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Existence of the primitive Weierstrass
gap sequences on curves of genus 9

Jiryo Komeda

Abstract. We show that for any possible Weierstrass gap sequence L on a curve
of genus 9 with twice the smallest positive non-gap > the largest gap there exists a
pointed non-singular curve (C, P) over an algebraically closed field of characteristic 0
such that the gap sequence at P is L.
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1. Introduction.
Let C be a complete non-singular irreducible algebraic curve of genus
g > 2 defined over an algebraically closed field k& of characteristic 0,
which is called a curve in this paper. Let P be its point. A positive
integer v is called a gap at P if there exists a regular 1-form w on C'
such that ordp(w) = v — 1. We denote by L(P) the set of gaps at P,
which is also called the gap sequence at P. Then the cardinality of L(P)
is equal to g. Moreover, the complement H(P) of L(P) in the additive
semigroup N of non-negative integers forms a subsemigroup of N.
Conversely, let L be a gap sequence, i.e., a finite subset of N whose
complement H(L) = N\L in N forms a subsemigroup of N. The cardi-
nality of L is called its genus. We say that L is Weierstrass if there
exists a pointed curve (C, P) such that L(P) = L. Buchweitz {1] showed
that there is a non-Weierstrass gap sequence of genus 16. We are in-
terested in the maximal genus ¢ such that all gap sequences of genus
g arc Weierstrass. In fact the author (Komeda [10]) showed that all
gap sequences of genus < 7 are Weierstrass and that all primitive gap
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126 JIRYO KOMEDA

sequences, i.e., twice the smallest positive integer in H(L) > the largest
integer in L, of genus 8 are Weierstrass.

In this paper we study primitive gap sequences of genus 9 and show
the following:

Main Theorem. All primitive gap sequences of genus 9 are Weierstrass.

The following are the main ingredients of the proof of the Main Theorem:

(1) For several gap sequences L we construct affine toric varieties asso-
ciated with L for applying Corollary 4.9 in Komeda [7].

(2) We calculate the dimension of the moduli space of the pointed curves
(C, P) of genus 8 with L(P) = {1,...,6,12,13} using the method of
Stohr-Viana [14] for applying Theorem 5.4 in Eisenbud-Harris [4].

2. On primitive gap sequences of genus 9.
For a gap sequence L = {lg <y < ... <l, 1} of genus g, let M(L) be
the minimal set of generators for the semigroup H(L). Set

a(L) = (ag(L), (L), . .. ,ag-1(L)),

where (L) =1; —i— 1 forany i =0,1,... ,g — 1. Moreover, set

g—1
w(L) =" a;(L),
i=0

which is called the weight of L. We denote by a(L) the smallest positive
integer in H(L). Then 2 < a(L) < g+ 1. If a(L) = 2, then L =
{1,3,...,29—1}, which is Welerstrass. If a(L) = 3 (resp. 4, resp. 5, resp.
9), then L is Weierstrass by Maclachlan [11] (resp. Komeda [7], resp.
Komeda [9], resp. Pinkham [13]). Hence we only consider the cases 6 <
a(L) < g — 1. Eisenbud-Harris [4] (resp. Komeda [8]) showed that any
primitive gap sequence of genus g and weight less than g—1 (resp. equal
to g—1) is Weierstrass. Moreover, any primitive gap sequence L of genus
g and weight g with (L) = (09°2,m,n) is Weierstrass by Proposition
4.4 in Komeda [10]. Kim [6] showed that for any gap sequence L with
L) = (097", m") there exists a pointed trigonal curve (C, P) such that
L(P) = L. Thus to prove that all primitive gap sequences of genus 9 are
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PRIMITIVE WEIERSTRASS GAP SEQUENCES ON CURVES OF GENUS ¢ 127

Weierstrass it suffices to show that the 7 sequences in the table below
are Weierstrass.

