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Abstract .  In this paper we prove that for d > 3, the moduli spaces of degree d 
branched superminimal immersions of the 2-sphere into S 4 has 2 irreducible compo- 
nents. Consequently, the moduli space of degree d harmonic 2-spheres in S 4 has 3 
irreducible components. 
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O. Introduction 
Recall that  in the Calabi construction (see [C]) the space of branched 

minimal immersions (or, equivalently, the space of harmonic maps) of 

S 2 into S 2~ decomposes into a union of moduli  spaces Hk labelled by 

the twistor degree k _> 1. If f is a linearly full ( that  is, its image is 

not contained in a totally geodesic proper subsphere) branched minimal 

immersion of S 2 to S 4, Calabi showed that  either f or - f  = A o f 

(where A is the antipodal map on S 2~) has a holomorphic horizontal 

lift to the twistor space of 52% A holomorphic curve in the twistor 

space can be classified by its homology (or twistor) degree. Barbosa 

[Ba] later showed that  if the degree of the lifted curve is k c Z +, then 

Area(f(S2)) = Energy(f) = 4rck. When n = 2, the twistor space of S 4 is 

CP a. The s tudy of the space of harmonic maps of S 2 into S 4 (modulo 

the antipodal map on S 4) thus reduces to the s tudy of holomorphic 

horizontal rational curves in CI? 3. 

In [Lol] the s tudy of holomorphic horizontal rational curves of degree 

k in CP 3 was reduced to the s tudy of the moduli space Ad~ of pairs of 
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164 BONAVENTURE LOO 

meromorphic functions of degree k with the same ramification divisor. 

(This has been further refined and generalized in [502].) 

The moduli space of harmonic spheres in S 4 was also studied by 

Verdier in [V1] and [V21. In [V1] he asserted that  when d _> 3, the 

moduli space of degree d harmonic maps of S 2 to S 4 has three irreducible 

components.  However, he merely provided a sketch of the proof of 

this assertion. In this paper, we shall furnish the details of the proof. 

Many of the spaces described in IV1] are dual to the corresponding ones 

described in this paper. The way the moduli spaces are described in 

this paper enables one to describe the moduli of higher genus branched 

superminimal surfaces in S 4 as well the moduli of quaternionic branched 

superminimal surfaces in HP ~. (See [Lo21 and [KLI. ) 

1. The moduli  space 
Let us first recall the twistor fibration CP 1 --~ CP 3 J+ S 4. Consider H 2 

as a quaternion module with right scalar multiplication. The quater- 

nionic projective line, HP 1, is just the quotient of ]HI 2 \ {0} by the action 

of right scalar multiplication by nonzero quaternions. We identify C 4 

with ]HI 2 via (zo, zl, z2, z3) ~-+ (zo + j z l ,  z2 + j z 3 ) ,  and hence obtain the 

formula for the twistor fibration over S 4 ~ I~pl: 

CP 3 ~ [zo, zl, z2, z3], ~, [zo + j z l ,  z2 + j z3]  6 HP 1. 

Using the Fubini-Study metric we obtain a splitting of the tangent  space, 

TCP 3 = F | into vertical and horizontal components.  The horizontal 

distribution, 7-{, has complex codimension 1 and is a holomorphic sub- 

bundle of TCP 3. This distribution is a holomorphic contact structure: it 

is the kernel of a contact l -form 0 on CP 3 with values in a holomorphic 

line bundle s and it is encoded in the following exact sequence: 

0 --+ 7-( --+ T C P  3 o 12 --+ O. 

This contact form has a lifting to C 4 given by 

f t  = zo d z l  - z l  dzo + z2 dz3 - z3 dz2.  (1.1) 

Surfaces which arise as twistor projections of holomorphic curves 
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IRREDUCIBILITY OF MODULI SPACE 165 

tangent  to the horizontal distribution in CF 3 are known to be harmonic, 

and in fact branched minimal (see [Br], [La], [Loll, [ES] and [BR]). They  

are called branched superminimal surfaces. In the genus zero case, if f 

is branched minimal, then either f or - f  is branched superminimal. 

Remark  1.2. It is well known tha t  if f :  S 2 --~ S 4 is harmonic, and 

A: S 4 --+ S 4 is the antipodal map, then either f or - f  := A o f has a 

holomorphic horizontal lift to CI? 3. (If f is totally geodesic, then both 

f and - f  have holomorphic horizontal lifts.) Also, if g: $2 -+ $4 is 

branched superminimal,  then both g and A o g are harmonic. (cf. IV1]). 

