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Complete rotation hypersurfaces
with H, constant in space forms

Oscar Palmas!

Abstract. In this paper we classify all complete rotation hypersurfaces with Hy,
constant in R®T! and H™!, where Hj, is the normalized k-th symmetric function of
the principal curvatures. Partial results are also given for sntl,
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Introduction

Minimal surfaces are among the most studied objects in differential ge-
ometry. They are characterized by H = 0, where I is the mean cur-
vature of the surface. In recent years, some of their properties have
been generalized to constant mean curvature hypersurfaces, and also,
to hypersurfaces with Hj constant, where Hj is the normalized k-th
symmetric function of the principal curvatures of the hypersurface.

Until now, there have been few examples of this second class of
hypersurfaces. In [1], do Carmo and Dajczer studied the rotation hy-
persurfaces with constant mean curvature, and, some years later, Leite
and Mori ([3], [4]) classified the complete rotation hypersurfaces (c.r.h.,
for short) with constant scalar curvature in space forms.

In this paper we follow the techniques on the papers above to classify
c.r.h. with Hy, constant in R*H1 H"+1 and $"*1. In the case of HH,
we will describe all three types of rotational hypersurfaces, as defined
in [1]. We mainly use Leite’s methods, introduced to us by professor M.
P. do Carmo, to whom we are indebted for encouragement and constant

Received 13 March 1998.
lPartially supported by DGAPA-UNAM, México; CONACYT, México, under
Project 1068P, and CNPq, Brazil.



14Q OSCAR PALMAS

guidance. We had also fruitful discussions with M. L. Leite; some of
the results here stated are contained in her joint work with Hounie [2],

obtained independently from us.

1. Spherical rotation hypersurfaces in space forms

1.1. Notation and basic facts

Let M™% (¢) be a complete, simply-connected riemannian manifold with
constant curvature ¢,¢ = 0,—1,1. Our models for Mt will be the
euclidean space R™1, for ¢ = 0; the upper semispace

£ {z € R”+1;xn+1 > 0},

for ¢ = —1; and the unit sphere 8?71 C R"*2, for ¢ = 1, with the usual
metrics.

Definition 1. A (spherical) rotation hypersurface M™ C M™+1(c) is an
O(n)-invariant hypersurface, where O(n) is considered as a subgroup of
isometries of M™T1(c).

Remark. Strictly speaking, we should add the word spherical to our def-
inition in the case ¢ = —1, because in this case do Carmo and Dacjzer [1]
defined another types of rotations (giving rise to the so-called parabolic
and hyperbolic hypersurfaces, which we will analyze in the second part
of this paper). As in this first part of the paper we will consider only
O(n)-invariant hypersurfaces, we will drop the word spherical for the

moment.

O(n) fixes a geodesic v (the revolution axis) and rotates a curve «,
called the profile curve. We choose v as {z € M”H(c);ml = =T, =
0} and a contained in {z € M™T1(¢);z9 = --- =z, = 0,21 > 0}.

The orbit of every point in « is an (n — 1)-dimensional sphere. We
choose as parameters of our rotation hypersurface (s, ©), where s is
the arc length of o and © = (#1,...,0,_1) parameterizes the (n — 1)-
dimensional sphere given by the orbit of «(s). We will also use the
following notation: r(s) will denote the (Riemannian) distance from a(s)
to v, realized by a point P(s) in v, and h(s) will be the (Riemannian)
height of P(s) in +, with respect to a fixed point in . Then (see [3] or
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COMPLETE ROTATION HYPERSURFACES 141

5]) the first fundamental form of M is given by
I= f2(r(s)Y gi(©)df; @ db; + ds ® ds

where g;; is the metric of constant sectional curvature 1 in an (n -
1)-dimensional sphere, and f(r) = r,sinhr, or sinr, for ¢ = 0,—1,1,
respectively.

Also, the fact that the profile curve « is parameterized by arc length
imposes the following restriction over f and h:

P 4 <Z—f>2h2 Y (1)

,
Theorem 1. (do Carmo, Dajczer [1].) The principal curvatures x; of M

V1 cf?2— f2

f

are
K =

fori=1,...,n—1, and
ftef

T i p

where the dot denotes the derivative with respect to s.

