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C o n s t a n t  curvature  2 - spheres  in CP 2 

C l a u d i o  G o r o d s k i  1 

Abstract. In this note, for each 0 < R < 1, we construct a continuous family of 
isometric immersions of the 2-sphere of constant curvature 1/R 2, S 2 (R), into complex 
projective plane CP 2 with the Fubini-Study metric. 
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1. In troduct ion  
We are interested in isometric embeddings of the 2-sphere of cons- 

tant  curvature 1 /R  2, S2(R), into complex projective plane CP  2 with 

the Fubini-Study metric normalized so that  the sectional curvature is 

between I and 4. It is easy to classify all such embeddings which are 

c o m p l e x  algebraic. In fact, if (zo, zl, z2) denote homogeneous coordina- 

tes in CP  2 and F is a homogeneous polynomial in those c o o r d i n a t e s ,  

then F = 0 has the topology of a sphere if and only if the degree of F is 

one or two. If the degree is one, then F = 0 describes a total ly geodesic 

CP  1 with constant  curvature 4 (R = 1/2). If the degree is two, F = 0 

is congruent to an sphere a z  2 + bz21 + cz  2 = 0 where a, b, c are real and 

0 < a < b _< c; tha t  sphere will have constant  curvature if and only if 

a = b = c # 0, in which case the curvature will be 2 (R = v~ /2) .  It is 

interesting to observe also that  RP  2 represents an immersed sphere in 

CP  2 of curvature 1 (R = 1). 

In this note, for each 0 < R < 1, we construct  a continuous family 

of isometric immersions S2(R) --+ C P  2. The procedure is a modification 

of an idea of Ferus and Pinkall [1] who constructed constant  curvature 
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2-spheres in the  4-sphere. 

CLAUDIO GORODSKI 

2. T h e  C o n s t r u c t i o n  
Consider  the  f ibrat ion S 1 -+ $5(1) --+ CP  2 where  we view 

s5(1) = {(zo,  z~, z2) c c 3- IZoJ 2 + Jz~l 2 + pz212 = 1} 

and S 1 acts diagonally. If rl ,  r2 > 0, ~ + ~ = 1, then IZ012 = ~, 
IZ1] 2 + ]Z212 = r~ defines an inclusion S l ( r l )  • $3(r2) c $5(1) which is 

compat ib le  wi th  the  fibration; therefore,  it gives rise in the  quot ien t  to a 

homogeneous  mani fo ld  M diffeomorphic to S 3. In fact, let z~ = Zi/Zo, 
i :  1, 2, be an affine char t  o n U o  = {Zo ~ 0}. T h e n M  C Uo and  the  

char t  maps  M onto S3(r)  c C 2, where  r = rl/r2. Moreover  the  met r ic  

induced  on M can be expressed in this char t ,  af ter  rescaling, as 

4~ 2 ~2 (1 + ~21zll~)Re{a2b-2}- ((a, b}}z - (1 + r2) 2 [(1 + Iz212) Re{alb-1} + 

_ r 2 Re{ZlZ-2(tflb2 + b-la2)}] 

where  z = (Zl,Z2) E S 3 and  a = (a l , a2) ,  b = (bl,b2) E TzS 3. We 

propose to cons t ruc t  isometr ic  immers ions  S2(R) --* (S a, {(, })). 

T h e  S 1 act ion p : S 1 • S 3 --+ S 3, pt(zl, z2) = (Zl, eitz2) is ({,)}- 

isometr ic  and  the  orbi t  velocity square  is 

2 
~Pt(Zl, z2) = II(o, ie%2)[I 2 

4r 2 (i) 
- (i + ~2) 2(~ + ~21ZlI2)Iz212 

The orbit space is a 2-dimensional hemisphere, which can be parametri- 

zed by 

X = {(eir sinO) : 0 < r < 27r, 0 < 0 < 7r/2}. 

The  b o u n d a r y  OX = {0 = 0} is the  set of fixed points.  Since 

d 
d-t It=opt(z) = (0, iz2), 

the  orbi tal  met r ic  {., .} on X is given by 

{a, a} = ((a, a)) - ((a, (0, iz2)>>211(0, iz2)I1-2 
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for z C X - OX, a E TzX. Therefore ,  

{ 0 0 }  4r2 
E =  0 0 ' ~  - l + r  2 (2) {oo} 
F= 00'0r = o  (3) 

{036  } 4~2c~176 G = , - (2 + r2)(1  + r 2 cos 2 0) (4) 

If 2~rl(0, r is the  length of the  orbi t  t h rough  (0, r then  from (1) 

2r sin 0 / 
l(0, r = 1 + ~ - v l  + r 2 cos 2 0 (5) 

A s s u m e  S2(R) --* (S 3, (<,}>) is an isometr ic  immers ion  which is S 1- 

equivar iant  wi th  respec t  to  the  ro ta t ion  of  S2(R)  a round  the  z-axis and 

the  p ac t ion on S 3. Cons ider  a mer id ian  s ~-+ (Rsin  s, Rcos  s), 0 < s < It. 