Let 7 :$2 --+ Cp3 be a holomorphic map of degree d. This map can 

be expressed using homogeneous coordinates in CF 3 as follows: 7(z) = 

[so(z), Sl(Z), s2(z), s3(z)], where so, Sl, s2, s3 E H~ 2, O(d)). (Note that  

if we choose homogeneous coordinates zo, zl for S 2 - CP 1, the si's are 

just homogeneous polynomials of degree d in the variables z0, Zl.) Since 

7(S 2) c CF 3 is a curve of degree d, the linear system {so, sl,  s2, s3) 

has no base points. It follows from (1.1) that  7 = [so, sl,  s2,s3] is a 

holomorphic horizontal curve of degree d if 

80, 81, 82, 83 ~ H 0 ( S  2, O(d)), 

{so, Sl, s2, s3} is base-point-free and (1.3) 

s 0 s l  - + s2 ; - = 0 

Notation. In this paper we shall let Wd = HO(s 2, O(d)) and W)  denote 

the k-fold product  of Wd. We shall let K denote the canonical line 

bundle over S 2, and W2d 2 = HO(s 2, O(d) 2 | K) = HO(s 2, (9(2d - 2)). 

Also, given a vector space V, we shall let FV denote the projective space 

of lines through the origin in V. Now let S be a subset (not necessarily 

a subspace) of V. Suppose that  S is closed under scalar multiplication. 

Define an equivalence relation on S \ {0} as follows: s ~ As for any 

A E C \ {0}. We shall let I?S denote the set of equivalence classes 

( s  \ 

Consider the following maps: 

aam: W~ ,W2d 2 

(s,t) r '~ s d t -  tds, (1.4) 
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and 

(S0, Sl ,  S2, S3) ' ) sO dsl - 8 1  dso + 8 2  ds3 - 8 3  ds2. (1.5) 

Observe that  ~(so, Sl, s2, s3) = Ram(s0, sl) + Ram(s2, s3). We are inter- 

ested in the space g)-l(0). (Note: ~-1(0) is closed under scalar multi- 

plication.) In particular, we shall s tudy the projective variety 

.Add := lP(g)-l(0)) C ]PW 4 ~ CIP 4d+3. 

Lemma  1.6. Each irreducible component of Add has dimension greater 

than or equal to 2d + 4. 

Proof .  From (1.5) and the fact that  dim W2d-2 = 2 d -  1, we obtain 2 d -  1 

relations for ~-1(0). The lemma follows since 4d + 3 -  ( 2 d -  1) = 2d + 4. 
[] 

Let Cd := {Is0, sl,  s2, s3] �9 PW j I {so, sl,  s2, s3} has base-points).  

Observe that  elements Of Cd correspond to parametr ized rational curves 

in CI? 3 of degree strictly less than  d. It follows from (1.3) tha t  branched 

superminimal immersions of S 2 into S 4 of area 47rd are parametr ized by 

the quasi-projective variety 

,sd := Add \ cd. (1.7) 

In order to unders tand the s tructure of Sd, we need to unders tand 

the structure of Ad~. To do this, we need to s tudy the map Ram in 

greater detail. 

Remark.  Since Ram(s, t) = - R a m ( t ,  s), Ram is well defined on simple 

bivectors: s A t H s dt - t ds and thus extends linearly to a map 

A : A2Wd - - ~  W2d_2 

E a i j s i A s j ,  ~ E a i j { s i d s j - s j d s ~ } .  (1.8) 
i < j  i < j  

This map is well-known and it is called the Gaussian map (see [Wall, 

[Wa2]). 
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Consider a d iagram 

X x X  

~ x~ 

A 
Y , Y x Y ,  

where A is the diagonal inclusion. The  fibre p roduc t  X • y X is just  the 

restrict ion to the diagonal of the product  4 • ~P : X • X ~ Y • Y, tha t  

is, X x y  X = A*(X x X). 

From the observation following (1.5), the  horizontali ty condit ion can 

be expressed as follows: 

From the diagram: 

Ram(s0, Sl) = - Ram(s2, s3). 

(1.9) 

A 
W2d_ 2 W2d- 2 • 2, 

where A is the diagonal inclusion~ consider the fibre p roduc t  

Note tha t  5r'd is not a subspace of W4; nevertheless, it is closed under  

scalar mult ipl icat ion since Ram(As, At) = ~2 Ram(s, t )  for any A E C 

and (s, t) C Wd 2. The  projectivized fibre product  PSCg is defined as 

(SVg \ {0})/~,  the set of equivalence classes under  scalar multiplication.  