The formulas in the theorem above are valid only when 2 <1—cf?
The set of pairs (f, f) satisfying this constraint and f > 0 will be called
the relevant region.

Let Hjy be the normalized k-th symmetric function of the principal
curvatures of an hypersurface:

(Z) Hk = Z I{il Iiz‘Q e I{ik (2)

1<iy <ig < <ig<n

Proposition 1. The rotation hypersurface M™ has the prescribed cur-
vature Hy, k < n, if and only if f satisfies the following differential
equation:

RHfE = (= B0 —of? = OE — k0 —ef? - P (Frens ()
for k <n.
Proof. It follows from (2) and theorem 1. 0
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From now on, we will suppose that Hj is constant.

Proposition 2. Equation (3) is equivalent to its first integral

Gelf, 1) = I8 = ef? = J2)% — Huf*) = A= const.  (4)
for k <mn.
Proof. We obtain (4) multiplying (3) by f* %! and integrating. O
For later reference, we write also the formula for the gradient of Gy:
VG, P =" = ef? = ) (0 - W01 - ) — enf®) —nHi ",
— bf (= cf? — )

for £ < n, and
VGulf,]) = (~nef(1—cf? = F2)"F —nH, /"', —nf(1—cf>— }2)"7)

for k =n.

Following Leite [3], we will obtain our results studying the level
curves of G. The cases k = 1,2 were studied in [1], [3] and [4] and some
of the results here stated in the case k > 2 were obtained independently
by Hounie and Leite in [2].

Equation (4) tells us that a local solution f of (3), paired with its
first derivative, denoted (f, f), is a level curve of the function

Gr(u,v) = u"*((1 — cu — oD% — Huh) (5)
with u >0 and 1 — cu? — v2 > 0.
Lemma 1. The sets (f, f), where f is a solution of (3), are the connected

components of the level curves of Gy contained in the relevant region.

Proof. The theory of ODE implies that any local solution of (3) can
be extended through values for which (f, f) is interior to the relevant
region. O

Definition 2. A solution of (3) is complete if either f is defined for all s
or if the pair (f, f ) only admits (0, 1) as limit values.

Geometrically, complete solutions of (3) give rise to a complete ro-
tation hypersurface. When (f, f) has (0,1) or (0, —1) as limit value, we
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claim that the profile curve meets orthogonally the axis of rotation, be-
cause f2 = 1 implies (%%)2 = 1; but %(O) = 1, so that (%)2 = 1;
substituting this into (1) we have % =0, so %f— = 0; this last equation
proves our claim.

Before concluding this section, let us say that an hypersurface corre-
sponding to a constant solution of (3) is called a cylinder. Also, we say
that a rotation hypersurface M™ C M™*1(c) with axis « is cylindrically
bounded if there exist a complete cylinder with same axis v such that

M is contained in the closure of the component of M — C containing 7.

1.2. Complete rotation hypersurfaces in R** !
1.2.1. The case k < n
Equations (3) and (4) read in this case
. v kD
nHif* = (n— k)0 - )5~k - 3T}y
. e o k
Gulf, ) = "M~ 1% — Hif*) = A,
We first look for the cylinders in R™t! with Hj, constant; they must
satisfy the condition
nHyf¥=n —k (6)

Proposition 3. (Complete cylinders with Hy constant in Rk < n.)
(i) There are no complete cylinders in R with Hy, < 0, k even.

(i) There are no complete cylinders in R™™ with Hy, = 0.

(iii) For every Hy > 0, there is a complete cylinder in R+ given by

nHy,
Proof. It follows directly from equation (6). O

We note also, in case (iii) of the above proposition, that the corre-
sponding value of A = Gi(f, f), which we denote by Ay, is given by

n—k
k/n—k\ &
Ag = — .
0 n(nHk)

Theorem 2. (Classification of c.r.h. with Hj, constant in R*!, k < n)
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(i) There are no c.r.h. in R" with Hy < 0 for k even.

(ii) Up to isometries, there is only one monoparametric family of em-
bedded c.r.h. with Hy = 0, which converges to a hyperplane. If
2(n — k)/k = 1, the profile curve is a parabola, if (n — k)/k = 1,
it is a catenary and if (n — k)/k > 1, it asymptotizes two horizontal
lines.

