  

Proof .  Let f E L 1 (G) and set 

7v(f) =/G f(t)u(t)dt  = f r  f (x)dE(x) .  

Note tha t  for any measurable B C F 

\ x c F \ B  

This, together  with the Riemann-Lebesgue Lemma  [5, 28.40], which says 

tha t  ] is in C0(F), implies tha t  

l ira liar(f) -- E(L)~r(f)l t = O. 
Let2 

Let 

e :  {T ~ ~(-~, ~1): L~,~ila ]IT- E(L)TH =0}. 
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The argument  above gives that  any operator of the form T = 7r(f)S, 
with f in LI(G) and S in ~3(~, ~51), is in 6. On the other hand it is easy 

to show that  ~ is norm-closed. So, out s trategy for proving that  V is 

in ~ will be to show that  V is the norm limit of operators of the form 

7r(f)V, with f in LI(G). Pick any f such that  f > 0 and fa f(t) dt= 1. 
For any neighborhood U of the unit in G we have 

I ] V -  7r(f)r[] = ]] . /~f(t)  ( V -  u(t)V) dti] 

<_ [ f ( t ) l lV-  u(t)r[[ dt + [ f ( t ) l l r -  u(t)VII dt 
J U  J G  \u 

< sup LLV - ~ ( t ) v l l  + 2 l l v l l /  f(t) dr. 
t c U  J G \ U  

which can be made arbitrarily small, under a suitable choice of f .  

The last part  of the s ta tement  is a consequence of what we have 

already done, for the special case of the operator V: ~1 --+ ~1 defined by 

V(~) = (7, ~) ~- [] 

Our previous result is used below, to prove the Fourier inversion 

Theorem for norm-continuous, positive-type, operator valued maps. 

3.9. Theorem.  If p is a positive-type, compactly supported function from 
G ~o ~(S~), which is norm-continuous then 

(uJr (~, z)p(x) d x  = p ( t ) ,  t G. 

Representing p(t) = V*u(t)V as we have been doing, observe Proof .  

that 

ILv - ~ (~ )Vl l  2 = LI ( v *  - v * ~ ( ~ ) * ) ( v  - ~(t )v)LL = 

= I I W V  - v * ~ ( ~ ) v  - v * ~ ( t ) * v  + v ' v i i  

<_ lip(e)- p(t)H + Hp(t)* -p(e)H, 

which converges to zero, as t -+ e, in virtue of the fact tha t  p is norm- 

continuous at e. So (3.8) applies and thus E(L)V -+ V in norm. Hence 

(U)f r (t,x)~(x)dx= lim f (t,x)~(x)dx (3"6) lim V*u(t)E(L-1)V= 
L G ~ J L  L E ~  

= V * u ( ~ ) V  = p ( t ) .  []  
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4. Multiplier valued positive-type functions 
Throughout  this section we will let G be a locally compact abelian 

group. Like before, we will denote by F its dual, and by t2 the local 

family of measurable, relatively compact subsets of F, which will again 

be viewed as a directed set. Also, let A be a C*-algebra, considered 

fixed throughout.  

The main object of s tudy in this section will be a function p from 

G into the multiplier algebra AA(A), which will be assumed to have 

compact support and to be continuous with respect to the strict topology 

of M(A) .  Given such a p, we can define its Fourier transform by 

p(x) = ~(t,  x)p(t)dr, x E r, 

which should be understood with respect to the strict topology. Pre- 

cisely, for each a in A, we have that  both 

~(t,x)ap(t)dt and fa(t,x)p(t)adt 

are well defined Bochner integrals, and hence define the left and right 

action, respectively, of the multiplier ~(x). It is easy to see tha t  the map 

x E r ~+ F(x) E M(A)  

is continuous with respect to the strict topology. 

4.1. Definition. The function p: G --~ M(A)  is said to be of positive-type 

if, for every finite set {tl, t 2 , . . .  , t~} C G one has that  the n • n matr ix  

(p(t(]tj))i,j is a positive element of M~(M(A)). 

4.2. Proposition. Given a strictly continuous, compactly supported func- 

tion p: G -+ M ( A )  of positive-type then, for any t in G, 

~-litn [ (t, x)~(x) = p(t). 
L c 1 2 J  L 

where cr-lim stands for strict-limit. 

