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Introduction 

Minimal surfaces are among the most studied objects in differential ge- 

ometry. They are characterized by H = 0, where H is the mean cur- 

vature of the surface. In recent years, some of their properties have 

been generalized to constant  mean curvature hypersurfaces, and also, 

to hypersurfaces with Hk constant,  where Hk is the normalized k-th 

symmetric  function of the principal curvatures of the hypersurface. 

Until now, there have been few examples of this second class of 

hypersurfaces. In [1], do Carmo and Dajczer studied the rotat ion hy- 

persurfaces with constant  mean curvature, and, some years later, Leite 

and Mori ([3], [4]) classified the complete rotat ion hypersurfaces (c.r.h., 

for short) with constant  scalar curvature in space forms. 

In this paper  we follow the techniques on the papers above to classify 

c.r.h, with H~ constant in R ~+1, H n+l  and S ~+1. In the case of H n+l, 

we will describe all three types of rotational hypersurfaces, as defined 

in [1]. We mainly use Leite's methods,  introduced to us by professor M. 

P. do Carmo, to whom we are indebted for encouragement and constant  
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guidance. We had also fruitful discussions with M. L. Leite; some of 

the results here s tated are contained in her joint work with Hounie [2], 

obtained independently from us. 

1. Spherical  rotation hypersurfaces  in space forms  
1.1. Notation and basic facts 
Let 2[/~+1 (c) be a complete, simply-connected riemannian manifold with 

constant  curvature c, c = 0 , - 1 ,  1. Our models for M ~+1 will be the 

euclidean space IR n+l,  for c = 0; the upper semispace 

H n+l = {x E R n + l ; x n + l  > 0}, 

for c = -1 ;  and the unit sphere S ~+1 C_ R ~+2, for c = 1, with the usual 

metrics. 

Definition 1. A (spherical) rotation hypersurfaee M ~ C_ 2[/n+l(c) is an 

O(n)-invariant hypersurface, where O(n) is considered as a subgroup of 

isometrics of M ~'+1 (c). 

Remark.  Strictly speaking, we should add the word spherical to our def- 

inition in the case c = -1 ,  because in this case do Carmo and Dacjzer [1] 

defined another types of rotations (giving rise to the so-called parabolic 

and hyperbolic hypersurfaces, which we will analyze in the second part  

of this paper).  As in this first part  of the paper  we will consider only 

O(n)-invariant hypersurfaces, we will drop the word spherical for the 

moment.  

O(n) fixes a geodesic 7 (the revolution axis) and rotates  a curve a,  

called the profile curve. We choose 7 as {x E/1~/~+1(c); xl  . . . . .  x~ = 

0} and c~ contained in {x E Mn+l(c);x2 . . . . .  x~ = O, Xl >_ 0}. 

The orbit of every point in c~ is an (n - 1)-dimensional sphere. We 

choose as parameters  of our rotat ion hypersurface (s,O), where s is 

the arc length of c~ and • = (01, . . .  ,0~_1) parameterizes the ( n -  1)- 

dimensional sphere given by the orbit of a(s) .  We will also use the 

following notation: r(s) will denote the (Riemannian) distance from c~(s) 

to 7, realized by a point P(s) in 7, and h(s) will be the (Riemannian) 

height of P(s) in 7, with respect to a fixed point in 7. Then (see [3] or 
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COMPLETE ROTATION HYPERSURFACES 141 

[5]) the first fundamental  form of M is given by 

I = f2(r(s)) E g i j ( o ) d O i  @ dOj + d8 | ds 

where gij is the metric of constant sectional curvature 1 in an (n - 

1)-dimensional sphere, and f ( r )  = r, sinhr, or sinr, for c = 0,--1,1, 

respectively. 

Also, the fact that the profile curve c~ is parameterized by arc length 

imposes the following restriction over f and h: 

=1 .  (1) 

T h e o r e m  1. (do Carmo, Dajczer [1].) The principal curvatures ~i of M 

a r e  

11_ cf2__ ?2 
#~i f 

for i = 1 , . . . ,n - -  1, and 

f + c f  

where the dot denotes the derivative with respect to s. 

The formulas in the theorem above are valid only when j~2 < 1 -  c f  2. 

The set of pairs (f, j~) satisfying this constraint and f > 0 will be called 

the relevant region. 

Let H~ be the normalized k-th symmetric  function of the principal 

curvatures of an hypersurface: 

(2) 
v ~ /  l <_il < i 2 < . . . < i k  <_n 

Proposition 1. The rotation hypersurface M s has the prescribed cur- 

vature Hk, k < n, i f  and only if  f satisfies the following differential 

equation: 

n H k f  ~ = (n - k)(1 - c/2 - f2)~ _ k(1 - c f  2 - }.2)~( j / .  + c f ) f  (3) 

f o r k  <_n. 

Proof. It follows from (2) and theorem i. [] 
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From now on, we will suppose t h a t  Hk is constant �9 

Proposition 2. Equation (3) is equivalent to its f irst integral 

Gl~(f, je) = f ~ - k ( (  1 _ cf2  _ ).2)~ _ H k f k )  = A = const. (4) 

f o r k < n .  