(iii) Up to isometries, there is only one monoparametric family of embed-
ded c.r.h. with Hy constant for any Hy > 0; these hypersurfaces are
pertodic and cylindrically bounded, and they converge, on one side,
to a sequence of spheres, pairwise and vertically tangent; and on the
other, to the cylinder given in case (iii) of Proposition 2.

Proof. Every level curve (see figure 1) can be seen as the smooth union

of two graphs

. A
(N2 =1 (Hpf* + fm—)?/’“

Figure 1(a) corresponds to the case Hy < 0. For every A > 0, the
corresponding level curve leaves the relevant region when Hy f*+ A =0,
so there are no complete hypersurfaces in this case.

| | (

Figure 1: Level curves of Gy, k < n, for R**1. (a) Hy < 0; (b) Hy = 0; and
(c) H > 0.

=

Now, let us consider Hy = 0; (G, has the form
. e ok
Golf, )= "Fa—-fHZ =4 (7)

From this formula and the restrictions over f and f, we have that
the set of admissible values for A is [0, 00). A = 0 gives f2 = 1, so that
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f(s) =r(s) = £s and h(s) = 0, equations corresponding to a hyperplane.
If A # 0, we solve (7) for f2 to obtain

This expression shows that, for every such A, f can assume arbitrarily
large values, so r = f has no upper bound and every corresponding hy-
persurface is not cylindrically bounded. Also, f = r attains a minimum
r1 > 0 and this last expression let us set A = r?*k. We use (1) to write

Away from rq, we divide A2 by f2 =2 to get
TQ(n—lc)//c

D
dr) — ,2(n—k)/k _ 7nf(n—k)/k

This implies that A is given by the following integrals:

(n—k)/k 1
h =+
g / \/7,2(n—k:)/k _ T2(n—k)/k

The analysis of the convergence of these integrals for 2(n — k)}/k = 1,
(n—k)/k =1and (n —k)/k > 1 was done in [3] (p. 294) and we
shall omit it. We must mention that Hounie and Leite [2] made a more

detailed analysis of the convergence of this integrals, so we remit the
interested reader to their paper.

When Hy > 0, the level curves [see figure 1(c)] corresponding to
complete hypersurfaces are given by A € [0, Ag], where Ag is the value
obtained after Proposition 2; the value A = 0 gives, for example, the
portion of the ellipse

A

contained in the relevant region; this curve joins (0,1) to (0, —1), and its
corresponding hypersurface is a sphere parameterized by

0= e (8500 e ()
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The translations of this sphere along the revolution axis give the se-
quence of spheres pairwise and vertically tangent.

As we said before, the value A = Ag gives a cylinder; all level curves
given by A € (0, Ag) correspond to complete, periodic and cylindrically
bounded hypersurfaces (the proof of this fact is entirely similar to that
of the case k = 2, which can be seen in [3], p. 295). 0O

1.2.2. The case k = n
In this case, equation (3) takes the form

n—2

Hof" = -1~ f*"7 ff 8)
Again, first we look for constant solutions of (8), but in this case,

the condition f = 0 implies H, = 0; conversely, H, = 0 implies that
every constant f = c¢ is solution of (8).

Proposition 4. There are complete cylinders with H, constant in R"t1
if and only if Hy, = 0.
Now we study the general case.

Theorem 3. (Classification of c.r.h. with H,, constant in R”™1) The only
c.r.h. with H,, constant in R"! are the hyperplanes, the cylinders and
the spheres.

Proof. Figure 2(a) shows the level curves of G,, for H, < 0; again, it
is easy to show that every level curve leaves the relevant region. Also,
figure 2(c) shows the level curves for H,, > 0; in this case, the only
complete solution of (8), according to our definition, corresponds to the
value A = 0, which gives, for example, the sphere parameterized by

r(s) = Hi/n sin (H}l/”s) )

h(s) = — cos (H}/ns)

1
oy
This implies that the only c.r.h. in R**! with H, # 0 are the spheres.
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=

0 1 0 10 1

(a) (b) (0)

Figure 2: Level curves of Gy, for Rt () H, < 0; (b) H,, = 0; and (c)
H, >o0.