Observe tha t  we have a natura l  identification: 

M d  ~ PFd C PWd 4. (1.10) 

Let us first examine the fibre above 0 ~ W2d-2 in the fibre p roduc t  

5rd. Let 13d := {(s, t) E Wd 2 I Ram(s, t) = 0}. Observe tha t  (s, t) ~ Bd if 

and only if #s  = At for some (#, A) ff C 2 \ {(0, 0)} if and only if s A t = 0. 

Thus,  

Bd = {(act, bG) C l ~  Io-  ~ Wd, [~, b] C c•l}. (1.11) 
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It  follows from (1.9) and (1.11) tha t  the fibre above 0 C W2d-2 in the 

fibre p roduc t  Sad is just  the  set 

/3d • t~d = {(a~, bcr, c~-, dr) I (0, ~-) E W~, % b], [c, d] ~ CI71}. (1.12) 

Let N and S denote  the pair of ant ipodal  points  [1, 0], [0, 1] E 1HIP 1 

S 4 respectively, and consider the following pair of projective lines in 

CIP 3 corresponding to the twistor fibres above N and S: 

L0 := {[zo,zl,O,O]l(zO, Zl) ~ C 2 \ {(0,0)} } = ~r-1([1,0]), 

and 

L~ := {[0, 0, ~2, ~3] I (~2, ~3) ~ c 2 \ {(0, 0)} ) -- ~-~([0,1]). 

Fix ([a, b], [c, d]) E CF 1 x CF 1, let g denote  the  line in CF 3 spanned by 

the points  [a, b, 0, 0] E L0 and [0, 0, c, d ]E  L1 and let Sg = 7v(g) c S 4. It 

follows from [Loll tha t  g is horizontal and tha t  S~ is a total ly geodesic 

2-sphere passing th rough  N and S in S 4. Now choose (0, ~-) E Wd 2 such 

tha t  the  pencil {a, 7} is base-point-free and set r = [(a~r, bcr, c7, d7)] E 

P(Bd x Bd). Then  qb = [cr(a, b, 0, 0)+7(0, 0, c, d)] and hence ~b(S 2) c g, tha t  

is, r : S 2 --~ g is a branched covering map.  Fixing a line g c CF 3 which 

intersects the twistor lines Lo and L1 amounts  to fixing a total ly geodesic 

2-sphere Sg C S 4 passing th rough  N, S E S 4, and the  composi t ion 7cor is 

just  a branched covering map  S 2 ~~ Se. Thus,  the space F(Bd x Bd) \Ca 
parametr izes a family of horizontal  lines in CI? 3 which project  to total ly 

geodesic 2-spheres passing th rough  N and S in S 4. 

Since dimWd = d + 1, (1.11) implies tha t  dimBd = d + 2, and thus 

from (1.12) 

dim(IP(Bd • Bd)) = 2d + 3. (1.13) 

Remark .  Since elements of P(BL x BL) are curves in CP 3 which intersect 

L0 UL1, they are elements in the boundary of the  modul i  space described 

in [Loll. 
We now examine the  case when Ram(s, t) # 0 or, equivalently, s At 

0. Since Is, t] ~ F(Wd2\Bd) implies tha t  sat  # 0, we may consider Is, t] as 

a projectivized ordered 2-fi'alne in Wd. We can thus identify PV(2, Wd), 
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the projectivized Stiefel manifold of ordered 2-frames in Wd, with the 

set F(W~ \ Bd). Now, consider the action 

Given 

H ~ (S 2, L), 

induced map 

(a~m): ~v(2, w~) = >(w~ \ Bd) ---+ ~'W2d_2 

defined by sending a point Is, t] to the divisor (s dt - t ds). 

PCL(2, C) • W~) ~ PV(2, Wa) 

Let [s A t] denote the 2-p]ane in Wd spanned by s and t. Observe that 

the principal PGL(2, C)-bundle over the Grassmannian G(2, Wd) is given 

by 

PV(2, Wd) P> g(2, Wd) 

Is, t] ~ [s A t]. 

a line bundle L - +  S 2 and a holomorphic section a 

we shall let (a )denote  the divisor of a. We have an 

(1.14) 

A simple 
computation shows that the ramification map (1.14) factors through 

the Grassmannian, that is, the following diagram commutes: 

~v(2, wd) >v(2, w~) 
p~ l(a~m) 

[Ram] 
g(2, w~) , ~w2d_2, 

(1.1s) 

where the map [Ram] is given by [s A t] ~-~ (s dt - t ds). (This is inde- 

pendent of the choice of spanning vectors of the 2-plane.) Consider the 

Pliicker embedding G(2, Wd) ~-~ p(A2Wd) and let g denote the image 

of the Grassmannian in P(A2Wd). (G can be identified with the set of 

projectivized simple bivectors in Wd.) RecM1 the map: 

A: A 2 W d  ~ W,2d_ 2. (1.8) 

Projectivizing (1.8), we obtain a rational map: 

5.: ~ A2w,~ -_~  ~'w2d_2. (1.16) 
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Since A(v A w) = 0 implies tha t  v A w = 0, the base locus of the map  

does not intersect G. 