Proof .  We obta in  (4) mul t ip ly ing  (3) by f~  k-1 and  integrating�9 [] 

For later  reference,  we wri te  also the  formula  for the  gradient  of Gk: 

�9 k - 2  
V G k ( f  , " f )=fn-k - t ( (1  - c f 2 -  f 2 ) - ~ -  ((n k)(1 - 9 )  - c n f 2 ) - n H k f  k, 

k - 2  
- k f ' f (1  - c /2  - j~2 )~- )  

f o r k < n ,  and  

V G n ( f ,  )') = ( - n c f ( 1  - c f  2 - j e 2 ) ~  _ n H ~ f n - 1  _nje(1 _ c f2  _ j~2)n22 ) 

for k = n. 

Following Leite [3], we will ob ta in  our results  s tudy ing  the  level 

curves of Gk. The  cases k = 1, 2 were s tudied  in [1], [3] and  [4] and  some 

of the  results  here  s ta ted  in the  case k > 2 were ob ta ined  independen t ly  

by Hounie  and  Leite in [2]. 

Equa t ion  (4) tells us t ha t  a local solut ion f of (3), pa i red  wi th  its 

first derivative,  deno ted  (f,  j~), is a level curve of the  funct ion  

G k ( u ,  v) : u -k((1 - 2 - v2)  - H k u  k) (5) 

with  u > 0 and  1 - cu 2 - v 2 > O. 

L e m m a  1. The sets ( f  , f), where f is a solution of  (3), are the connected 

components of the level curves of G~ contained in the relevant region. 

Proof .  The  t heo ry  of O D E  implies t ha t  any  local solut ion of (3) can 

be ex tended  t h r ough  values for which (f,  je) is interior to the  relevant  

region�9 [] 

Def in i t ion  2. A solut ion of (3) is complete if e i ther  f is defined for all s 

or if the  pair  ( f ,  "f) only admi t s  (0, •  as limit values. 

Geometr ical ly ,  comple te  solutions of (3) give rise to a comple te  to- 

t a t ion  hypersurface .  W h e n  ( f , ) ' )  has (0, 1) or (0, - 1 )  as limit value, we 
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claim that  the profile curve meets orthogonally the axis of rotation, be- 

: (ese~)2 as(0) : 1, so t h a t  (d~)2 cause ].2 1 implies ~ N  :: 1; but  dr ~ss = 1; 

subst i tut ing this into (1) we have dh dh 7d = 0, SO 37 = 0; this last equation 

proves our claim. 

Before concluding this section, let us say that  an hy-persurface corre- 

sponding to a constant solution of (3) is called a cylinder. Also, we say 

that  a rotat ion hypersurface M " C kTl ~+t (c) with axis 7 is cylindrically 

bounded if there exist a complete cylinder with same axis 7 such that  

M is contained in the closure of the component  of 2~I - C containing 7. 

1.2. Complete  rotation hypersurfaces in ~n+l 
1.2.1. The case k < n 
Equations (3) and (4) read in this case 

n H k f  k = ( n  - ~ ) ( s  - ) 2 ) ~  _ k(7. - ) ' ~ ) q : ~  } f  

Gk(f ,  je) = f~-~((1 - ~e2)~ _ H k f k )  = A. 

We first look for the cylinders in ]R ~+1 with H~ constant; they nmst 

satisfy the condition 

n H k f  k = n - k (6) 

Proposition 3. (Complete cylinders with H~ constant in IR ~+1, k < n.) 

(i) There are no complete cylinders in R ~+1 with Hk < O, k even. 

(ii) There are no complete cylinders in R ~+1 with Hh, = O. 

(iii) For every Hk > O, there is a complete cylinder in R n+l given by 

f k  n - k  
nHk 

Proof. It follows directly from equation (6). [] 

We note also, in case (iii) of the above proposition, that  the corre- 

sponding value of A = Gk(f ,  "f), which we denote by A0, is given by 

n - k  

A o =  k n - k  

Theorem 2. (Classification of c.r.h, with Hk constant  in R ~+1, k < n) 
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(i) There are no c.r.h, in IR ~+1 with Hk < 0 for k even. 

(ii) Up to isometries, there is only one monoparametric family of era- 

bedded c.r.h, with Hk = O, which converges to a hyperplane. I f  

2(n - k) /k  = 1, the profile curve is a parabola, i f  (n - k ) / k  = 1, 

it is a catenary and if (n - k ) / k  > 1, it asymptotizes two horizontal 

lines. 

(iii) Up to isometries, there is only one monoparametric family of embed- 

ded c.r.h, with Ilk constant for any Hk > O; these hypersurfaces are 

periodic and cylindrically bounded, and they converge, on one side, 

to a sequence of spheres, pairwise and vertically tangent; and on the 

other, to the cylinder given in case (iii) of Proposition 2. 