For H, = 0, the level curves of

Gn(f, /)= (1~ FHm/?

are horizontal lines [see figure 2(b)]; those corresponding to complete
hypersurfaces are given by f2 = 1 (so, f(s) = r(s) = +s and h(s) = 0,
an hyperplane) and f =0, which gives a cylinder. O

We note that, if the level curve has (0,a) as limit value, where a €
(—1,1), then the corresponding hypersurface meets the rotation axis
with a non-right angle, so this hypersurface is not complete.

1.3. Complete rotation hypersurfaces in H"t!

1.3.1. The case k < n
Let us write down the formulas (3) and (4) for this case:
. k . k-2 .
nHif* = (n = k)14 2= 125 k(s 2 T (F - NS
y n— N

Gelf /) = "M+ 2 - A% - Hf') = A (9)
We will use the hyperbolic expression of h?, obtained from (1):
cosh® s (14 f2)2

(10)

Before stating our next theorem, we recall that we are dealing with
spherical hypersurfaces in H* 1.
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Theorem 4. (Classification of c.r.h. with Hj, constant in H**1, k < n)

(i) There are no c.r.h. with Hy, < 0 for k even.

(ii) Up to isometries, there is only one monoparametric family of embed-
ded c.r.h. with Hy, € [0,1). These hypersurfaces are not cylindrically
bounded, and for Hy = 0, they converge to a totally geodesic hyper-
bolic space H™. The profile curves are asymptotic to two geodesics.

(iii) Up to isometries, there is only one monoparametric family of em-
bedded c.r.h. with Hy = 1. These hypersurfaces are not cylindrically
bounded and they converge to a horosphere.

(iv) For any Hy > 1, there is a one-parameter family of embedded c.r.h.
with Hjy constant, periodic and cylindrically bounded, which con-

verges to a sequence of geodesic spheres.

Proof. Again, we will study the level curves of G (f, f) with the restric-
tions 1+ f2— f2 >0 and f > 0. The proofs are entirely similar to those
in the euclidean case and we shall only point out some details. Figure

3 shows these level curves.

—7
@

0 1

P
N o

(@) (b) (©) (d) (e)

Figure 3: Level curves of G, k < n, for gl (spherical case). (a) Hy < 0;
(b) Hy, =0; (¢c) Hg € (0,1); (d) Hi = 1; and (e) Hy, > 1.

(1) Figure 3(a) shows the case Hj, < 0. Every level curve leaves the
relevant region in a finite time, so we have no complete hypersurfaces in

this case.
(ii) Figure 3(b) shows the case Hy = 0; now, G can be written as

Gilf. =t (1 2= 1) = a (1)

If A =0 and f(0) =0, then f(s) = sinh(s), so that r(s) = s, h(s) =0
and M is an n-dimensional hyperbolic subspace of H*11.
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Figure 3(c) shows the case Hy € (0,1); if A =0 and f(0) =0, f is

given by
sinh (\/ 1— 5/k5>

1 — m*

fls) =

For A # 0, the function f, and therefore r, has no upper bound,
8o no hypersurface is cylindrically bounded. Also, for every such A, f

attains a unique minimum f1. Using (9), we have

o1y fo (A—;fifn>2/k

Away from f1, we may divide A2 given in (10) by f? to obtain

<@>2¥ 1 (A+kan)2/k
df ) (L4 27 (14 f2) 2000k — (A 4 Hy fr)2/%

but the second factor converges when f — oo; this implies that A(f) is
uniformly bounded, which means that the profile curves asymptotizes
two geodesics.

(iii) [See figure 3(d)]; when A = 0 and Hy = 1 in (9), we obtain
1— f2=0;if f(0) =0, then f(s) = +s. From (10),

- ()
o\l +s2

If h(0) = 0, then +A(s) = log V1 + s2. Using polar coordinates (r, ¢). and
recalling, from hyperbolic geometry, that tan ¢ = sinhr(s) = f(s) = +s

and e” = p (where p and 7/2 — ¢ are the standard polar coordinates
in the plane), we have p = (sec )*!. The level curve corresponding to
p =sec, or pcos¢ = 1, is a horizontal line; the curve corresponding to
p = cos ¢ is the inverse of this horizontal line with respect to the unit

circle. The associated hypersurfaces are horospheres.
(iv) Finally, figure 3(e) shows the level curves of Gy, for Hy > 1. All
facts asserted in (iv) can be proved as in the euclidean case for Hy > 0.
0
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1.3.2. The case k = n