L M(L) a(L) w(l)
(1) {1,2,3,4,5,6,10,12,13} {7,8,9,11} 06,3,4%2) 11
(2) {1,2,3,4,5,6,10,11,13} {7,8,9,12} 0%,32 4 10
3) {1,2,3,4,5,6,9,12,13} {7,8,10,11} (06,2,42) 10
(4) {1,2,3,4,5,6,9,11,13} {7,8,10,12} 0%,2,3,4) 9
(5) {1,2,3,4,5,6,8,12,13}  {7,9,10,11,15}  (05,1,4%) 9
6) {1,2,3,4,5,6,7,13,15} {8,9,10,11,12,14}  (0/,5,6) 11
(1) {1,2,3,4,5,6,7,12,15}  {8,9,10,11,13,14}  (07,4,6) 10

3. The construction of affine toric varieties associated with gap
sequences.

To prove that the gap sequences (1),(2),(3) and (4) in the table are
Weierstrass we apply Corollary 4.9 in Komeda [7] to these cases. Hence
we must construct an affine toric variety associated with each gap se-
quence. First we prepare some notations. Let Z be the set of inte-
gers. For any ¢ = 1,...,n we denote by e; the vector in Z™ whose
i-th component is equal to 1 and whose j-th component is equal to 0
if j # 4. Let L be a gap sequence. Set M (L) = {ay,...,an}. Let
or : k[X] = k[Xq,..., X, — kKH(L)] = k‘[th}heH(L) be the k-algebra
homomorphism defined by sending X; to t% for each i =1,... ,n. We
denote by Iy the ideal Ker ¢r. Moreover, we define a weight on k[X] as
follows: For any i, the weighted degree of X; is a; and for any non-zero
element ¢ of k, the weighted degree of ¢ is zero. For any monomial f in
k[ X], w(f) denotes the weighted degree of f.

The Case (1). Set a1 = 7,a9 = 8,a3 = 9,a4 = 11. Then we have

relations:
da1; = ag+az+ay, 209 =aj+az, 20a3=a]+aq and 2a4 = 2a1 +a9.
Using Lemma 4.12 in Komeda [7] the ideal [ is generated by

Xf— XoX3Xy, X3-X1X3, X3 - X1X4 and X7 - X?Xo.
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128 JIRYO KOMEDA

Set g1 = X1, go=X1, g3=X}, g1=Xo, g5=X3,06 =Xz, gr=
X4, g8 =Xz and gg = Xy.

Let S be the subsemigroup of 75 generated by b1, b9, ... ,bg, where
bj=e;fori=1,...,6,by =ej+eg+eg—eq—es5, by =eq4+eg—e1 and
bg =by+bg —by=eq4+e5+eg—ey—e. To prove that S is saturated
it suffices to show that

9 9
STRBNZOCY Nb =S
i=1 i=1

where R denotes the set of non-negative real numbers. Let

9
p= (plv"' 7p6) = Zm’tbl S Z6
i=1

with m; € Ry for all ¢. Then we may assume that 0 < m; < 1 for all i.
Hence
p1=mi+my —mg—mg > —1, py=my+my—mg =0,
p3=m3+my 20, py=my—my+mg+mg =0,
ps =mg5—my7+mg >0 and pg=mg+mg+mg >0,
It suffices to show that if p; = —1, then p € §. Then my +my +1 =

mg + mg, which implies that py > 1 and pg > 1. Hence we may assume
that p = (—1,0,0,1,0, 1), which implies that p = bg € S. Let

mk[Y] = k[Y7,. .., Yo] — k[S] = k[T®|scs (resp. n: k[Y] — k[X])

be the k-algebra homomorphism defined by n(Y;) = T% (resp. n(Y;) =
gi) where for any p = (p1,... ,pn) € Z" we denote by TP the monomial
tzl)l ---tPn. Now the k-algebra homomorphism
¢+ kIN®) = Kfty, ... ,t6] — K[H(L)]
defined by ((t;) = +@(9:) extends to (" k[S] — k[H(L)], because
w(g1929397 95 ) = w(gr), w(gageg; ') = wigs) and
w(94959697 95 ) = w(gy).