Remark  1.17. The  map  AIo:G --+ PW2d-2 is precisely the map  

[Ram]: G(2, Wd) --+ PW2d-2. It was shown in [Loll t ha t  3-19 is a finite 

map  of degree (2d - 2)!/dl(d - 1)! onto PW2d-2. (This is precisely the 

degree of G in P ~Wd. )  

Recall from [Loll t ha t  a holomorphic  horizontal  map  from S 2 to 

CP 3 of degree d < 2 is just  a (branched) covering map  to a horizontal  

projective line in CP 3 wi th  twistor image lying in a total ly geodesic 

2-sphere in S 4. Henceforth,  we shall assume tha t  d ___ 3. 

Consider the  d iagram 

c(2, wd) • c(2, vG) 

A 
] P W 2 d - 2  > ] ~ W 2 d - 2  • • W 2 d - 2 ,  

where A is the diagonal inclusion. Since [Ram] : G(2, Wd) --+ I?W2d-2 is 

a finite map  by Remark  1.17, we see tha t  

dim(G(2, Wd) • G(2, Wd)) = dim(G(2, Wd)) = 2(d - 1). (1.18) 

Similarly, we obtain the fibre p roduc t  PV(2, Wd) • Wd) from 

the diagram: 

PV(2, W~) • PV(2, Wd) 

[~m] • [R~m] 

A 
PW2d-2 ------~ PW2d-2 X P W 2 d _ 2 ,  

where A is the diagonal inclusion. 

Remark .  The  total  space of the  (PGL(2, C) • PGL(2, C))-bundle over the 

fibre product  G(2, Wd) • G(2, Wd) is PV(2, Wd) • Wd). 

Recall the  following lemma: 

L e m m a  1.19. Let L be a line bundle over S 2 and let so, sl ~ H0(S  2, L) 

be two nonzero sections, i f  (so) = (sl) C P H ~  2, L), then there is a 

unique c~ c C \ {0} such that so = asl .  

Bol. Soc. Bras. Mat., Vol. 30, N. 2, 1999 



IRREDUCIBILITY OF MODULI  SPACE 171 

Let (Is, t], [u, v]) E FV(2, Wd) • 2 IFV(2, ~ ) .  Since 

[a.m]([s a t]) - [Ram]([u A v]) ~ ~w2d_2, 

by the above l emma there exists a .unique - A  2 E C \ 0 such tha t  

Ram(s, t) = _,~2 Ram(u, v) = - Ram(• • 

thereby giving us a pair [s,t, +s  • ~ Add. This gives us a 2:1 

correspondence 

A4d \ P(gd x gd) ----+ PV(2, Wd) x~%d_2 PV(2, Wd) 

Is, t, • • > (Is, t], [u, v]). 

This 2:1 correspondence is related to the  contact  involution discussed in 

[Loll. 

Remark  1.20. Let G = (SL(2, C) • SL(2, C ) ) / •  1, where 1 = ([, I). 

(1) G acts on Add and leaves the set P(Bd • /3d) invariant. 

(2) G acts freely on Add \ P(Bd • Bd). In fact 

Md \ Y(Bd x Ba) 

[so, sl ,  s2, s3], 

is a principal C-bundle.  

G(2, l/Vd) x~w2d_2 G(2, Wd,) 

, ([so A s l ] ,  [$2 A s3]) 

(3) G ~ PGL(2, C) x PGL(2, C) is a 2:1 covering map  and thus so is 

Md \ F(Bd • Bd) : FV(2, Wd) • II~V(2, Wd). 

Observe from (1.13) tha t  dim IP(/3d • Bd) -- 2d + 3 and hence, by 

Lemma  1.6, F(Bd x Bd) cannot  be a component  of Md. The fact tha t  

dim G = 6, together  with Lemma  1.6, Equat ion  1.18 and Remark  1.20 

(2), imply tha t  each irreducible component  of Add is of dimension 2 ( d -  

1 ) + 6 = 2 d + 4 .  Thus: 

Lemma 1.21. Each irreducible component of Md,  and hence of Sd, is of 
pure dimension 2d + 4. 