Theorem 5. (Classification of c.r.h. with H,, constant in H? 1)
(i) There are no c.r.h. with H, < 0 for k even.
(ii) Up to isometries, there is only one monoparametric family of em-
bedded c.r.h. with Hy, € [0, 1], not cylindrically bounded.
(iii) Up to isometries, there is only one monoparametric family of com-
pact embedded c.r.h. with H, > 1, eylindricolly bounded, convergent

on one side to a cylinder.

Proof. The level curves corresponding to this case appear in figure 4.
Formulas (3) and (4) read

n-2

Hof" =+ 2= 1272 (f- Hf
Gulf, )=+~ FH% —Hofr = A

o

IS o S =S )

o

N o
[

(a) (b) (c) (d) (e)

Figure 4: Level curves of G, for g1 (spherical case). (a) H, < 0; (b)
H, =0; () H, €(0,1); (d) H, = 1;and (e) H,, > 1.

As before, when H, < 0, the level curves of (5,, leave the relevant
region f2 — f2 <1 [see figure 4(a)].

When H, = 0 [see figure 4(b)], the level curves of G,, = A are
hyperbolas (possibly degenerate). We obtain the following expressions
for f:

sinh s, A=0
V1— A%2/msinhs, A€ (0,1)
fls) = ets A=1

VA2/m —1coshs, A>1
The more interesting case is A = 0, which gives, as in the previous

case, an n-dimensional hyperbolic space.

Bol. Soc. Bras. Mai., Vol. 30, N. 2, 1999



COMPLETE ROTATION HYPERSURFACES 151

The analysis of the remaining cases is similar to that of the case
k < n; we show in Figures 4(c), (d) and (e) the behaviour of the level
curves for H,, € (0,1), H, = 1 and H, > 1, respectively. O

1.4. Complete rotation hypersurfaces in 5™

We only have partial results in this case; in particular, the problem of
embeddedness is not as clear as in R*™! or H*t!. The level curves of
G, are similar to the ones obtained in [3].

1.4.1. The case k < n
Formulas (3) and (4) read:
’ o k . o k2 .
nHyf* = (n—k)(1— [~ )2 k0 - 2= )7 (f - N,
. _ ca k
Grlf, )= "M - 2= 1% — Heff) = A,

First we study the critical points of Gy; calculating VG, we see that
these critical points must satisfy 1 — f2 — f2 = 0, in which case Hy, = 0,
or f =0, which gives the following condition on f:

k-2
@-fﬂQ «n‘M—nﬂ)~Mﬁﬂ:ﬂ.

There is a special value of Hy, denoted by H, ,9 , which has only one

critical point; it is given by

9 (k- T
HQ:--( — ) .

n\n—k

For this value of Hy, the corresponding value of f satisfy
2 n—k
77= n—2

Now we can state our theorem; until now, we have only the following
(partial) result.

Theorem 6. (c.r.h. with Hj constant in 8711 &k < n)
(i) There are no c.r.h. with Hy < HY for k even.

(ii) Up to isometries, there is only one c.r.h. (in fact, an embedded cylin-
der) with Hy = Hy.
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Proof. (i) Figure 5(a) shows the level curves for Hy < HY. Every
level curve leaves this region in a finite time, so we have no complete
hypersurfaces in this case.

(ii) The situation for this case is almost the same as in case (i),
but now a critical point appears suddenly, giving rise to a cylinder [See
figures 5(b) and (c)]. a

1

(a) (b) (c) (d) ()
Figure 5: Level curves of G, k < n, for s"t1 (a) and (b) Hx < HY; (o)
HY < Hj, < 0; (d) H = 0;and (e) Hy, > 0.

We will make some remarks on the cases Hy, > H{ in the final section

. of this paper.

1.4.2. The case k = n
The function GG, is given by

n
Galfs )= (1= 2= J2) " - H.f" = A
Figure 6 shows the level curves of (G, in this case.