Then ¢r on = ¢’ o w, which implies that n(Ker n) C Ker ¢ = Ir. To
prove that Iy, is generated by the elements of n(Ker 7) it suffices to show
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PRIMITIVE WEIERSTRASS GAP SEQUENCES ON CURVES OF GENUS 9 129

that the above generators for I, are contained in the set n(Ker 7). Now
Ker 7 contains

Y1YoYs — YyV5Y7, Yy¥Vs — Y1Y3, Y5Ys — YaYg and Y7Y¥g — Y3Y5,

which implies that n(Ker 7) contains the above generators for the ideal
Ir,. Hence we get the affine toric variety Spec k[S] associated with the
gap sequence L, which implies that L is Weierstrass by Corollary 4.9 in
Komeda [7].

The Case (2). Set a] = 7,a9 = 8,a3 = 9 and a4 = 12. Then the ideal I,
is generated by

X3 - X3Xy, X3—X1X3, X3-—X1XoXy,

X7 - X1XoXs and X?X; - X5X3.
Set g1 = X1, 92 = X1, 93 = X1, 914 = X3, g5 = Xg, g5 = X2, g7 = X3,
gs = X4, 99 = X3 and g19g = X4. Let S be the subsemigroup of A
generated by by, b9,... b1, where b; =¢; fori=1,...,7, bg =e1+ea+
e3 —eyq, bg = e5 +eg — ey and bjg = eq4 + eg + e7 — e] — eg. Then in the
similar way to the above case we can show that S is saturated and that
Spec k[S] is the affine toric variety associated with the gap sequence L.

The Case (4). Set a1 = 7,a9 = 8,a3 = 10 and aq = 12. Then the ideal
I, is generated by
Xt - X3Xy X5 - X{X3, X3-XoXy XI-X{Xs,
X2X9 - X3X, and X7X, - X3X3.
Set
g =Xi, @=X{, g3=X3 g=2Xo,
g5 =X3, g6=X4, g7=X3 and gg=Xy.
Let S be the subsemigroup of Z5 generated by by, bs, ..., bg, where
by = ¢ fori =1,...,5 bg = e +eg —e3, by = e3 +e4 — €1 and
bs = e3 +e5 — e;. Then we can see that Spec k[S] is the affine toric
variety associated with L.
Lastly we construct an affine toric variety associated with the gap
sequence (3). The way of its construction is slightly different from the
above cases.
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The Case (3). Set a; = 7,a2 = 8,03 = 10 and aq4 = 11. Then we have
relations:
(da1 + dy)ay = dizag + digaq, dya1 + (d13 + daz)ag = dyag + digay,
2d1404 = dgra1 + dagaz, (dgo + dy)ag = 2djay + dagas,
(2d13 + do3)ag = dg1a1 + doag and
dia1 + digay = dygap + di3as,

where we set dg1 = d5 = 2 and d = dy3 = dyg = dog = dgo = 1. Hence
the ideal I; is generated by

dgp+d d d dy v dyg+d db o-d
Xl 1 —~X313X414, X11X313 23 —X22X414,

2dy4 dyy ydag yPaatds 2d1 <, dag
X =XM1 X%, X, - X 1 X537,

2dq3-+dag day y95 dy rdig dyg v d13
. - X" X5? and  XTXM - X X

Set
d d d d
g =X, go=X", g3=X3", g=X3%,
d dr d
g5 = X414, ge = X22 and gr = X242.