Proof .  Let's suppose that  A is represented as a non-degenerated C*- 

algebra of operators in ~3(-9), for some Hilbert space ~. It is then clear 

that  p becomes a weakly continuous, operator valued positive-type map. 
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We may then  apply (3.6) to conclude tha t  

L(t,  x )~(x)adx  = V*u( t )E(L  1)Va 

and 

L (t, x)a~o(x) dx : aV*E(L-1 )u ( t )V  

for each a in A, where u, V and E are as in (3.2). 

Proving the s ta tement ,  thus amounts  to showing tha t  

lira E ( L ) V a  = Va, 
Lc.g 

in norm. This will follow from (3.8) once we show tha t  l i rn t~  IIVa - 

u(t)Vall = 0. For tha t  purpose note tha t  

l i r a  -  (t)v<l 2 = II *V*v  - a*V* ,4 t )Va  -  *V*,4t)*Va + a * V * V < l  

<_ Ila*p(e)a - a*p(t)aH + ]]a*p(~)*a - -  ~*P(~>II 

which converges to zero, as t -~ e, because p is st r ic t ly  continuous. [3 

5. C*-Algebraic Bundles 
This is the  main  section of the present work. The  goal which we will 

reach here is the  proof  tha t  the dual  a c t i ono f  a locally compact  abelian 

group satisfies an integrabili ty proper ty  related to certain condit ions 

which have often appeared in the li terature,  as, for example in [1], [2], 

[8], [10, 7.8.4] and [11]. 

The  most  general context in which the concept of dual action of an 

abelian group can be defined is tha t  of C*-algebraic bundles. The  reader 

interested in reading about  C*-algebraic bundles is referred to Fell and 

Doran's  book [4], which is also our main  reference in what  follows. 

Let 13 be a C*-algebraic bundle  over the locally compact  abelian 

group G. The  fiber of B over each f will be wri t ten  Be. We shall denote  

by C*(B) its cross sectional C*-algebra [4, VIII.17.2], by LI(B) the Ba- 

nach *-algebra of the integrable sections [4, VIII.5.2], and by Co(B) the 

dense sub-algebra of Ll(/3) formed by the  continuous, compact ly  sup- 

por ted  sections [4, II.14.2]. We remark  tha t  our nota t ion  differs from [4] 

with respect to Co(B). Under  the usual identifications, we will regard 

L 1(/3) as a subalgebra of C* (/3). 
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As before, let us denote the dual of G by F, and the local family of 

measurable, relatively compact subsets of F, by t2. For each x in F, let 

ax be the transformation of L 1 (B) given by the formula 

c~x(f)lt = ( t ,x ) f ( t ) ,  f E L l (B ) , t  c G. 

It is easy to see that  c~ is a welt defined automorphism of LI(B), 

which therefore extends to an automorphism, also denoted by ax, of its 

enveloping C*-algebra, namely C*(B). In addition it is clear that  the 

map 

c~:x E F ~ ctx E Aut(C*(B)) 

is a strongly continuous group action of F on C* (13). 

5.1. Definition. The dual action of F on C*(13) is that  which has just  

been defined. 

Observe that,  in case 13 is the semi-direct product bundle [4, VIII.4.2] 

constructed from an action ~- of G on a C*-algebra A, then C*(B) is 

isomorphic to A • G, in such a way that  the dual action we have 

defined corresponds to the usual dual action [10, 7.8.3] on the crossed 

product.  

Let f be in Cc(13). It will be fruitful to view f both as an element 

of C* (13) and as a map from G into the multiplier algebra of C* (13) in a 

way we will now describe. 

Initially note that  each element u in Bt (recall that  this means the 

fiber of over t) defines [4, VIII.5.8] a multiplier of the algebra LI(B),  by 

the formulas 

( g)ls = 8 c c ,  

and 

(gu)[s = g ( s t - 1 ) u ,  8 G,  

for each 9 in LI(B). Now, by [4, VIII.I.15] one can extend the above to 

a multiplier of C*(B). Thus, a function f in Co(B) defines a map 

F: C -~ M(C*(B))  

which is given, for 9 in LI(B), by 

(F(t)g)ls = f ( t )g ( t - l s ) ,  s E G 
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and 

(gF(t))l~ = g(st-i)f(t), s ~ G. 