P r o o f .  Eve ry  level curve (see figure 1) can be  seen as the  s m o o t h  union 

of two graphs  
._d_A ?/k 

= 1 - ( H k f  + f . - k  

Figure  l (a )  cor responds  to the  case Hk < 0. For every  A > 0, the  

cor responding  level curve leaves the  relevant  region when  H k f ~ +  A = 0, 

so there  are no comple te  hypersur faces  in this case. 

i 0 i o l 

(a) (b) (c) 

Figure h Level curves of  G/~, k < n, for IR n+l .  (a) H k  < 0; (b) Hk = 0; and 

(c) Hk > 0. 

Now, let us consider  H~ = 0; Gk has the  form 

Gk(f ,  "f) = fn-k(1  -- je2)~ = A (7) 

F rom this  formula  and the  res t r ic t ions  over f and f ,  we have tha t  

the  set of admiss ible  values for A is [0, oc). A = 0 gives f 2  = 1, so t ha t  
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f (s)  = r(s) = :~s and h(s) = 0, equations corresponding to a hyperplane.  

If A / 0, we solve (7) for )2 to obtain 

2 

) 2 - - 1 -  

This expression shows that ,  for every such A, f can assume arbitrari ly 

large values, so r = f has no upper  bound  and every corresponding hy- 

persurface is not cylindrically bounded.  Also, f = r at tains a m in imum 

rl  > 0 and this last expression let us set A = r~ -k. We use (1) to write 

2 

Away from rl ,  we divide/'t2 by )2 = 52 to get 

( d h )  2 = r ;  (~-k)/~ 

d r  _ 

This implies tha t  h is given by the following integrals: 

h =  +r~ ~ k ) / k /  1 

The  analysis of the convergence of these integrals for 2(n - k) /k  = 1, 

( n - k ) / k  = 1 and ( n - k ) / k  > 1 was done in [3] (p. 294) and we 

shall omit  it. We must  ment ion  tha t  Hounie and Leite [2] made  a more 

detailed analysis of the convergence of this integrals, so we remit  the 

interested reader to their  paper.  

When  Hk > 0, the  level curves [see figm'e 1(c)] corresponding to 

complete  hypersurfaces are given by A ~ [0, A0], where A0 is the value 

obta ined after Proposi t ion 2; the value A = 0 gives, for example, the 

por t ion of the ellipse 
r2 )2 H k j + = 1  

contained in the relevant region; this curve joins (0, 1) to (0, -1) ,  and its 

corresponding hypersurface is a sphere parameter ized by 

1 ( 1/k ) 1 ( 1 / t c s )  
r ( 8 ) -  r4~l/ksin Hs s , h ( s ) -  H1/k cos H 

~ k  k 
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The translations of this sphere along the revolution axis give the se- 

quence of spheres pairwise and vertically tangent.  

As we said before, the value A = A0 gives a cylinder; all level curves 

given by A E (0, A0) correspond to complete, periodic and cylindrically 

bounded hypersurfaces (the proof of this fact is entirely similar to that  

of the case k = 2, which can be seen in [3], p. 295). [] 

1 . 2 . 2 .  T h e  c a s e  k = n 

In this case, equation (3) takes the form 

H,~f '~ = - (1  - j ~ 2 ) ~  )~f (s) 

Again, first we look for constant solutions of (8), but  in this case, 

the condition )" = 0 implies Hn = 0; conversely, H~ = 0 implies that  

every constant f = c is solution of (8). 

Proposit ion 4. There are complete cylinders with H~ constant in •n+l 
i f  and only i f  Fin = O. 

Now we s tudy the general case. 

T h e o r e m  3. (Classification of c.r.h, with Hn constant in R n+l)  The only 

c.r.h, with Hr~ constant in R n+l are the hyperplanes, the cylinders and 

the spheres. 

Proof .  Figure 2(a) shows the level curves of Gn for /L~ < 0; again, it 

is easy to show that  every level curve leaves the relevant region. Also, 

figure 2(c) shows the level curves for Hn > 0; in this case, the only 

complete solution of (8), according to our definition, corresponds to the 

value A = 0, which gives, for example, the sphere parameterized by 

r(s) - rrl/n sin /ns , 

h(s) - H1/n cos 
n 

This implies that  the only c.r.h, in IR ~+1 with H~ r 0 are the spheres. 
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(a) 
1 

(b) (c) 

Figure 9: Level curves of Gn, for R n+l .  (a) Hn < 0; (b) /irrz = 0; and (c) 

For Hn = 0, the  level curves of 

G,, ( f ,  j~) = (1 - j~2),z/2 

are hor izontal  lines [see figure 2(b)]; those  cor responding  to comple te  

hypersur faces  are given by  f2  _ 1 (so, f ( s )  = r(s)  = -Ls and h(s) = 0, 

an hyperp lane)  and ~e = 0, which gives a cylinder.  [] 

We note  tha t ,  if the  level curve has (0, a) as limit value, where  a E 

( - 1 ,  1), then  the  cor responding  hypersur face  meets  the  ro ta t ion  axis 

wi th  a non-r ight  angle, so this hypersur face  is not  complete .  