Let S be the subsemigroup of Z* generated by by, bs,... by, where
b = e for i = 1,...,4, by = ey + ey —es, bg = 2e3 +e4 — ey and
by = e1 + 2e9 — 2e3. Let

7
p=(p1,...,04) = y_mib; € Z*
=1
with 0 < m; < 1 for all . Then p; > 0, po > 0, p3 > —2 and psg > 0.
Let p3 = —2, i.e., m3 + 2mg + 2 = m5 + 2my. Then

p1=m1 —mg+ (Mg +2me +2—my) =my +m3+meg—my+2 22

and po = mo + m3 + 2mg + 2 > 2. Hence we may assume that p =
(2,2,—2,0), which implies that p = b1 + by € S. Let pg = —1, ie,
ms + 2mg + 1 = ms + 2my7. Then py > 1 and py > 1. Hence we may
assume that p = (1,1, —1,0), which implies that p = b5 € S. Therefore
the semigroup S is saturated. Hence we get the affine toric variety
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PRIMITIVE WEIERSTRASS GAP SEQUENCES ON CURVES OF GENUS 9 131

Spec k[S] associated with the gap sequence L.

4. Dimensionally proper gap sequences.

In this section we show that the gap sequences (5) and (7) are Weier-
strass. In fact, we can prove that these gap sequences satisfy the follow-
ing:

Definition 4.1. For a gap sequence L of genus g, we define a locally
closed subset of M, 1 by

CL={(C.P) € My | L(P) = L},

where M, 1 denotes the moduli space of pointed curves of genus g. Then
the weight w(L) of L gives an upper bound for the codimension of any
irreducible compomnent of Cr, in M, 1. The gap sequence L is said to be
dimensionally proper if there exists an irreducible component of Cy, of
codimension w(L), i.e., dimension 3¢ — 2 — w(L).

Using the theory of limit linear series Eisenbud-Harris [4] showed
the following which is useful for investigating whether a primitive gap
sequence is dimensionally proper.

Remark 4.2. Let L be a dimensionally proper gap sequence of genus

g — 1 with a(L) = (ag,1,... ,04_2). Then the gap sequence M with

a(M) = (8o, B1,- .- ,By-1) is dimensionally proper if it satisfies one of

the following:

1) fo=0,8=0a;_1 (i=1,...,9—1),

2) forsome 0 < j < g—1, 08 =0, 08 =a;_1+1, 6 =1 (1 =
1,...,9—1,i#j).

The Case (5)., i.e., (L) = (06, 1,4,4). By Proposition 4.4 in Komeda
[10] the gap sequence Lg with a(Lg) = (06, 4, 4) is dimensionally proper.
Hence it follows from Remark 4.2 that L is also dimensionally proper.

For the sequence (7) we use the following which is the main theorem
in Stohr-Viana [14].

Remark 4.3. Let g, 0 and p be integers satisfying g > 5and 0 < g < p <

1
2042. Ifp <3 [g_—;_} +4— 0o, then the moduli space of pointed trigonal
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curves of genus g with gap sequence {1,...,0,0 +p—g-+1,...,p} has
dimension 2g + 3 —p+ 0.

In order to show using Remark 4.3 that the sequence (7) is dimen-
sionally proper, we need the following remark which is due to Oliveira
[12].

Remark 4.4. If (C, P) is a pointed curve of genus g > 5 with gap sequence
{1,...,9—2,29 — 4,29 — 3}, then C is trigonal.

To sée the truth of the above remark, calculate the dimension of
the complete linear system |K¢o(—(2¢g — 5)P)| where K¢ is a canonical

divisor on C.

The Case (7)., i.e., a(L) = (07, 4,86). It follows from Remarks 4.3 and 4.4
that the gap sequence Ly = {1,2,3,4,5,10,11} is dimensionally proper.
Since we have a(L1) = (0%,4,4), using Remark 4.2 twice we see that L

is dimensionally proper.

5. The moduli space of pointed curves with gap sequence
{1,...,6,12,13}.

In the last section we shall show that the gap sequence (6), ie., L =
{1,...,7,13,15}, is Weierstrass. Since we have o(L) = (07,5,6), by
Remark 4.2 it suffices to show that the gap sequence Lg with a(Lg) =
(06, 5,5) is dimensionally proper. To calculate the dimension of Cr, we
prepare some notations and statements from Stéhr-Viana [14].

