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Constant curvature 2-spheres in CP”
Claudio Gorodski!

Abstract. In this note, for each 0 < R < 1, we construct a continuous family of
isometric immersions of the 2-sphere of constant curvature 1/R?, 52(R), into complex
projective plane CP? with the Fubini-Study metric.
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1. Introduction
We are interested in isometric embeddings of the 2-sphere of cons-
tant curvature 1 /Rz, S?(R), into complex projective plane CP?2 with
the Fubini-Study metric normalized so that the sectional curvature is
between 1 and 4. It is easy to classify all such embeddings which are
complez algebraic. In fact, if (zg, 21, 29) denote homogeneous coordina-
tes in CP? and F is a homogeneous polynomial in those coordinates,
then F' = 0 has the topology of a sphere if and only if the degree of F is
one or two. If the degree is one, then F' = 0 describes a totally geodesic
CP! with constant curvature 4 (R = 1/2). If the degree is two, F = 0
is congruent to an sphere azg + bz% + cz% = 0 where a, b, ¢ are real and
0 < a < b < ¢ that sphere will have constant curvature if and only if
a =b=c#0, in which case the curvature will be 2 (R = /2/2). It is
interesting to observe also that RP?2 represents an immersed sphere in
CP? of curvature 1 (R =1).

In this note, for each 0 < R < 1, we construct a continuous family
of isometric immersions S?(R) — CP2. The procedure is a modification
of an idea of Ferus and Pinkall [1] who constructed constant curvature
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2-spheres in the 4-sphere.

2. The Construction
Consider the fibration S* — S§%(1) — CP? where we view

55(1) = {(Zy, Z1, Z2) € C3 : |Z0|2 + lZ1|2 + ]ZQIZ =1}

and S1 acts diagonally. If ry, 7o > 0, r% + r% = 1, then |Zp|? = 7‘%,
|Z1|2 + | Z2|? = 74 defines an inclusion S*(r1) x S3(rg) C S°(1) which is
compatible with the fibration; therefore, it gives rise in the quotient to a
homogeneous manifold M diffeomorphic to S3. In fact, let z; = Z;/Zy,
i : 1,2, be an affine chart on Uy = {Zy # 0}. Then M C Uy and the
chart maps M onto S3(r) C €2, where 7 = 71 /2. Moreover the metric
induced on M can be expressed in this chart, after rescaling, as

2
{(a,b)). = (‘1?7)2[(1 +72|29*) Re{a1b1} + (1 + 72|21 |%) Re{agba}—
— r2 Re{z122(a1b2 + brag)}]

where z = (21,29) € S% and a = (a1,a2), b = (b1,by) € T,S3. We
propose to construct isometric immersions S2(R) — (S%, ({,))).

The S action p : ST x S3 — 83, py(21,22) = (21,€%29) is ((,))-
isometric and the orbit velocity square is
2
=it

| ez

472 W

T+ r2)2
The orbit space is a 2-dimensional hemisphere, which can be parametri-
zed by

(1 + 72|21 [%)] 22f?

X = {(e"cosf,sinf): 0 < ¢ <2m,0< 0 <7w/2}.
The boundary 8X = {# = 0} is the set of fixed points. Since
3 mopla) = 0.5
Zlemop(2) = (0,i22),
the orbital metric {-,-} on X is given by

{a,a} = ((a,a)) — ((a, (0,i22)))°[1(0, i22) ]| 2
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for z¢€¢ X - 90X, a € T,X. Therefore,

o 0 e

e={w ) =11 @
o 0 4r2 cos? 6

G= {%’%} T A+ 721+ r2cos? 0) (4)

If 271(f, ¢) is the length of the orbit through (6, ¢), then from (1)
18,¢) = 27‘81n9v 1+ 72 cos? (5)

Assume S?(R) — (S3,((,))) is an isometric immersion which is S1-

equivariant with respect to the rotation of S2(R) around the z-axis and
the p action on S3. Consider a meridian s — (Rsins, Rcoss), 0 < s < .
Its image in S projects onto a curve s — (6(s), ¢(s)) in the orbit space X
which starts and terminates at boundary points and satisfies

B0 + G = R? 6)
1(0(5), 6(s)) = Rsin s (7)

Conversely, a curve in X satisfying (6) and (7) which meets X perpen-
dicularly at its endpoints generates an equivariant isometric immersion.

In order to construct such curves, differentiate the square of (7) to
get

(1+41r2)2 1+ r2cos? 0 R? - (H_TQ)Z sin? A(1 + 72 cos? 6)
4r? (1412 — 2r25in? )2 cos? @

¥ =

(8)

Consider # as an independent variable, where possible, and use (6),

(8), (2), (3) and (4) to get

2 2
E
LA r o
de goe G 4rtsin® 0 — 4r2(1 + r2) sin® 0 + R2(1 + r2)2

where
r'= 47"4(7"2 — R2(1 + T2)) cos® 0+
+4r2(2r? — R2(1 + r?)) cos? 0 + 4r% — R%2(1 + r2)2.

(9a)

Bol. Soc. Bras. Mat., Vol. 30, N. 3, 1999



290 CLAUDIO GORODSKI

Since 1(0,¢) < 1 (see (5)), we may assume 0 < R < 1. Then (9) can be
rewritten as

2
(5‘@) — 41(6)92(0)93(6)

do
where
©) = sin? @
ae= 4r2(1 + 12 — r2w? — 72 5in® B)(w + sin §)
g2(0) = ey with T' defined in (9a)
COSs
cos?
93(0) = w — sin 6
and

2
w=\/1;; (1—v1- R?).

Note that 0p, = arcsinw € (0,7/2) is the smallest positive zero of the
denominator of (9). Then it is easy to see that g; and g3 are positive
on (0,0g,), but we need to require R < 1 and

R
r> —— (10)
2v1 — R2
in order to have also go positive on that interval. In fact, with those
hypothesis, the g; are positive increasing on (0,0r,) and h = g1g2 is

bounded on [0,0r]. Therefore

O ——  cost

defines a continuous function on [0, 0], smooth on [0,0r,). The cor-
responding curve in X can be reflected at the meridian ¢ = ¢(0g,)
(since the orbital metric is ¢-independent) and gives a solution of (6),
(7) starting and terminating at boundary points. Finally, ¢ = ¢(8) is
an even function around 6 = 0 since its derivative is odd.

For each R € (0,1) this gives a family indexed by r (subject to (10))
of isometric immersions of S2(R) into (53, ((,))), and then into CP? as
well. One of those immersions will be an embedding if the generating
curve is not self-intersecting, i.e. if ¢(0r,) < 7.
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Fix R € (0,1). Then we need r > R/(2v1 — R?). Since
1
lim fp, = arcsin lim w = arcsin \/5(1 —V1—R?

and, for each 0 € (0, aresin /(1 — V1 — R2)) fixed,
im0 =0

we conclude that

Tl_l_{go #(Or,) = o0
Similarly, as R — 1 (which requires 7 — 00) the two smallest positive
zeros of the denominator of (9) merge together into a double zero (6 =
7/4) and we get

Jlim ¢(Or,r) = oo
Therefore, we do not have injectivity for R very close to 1. Moreover, in
order to have injectivity for a given R € (0, 1), we have to try with an r
which is not too big. The monotonicity of h in (11) allows the estimate

¢(9R,r) < A \/ h(t)%zmdt + 2\/ h'(gR,'r) vw — sin @’

for 8 € (0,0r,). Numerical evaluation indicates then that we have
injectivity at least for R € (0,.999999) if we choose 7 to be the smallest
possible (cf. (10)).
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