1.3 .  C o m p l e t e  r o t a t i o n  h y p e r s u r f a c e s  in  H ,~+l 

1.3.1.  T h e  case k < n 

Let  us wr i te  down the  formulas  (3) and (4) for this case: 

n H ~ f  k = (n - k)(1 + f 2  _ "f2)~ _ k(1 + f 2  _ )~2 )~ - (~  f ) f ,  

Gk ( f ,  je) = f n - k ( (  1 + f 2  _ f 2 ) ~  _ H k f ~ )  = A. (9) 

We will use the  hyperbolic expression of/~2, ob t a ined  f rom (1): 

/F-1-#2 1+/2-)2 
- (10) 

cosh 2 s (1 + / 2 )  2 

Before  s ta t ing  our next  theorem,  we recall t ha t  we are dealing wi th  

spherical hypersur faces  in H n+l .  
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Theorem 4. (Classif ication of c.r.h, wi th  Hk cons tan t  in H n+l ,  k < n) 

(i) There are no c.r.h, with Hk < 0 for k even. 

(ii) Up to isornetries, there is only one monopararnetric family of embed- 

ded c.r.h, with Hk C [0, 1). These hypersurfaces are not cylindrically 

bounded, and for Hk = O, they converge to a totally geodesic hyper- 

bolic space H n. The profile curves are asymptotic to two geodesics. 

(iii) Up to isornetries, there is only one rnonopararnetric family of era- 

bedded c.r.h, with Hk = 1. These hypersurfaces are not cylindrically 

bounded and they converge to a horosphere. 

(iv) For any Hk > 1, there is a one-parameter family of embedded c.r.h. 

with Hk constant, periodic and cylindrically bounded, which con- 

verges to a sequence of geodesic spheres. 

P r o o f .  Again,  we will s t u d y  the  level curves of Gk(f ,  "f) with  the  restric- 

t ions 1 + f2  _ ).2 _> 0 and f > 0. The  proofs  are ent i rely similar to those  

in the  eucl idean case and we shall only point  out  some details.  F igure  

3 shows these  level curves.  

0 2 2 

:: : : : 
0 i 2 0 1 2 0 1 2 0 1 2 

(a) (b) (c) (d) (e) 

Figure 3: Level curves of Gk, h < n, for H n+l  (spherical case), (a) Hk < 0; 

(b) Hk = 0; (c) Hk ~ (0, 1); (d) Hk = 1; and (e) H k > 1. 

(i) F igure  3(a) shows the  case Hk < 0. Every  level curve leaves the  

relevant  region in a finite t ime,  so we have no comple te  hypersur faces  in 

this case. 

(ii) F igure  3(b) shows the  case H~ = 0; now, Gk can be  wr i t t en  as 

G (s, ;<) s 0 + = = A (11) 

If A = 0 and f (0)  = 0, then  f ( s )  = sinh(s), so tha t  r(s) = s, h(s) = 0 

and M is an n-d imens iona l  hyperbol ic  subspace  of H n+l. 
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Figure  3(c) shows the  case H~ 6 (0, 1); if A = 0 and  f(0)  = 0, f is 

given by  

f(s)  

s i n h ( ~ l  - r42/s k ~ j  

~1  - ~2/~  

For A r 0, the  f lmct ion f ,  and  therefore  r, has no uppe r  bound ,  

so no hypersur face  is cyl indrical ly  bounded .  Also, for every  such A, f 

a t ta ins  a unique m i n i m u m  f l -  Using (9), we have 

= - t ,  7 ) 

Away  from f l ,  we may  divide/~2 given in (10) by  )~2 to ob ta in  

( d h )  2 _ (A + H fn)2/  

k. df ] (1 + f2)2  (1 + f2)f2(n-k)/k _ (A + Hkfn)2/k 

bu t  the  second factor  converges when  f --+ oc; this implies tha t  h(f)  is 

un i formly  bounded ,  which means  tha t  the  profile curves a sympto t i ze s  

two geodesics.  

(iii) [See figure 3(d)]; when  A = 0 and Hk = 1 in (9), we ob ta in  

1 - .[2 = 0; if f (0)  = 0, then  f (s)  = ~_s. From (10), 

A2 ( s ) 2 = 

If h(0) = 0, then  ~ h ( s )  = log x/1 + s 2. Using polar  coord ina tes  (r, @. and 

recalling, f rom hyperbo l ic  geometry ,  t ha t  tan 0 = s inhr(s)  = f ( s )  = -Es 

and e h = p (where p and 7r/2 - 0 are the  s t anda rd  polar  coord ina tes  

in the  plane) ,  we have p = (sec 0)• The  level curve cor responding  to 

p = sec r or p cos 0 = 1, is a hor izontal  line; the  curve cor responding  to 

p = cos 0 is the  inverse of this hor izontal  line wi th  respect  to the  uni t  

circle. The  associa ted  hypersur faces  are horospheres .  