Definition 5.1. Let C be a trigonal curve of genus g > 5 and g;)l, a
unique trigonal linear system on C. For any positive integer i, set

ai = h0((i + 1)g3) — h°(ig3).
Let
m =Min{i|la; > 2} =1 and n=Min{ilo; >3} —1.

The integers m and n are called the Maroni invariants of C, which
satisfy

—4
m<n,g=m+n+2 and ng—g—.
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(See page 252 in Coppens [2]). ,
Hereafter we are in the following situation: Let C be a trigonal
curve of genus g > 5 with Maroni invariants m and n. Then we have a
canonical embedding of C in the projective space P9~ 1(k) = Pmtntl(k)
and by choosing projective coordinates in a convenient way, we may
assume that C lies on the rational normal scroll S, defined by the set

1
{mo:21: ... Typgnt1) € prtnT (k) |
rank(xo coe Tl Tpgl - Tnam )<2}'
rT ... Ty Tpn4+2 oo Tp+m—+1

Moreover, we define two nonsingular rational curves D and £ which are

contained in S,,,, as follows:

D={@ :a"%:...:0":0:...:0)| (a:b) e PL(k)}
and

E={0:...:0:a™:a™%:....0™) | (a:b) c P (k)}.

Let P be a point of C. Set hp = max{(C.B)p | B € |D|} where (C.B)p
denotes the intersection multiplicity of the curves €' and B at the point
P. Then hp is an invariant of the pointed curve (C, P). (See page 70
in Stohr-Viana [14]). Moreover, we call P an exzceptional point if m < n
and if it lies on the curve E of negative self-intersection number m — n

on the ambient scroll.

Remark 5.2, If P is an unramified point of C, that is to say it is unram-
ified over the trigonal covering 7 : ¢ — P!, then

2n—m+2 when P& E,

m+ 2 when P € E.

(See Corollary 2.3 in Stéhr-Viana [14]).

n—m<hp§{

Remark 5.3. If P is an unramified point of C', then the integers 1,... , n-+
lLand hp+1,... ,hp + 14+ m are contained in L(P). (See Proposition
2.4 in Stéhr-Viana [14]).

The following are the key propositions in Stohr-Viana [14].

Remark 5.4. (1) Let h, s and r be integers satisfying

n—-m<h<n—-m+l+sand0<s<m<r<n+3-+2s.
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Then the isomorphism classes of the pairs (C, P) of trigonal curves C
with Maroni invariants m and n and of unramified nonexceptional points
P € C with invariant hp = h and gap sequence {1,... ,n+2+s,n+
3+s+r—m,...,n+2+r} form a quasi-projective rational algebraic
variety of dimension 2g +5 —h — 7+ s (resp. 29 +4—h —r+s) when
m < n (resp. m = n), provided that

r<3h+3m—2n-—sand h <m+3, or that r <2h+2m —n —s.
(See Proposition 3.4 (a) in Stohr-Viana [14]).
(2) Let t, s and r be integers satisfying
1<t<2m-—n+2andt—1<s<m<r<n+3+2s.

Then the isomorphism classes of the pairs (C, P) of trigonal curves C
with Maroni invariants m and n and of unramified exceptional points
P € C with invariant hp = h = n —m +t and gap sequence {1,... ,n+
24+s,n+3+s+r—m,...,n+2+r} form a quasi-projective rational
algebraic variety of dimension 2g+4-—h—r+s provided that r < 3t+n-—s.
(See Proposition 3.5 (a) in Stohr-Viana [14]).

In the case 'L(P) = Lg the point P must be unramified (See Coppens
[2], [3] and Kato-Horiuchi [5]). Hence we can calculate the Maroni
invariants m and n and the invariant hp of the pointed curve (C, P) as

follows.