If H, < 0 [Figures 6(a) and (b)], the only complete hypersurface
corresponds to the unique critical point of G,,, which satisfies

nf(— B2 i, et <o,

or
1= (1+ (—Hn)? (=) f2,

All other level curves leave the relevant region.

It H, > 0 [Figures 6(c) and (d)], G,, has no critical points and
the only complete solution according to our definition is obtained from
Gn(f, f) =0, so that

1= (H2"+ 1) f2 4 f2
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We call the corresponding hypersurface a parallel, in analogy with the
situation in S2. We have then the following:

(b) (d)

Figure 6: Level curves of Gy, for s"*t1 (a) and (b) H,, < 0; (¢) H,, = 0; and
(d) H, > 0.

Theorem 7. (c.r.h. with H, constant in S*T1) The only c.r.h. with H,
constant in 8" are the cylinders and the parallels.

2. Rotation hypersurfaces in hyperbolic space

2.1. Basic facts
In this section we define the parabolic and hyperbolic rotation hyper-
surfaces, as given in (1], using the hyperboloid model for the hyperbolic
space; for completeness, we have included in the definitions the spherical
case just analyzed.

Let

L2 = {z=(21,...,20p0), 2 € R}
with the Lorentzian metric
(T,y) = —T1y1 + Toy2 + - - 4 Tpa2Yn+2,

where y = (y1,...,Yn+2). The (n + 1)-dimensional hyperbolic space is
given by
H ' = {2 e L2 (2, 0) = —1)

An orthogonal transformation of L™ is a linear map preserving (, ),
and the orthogonal transformations define, by restriction, all isometries
of H**1, P* will denote a k-dimensional linear subspace of L"*2, and
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O(P*) will be the set of orthogonal transformations of L2 with posi-
tive determinant which leave P* pointwise fixed.

Definition. Let P2 ¢ P3 and C be a regular C? curve in P3 nH"'!
which does not meet P?. The orbit of C under the action of O(P?) is
a spherical (resp. parabolic, hyperbolic) rotation hypersurface if {, )|p2
is a Lorentzian metric (resp. Riemannian metric, degenerate quadratic
form).

In [1], do Carmo and Dajczer obtained explicit parameterizations
for these hypersurfaces, as follows:

Let ey,...,e,49 be a basis of L2 with the following conditions:
1. P? is generated by ent1 and e, 1o;
2. (a) {en12,€n+2) = —1 (spherical case)

(b) {e1,€1) = (en+1,€nt1) =0, {€1,€n41) = 1 (parabolic case)

(c) (e1,e1) = —1 (hyperbolic case)

(d) (ei,e;j) = &;; for all 7, j not specified above.

If x =3 zie; and y = > yie;, then (z,y) is given by
1YL+ F Tpr1Ynt1 — Tnt+2Ynt2 (spherical case)
T1Ynt+1 +2T2Y2 + -+ TplYn + Lut1¥1 + Tnt2Ynt2 (parabolic Case)
—T1Y1 + T2y2 + -+ Tpg2Yn 2 (hyperbolic case)

Let P3 be the 3-plane generated by €1, €n+1,€n+2 and the curve C
given by 1 = z(8), Tpy1 = Tp+1(8), Thea = Tpr2(8), s € J, where s is
the arc length of C and J is an open interval.

Proposition 5. (do Carmo, Dajczer [1].) With respect to the basis e, . . .,
€n+2, the following are local parameterizations for the rotation hypersur-
faces in H T

1. Spherical case:

f(sa 917 cee 7971—1) - (mfbla ) 7x¢n7xn+17xn+2) ’

where ¢ = (@1, ..., ¢n) 15 an orthogonal parameterization of the unit
sphere in the space generated by ey, ..., €y,.
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2. Parabolic case:

fls, 01, ., 0n0) =

1+ 22,5 +22 Y602
= |z, 201,...,20;,...,20,_1,— o )

3. Hyperbolic case:

f(S./ 917 .. 7071—1) - ($¢17 e 7x¢n7 $n+laxn+2) )
where ¢ = (¢1,...,¢,) s an orthogonal parameterization of the unit
hyperbolic space of €1,...,e,.