(iv) Finally, figure 3(e) shows the  level curves of Gk for H~ > 1. All 

facts  asser ted  in (iv) can  be  proved as in the  eucl idean case for Hk > 0. 
[] 
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1 . 3 . 2 .  T h e  c a s e  k = n 

T h e o r e m  5. (Classification of c.r.h, wi th  H~ cons tant  in H n+l )  

(i) There are no c.r.h, with H~ < 0 for k even. 

(ii) Up to isometries, there is only one monoparametric family of em- 

bedded c.r.h, with Hn E [0, 1], not cylindrically bounded. 

(iii) Up to isometries, there is only one monoparametric family of com- 

pact embedded c.r.h, with Fin > 1, cylindrically bounded, convergent 

on one side to a cylinder. 

Proof .  The  level curves cor responding  to this case appear  in figure 4. 

Formulas  (3) and  (4) read  

H ~-= f2 ) , 2 ) a ~ ( j .  , ~ f  - ( 1 +  - - f ) f  

a n ( f ,  j~) = ({ + f2  _ j~2)~ _ H~f~  = A 

0 i 2 

(a) (b) (c) (d) 

Figure 4: Level curves of Gn, for H n+l  (spherical case). 

Hn = 0; (c) Hn C (0, 1); (d) Hn = 1; and (e) Hn > 1. 

0 l 2 @ l 2 0 1 2 0 l 2 

(e) 

(a) /am < o; (b) 

As before, when  Hn < 0, the  level curves of Gn leave the  relevant  

region f2  _ f2  _< 1 [see figure 4(a)]. 

W h e n  Hn = 0 [see figure 4(b)], the  level curves of G~ = A are 

hyperbolas  (possibly degenera te) .  We obta in  the  following expressions 

for f :  

sinhs, A = 0 

~ / 1 - A 2 / n s i n h s ,  A ~  (0,1) 
f (s )  = e+~, A = 1 

v/A2~ n - 1 coshs, A > 1 

The  more  in teres t ing case is A = 0, which gives, as in the  previous 

case, an n-dimensionM hyperbol ic  space. 
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The  analysis  of the  remaining cases is similar to tha t  of the  case 

k < n; we show in Figures  4(c), (d) and (e) the  behav iour  of the  level 

curves for H~ ~ (0, 1), H~  = 1 and H~ > 1, respectively.  [] 

1.4. C o m p l e t e  rotat ion hypersurfaces  in S n + l  

We only have par t ia l  resul ts  in this case; in par t icular ,  the  p rob lem of 

e m b e d d e d n e s s  is not  as clear as in ]R n+l  or H n+l .  The  level curves of  

G~ are similar to the  ones ob t a ined  in [3]. 

1.4.1. The case k < n 

Formulas  (3) and (4) read: 

n H k f  k = (n -- k)( l  - f2  _ j~2)~ _ k(1 - f2  _ ) . 2 ) ~  (j~. __ f ) f ,  

Gk( f ,  je) = f n - k ( (  1 __ f 2  _ je2)~ _ H k f k )  = A. 

Firs t  we s t u d y  the  crit ical points  of Gk; calculat ing VG/~ we see tha t  

these  crit ical points  mus t  sat isfy 1 - f2  _ j~2 = 0, in which case H~ = 0, 

or j~ = 0, which gives the  following condi t ion  on f :  

k-2 (,- T o. 

There  is a special  value of Hk, deno ted  by H 0, which lms only one 

crit ical point;  it is given by  

k,-2 

HO __2 
- n \ n -  k )  " 

For this value of H~, the  cor responding  value of f sat isfy 

f2  _ n - k .  
~ t - -  2 

Now we can s ta te  our  theorem;  unti l  now, we have only the  following 

(part ial)  result .  

Theorem 6. (c.r.h. wi th  Hk cons tan t  in S n+l ,  k < n) 

(i) There are no c.r.h, with Hk < H 0 for  k even. 

(ii) Up to isometrics, there is only one e.r.h. (in fact, an embedded cylin- 

der) witt~ H~ = ; t  ~  
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Proof .  (i) Figure 5(a) shows the level curves for Hk < H 0. Every 

level curve leaves this region in a finite t ime, so we have no complete  

hypersurfaces in this case. 

(ii) The  s i tuat ion for this case is almost  the  same as in case (i), 

but  now a critical point  appears  suddenly, giving rise to a cylinder [See 

figures 5(b) and (c)l. [] 

l! !l �84 
- - 2 ~  1 

(a) (b) (c) (d) (e) 

Figure 5: Level curves of Gk, k < n, for S n+l .  (a) and (b) I lk < H0; (c) 

HOk < Hk < 0; (d) Hk = 0; and (e) Hk > 0. 

We will make some remarks  on the cases Hk > H ~ in the final section 

of this paper.  

1 . 4 . 2 .  T h e  c a s e  k = n 

The  funct ion G~ is given by 
Tt 

Gn(.f, "f) := " I 1 _  f 2 _  "f2)" g _ H n f n  = A 

Figure 6 shows the  level curves of G~ in this case. 