2. Monodromy and irreducibility 
Given a finite covering map  A ~ B with fibre F ,  the monodromy  group 

is the image of 7rl(B), the  fundamenta l  group of the base, in 6p(F), the 
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symmetr ic  group of the fibre. Recall that  [Ram] : G(2, Wd) ~ PW2d-2 

is a branched covering map. Let 9l and ~3 denote the ramification and 

branching loci of [Ram] respectively. Then  

[Ram] : G(2, Wd) \ 91 > ]PW2d-2 \ 

is a covering map with fibre F consisting of p = (2d-2)!/d!(d-1)! points. 

Monodromy Theorem (Eisenbud-Harris). The monodromy of 

[Ram]: G(2, We) \ 91 > FW2d-2 \ ~3 

is the full symmetric group Gp(F). 
This theorem was proved by Eisenbud and Harris (cf. [EH]) in their 

s tudy of limit linear series. It is used in the proof of the following: 

Theorem 1. The moduli space Sd has two irreducible components when 
d>3 .  

This theorem was first mentioned by Verdier (cf. [V1]), who claimed 

that  it followed immediately from the Monodromy Theorem. However, 

since Verdier did not provide a complete proof of the irreducibility result, 

we shall furnish one here. We begin with some notat ion and lemmas on 

topology. 

Let (Y, Y0) be a connected manifold with base point Y0, let Z be a 

manifold which is not necessarily connected and let p : (Z, z0) --+ (Y, Y0) 

be a finite covering map. Let F := p- l (y0)  denote the fibre above the 

base point (so z0 E F) ,  and let G denote the monodromy group. Finally 

let Y- denote the universal cover of Y. 

Consider the normal subgroup 

H := A p. l(z, <  l(v, yo). 
r 

Observe tha t  c~ E 7rl(Y, Y0) induces the identity t ransformation of F if 

and only if c~ ~ H. Consider the factor group G = ~rl(Y, yo)/H. Note 

that  G is an effective t ransformation group of F.  Let X : 7rl(Y, Y0) -+ G 

be the natural  homomorphism. The bundle s t ructure theorem (cf. [S], 

pp. 68-71) says tha t  Z ~ Y admits a bundle s t ructure with fibre 

F,  group G and characteristic class X. Note tha t  in the case of the 
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universal cover `2 --+ Y, the s tructure group is the whole fundamental  

group 7rl(Y , Y0). Since the fibre F can be identified with the left coset 

space 7q(Y, y0 ) /H  (which in turn  is identified with the group G), by the 

associated bundle construction we obtain the identification 

Z = `2 • F. 

Lemma  2.1. Let (Y, yo) be a connected manifold with base point Yo. 

Suppose 7r 1 (Y, Y0) acts on some finite set F .  Consider the fibre space 

p : Z = ? xTl_l(}~y0) F > K 

I f  %l(Y, Yo) acts transitively on F,  then Z is connected. 

Proof .  First, note tha t  p is a covering map (cf. [S, p. 69]). Suppose 

instead that  Z is not connected. Then it has at least 2 connected com- 

ponents. Let U1 and U2 be two of them. Let F1 and /;2 denote the 

intersection of p- l (y0)  with U1 and U2 respectively. Observe that  nei- 

ther F1 nor F2 is empty  since Y is connected. Let Xl E F1 and x2 C F2. 

Since any based loop in Y lifts to a curve in a connected component  of 

Z, there is no element of 7rl(Y, Y0) sending xl  to x2. This contradicts 

transitivity. [] 

L e m m a  2 . 2 .  Let p : (Z, zo) ---+ (Y, Yo) be a finite covering and let F := 

p- l (yo) .  Suppose the monodromy g acts doubly transitively on the fibre 

F,  then the fibre product Z •  Z has two connected components. 

Proof .  Observe that  via the diagonal action of G on F • F,  we can 

identify the fibre product  Z Xy Z with the fibre space `2 x~ (F • F).  

Furthermore,  the diagonal action of g on F • F preserves the diagonal 

A(FxF ) and its complement CA(FxF ). For simplicity, we will let $1 
and $2 denote the diagonal and its complement respectively. Double 

transit ivity of the action of g on F is nothing other than  transit ivity of 

the diagonal action on both $1 and $2. The lemma follows since 

Z x v  Z = ` 2  x~ (F x F)  

= `2 x~ ($1 I1 $2) 

= ('P • $1) H (`2 x~  S2), 
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and by Lemma 2.1, (Y x o S/) is connected for i = 1, 2. [] 

We next prove some lemmas on algebraic curves in algebraic vari- 

eties. In particular, we will prove some "covering curve" lemmas which 

will be used in the proof of Theorem i. 