Lemma 5.5. Let (C, P) be a pointed trigonal curve of genus 8 with
L(P) = Ly and Maroni invariants m and n. Then the following state-
ments hold.
(1) (m,n)=(2,4) or (3,3).
(2) If (m,n) = (2,4), then hp = 3.
(3) If (m,n)=(3,3), then hp =1 or 2.

Applying Remark 5.4 to our case we get the following results on the
dimensions of some subvarieties of the moduli space C,.

Proposition 5.6. (1) The algebraic variety of the isomorphism classes
of the pairs (C, P) of trigonal curves C with Maroni invariants 2 and 4

Bol. Soc. Bras. Mat., Vol. 30, N. 2, 1999



PRIMITIVE WEIERSTRASS GAP SEQUENCES ON CURVES OF GENUS 9 135

and of unramified nonexceptional (resp. exceptional) points P € C with
invariant hp = 3 and gap sequence Loy has dimension 11 (resp. 10).

(2) The algebraic variety of the isomorphism classes of the pairs (C, P)
of trigonal curves C with Maroni invariants 3 and 3 and of unramified
points P € C wilth invariant hp = 2 and gap sequence Lo has dimen-
ston 11.

To calculate the dimension of Cr,, by Lemma 5.5 and Proposition
5.6 it suffices to consider the isomorphism classes of the pairs (C, P)
of trigonal curves C' with Maroni invariants 3 and 3 and of unramified
points P € C' with invariant hp = 1 and gap sequence L.

Let (C, P) be a pointed curve as in the above. Then we may assume
that the curve C is defined by the equation

4

0= flz,y) =2+ 0203:2 + 03ox3 + cq0x” + C50:1:5

+ {1+ 0213:2 + 031503 + C41$4 + 651:135)3/
5, 2
)y
2 3 4 5
+ (co3 + c13% + c237” + €33%° + c43%” + 5377 )Y

+ (c12% + c220® + c3003 + cgpat + exon
3

and that the point P corresponds to (z,y) = (0,0). (See Theorem 1.1
and Proposition 3.1 (1) in Stohr-Viana [14]). The isomorphism class of
(C, P) determines the coeflicients ¢;; ‘s uniquely up to the substitution
Cij — ci+j’lcij where ¢ € k*. Thus we attach to each c;; the weight
i+ j — 1. Since P is unramified, z is a local parameter at P. We
write y as a power series in the local parameter z, say y = Sy bz,
Moreover, the gap sequence at P is equal to 1,2,3,4», 5,6,12,13 if and
only if b1b3 — b3 # 0 and

1
b1bs — b3

=10 when!l=56,7,8,9,10,

b2 —boby )b bi1bs—boba)b
(b5 —bobyg)by o+ (b1bg—bab3) l_‘l){i’ébl when [ =11

(See Remark 2.8 in Stohr-Viana [14]). Now we have
0= f('ray) = f(xa Zblml)'
=1

Comparing the coefficients of z" for each r (with 1 < r < 10), we
can write each b, as a polynomial expression of the coefficients ¢;; of
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the equation f(x,y) = 0 defining C. By using the relations among
by, b2,b3,b4,b;_9,b;_1,b; for each I (with 5 <1 < 9) we can show that the
coefficients ¢xg, c51, 59, 53 and ¢q3 are written by rational expressions
of the remaining 14 coeflicients cag, 30, €21, €12, €03, €40, €31, C22, €13, C41,
€39, €93, 42 and c33; the denominators are powers of bibg — b% = ¢30 —
€21 + €12 — Co3 — c%o. Using the relation with [ = 10 we obtain a non-
trivial (and even irreducible) polynomial equation (of degree one in cg9)
between the above 14 coeflicients. Thus we get the following proposition:

Proposition 5.7. The algebraic variety of the isomorphism classes of the
pairs (C, P) of trigonal curves C with Maroni invariants 3 and 3 and
of unramified points P € C' with invariant hp = 1 and gap sequence Ly
has dimension less than 13.

Theorem 5.8. We have dim Cr,, = 12. Hence Lq is dimensionally proper.
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