5.2. Proposi t ion.  I f  f is in C~(13), then the corresponding F is continu- 

ous with respect to the strict topology. 

Proof .  Fixing g in C~(13) and C0 in G, consider the map 

A: (t, s) E G • G ~ II.f(~)g(t i s )  - f ( t o ) g ( t ~ l s ) l l ,  

where the norm used is that  of the fiber B~. It is a consequence of 

the continuity of the norm and the other bundle operations, that  )~ is 

continuous. 

Let V be a compact  neighborhood of t O . It is easy to see that ,  

for t in V, one has that  t ( t , s )  = 0 unless s ~ V - supp(g), which is a 

compact  subset of G. An often used topological argument now shows 

that  limt~t 0 sups~c A(t, s) = O, which, combined with the fact tha t  g has 

compact  support ,  implies that  

lim f I I f ( t )g( t- ls)  - f(to)g(tOlS)ll O, 
~-~t 0 JG 

which, in turn, can be interpreted as saying that  the map 

t ~ G H F(t)g c L~(13) 

is continuous at t O . 

Since the inclusion of L1(13) in C*(13) is continuous, we have that  

l imt~0 F(t)g = F(to)g in the norm of C* (13). A similar reasoning shows 

that  limt_40 gF(t)  = gF(to). Finally, observing that  f is bounded,  we 

can show the above continuity, even if g is replaced by an arbi trary 

element of C*(13), thus proving F to be strictly continuous. [] 

5.3. Lemma.  Let f be in Co(B), and denote by F the corresponding map 

into AA(C*(B)). Since we now know that F is strictly continuous, we 

may define the Fourier transform iv of F as in the beginning of section 

(~). Then, for all m in F, we have that F'(m) C C*(13) and 

? ( x )  = a x ( f ) .  [] 
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Proof.  Viewing both _F(x) and c~(f )  as elements of M(C*(B)) ,  all 

we need to do is show that,  for every g in C~(B) and x in F, one has 

F(x)g = o~x(f) * g. We have, for t in G, 

The last equality following from [4, II.15.19]. This shows that 

ax( f )  * 9 = / G ( s ,  x)F(s)g ds = [a(x)9. [] 

A last preparatory result, before we can prove our main theorem, is 

in order. 

5.4. Lemma.  Let f be in Cc(B) and put p = f* . f .  Denote by P the 

corresponding map into M(C*(13))~ Then P is of positive-type. 

Proof .  Let C*(B) be faithfully represented on a Hilbert space 2) under a 

non-degenerated representation. Choose finite sets {t l, t2 , . . .  , t~} _c G, 

{ a l , a 2 , . . .  ,a~} c_ Co(B) and {~1,@,. . .  , ~ }  c_.9. Then 

i , j  ~,3 

j i 

We are now" ready to present our main result. 

5.5 Theorem.  Let B be a C*-algebraic bundle over the locally compact 

abelian group G with dual F, and let p be of the form p = f* * f ,  where 

f C Cc(B). Then, for  all a in C*(13), the maps 

and 

x c r ~+ aax(p )  ~ C*(B)  

x E F ~-+ c~x(p)a E C*(B) 

are unconditionally integrable. Moreover, for  each t in G one has 

u)JF (t, x)aax(p) dx = aP(t)  
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and 

(U)~p (t, X)ax (p)a dx = P(t)a, 

where P is the corresponding map into M(C*(B)). 

Proof. By (5.2) we know that  P is strictly continuous, while the Lemma 

above tells us that  P is of positive-type. Hence we are allowed to employ 

(4.2), and conclude tha t  

 -lim f (t, = p(t), 
L c l ~ . ]  L 

which implies, for all a in C*(B), that  

(t, z ) a P ( z )  d z  = 

Now, (5.3) tells us that  f ' (z)  = ax(p), which, subst i tuted in the 

above formula brings us to the conclusion. The case in which a is taken 

to multiply c~(p) on the right is t reated similarly. [] 

6. Unconditional Integrability for Group Actions 
In this section we will conduct a brief s tudy of abelian group actions 

on C*-algebras, from a point of view motivated by theorem 5.5. Our 

results in this section will be mostly of an exploratory nature,  possibly 

paving the way for a future, more comprehensive s tudy of the present 

phenomenon.  