Lemma 2.3. Let V be an irreducible algebraic variety and let U be a 

proper subvariety. Then for any point p C U, there is an irreducible 

algebraic curve 7 in V which intersects U only at p. Furthermore if p 

is a smooth point of V,  then 7 can be chosen to be smooth at p. 

Proof .  Pick a general point q c V \ U. Then there is an irreducible 

algebraic curve C in V which contains p and q and which intersects U 

at only a finite number of points, say { X l , . . . ,  xn}. The curve C can be 

chosen to be smooth  at q since q is a general point, and furthermore if p 

is a smooth point of V, C can be chosen to be smooth  at p. (See [We].) 

Take 7 - -  {P} U (C \ { X l , . . . , x n } ) .  [] 

Remark 2.4. In fact, the curve ~/above can be chosen to be smooth by 

removing the set of singular points in C. 

L e m m a  2.5. Let V be an irreducible proper subvariety of G(2, Wd) and 

let U : -  [Ram](V) denote its image in PW2d 2. Let p E U. Then there 

exists a smooth algebraic curve 7 C IPW2d 2 emanating from p such that 

7 N V {p}. Furthermore, /f q ~ V N [Ram]-l(p), then there is an 

algebraic curve ~/ emanating from q which covers 7. 

Proof .  Observe that  [Ram] : G(2, Wd) --+ ]?W2d-2 is proper and finite and 

hence U is an irreducible, proper subvariety of ]PW2d-2. Since ~W2d_ 2 

is smooth, by Lemma 2.3 and Remark 2.4 there is a smooth  algebraic 

curve C c ]?W2d 2 emanating from p such that  C N U = {p}. If 7 : C -+ 

IPW2d 2 denotes the inclusion map, we have the curve required in the 

first part of the lemma. 

Now consider 
,, G(2, wd)  

~1+ .[[Ram] 
C ~ P W 2 d  2, 
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where G is the fibre product  

C xeV~d 2 G(2, Wd) = ~/*(C(2, Wd)) = [Ram]*(C) 

= { (~ ,  y) ~ C x 0 ( 2 ,  Wd) I [aa~,](y)  : ~(.)} ,  

and %1 is the first factor projection map. By [H, 9.3a, p. 266] [Ram] is 

flat (it is also proper). Thus 7h is flat by [H, Proposition 9.2b, p. 254] 

and proper by [H, Corollary 4.8c, p. 102], and hence each irreducible 

component  of G maps onto C (cf. [H, Corollary 9.6, p. 257]). Take an 

irreducible component P through (p, q) C G. If necessary, normalize r 

to obtain a smooth algebraic curve C (we let C = F if F is smooth). We 

thus have the commutat ive  diagram: 

q i + [R~l 
O' 

C PV~T2d 2, 

where ~(C) is the desired curve emanat ing from q which covers 7. [] 

Now consider the map [Ram] : G(2, Wd) XPVV2d 2 G(2, Wd) --+ PW2d-2. 

Lemma  2.6. Let p ~ % C PW2d-2 and let q = (ql,q2) be a point in 

the inverse image [Ram]-l(p) C G(2, Wd) • G(2, Wd). Then there 

exists an algebraic curve "~ c G(2, Wd) • G(2, Wd) emanating from 

q such that 

\ {q} c c(2,  wd) x~,%d_~ C(2, Wd) \ [R~]-I(~). 

Proof .  Lelnma 2.5 gives us a smooth curve 7 : C ~ 2 W 2 d _  2 emanat ing 

from p with 7 ~ % = {P}. It also furnishes us with the curves ~i : C~ -~ 

G(2, Wd) emanat ing from qi, i = 1, 2, which covers 7. Let fi : Ci -* C, 

i = 1,2, denote the projection maps. Observe that  the fibre product  

C1 x c  C2 is just the restriction of C1 • C2 to the diagonal C c C x C, 

i.e. 
Cl x c C 2  Cl X C2 

~ f lxf2  

C C x C .  
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Since C is smooth, the product C x C is smooth and hence the diagonal 