If H~ < 0 [Figures 6(a) and (b)], the only complete  hypersurface 

corresponds to the  unique critical point  of G~, which satisfies 

n f(1 - f2)(n-2)/2 + n g ~ f ~ - I  =_ O, 

o r  

1 = (1 + 2. 

All other  level curves leave the  relevant region. 

If H~ > 0 [Figures 6(c) and (d)], Gn has no critical points  and 

the only complete  solution according to our definition is obta ined from 

G~(f ,  je) = 0, so tha t  

(H2/~ 1)f2 + j~2. 
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We call the corresponding hypersurface a parallel, in analogy with the 

s i tuat ion in S 2. We have then  the following: 

@ 

0 0 

(a) (b) (c) (d) 

Figure 6: Level curves of Gn, for S n+l .  (a) and (b) Hn < 0; (c) Hn = 0; and 

(d) / In  > O. 

Theorem 7. (c.r.h. with H~ constant  in S ~+1) The only c.r.h, with Hn 

constant in S ~+1 are the cylinders and the parallels. 

2. R o t a t i o n  h y p e r s u r f a c e s  in h y p e r b o l i c  s p a c e  

2.1. Basic facts 

In this section we define the parabolic and hyperbolic rota t ion hyper- 

surfaces, as given in [1], using the hyperboloid model  for the hyperbolic 

space; for completeness,  we have included in tile definitions the spherical 

case just  analyzed. 

Let 

L n+2 = {x = (Xl , . - . ,Xn+2) ,Xi  E ]~} 

with the Lorentzian metric 

(x, y} = - x l y l  + x2y2 + . . .  + &~+2y~+2, 

where y = (Yl , . - . ,  Y,~+2). The  (n + 1)-dimensional hyperbolic space is 

given by 

H n+l  = {x ~ Ln+2; @,x} = -1}  

An orthogonal transformation of L n+2 is a linear map  preserving { , }, 

and the or thogonal  t ransformat ions  define, by restriction, all isometries 

of H n+l. pk will denote  a k-dimensional  linear subspace of L n+2, and 
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O ( P  k) will be the set of orthogonal transformations of L n+2 with posi- 

tive determinant  which leave pk pointwise fixed. 

Definition. Let p2 C p3 and C be a regular C 2 curve in p3 n H n-'-I 

which does not meet p2. The orbit of C under the action of O ( P  2) is 

a spherical (resp. parabolic, hyperbolic) rotat ion hypersurface if ( ,  }lp2 

is a Lorentzian metric (resp. Riemannian metric, degenerate quadratic 

form). 

In [1], do Carmo and Dajczer obtained explicit parameterizations 

for these hypersurfaces, as follows: 

Let e l , . . . ,  en+2 be a basis of L ~+2 with the following conditions: 

1. p2 is generated by en+ 1 and en+2; 

2. (a) (e~+2,e~+2} = - 1  (spherical case) 

(b) {el ,e l )  = {en+l,e~+l} = 0 ,  {el ,e~+l)  = 1 (parabolic case) 

(c) @1, el} = - 1  (hyperbolic case) 

(d) {e~, ej} - 6~j for all i , j  not specified above. 

I f x  = ~ x i e {  and y = ~ y i e i ,  then (x ,y}  is given by 

x l y l  + "'" + x~+lY~+l  -- x~+2Y~+2 (spherical case) 

x l Y n + l  + x2Y2 + " "" + xnyn  + Xn+lYl  + Xn+2Yn+2 (parabolic case) 

- x l Y l  + x2y2 + "'" + x~+2Y~+2 (hyperbolic case) 

Let p3 be the 3-plane generated by el,  en+l,  e~+2 and the curve C 

given by xl = x(s) ,  xn+l  = Xn+l(S), Xn+2 = Xn+2(S), S E J; where s is 

the arc length of C and d is an open interval. 

Proposit ion 5. (do Carmo,  Dajczer [1].) With  respect to the basis e l , . . . ,  

e~+2, the fol lowing are local parameter iza t ions  for  the rotat ion hypersur- 

faces in H ~+1 : 

1. Spherical case: 

f ( s ,  0 1 ,  �9 - � 9  O n - - l )  = ( X q ~ l , . . . ,  X O n ,  X n + l ,  X n + 2 )  , 

where ~b = ( r  ~b~) is an orthogonal parameter iza t ion  of the uni t  

sphere in the space generated by e l , .  �9  On. 
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2. Parabolic case: 

f ( s ,  O1, . . . ,On_l)  = 
/ 

= [ x ~ x O l ~ . . . ~ x O i , . . .  

% 

3. Hyperbolic case: 

, X O n - l ~  
2 x2 x~§  1 + 2 + E 

2x 

f ( s ,  01 , . . . ,O~_l )  = ( x r 1 6 2  

where r = ( r  r is an orthogonal parameterization of the unit 

hyperbolic space of e l , . . . ,  en. 