Let us keep the notat ion of the previous section and hence G and 

F will be locally compact  abelian groups, each being the other 's  dual. 

We will also retain the use of s the local family of of all measurable, 

relatively compact  subsets of F, with respect to which we will speak of 

unconditional integration. 

Let us also fix a C*-algebra B and a strongly continuous action 

c~: r ~ Aut(B).  

6.1. Definition. Let b be in B. We will say that  b is c~-integrable if, for 

all a in B, the maps 

z ~ r ~ - ~ a x ( b ) a ~ B  and z C F ~ - . b a x ( b ) ~ t 3  
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are uncondit ional ly integrable. 

Employing the terminology just  introduced,  Theorem 5.5 is seen to 

state tha t  the elements of the form p = f* �9 f (notat ion as in (5.5)) 

are a-integrable.  Since the linear combinat ions of such elements form a 

dense subset of of C*(13), we get an abundance  of a- integrable elements. 

Let b be an a- integrable element of B. Observe that ,  by (2.8), for 

any r in L~176 we may  define 

L(a) = (U)/ r  a E A 
.iF 

and 
f 

R(a) = (U!/r r  a E A, 

bo th  of which are well defined elements of B. It is clear tha t  the pair 

(L, R) is then  a multiplier  of /3 ,  which we will denote,  simply, by 

(L, R) = .fF r dx. 

It is worth noticing tha t  any a-integrable element satisfies the more 

usual not ion of integrabili ty (see the references given in the introduc- 

tion), namely that ,  given an a- integrable element b, there exists an 

element b0 in AA(B) such that ,  for any continuous linear functional  f 

on /3 ,  one has 

r f (ax (b ) )  dx = f(bo). 

To see this, note  tha t  by the Cohen-Hewit t  factorization theorem [5, 

32.22], any continuous linear functional  f is of the  form f(b) = g(ab) for 

some functional  g C /3' and a in B. Then,  lett ing b0 = f r  a~(b)dx we 

have 

Jr f (ax(b) ) dx = s g(a x(b) ) dx = g(abo) = f (bol 
p 

6.2. Definition. Let b be an a- integrable element o f /3 .  The  Fourier 

transform of b is the  map  b: G --~ AA(B) defined by 

= fr( t ,   ) x(b)dx 

6.3. Proposi t ion.  The Fourier transform of each a-integrable element b 

is continuous as a map from G into yM(B), with the strict topology. 
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Proof .  Given a in/3 ,  we know that  ax(b)a is unconditionally integrable 

and so, by (2.7), there exists a constant M > 0 such that  

[[ /LC(x)ax(b)adxl] < M[Ir r ~ L ~ ( F ) , L  E S. 

On the other hand, using (2.9), there exists, for each e > O, a local set 

L0 c_ p such that  

It L r176 <- ellr r c L ~ ( r ) ,  D n Lo = ~.  

Let to be in G and denote by V the neighborhood of to consisting of 

those t in G such that  [(t, x) - (to, x)l < c, for all x in L0. The reason 

why V is a neighborhood of to is precisely the Pontryagin van Kampen  

duality Theorem [5, 24.8]. 

For each t in V we have 

II s ((t, x) - (tO, x))o~(b)a &l l  -< 

<_ u/L nLo ((t,x)-(to,x)) x(V)adxll+ll _< 

< M  sup l(t,x) - (to, x)l + e sup I(t,x) - (to, x)l <_ M e  + 2s. 
x E L n L  0 x E L \ L  o 

Therefore, taking limit as L ~ s we conclude that  

Ilb(t)a - b(to)all < Mc + 2c. 

A similar argument  shows that  I lab( t ) -  ag(t0)ll also tends to zero as t 

approaches to. [] 

Every automorphism of B has a unique extension to an automor- 

phism of the multiplier algebra A//(B). This implies that  there is an 

extension of the action a to an action of r on 34(/3) (which may not be 

strongly continuous). For simplicity we will denote that  action by a as 

well. For each t in G, let A//(/3)t be the subspace of 34(/3) given by 

2L4(B)t = {m ~ 3 4 ( B ) :  ax(m) = ( t , x )m} .  