It can be shown (see [4]) that f is an immersion if and only if z > 0
in the spherical and parabolic cases, and x > 1 in the hyperbolic case.
These conditions will hold from now on.

We will use the notation M5, § = 1,0 or —1, for a rotation hy-
persurface in H* ™, where 6§ = 1 (resp. 6§ = 0,—1) means that Ms is
spherical (resp. parabolic, hyperbolic). From now on, we also assume
that 6 + 22 — &2 > 0 on J, where the dot denotes derivative with respect
to s.

Theorem 8. (do Carmo, Dajczer [1].) Let Ms be a rotation hypersurface
in H"T defined by the immersion f. Then the directions corresponding
to the parameters 81, ...,0,,_1 are principal directions; the principal cur-
valures k; along the coordinate curves corresponding to 0; are all equal
and given by

V62?2 — 32

x
1=1,...,n—1; the principal curvature along the coordinate curve cor-

Ky =

responding to the parameter s is given by

T —x

V422 — 32

Rp = —

2.2. Rotation hypersurfaces with H; constant
Using the definition of Hj, given in (2) and proposition 5, we can con-
clude:
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Proposition 6. The rotation hypersurface Mg has the prescribed cur-
vature Hy, k < n, if and only if x satisfies the following differential
equalion:

k-2

nHyz® = (n— k) + 02— i2)% k(o422 - i@ oz (12)

for k <mn.
From now on, we will suppose that Hj is constant. Also, we will
analyze only the parabolic and hyperbolic cases.

Proposition 7. For Hj constant, equation (12) has the following first
integral:

k
2

Gz, &) = 2" *((§ + 2% — i*)% — Hpa®) = A (13)

for k < n; here A is a constant. In the parabolic case (6 = 0), there
exist constant solutions of (12) if and only if Hy = 1; moreover, in
this case, every constant function x = ¢ is a solution of (12), and the
corresponding value of A in (13) is 0. In the hyperbolic case (6 = —1),
there exist constant solutions of (12) if and only if Hy € [0,1).

Proof. The fact that Gy is a first integral of (12) is a straightforward
calculation which we shall omit; so, we will analyze the existence of
constant solutions.

If we substitute § = 0 and & = 0 in (12), it follows that nHyz* = nz?,
which in turn implies Hy, = 1 (recall that = > 0). Conversely, if Hy = 1,
then every constant function z = ¢ is a solution of (12).

If § = —1 and & = 0 in (12), we solve the equation obtained for Hj
to get

Hk=—1,€—<a:2—1)%—2 <x2~n'k>

x n

The left side of this equation (defined for z > 1) is an injective function
with range equal to the interval [0,1); this means that for every Hy €
[0, 1) there exists only one constant solution z = ¢ of (12) corresponding

to this Hy. i

We will call the rotation hypersurfaces corresponding to constant
solutions of (12) cylinders. In view of Proposition 7, we have:
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Corollary 1. Every constant function z = c gives rise to a parabolic
cylinder with Hy, = 1. If H, € [0,1), there exist only one hyperbolic
cylinder with Hy, constant.

Definition 4. A solution z = z(s) of (12) is complete if and only if z is
defined for all s € R and & + 22 — &2 > 0 for all s.

The reason for this definition is that such a solution gives rise to a
complete rotation hypersurface. As in the first part of this paper, we
will investigate the completeness of 2 by means of the level curves of Gy,.

2.3. Parabolic rotation hypersurfaces
Figure 7 shows the level curves of Gy.

(a) (b) (c) (d) (e)
Figure 7: Level curves of G, k < n, for H L (parabolic case). (a) Hy < 0;

(b) Hy, = 0; (¢) Hy € (0,1); (d) Hi = 1;and (e) H > 1.

Figures 7(a) and (e) show the level curves of Gy for Hy < 0 and
Hj > 1, respectively; all these level curves leave the relevant region and
we have no complete hypersurfaces in these cases. For Hy, = 1, the only
level curves which do not leave this region corresponds to A = 0. As

we have seen before, these level curve contains all constant solutions
of (12).
So, the remaining case is Hg € [0,1). We recall that G, has the form

Grlz, &) = 2" 5((2? — %)% - Hya®) = A (14)
If A=0in (14), we obtain
(1-1;7*) 2? — 2% =,

i‘:i\/l—H,f/k:v,

or
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and if we impose the initial condition 2(0) = 1, then

1 2/lcS
.’E(S)Zei 1=t .