C c C • C is described by one algebraic equation (which is locally 

x = y). Consequently, the fibre product C1 • c C2 is described by one 

algebraic equation (which is locally f l  = f2). This implies that  every 

component of the fibre product has codimension 1, i.e. every component  

has dimension 1, implying that  q = (ql, q2) is not an isolated point. Note 

that  the curves Ci were chosen such that  Ci - {qi} are mapped onto 

C - { p } ,  for i = 1, 2, and thus the inverse image ofp  in the fibre product  

C1 •  C2 contains only the point q. Let S be an irreducible component 

of C1 •  C2 containing the point q = (ql, q2). From the commutative 

diagram: 

5 
C1 •  C2 > G(2, Wd) • G(2, Wd) 

~[aaml 
C - - ,  I?W2d_2, 

we see that  ~ restricted to S C C1 x c C2 is the desired curve emanating 

from q = (ql, q2). [] 

Remark 2.7. If ql = q2, consider the diagonal curve 

= ('~1, "~1): C1 --+ G(2, Wd) X~,W2d_2 G(2, Wd) 

defined by sending c E C1 to the point @1(c), 71(c)) which obviously lies 

in the fibre product G(2, Wd) X~W2d 2 G(2, Wd). The curve ~/emanates 

from the diagonal point (ql, ql) and covers 7. 

Proposit ion 2.8. The fibre product G(2, Wd) X~W2d 2 G(2, Wd) has two 
irreducible components when d >_ 3. 

Proof.  First, observe that  if the monodromy acts as the full sym- 

metric group on the fibre, then it acts doubly transitively. By the 

Monodromy Theorem and Lemma 2.2, the fibre product (G(2, Wd) \ 
91) XPW2d_2 (G(2, Wd) \ 9l) has two connected components, say V1 and 

1/2, corresponding to the diagonal and the complement of the diago- 

nal respectively. It follows from Lemma 2.6 that  the Zariski closure 

of (G(2, Wd) \ 91) X~,W2d_2 (G(2, Wd) \ 91) is G(2, Wd) x~,W2d_2 C(2, Wd). 
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Note tha t  for smooth  algebraic varieties, irreducibility is equivalent to 

connectedness.  Since 

is smooth,  17t and V2 are irreducible. Recall tha t  the Zariski closure 

of an irreducible set is irreducible. Thus,  V1 and V2 are irreducible. 

Since V1 r V2, in order to show tha t  G(2, Wd) XeW2d_2 G(2, Wd) has 

two irreducible components ,  it suffices to prove tha t  G(2, Wd) XeW2d_2 

G(2, Wd) = V1 U V2. It is clear from Lemmas  2.5 and 2.6 tha t  

V1 U V2 C G(2, Wd) XpW2d_2 G(2, Wd). 

We now need to show tha t  G(2, Wd) X~W~d ~ G(2, Wd) C V1 U V2. 
Suppose z lies in the diagonal, i.e. z = (q, q) E G(2, Wd) • G(2, Wd). 

By L e m m a  2.6 and Remark  2.7, there is a diagonal algebraic curve 5, 

emana t ing  from z such tha t  

This shows tha t  z E V1. 

Now suppose z = (ql,q2) C G(2, Wd) x~,W2d_2 G(2, Wd) is in the 

complement  of the diagonal. By L e m m a  2.6, there is an algebraic curve 

5, in G(2, Wd) XpW2d_2 G(2, Wd) emana t ing  from z such tha t  

5, \ {x} c (c(2, wd) \ (0(2, wd) \ 

Note tha t  5, intersects the diagonal in a finite number  of points. Let 

c~ denote  the  curve obtained from 5, by removing those points. Then  

cr \ {z} is a non-dia9onaI curve in V2, thus showing tha t  z E V2. 

We have shown tha t  G(2, Wd) • G(2, Wd)C If I U V2, 

which implies tha t  G(2, Wd) • G(2, Wd) = V1 U V2. Hence, 

G(2, Wd) x~w2d_2 G(2, Wd) has two irreducible components .  [ ]  

Remark 2.9. 

(1) When  d = 1: G(2, W1) is just  a point  and thus 3//1 is isomorphic to 

G = (SL(2, C) x SL(2, C ) ) / •  1, which is irreducible. Thus  3//1 is an 

irreducible projective variety of dimension 6. Let 

A = {[a~, b~, c~, d~] I [a, b, c, d] ~ CP 3, ~ ~ W~ \ {0}}. 
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Since dimA = 4 we see that  81 = M i  \ A is an irreducible quasi- 

projective variety of dimension 6. 

(2) When d = 2: the map [Ram] : G(2, 1s --+ PW2 ~ CP 2 is a biholo- 

morphism (cf. [Loll, Proposition 2.4). So 

C(2, m2) x w2 C(2, W2) G(2, W2) 

which is irreducible. Since 2t42 is a G-bundle over the fibre product,  

we see that  M2  is an irreducible projective variety of dimensional 8. 