It  can be shown (see [4]) t h a t  f is an immers ion  if and  only if x > 0 

in the  spherical and  parabolic  cases, and  x > 1 in the  hyperbol ic  ease. 

These condi t ions  will hold from now on. 

We will use the  no ta t ion  M~, (5 = 1,0 or - 1 ,  for a ro ta t ion  hy- 

persurface in H n+l ,  where (5 = 1 (resp. 6 = 0 , - 1 )  means  t h a t  M6 is 

spherical  (resp. parabolic,  hyperbolic) .  From now on, we also assume 

t h a t  (5 + x 2 - 2  2 _> 0 on J ,  where the  dot  denotes  derivative wi th  respect  

to s. 

Theorem 8. (do Carmo, Dajczer [1].) Let 2146 be a rotation hypersurface 

in H ~+1 defined by the immersion f . Then the directions corresponding 

to the parameters 01, . . . ,  On-1 are principal directions; the principal cur- 

vatures ~i along the coordinate curves corresponding to Oi are all equal 

and given by 

v/~ + x 2 _ 22 
t~ i = 

X 

i = 1 , . . . ,  n - 1; the principal curvature along the coordinate curve cor- 

responding to the parameter s is given by 

~ = ~/6 + x 2 _ x 2  

2.2. Rotation hypersurfaces with Hk constant 
Using the  defini t ion of Hk given in (2) and  proposi t ion 5, we can con- 

clude: 
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Proposition 6. The rotation hypersurface M~ has the prescribed cur- 

vature Ha, k <_ n, if  and only i f  x satisfies the following differential 

equation: 

�9 2 k - 2  n H k x k = ( n - k ) ( ~ + x 2 - ! c 2 ) ~ - k ( 6 + x 2 - x  ) ~ - ( ! ~ - x ) x  (12) 

for  k <_ n. 

From now on, we will suppose that  Hk is constant.  Also, we will 

analyze only the parabolic and hyperbolic cases. 

Proposition 7. For Hk constant, equation (12) has the following first 

integral: 

G k ( x ,  ~) = x ~ - k ( ( 6  + z 2 - ~ 2 ) ~  _ H~z~) = A (13)  

for  k <_ n; here A is a constant. In the parabolic case (6 = 0), there 

exist constant solutions of (12) if  and only i f  H~ = 1; moreover, in 

this case, every constant function x = c is a solution of (12), and the 

corresponding value of A in (13) is O. In the hyperbolic case (5 = -1 ) ,  

there exist constant solutions of (12) i f  and only if  Hk E [0, 1). 

Proof .  The fact that  Gk is a first integral of (12) is a straightforward 

calculation which we shall omit; so, we will analyze the existence of 

constant  solutions. 

If we subst i tu te  6 = 0 and 5: = 0 in (12), it follows that  n H k x  k = nx  ~, 

which in turn  implies H~ = 1 (recall that  x > 0). Conversely, if Hk = 1, 

then every constant  function x = c is a solution of (12). 

If 6 = - 1  and 2 = 0 in (12), we solve the equation obtained for Hk 

to get 
k - 2  

H k  = ~ x 2 - 1 x 2  n 

The left side of this equation (defined for x > 1) is an injective function 

with range equal to the interval [0, 1); this means that  for every Hk E 

[0, 1) there exists only one constant  solution x = c of (12) corresponding 

to this Hk. [] 

We will call the rotat ion hypersurfaces corresponding to constant  

solutions of (12) cylinders. In view of Proposi t ion 7, we have: 
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Coronary 1. Every constant function x = c gives rise to a parabolic 

cylinder with H~ = 1. I f  Hk E [0, 1), there exist only one hyperbolic 

cylinder with H~ constant. 

Definition 4. A solut ion x = x(s) of (12) is complete if and only if x is 

defined for all s C R and  6 + x 2 - 2 2 > 0 for all s. 

The  reason for this  defini t ion is t h a t  such a solut ion gives rise to a 

complete ro ta t ion  hypersurface.  As in the  first par t  of this  paper ,  we 

will invest igate  the  completeness  of z by means  of the  level curves of Gk. 

2.3. Parabolic rotation hypersurfaces 
Figure  7 shows the level curves of G~. 

1 ! li 
1 0 1 0 1 0 1 1 

(a) (b) (c) (d) (e) 

Figure 7: Level curves of Gk, k ~ 7z, for H n+l  (parabolic case). (a) H~ < 0; 

(b) Hk = 0; (c) Hk C (0, 1); (d) Hk = 1; and (e) Hk > 1. 

Figures  7(a) and  (e) show the  level curves of Gk for Hk < 0 and 

H~ > 1, respectively; all these level curves leave the  relevant region and  

we have no complete  hypersurfaces  in these cases. For Hk = 1, the only 

level curves which do not  leave this  region corresponds to A = 0. As 

we have seen before, these level curve contains  all cons tan t  solut ions 

of (12). 