Now, we claim that any two parabolic hypersurfaces with the same Hy
and A # 0 are the same (see [1]). For that purpose, let us rewrite (14)

in the form )

Let z = z"/*, so we can write the former equation as
2 _ n’

T k2
Reordering and integrating, we have

= 2% (Hypa™ + 47"

z

(+ = (Hpo* + 4)/)

s—ﬁ/ dz
n \ﬁQ_(szk_i_A)Q/k

Now, take z = A5y to obtain

. E/ dw
n \/wz — (Hyw* + 1)2/k

This last expression does not depend on A. As in [1], we can see that
the principal curvatures &; also do not depend on A, as well as the first
and second fundamental forms. This proves our claim.

We collect all these facts in the following result.

Theorem 9. (Classification of complete parabolic hypersurfaces, k < n)

1. There are no complete parabolic hypersurfaces with |Hg| > 1.

2. There are no complete parabolic hypersurfaces with Hy € [—1,0), for
k even.

3. For each Hy € [0,1), there are only two complete parabolic hypersur-
Jaces with such Hy (up to isometries).

2.4. Hyperbolic rotation hypersurfaces
The analysis of Gy, is very similar to that in the parabolic case. In figure
8 we have depicted some level curves of this function in a (u, &)-plane.

- Our result is as follows.
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Theorem 10. (Classification of complete hyperbolic hypersurfaces, k& <
n) If Hy, is the (constant) k-th curvature of a hypersurface, then
1. There are no complete hyperbolic hypersurfaces with |Hy| > 1.
T here are no complete hyperbolic hypersurfaces with Hy, € [—1,0), for
k even.
2. For each Hy € 10,1), there ezist a one-parameter family of complete
hyperbolic hypersurfaces with such Hy.

(a) (b) () (d) (e)

Figure 8: Level curves of G, k < n, for H**1 (hyperbolic case). (a) Hj < 0;
(b) Hi = 0; (¢) H € (0,1); (d) H, = 1; and (e) Hy > 1.

3. Open questions
In hyperbolic space, we have not been able to determine explicitly many
of the hypersurfaces which "bound” the families here described.

In the case of 8”11 we have included the figures of the cases which
we have not studied in detail. Figures 5(a) and (b) show the level curves
corresponding to two different values of Hy < HY. Figure 5(c) shows
that, when H,? < Hp < 0, GG has two critical points, one of which
corresponds to a cylinder.

Let us call A1 the value of Gy, at this critical point, and Ag the value
of GG at the other critical point. Then, every level curve corresponding
to A € (Ap, A1) is a closed curve, which may or not correspond to a
hypersurface in S"*1, this fact depending on the period of the profile
curve.

We may calculate this period as follows: solving the expression of
Gy, for f2, and substituting the result in the spherical expression of hZ
[obtained from (1)], we get
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jo_ _(Hpfm 1+ A
F2n=R)/E (1 — f2)2'

For every A € (Ag, A1), [ attains a minimum, so r attains a minimum
r1. Away from 71, we divide this last formula by 72 to get

<@)2—— (kan+A)2/k . 1
@) e (- 2 gy APE Q= DY
Then, thinking on h as a function of f, the period P of the profile curve

18

P=2

0

f1 dh —2/f1 (Hpf + 4> 1

oo df T n \ 2Rk (0o 2y g A 1 S
where the limits fj, f1 of the above integral are solutions of Gi(f,0) = A.
It is clear that the profile curve gives rise to an immersed hypersurface
if and only if the period is a rational multiple of 27, and to an embedded
hypersurface if and only if the period is precisely 27.

In [3], Leite analyzed the above integrals for k = 2, showing that,
for Hy > HY (our notation differs slightly), there exists a countable
family of c.r.h. with such Ho. In fact, H. Mori [4] asserted that it is
a monoparametric family, but we are not sure of this fact. We expect
that Leite’s result can be generalized to Hy.

Finally, we did not draw the profile curves, because they are com-
pletely analogous to the case k = 2, studied in detail by Leite. We refer
the interested reader to [3].
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