The subset of A42 consisting of quadruples of sections of W2 with 

base points is isomorphic to CP 1 x M1,  which is of dimension 7. 

Thus 82 is an irreducible quasi-projective variety of dimensional 8. 

P roof  o f  T h e o r e m  1. For d > 3, let X1 and X2 denote the two irreducible 

components of G(2, Wd) xpw2d_2 G(2, Wd). Add is the total space of the 

G-bundle over X 1 0  X2, where 

C = (SL(2, C) x SL(2, C ) ) / •  1. 

Since G is irreducible, we claim that the total space restricted to each 

component Xi, i = I, 2, is also irreducible. Otherwise, pick a component 

of the total space and project it to Xi. If this is not surjective then 

we have split off a component of Xi, a contradiction; if it is surjective, 

then by restricting to a general fibre we see that the general fibre has 

a component splitting off, again a contradiction. Thus, Add has two 

irreducible components and each component is of dimension 2d+4. The 

subset of Add consisting of quadruples of sections of Wd with base points 

is isomorphic to CI? 1 x Md-1 ,  which is of dimension 2d+3 and is hence 

not a component  of Md.  Thus, 8d has two irreducible components,  each 

of dimension 2d+4. [] 

Remark 2.11). Proposition 2.8 together with Theorem i tells us that for 

d > 3, 8d has 2 irreducible components: the "diagonal component", 8 0 
-- d' 

and the "non-diagonal component", 8 +. Recall that 8d parametrizes 

the space of holomorphic horizontal curves of degree d in CP 3. By 

post-composition with the twistor projection 7r : CP 3 --~ S 4 we obtain 

branched superminimal immersions of S 2 into S 4 of area (or energy) 
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47cd. Let 

~o = {Tr o f  I f  ~ S~ 

7-{+ = {me o f l f  c Sd +}, 

7-g ~ = { A o ~ o  f l f E,Nd~}, 

where A : S 4 --, S 4 is the antipodal map. Elements of ~0  correspond 

to totally geodesic maps from S 2 to S 4, that  is, branched coverings of 

S 2 to a totally geodesic 2-sphere in S 4. Elements of H + and H I  are 

"linearly full" harmonic maps from S 2 to S 4, that  is, their images are 

not contained in any strict linear subspace of R 5 D S 4. The action of 

the antipodal map A preserves 7@ and interchanges ~ +  and 7-f~. Every 

map f 5 7-f~ is harmonic but has no holomorphic horizontal lift to CP 3. 

(cf. Remark 1.2 and IV1].) 

By Remarks 1.2 and 2.10, we obtain: 

Theorem 2. For d >_ 3, the moduli space ~d of harmonic maps from S 2 

to S 4 of energy 47cd has three irreducible irreducible components: 7_{o d~ 

3. Final Remarks 

Since Sd := Add \ Cd is not compact,  one may ask: "What  would be 

a natural  compactification of Sd? Can we compactify Sd by consider- 

ing the whole of Add?" Unfortunately,  elements of Cd correspond to 

parametr ized rational curves of degree strictly less than d. Consider a 

curve C emanat ing from a point p ~ Add \$d- Then the punctured curve 

C \ {p} is the parameter  space for a flat family of parametr ized rational 

curves in CP a of degree d. To each point x in C \ {p}, we can associate 

the graph I"x of the corresponding parametr ized rational curve, that  is, 

a curve of bidegree (1, d) in CI? 1 • CP 3. Thus C \  {p} parametrizes a flat 

family of graphs of bidegree (1, d) in C21 • CP 3. There is a notion of 

taking limits to p in the algebro-geometric sense since flatness extends 

across a puncture.  Thus, we can associate to the point p a limit graph of 

bidegree (1, d). (This is discussed using some examples in [Lo2].) Taking 

all possible limits, one should obtain a natural  compactification of Sd. 
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The question is, how can one do this globally? This turns out to be a 

rather difficult problem. 

In [LV1], a simpler compactification problem was studied: the vari- 

ety parametrizing graphs of holomorphic maps from CP 1 to CP 1 x CP 1. 

(The graph of such a map is a complete intersection.) Here a global ap- 

proach was taken: obtain the compactification via an explicit sequence 

of blow-ups along smooth centres. The bidegree (1,1) case is described 

in [LV1], and the bidegree (2,2) case in [LV2]. It is hoped that  an un- 

derstanding of this simpler compactification problem will be of use in 

the compactification problem for the moduli space Sd. 
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