So, the remaining case is Hk C [0, 1). We recall that Gk has the form 

dk(x, = x -k((x2 - _ Hkx ) : A ( 1 4 )  

If  A = 0 in (14), we ob ta in  

( 1 -  H2/k) z2 - ~2 = O, 

o r  

z:~= l--zl k z, 
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and if we impose the initial condition x(0) = 1, then 

x(s) = e~ l~ ~-H~k/as. 

Now, we claim that  any two parabolic hypersurfaces with the same Ha 

and A r 0 are the same (see [1]). For tha t  purpose, let us rewrite (14) 

in the form 

(x(~ a)/a~) ~ = x2O/a _ (Hax~ + A)2/a 

Let z = x ~/k, so we can write the former equation as 

~2 ~n2 A)2/a) = (z 2 - (Haz a + 

Reordering and integrating, we have 

nk f _ dz 
~/z 2 - (Haz a + A)2/a 

Now, take z = A1/aw to obtain 

nk f _ dw 
~/w 2 - (Haw k + 1)2/a 

This last expression does not depend on A. As in [1], we can see that  

the principal curvatures ni also do not depend on A, as well as the first 

and second fundamental  forms. This proves our claim. 

We collect all these facts in the following result. 

Theorem 9. (Classification of complete parabolic hypersurfaces, /c _< n) 

1. There are no complete parabolic hypersurfaces with [Ha[ > 1. 

2. There are no complete parabolic hypersurfaces with Hk ~ [-1, 0), for 
]g e v e n .  

3. For each Ha E [0, 1), there are only two complete parabolic hypersur- 
faces with such Ha (up to isometrics). 

2.4. Hyperbolic rotation hypersurfaces 
The analysis of Gk is very similar to that  in the parabolic case. In figure 

8 we have depicted some level curves of this function in a (u, 2)-plane. 

Our result is as follows. 
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Theorem 10. (Classification of complete  hyperbolic hypersurfaces, k _< 

n) If  H~ is the (constant) h-th curvature of a hypersurface, then 

1. There are no complete hyperbolic hypersurfaces with IHkl > 1. 

T here are no complete hyperbolic hypersurfaces with Hk ~ [-1, 0), for 

k even. 

2. For each H~ ~ [0, 1), there exist a one-parameter family of complete 

hyperbolic hypersurfaces with such Hk. 

. . . .  

(a) (b) (c) (d) (e) 

Figure 8: Level curves of Gk, k < n, for H ~+1 (hyperbolic case). (a) H/~ < 0; 

(b) Hk = O; (c) H k E (0, 1); (d) Hk = 1; and (e) Hk > 1. 

3. Open questions 
In hyperbolic space, we have not been able to determine explicitly many 

of the hypersurfaces which "bound" the families here described. 

In the case of S n+l, we have included the figures of the cases which 

we have not studied in detail. Figures 5(@ and (b) show the level curves 

corresponding to two different values of H~ < H ~ Figure 5@) shows 

that, when H 0 < Hk < 0, G~ has two critical points, one of which 

corresponds to a cylinder. 

Let us call AI the value of Gk at this critical point, and A0 the value 

of G~ at the other critical point. Then, every level curve corresponding 

to A c (A0, AI) is a closed curve, which may or not correspond to a 

hypersurfaee in S n+1, this fact depending on the period of the profile 

c u r v e .  

We may calculate this period as follows: solving the expression of 

G~ for f 2  and subs t i tu t ing  the result in the spherical expression of/~2 

[obtained from (1)], we get 
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]~2 = (Hkf ~ + A) 2/k 
f2(n-k)/k (1 -- f2) 2' 

For every A E (A0, A1), f attains a minimum, so r attains a minimum 

rl .  Away from r l ,  we divide this last formula by f2 to get 

( dh ~ 2 (Hkf n + A) 2/k 1 
df] = f 2 ( n - k ) / k ( l _ f 2 )  2 - ( H k f  ~+A) 2/k ( 1 - - f 2 ) 2 '  

Then, thinking on h as a function of f ,  the period P of the profile curve 

is 

fffl dh ~f~l I (Hkfn + A) 2/k 1 P = 2  - -  = 2  . . . . . .  
o df f2(n-k)/k(l_f2) 2 - ( H k f  ~+A) 2/k l - f 2 '  

where the limits fo, f l  of the above integral are solutions of Gk(f, O) = A. 
It is clear that  the profile curve gives rise to an immersed hypersurface 

if and only if the period is a rational multiple of 2~r, and to an embedded 

hypersurface if and only if the period is precisely 2re. 

In [3], Leite analyzed the above integrals for k = 2, showing that ,  

for H2 > H 0 (our notat ion differs slightly), there exists a countable 

family of c.r.h, with such H2. In fact, H. Mori [4] asserted that  it is 

a monoparametr ic  family, but  we are not sure of this fact. We expect 

tha t  Leite's result can be generalized to Hk. 

Finally, we did not draw the profile curves, because they are com- 

pletely analogous to the case k = 2, studied in detail by Leite. We refer 

the interested reader to [3]. 
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