6.4. Proposition. For each a-integrabIe element b in B,  and each t in 
G, one has that b(t) ~ Ad(B)t .  
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Proof.  The proof is a simple change of variable in the definition of b(t). 
[] 

6.5. Lemma.  Let a, b E t3, Iet m, n ~ Ad(B) and let L be a local set. 

Then 

H/ im*~  m*~ II fLn*ax(b*b)ndxH �9 

Proof.  Let us assume tha t  B is faithfully represented on a Hilbert space 

-9, and let ~ and rl be unit vectors in 2). We then have 

j m*c~z(a*b)ndx ~,r I I J <az(b)n~,ax(a)mrl) dxj <_ 

1 1 

1 1 

<-J[ n*o~z(b*b)ndx[I 1 ]1 m ozx(a a)mdxH2. 

Since ~ and r] are arbitrary, the proof is concluded. [] 

6.6. Proposit ion.  The subset of t3+ consisting of the positive, a- 

integruble elements is a hereditary cone in B.  

Proof.  Let 0 < h _< k where k is a-integrable. Given c in B, using 6.5, 
1 

where we set a = b = h~, m = 1 and n = c, we obtain, for every local 

set L, 

11 JLaX(h)cdxll <~ ll /La~(h)dxll �89 H fLC* ax(h)cdxll �89 - 

c ax(k)cdxl[=. <-II fLax(k)dxH  H/i* 1 
Next observe tha t  the term H fL c~x(k) dxll is bounded with respect to 

L, because k is a-integrable. This said, we see tha t  the Cauchy condition 

(2.4) for the integrability of c*o~:~(k)c implies the Cauchy condition for 

o~x(h)c. This concludes the proof. [] 
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7. Concluding Remarks 
We have seen in Theorem (5.5) that,  for the case of the dual action of 

F on C*(/3), the set of c~-integrable elements is dense. This would seem 

to indicate tha t  dual actions could be characterized via some sort of 

integrability condition, a question that  Rieffel once suggested to us in 

private communication.  Precisely, we feel that  it would be interesting to 

be able to determine conditions over a given action of F on a C*-algebra 

B which would imply that  B is isomorphic to the cross sectional C*- 

algebra for some C*-algebraic bundle, under an isomorphism which puts 

in correspondence the given action on B and the dual action on C*(B). 

Consider, for example, an action for which the set of c~-integrable 

elements is dense. For each ~ in G, define B~ to be the subset of Ad(B) 

formed by the elements of the form b(t), where b ranges over the set 

of c~-integrable elements. It is not hard to see that  the B~'s form a 

C*-algebraic bundle over the group obtained by giving G the discrete 

topology. 

In particular, if the action we are talking of happens to be a dual 

action, it would be interesting to decide what is the relationship between 

the bundle constructed from the action and the bundle which originated 

it. For example, consider the semi-direct p roduc t  bundle obtained fl'om 

the action of the circle group S 1 on C(S 1) by translation. The C*- 

cross sectional algebra [4, VIII.17.2] turns out to be isomorphic to the 

algebra of compact  operators on 12(Z), with the dual action of Z being 

the action obtained by conjugation by the powers of the bilateral shift. 

It can be proved, in this case, that  B0 is precisely the set of Laurent  

operators with symbol in L~176 while the fiber of the original bundle 

corresponds to symbols in C(S1). Tha t  is, the hope that  the bundle 

be exactly recovered via the c~-integrable elements is not a reasonable 

one. However, Theorem (5.5) implies that ,  in the case of a general 

dual action, we always get the original fibers as a subspace of Bt. The 

problem would then be to decide a selection criteria to determine which 

elements in Bt correspond to the elements of the original fiber. This 

should, quite likely, resemble the Landstad conditions [10, 7.8.2]. 

Among other things, the interest in being able to show an action 
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to be equivalent to a dual action, is that  C*-algebraic bundles can be 

characterized via twisted partial actions [3]. The achievement of this 

goal would allow one to gain a deep understanding of the action in 

question. 
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