I ts  image in S 3 p ro jec t s  onto  a curve s ~-+ (0(s), r  in the  orbi t  space  X 

which s ta r t s  and  t e rmina tes  at  b o u n d a r y  points  and satisfies 

EO 2 + Gr 2 = R 2 (6) 

l(O(s), r  : R sin s (7) 

Conversely,  a curve in X sat isfying (6) and  (7) which mee t s  OX perpen-  

dicular ly  at  its endpo in t s  genera tes  an equivar iant  isometr ic  immersion.  

In order  to  cons t ruc t  such curves,  different iate  the  square  of  (7) to  

get  

q~2 (1 + r2) 2 1 + r 2 cos 20 R2 4r2 (l+r2) 2 sin 2 0(1 + r 2 cos 2 O) 
= (8) 

4r 2 (1 + r 2 - 2r 2 sin 2 0) 2 cos 2 0 

Cons ider  0 as an independen t  variable,  where  possible,  and  use (6), 

(8), (2), (3) and (4) to get 

dO J GO 2 G -  tan20 
- -  - -  4r 4sin 4 0 -  4r2(1 + r 2) sin 20 + R2(1 + r2) 2 (9) 

where  

F = 4r4(r  2 -- R2(1 + r2)) cos 4 O+ 
(9a) 

+ 4r2(2r  2 -- R2(1 + r2)) cos 20  + 4r  2 - R2(1 + r2) 2. 
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Since l(O, r < 1 (see (5)), we may assume 0 < R _< 1. Then  (9) can be 

rewri t ten as rewritten as 
2 

d-0] = gl(0)g2 (0)93 (0) 

where 

and 

sin 2 0 

gl(0) = 4r2( 1 + r2 _ r2w2 _ r2sin20)(w + sin0) 

F 
92(0) - cos4 0' with F defined in (9a) 

cos 2 0 
93(0) - 

w - sin 0 

1 + r  2 
w ---- V 2---~-(1 -- ~V/1- R2). 

Note tha t  OR,r = arcsin w E (0, ~r/2) is the smallest positive zero of the 

denominator  of (9). Then  it is easy to see tha t  gl and g3 are positive 

on (0, OR,r), but we need to require R < 1 and 

R 
r >  (10) 

- 2 , / 1  - R 2 

in order to have also 92 positive on tha t  interval. In fact, with those 

hypothesis, the gi are positive increasing on (0, OR,r) and h = gig2 is 

bounded on [0, 0R#]. Therefore 

s 1 7 6  h ~  cost dt (ii) 
r = , / w  -- sin t 

defines a continuous function on [0, 0R,T], smooth on [0, 0R,r). The cor- 

responding curve in X can be reflected at the meridian r = r 

(since the orbital metric is C-independent) and gives a solution of (6), 

(7) start ing and terminat ing at boundary  points. Finally, r = r is 

an even function around 0 = 0 since its derivative is odd. 

For each R E (0, 1) this gives a family indexed by r (subject to (10)) 

of isometric immersions of S2(R) into (S 3, (( ,))) ,  and then into CP 2 as 

well. One of those immersions will be an embedding if the generating 

curve is not self-intersecting, i.e. if r < 7v. 
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Fix R c (0, 1). Then  we need r > R/(2v/1 - R2). Since 

l im  OR,r = a rcs in  lira w = a rcs in  1 --  X/1 --  R 2) 
r ---~ o o  r ---~ o o  

and, for each 0 e (0, arcsin i 1 ( 1  - x/1 - R2)) fixed, 

de 
rlimoo ~ ( 0 )  = c< 4 

we conclude tha t  

l im  r  = o<~ 
T - - + O O  

Similarly, as R -+ 1 (which requires r -+ ~ )  the  two smallest positive 

zeros of the  denomina tor  of (9) merge together  into a double zero (0 = 

~/4)  and we get 

l ira r = CXD 

Therefore, we do not  have injectivity for R very close to 1. Moreover, in 

order to have injectivity for a given R G (0, 1), we have to t ry  with an r 

which is not  too big. The  monotonic i ty  of h in (11) allows the  es t imate  

f0 ~ cOStsint dt + 2 h~Fh(OR,,T)v/w- sin0' _< 

for 0' C (0, 0R,T). Numerical  evaluation indicates then  tha t  we have 

injectivity at least for R C (0, .999999) if we choose r to be the smallest 

possible (cf. (10)). 
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